

000 001 002 003 004 005 **Emotion-o1: ADAPTIVE LONG REASONING FOR EMO-** 006 **TION UNDERSTANDING IN LLMs**

007
008
009
010
011 **Anonymous authors**
012 Paper under double-blind review

ABSTRACT

013 Long chain-of-thought (CoT) reasoning has shown great promise in enhancing
014 the emotion understanding performance of large language models (LLMs). How-
015 ever, current fixed-length CoT methods struggle to balance reasoning depth and
016 efficiency. Simple tasks (e.g., sentiment classification) are over-reasoned, while
017 complex tasks (e.g., sarcasm understanding) lack depth. To fill this gap, we
018 present Emotion-o1, an adaptive CoT framework that dynamically adjusts rea-
019 soning length based on task complexity. Emotion-o1 is trained by distilling adap-
020 tive CoT patterns from a large reasoning model (LRM), followed by supervised
021 fine-tuning and reinforcement learning with a four-part reward targeting accuracy,
022 brevity, structure, and redundancy. Experimental results on four emotion tasks
023 highlight: (1) Emotion-o1 demonstrates significant improvements over its back-
024 bone, with F1 score increases of 11%↑(Sentiment), 14%↑(Emotion), 18%↑(Hu-
025 mor), and 27%↑(Sarcasm). (2) In sentiment and emotion tasks, our 8B model
026 demonstrates superior performance against SoTA LLMs, outperforming Grok-3
027 by 2.1% in sentiment and within 1% of OpenAI-o1 in emotion. (3) The frame-
028 work maintains accuracy while reducing reasoning length by 83% compared to
029 OpenAI-o1, demonstrating effective precision-efficiency optimization. From a
030 lower-cost perspective, the framework also empowers SLMs to achieve reasoning
031 capabilities comparable to larger ones.

1 INTRODUCTION

032 CoT reasoning, which elaborates a series of intermediate steps, has significantly improved the abil-
033 ity of LLMs to solve complex problems Yao et al. (2025). This has led to the rise of a new class of
034 models known as large reasoning models (LRMs), such as DeepSeek-R1 Guo et al. (2025), OpenAI-
035 o1 Jaech et al. (2024), and Qwen-QwQ Team (2025). Such LRMs demonstrate that scaling CoT
036 length to hundreds or even thousands of steps can yield continual gains in reasoning accuracy, inter-
037 pretability, and robustness across a wide range of tasks.

038 Despite these advances, fixed-length CoT strategies are poorly suited for emotion understanding
039 tasks. For instance, simple tasks such as binary sentiment classification (e.g., “Is this review positive
040 or negative?”), often elicit excessively verbose reasoning, resulting in substantial computational
041 overhead and inefficient overthinking Xia et al. (2025). In contrast, complex tasks such as sarcasm
042 detection suffer from shallow reasoning, failing to capture nuanced pragmatic and contextual cues,
043 as shown in Fig. 1. This disconnect between fixed reasoning lengths and the inherently dynamic
044 nature of emotion understanding leads to both performance bottlenecks and wasted computation.

045 We posit that effective emotion reasoning demands adaptive flexibility. Simple emotion tasks benefit
046 from short, efficient reasoning paths, while complex emotional phenomena such as irony, ambiguity,
047 and humor require deeper, reflective chains of thought. However, existing CoT-based emotion un-
048 derstanding approaches lack the ability to dynamically adjust the length of the reasoning according
049 to the complexity of the task, limiting their generalization across different emotion domains.

050 To fill this gap, we introduce **Emotion-o1**, an adaptive reasoning framework that dynamically ad-
051 justs CoT length according to the complexity of the emotional task. Specifically, our approach first
052 distills variable-length, structurally diverse reasoning paths, such as backtracking and self-reflection,
053 etc., from SoTA LRMs (e.g., DeepSeek-R1). After supervised fine-tuning the model to acquire com-
prehensive reasoning capabilities, we further optimize reasoning quality via reinforcement learning,

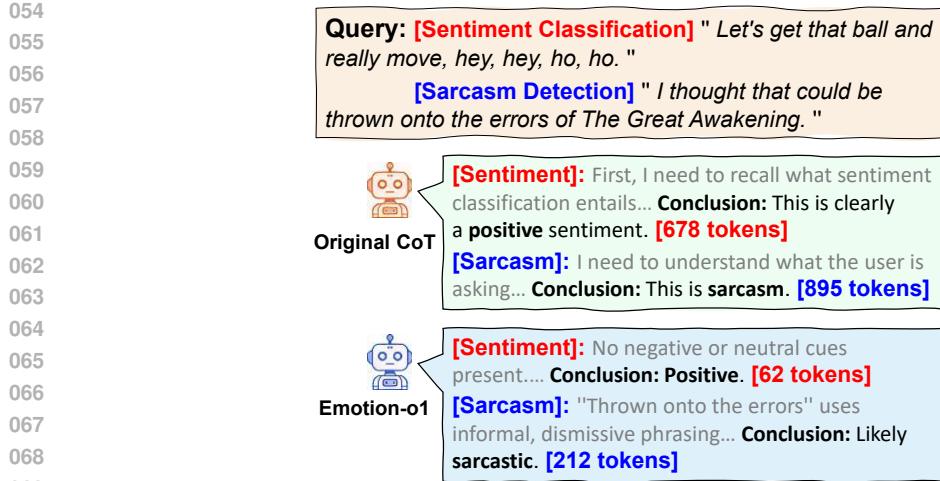


Figure 1: Original long CoT may lead to redundant computations or insufficient reasoning against our Emotion-o1.

guided by a multi-objective reward function across four dimensions: prediction accuracy, depth adaptability, structural diversity, and redundancy suppression. This allows Emotion-o1 to develop emotionally aligned, length-adaptive reasoning strategies tailored to the demands of each task.

Given that sentiment classification and emotion recognition mainly involve shallow emotional cues and limited contextual dependencies, we follow prior work in treating them as simple tasks Evans (2002). In contrast, sarcasm detection and humor understanding require complex pragmatic reasoning and deep contextual integration, and are therefore regarded as complex tasks that require deeper reasoning Chauhan et al. (2020; 2022). Using sarcasm detection and sentiment classification as illustrative tasks, we present detailed complexity proofs in Appendix A. We present empirical evaluations of the proposed approach on four emotion understanding tasks, and compare its performance against ten SoTA LLMs (e.g., DeepSeek-R1, GPT-4o, Claude 3.7, etc.). We highlight three key findings: (1) compared to the backbone, Emotion-o1 achieves F1-score improvements of 11%, 14%, 18%, and 27% on the four tasks, demonstrating the effectiveness of incorporating diverse reasoning structures; (2) Emotion-o1 achieves SoTA performance in sentiment and emotion classification. In sarcasm recognition, its F1 score is only 1% lower than that of GPT-4o, demonstrating our cost-efficient 8B model parity with leading large-scale LLMs at substantially lower computational cost. (3) compared to OpenAI-o1 (DeepSeek-R1), Emotion-o1 reduces the average reasoning length by 73% (54%), 52% (27%), 83% (70%), and 70% (58%) across the four tasks, highlighting its efficiency advantage. Our main contributions are as follows:

- We propose **Emotion-o1**, an adaptive CoT reasoning framework that dynamically adjusts reasoning length based on the complexity of emotion understanding tasks.
- We design a multi-objective reward function that jointly optimizes for prediction accuracy, reasoning brevity, structural coherence, and redundancy suppression, enabling the LRM to learn emotionally aligned and task-adaptive reasoning strategies.
- We validate Emotion-o1 on four emotion tasks, achieving SoTA performance with notably reduced reasoning cost.

2 RELATED WORK

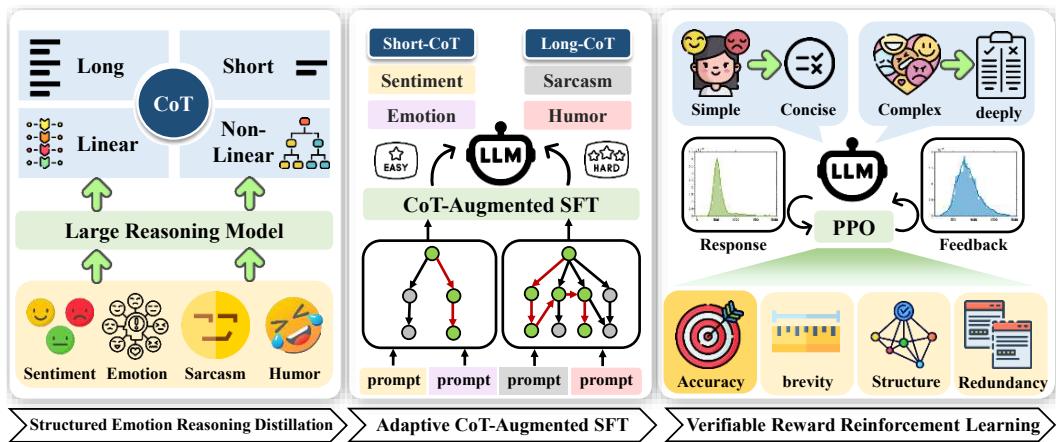
Affective Computing Affective computing (AC) enables machines to recognize, interpret, and respond to emotions Zhang et al. (2023). Early methods used feature engineering; with PLMs like BERT Devlin et al. (2019), fine-tuning became dominant for affective understanding (AU) and generation (AG) Verma et al. (2021); Nie & Zhan (2022), but struggled in cross-domain and multi-task reasoning Mao et al. (2022). LLMs Brown et al. (2020); Zhou et al. (2022) offer zero-shot and instruction-based modeling, yet still underperform in fine-grained tasks such as sarcasm or humor

108 detection Zhang et al. (2024). CoT prompting improves reasoning but often fixes template length.
 109 Our Emotion-o1 distills variable-length, structure-rich reasoning traces via multi-stage training and
 110 multi-objective rewards for dynamic reasoning depth.
 111

112 **Chain-of-Thought Reasoning** CoT reasoning is central to enhancing LLM reasoning. Early short
 113 CoT used shallow, linear paths with limited depth and little exploration or error correction Chen
 114 et al. (2024), struggling on tasks requiring revisiting steps or exploring alternatives Mirzadeh et al.
 115 (2024). Recent work introduced non-linear structures such as Tree-of-Thoughts (ToT) Yao et al.
 116 (2023) and Graph-of-Thoughts (GoT) Besta et al. (2024), enabling branching, parallel reasoning,
 117 multiple hypotheses, and backtracking—laying the foundation for long CoT. Long-CoT LLMs like
 118 OpenAI-O1 Jaech et al. (2024) and DeepSeek-R1 Guo et al. (2025) scale reasoning to thousands
 119 of steps with dynamic feedback, achieving SOTA in math, programming, and symbolic inference.
 120 While Emotion-o1 bridges short and long CoT by adjusting reasoning depth and structure to task
 121 complexity, combining shallow efficiency with deep flexibility.
 122

3 METHODOLOGY

124 As shown in Fig. 2, our framework include three stages: (1) Structured Emotion Reasoning Distil-
 125 lation extracts variable-length reasoning paths from leading LRM; (2) Adaptive CoT-Augmented
 126 SFT initializes the model with structured emotional reasoning ability; (3) Reward-based RL refines
 127 reasoning quality via multi-objective optimization.
 128



144 Figure 2: Overview of the proposed framework.
 145

3.1 STRUCTURED EMOTION REASONING DISTILLATION

148 We construct labeled samples with diverse reasoning paths by distilling a leading LRM. Specifically,
 149 we select four key emotion understanding tasks, each paired with a widely used benchmark dataset:
 150 MELD Poria et al. (2018) for sentiment classification and emotion recognition, Sarcasm Corpus V2
 151 Oraby et al. (2017) for sarcasm detection, and Reddit Humor Detection Weller & Seppi (2019) for
 152 humor recognition. Each instance consists of a text input x_i and its matching label y_i .

153 For each sample (x_i, y_i) , we construct a prompt template $p(x_i, y_i, c)$, where c specifies the reasoning
 154 strategy, including *structure type* (linear or non-linear) and *length type* (short or long), more details
 155 are provided in Appendix C. We then use the DeepSeek-R1 for conditional sampling and generate
 156 N candidate reasoning paths:

$$\{r_{i,j}\}_{j=1}^N \sim LLM(p(x_i, y_i, c)) \quad (1)$$

157 where N is the number of candidate responses generated per prompt. We employ rejection sampling,
 158 in which we use $label(\cdot)$ to extract the predicted label from each generated CoT and retain only those
 159 whose labels match the ground-truth y_i as correct reasoning processes:
 160

$$\mathcal{R}_i = \{r_{i,j} \mid label(r_{i,j}) = y_i, j \in [1, N]\} \quad (2)$$

162 where \mathcal{R}_i denotes the set of valid CoT reasoning responses.
 163

164 Different reasoning strategies exhibit task-specific efficacy across emotion understanding tasks. Our
 165 prompt explicitly steers the model to generate responses with distinct reasoning strategies c . Specifically,
 166 we considered two primary dimensions of reasoning structure:

- 167 • **Length Type:** Short (concise, direct reasoning) and Long (thorough, detailed analysis).
 168
- 169 • **Reasoning Type:** Linear (step-by-step reasoning) and Non-linear (multi-path, branched
 170 reasoning structures).

171 Thus, each textual input x_i could yield multiple valid CoT responses across these dimensions, the final
 172 dataset \mathcal{D} was constructed by aggregating all valid CoT reasoning instances across input samples
 173 and reasoning dimensions:

$$174 \quad \mathcal{D} = \left\{ (x_i, y_i, r_{i,j}, c_{i,j}, l_{i,j}) \mid \begin{cases} r_{i,j} \in \mathcal{R}_i \\ 175 \quad c_{i,j} \in \{\text{linear, non-linear}\} \\ 176 \quad l_{i,j} \in \{\text{short, long}\} \end{cases} \right\} \quad (3)$$

177 Next, we conducted SFT using the dataset \mathcal{D} . More details are provided in the Appendix D.
 178

179 3.2 ADAPTIVE COT-AUGMENTED SFT

180 We propose an Adaptive CoT-Augmented SFT method to enhance the reasoning capabilities of
 181 LLMs across different emotion tasks. Given an input text sequence $x = \{x_1, x_2, \dots, x_T\}$ and a cor-
 182 responding CoT rationale r , we construct task-adaptive instruction prompts according to the specific
 183 task type τ , where $\tau \in \{\text{sentiment, emotion, sarcasm, humor}\}$. The adaptive prompt construction
 184 function is formally defined as:
 185

$$186 \quad \mathcal{P}(x, r, y, \mathcal{D}, \tau) = \Phi(\tau) \oplus \Gamma(x) \oplus \Psi(r) \oplus \Omega(y, \mathcal{D}, \tau) \quad (4)$$

187 here, $\Phi(\tau)$ denotes the task-specific identifier that contextualizes the objective (e.g., Emotion Clas-
 188 sification Task for $\tau = \text{emotion}$); $\Gamma(x)$ formats the input text; $\Psi(r)$ incorporates the reasoning steps;
 189 and $\Omega(y, \mathcal{D}, \tau)$ encodes the label y along with class definitions customized according to the task
 190 type τ drawn from the dataset \mathcal{D} . The operator \oplus represents string concatenation.
 191

192 The training objective maximizes the conditional likelihood of the complete reasoning path and label
 193 prediction, where the model implicitly adapts the reasoning depth and structure according to τ :

$$194 \quad \mathcal{L}_{\text{SFT-CoT}} = - \sum_{t=1}^L \log P(w_t \mid \mathcal{P}(x, r, y, \mathcal{D}, \tau), w_{<t}, \tau; \theta) \quad (5)$$

195 Here, w_t denotes the t -th token in the response, L is the total length of the reasoning and label
 196 sequence, and θ represents the model parameters. Incorporating τ as a conditioning variable in the
 197 likelihood term allows the model to progressively adapt its reasoning strategy to diverse tasks.
 198

201 3.3 VERIFIABLE REWARD RL

202 We propose a verifiable reward RL approach to optimize the reasoning quality of the model fur-
 203 ther. Initialized with a fine-tuned SFT model, our method employs the proximal policy optimization
 204 (PPO) algorithm for training. By sampling multiple candidate responses during each update, the
 205 model learns to adjust its reasoning length according to task complexity adaptively.
 206

207 The reward function is constructed as a weighted sum of prediction accuracy, depth adaptivity,
 208 structural diversity, and redundancy reduction. The components are given as follows:
 209

210 3.3.1 ACCURACY REWARD

211 The first and most important reward is the accuracy reward, ensuring that the model prioritizes
 212 generating correct predictions aligned with the ground-truth labels. It is written as:
 213

$$214 \quad r_{\text{acc}} = \begin{cases} +1.0, & \text{if } \hat{y} = y \\ 215 \quad -1.0, & \text{if } \hat{y} \neq y \\ -\epsilon_{\text{acc}}, & \text{if prediction is missing} \end{cases} \quad (6)$$

216 where \hat{y} is the predicted label, y is the ground truth label, and ϵ_{acc} is a small constant introduced
 217 to impose an appropriate penalty when the prediction is missing, thereby encouraging the model to
 218 generate correct labels.

219

220 3.3.2 TASK-AWARE VARIABLE-LENGTH REWARD

221

222 To enable the model to flexibly choose between **long** and **short** inference modes for each emotion
 223 task, we first define an expected length L_{base} , a maximum length L_{max} , and a minimum length
 224 L_{min} for each inference mode within each task. Specifically, we statistically analyze the length
 225 distribution of responses under different inference modes within our constructed SFT dataset \mathcal{D} .
 226 And utilize quantile-based statistics derived from the response length distribution L_l to establish the
 227 inference length boundaries. Thus, the minimum and maximum lengths are defined as follows:

228

$$L_{min} = \lfloor P_5(L_l) \rfloor, L_{max} = \lceil P_{95}(L_l) \rceil \quad (7)$$

229

230 where P_k denotes the k -th percentile of the distribution. Given the varying complexity of different
 231 emotion tasks, we empirically set an expected length L_{exp} based on domain expertise. Meanwhile,
 232 we adopt the statistical median of the length distribution as $L_{sts} = median(L_l)$. Thus, the final
 233 expected length L_{base} is formulated as a weighted combination of empirical and statistical values:

234

$$L_{base} = \alpha \cdot L_{exp} + (1 - \alpha) \cdot L_{sts} \quad (8)$$

235

236 where α is a tunable parameter that trades off empirical knowledge and statistical observations.

237 Furthermore, we introduce a length-based reward r_{length} to penalize responses deviating from the
 238 expected length range and reward responses close to the desired length. Specifically, the length
 239 reward is computed as follows:

240

$$r_{length} = \begin{cases} \left(s_{min} \frac{L}{L_{min}} \right)^2, & L < L_{min} \\ \exp \left(-s_{max} \frac{L - L_{max}}{L_{max}} \right), & L > L_{max} \\ \exp \left(-\frac{1}{2} \left(\frac{L - L_{base}}{s_{base}(L_{max} - L_{min})} \right)^2 \right), & L_{min} \leq L \leq L_{max} \end{cases} \quad (9)$$

241

242 here, L denotes the length of the generated response, while s_{min} , s_{max} , and s_{base} are scaling factors
 243 that control the intensity of rewards and penalties within the reward function. Specifically, for
 244 responses shorter than the minimum length, we apply a quadratic penalty to encourage the model
 245 to produce more comprehensive inferences. For responses exceeding the maximum length, we em-
 246 ploy an exponential penalty to discourage the generation of redundant information. For responses
 247 within the acceptable length boundaries, a Gaussian-shaped reward is used to incentivize the model
 248 to generate outputs close to the expected length.

249

250 3.3.3 REASONING STRUCTURE REWARD

251

252 During reasoning, whether to use structured reasoning approaches significantly determines the
 253 length and clarity of the CoT generated by the model. Thus, we propose a novel structure-oriented
 254 reward r_{struct} . This reward explicitly evaluates key reasoning behaviors (e.g., “decomposition”,
 255 “reflection”, and “verification”) and the appropriate usage of logical connectives (e.g., “therefore”,
 256 “however”, and “thereby”). Formally, the proposed reward function is defined as follows:

257

$$r_{struct} = \lambda \cdot \min \left(\frac{|A|}{N_A}, 1 \right) + (1 - \lambda) \cdot \min \left(\frac{|C|}{N_C}, 1 \right) \quad (10)$$

258

259 The set A denotes valid reasoning actions appearing in the response, while C represents the logical
 260 connectives used. N_A and N_C are predefined target numbers of reasoning actions and logical
 261 connectives, respectively, and λ is a hyperparameter balancing their relative importance. Given the
 262 variability of optimal reasoning patterns across tasks, our reward design deliberately refrains from
 263 constraining the sequence or positioning of reasoning actions and connectives. A response receives
 264 the reward if it contains the targeted number of reasoning actions and connectives. Through this
 265 carefully designed reward mechanism, we expect the model to autonomously adjust its inference
 266 length based on the varying difficulty levels of different emotion tasks.

270 3.3.4 REPETITION PENALTY
271

272 Additionally, we introduce a repetition penalty r_{repeat} , which discourages redundant content within
273 generated responses. The similarity between sentence pairs within the response is determined by
274 combining lexical overlap and semantic similarity from BERT embeddings by parameter β :

$$275 \quad Sim(s_i, s_j) = \beta \cdot S_{lex}(s_i, s_j) + (1 - \beta) \cdot S_{sem}(s_i, s_j) \quad (11)$$

276 where lexical similarity $S_{lex}(s_i, s_j) = \frac{|W(s_i) \cap W(s_j)|}{|W(s_i) \cup W(s_j)|}$ is computed using the Jaccard similarity be-
277 tween two sentences, with $W(s)$ representing the set of words in sentence s . Semantic similarity
278 $S_{sem}(s_i, s_j) = \frac{\text{BERT}(s_i) \cdot \text{BERT}(s_j)}{|\text{BERT}(s_i)| |\text{BERT}(s_j)|}$ is calculated as the cosine similarity between BERT embeddings
279 of the two sentences. The similarity threshold τ is set empirically. And the repetition penalty r_{repeat}
280 is defined as the proportion of sentence pairs whose similarity exceeds τ : $r_{repeat} = \min\left(\frac{C_\tau}{T}, 1.0\right)$
281 , where C_τ is the number of such pairs and T is the total number of pairs.
282

283 This ensures that responses with higher redundancy receive a greater negative penalty, effectively
284 promoting more concise and diverse generated content.
285

286 3.3.5 FINAL REWARD FUNCTION
287

288 The total reward r_{total} for each response is defined as the weighted sum of four components:
289

$$290 \quad r_{total} = w_{acc} \cdot r_{acc} + w_{length} \cdot r_{length} + w_{struct} \cdot r_{struct} - w_{repeat} \cdot r_{repeat} \quad (12)$$

291 We assign the highest weight to w_{acc} to ensure prediction accuracy remains the top priority. For
292 Long-CoT reasoning, w_{struct} receives the second-highest weight to encourage structured reasoning;
293 for Short-CoT, we set $w_{struct} = 0$ to disable this term. To encourage appropriate response lengths,
294 w_{length} is given the third-highest weight. Finally, w_{repeat} receives the lowest weight, applying mild
295 penalties to promote output diversity without sacrificing accuracy.

296 These weights are empirically tuned through extensive experimentation to effectively balance accuracy,
297 structure, length control, and content diversity.
298

299 4 EXPERIMENTS
300301 4.1 BASELINE AND EXPERIMENTAL SETUP
302

303 Ten SoTA LLMs are included for comparison, including models without intermediate reasoning
304 steps (No-CoT): LLaMA-3.1-8B, Qwen-2.5-7B; models employing a few concise reasoning steps
305 (Short-CoT): DeepSeek-V3, GLM-4, Qwen-3-14B, Grok-3; and models supporting more detailed
306 and structured reasoning (Long-CoT): DeepSeek-R1, OpenAI-o1, GPT-4o, Claude-3.7.
307

308 Our experiments are conducted on 4xA100 40G GPUs, running on Ubuntu 22.04, with Python 3.12,
309 PyTorch 2.4.0, and CUDA 12.1. We adopt the **LLaMA-3.1-8B** as our base model and use evaluation
310 metrics widely used for classification tasks: Accuracy, Macro-F1, and Weighted-F1. Additional
311 details of the experimental parameter settings can be found in the Appendix F.
312

313 4.2 MAIN RESULT
314

315 Table 1 summarizes the performance comparison between Emotion-o1 and 10 baseline models
316 across four emotion tasks, using the average results from 3 experiments. Results show that Emotion-
317 o1 consistently outperforms baselines to varying degrees. Further details about error analysis and
318 limitations are provided in Appendix B and Appendix G.
319

320 Specifically, compared with the backbone model LLaMA-3.1-8B, emotion-o1 achieves accuracy
321 improvements of **7%, 7%, 14%,** and **21%** on the sentiment, emotion, humor, and sarcasm tasks, re-
322 spectively. Additionally, significant enhancements are observed in terms of Macro-F1 and Weighted-
323 F1 scores. For simple tasks (sentiment and emotion), the Macro-F1 score increases by up to **14%**,
324 while for more complex tasks (humor and sarcasm), the Weighted-F1 score improves by up to
325 **27%**. These findings confirm the effectiveness of explicitly modeling and adapting varying rea-
326 soning lengths and strategies to diverse emotion understanding tasks.
327

324
 325 Table 1: Model performance comparison across four emotion recognition tasks, **Bold** and underline
 326 indicate the best and second-best results for each task.

327 328 Paradigm	329 Model	330 Sentiment			331 Emotion			332 Humor			333 Sarcasm		
		334 Acc	335 Ma-f1	336 We-f1	337 Acc	338 Ma-f1	339 We-f1	340 Acc	341 Ma-f1	342 We-f1	343 Acc	344 Ma-f1	345 We-f1
326 No-CoT	327 Qwen-2.5-7B	328 0.6437	329 0.6086	330 0.6381	331 0.5586	332 0.4158	333 0.5700	334 0.6475	335 0.6092	336 0.6097	337 0.5030	338 0.3460	339 0.3437
	340 LLaMA-3.1-8B	341 0.6073	342 0.5391	343 0.5835	344 0.5613	345 0.3206	346 0.5047	347 0.6270	348 0.5876	349 0.5871	350 0.5360	351 0.4714	352 0.4701
353 Short-CoT	354 Grok-3	355 <u>0.6559</u>	356 <u>0.6295</u>	357 <u>0.6518</u>	358 0.6261	359 <u>0.5058</u>	360 <u>0.6265</u>	361 0.8869	362 0.8858	363 0.8859	364 0.7257	365 0.7126	366 0.7121
	367 GLM-4	368 0.6326	369 0.6106	370 0.6326	371 0.6215	372 0.4819	373 0.6146	374 0.8989	375 0.8989	376 0.8989	377 0.7247	378 0.7174	379 0.7171
	380 Qwen-3-14B	381 0.6494	382 0.6007	383 0.6331	384 0.5966	385 0.4261	386 0.5811	387 0.7373	388 0.7233	389 0.7236	390 0.7084	391 0.6895	392 0.6890
	393 DeepSeek-V3	394 0.6314	395 0.6148	396 0.6316	397 0.5801	398 0.4783	399 0.5878	400 0.8506	401 0.8481	402 0.8482	403 0.6802	404 0.6518	405 0.6511
353 Long-CoT	354 GPT-4o	355 0.6326	356 0.5924	357 0.6196	358 0.6015	359 0.4499	360 0.5812	361 0.9043	362 0.9041	363 0.9041	364 <u>0.7577</u>	365 <u>0.7570</u>	366 0.7569
	367 Claude-3.7	368 0.6483	369 0.6184	370 0.6408	371 0.6310	372 0.4814	373 0.6098	374 0.9488	375 0.9488	376 0.9488	377 0.7328	378 0.7267	379 0.7270
	380 OpenAI-o1	381 0.6379	382 0.6060	383 0.6306	384 <u>0.6398</u>	385 0.4984	386 0.6341	387 <u>0.9231</u>	388 <u>0.9231</u>	389 <u>0.9231</u>	390 0.7724	391 0.7717	392 0.7718
	393 DeepSeek-R1	394 0.6402	395 0.6134	396 0.6381	397 0.5900	398 0.4697	399 0.5967	400 0.8342	401 0.8306	402 0.8307	403 0.7062	404 0.6947	405 0.6943
340 Adaptive-CoT	341 Emotion-o1(ours)	342 0.6770	343 0.6548	344 0.6766	345 <u>0.6352</u>	346 0.4649	347 0.6141	348 0.7694	349 0.7684	350 0.7684	351 0.7469	352 0.7468	353 0.7469

341
 342 We further conducted a comparative evaluation of emotion-o1 against several widely recognized
 343 LLMs. Experimental results demonstrate that emotion-o1 achieves SoTA performance on the senti-
 344 ment task, surpassing established baselines in terms of accuracy, Macro-F1, and Weighted-F1 met-
 345 rrics. In the emotion task, accuracy is on par with OpenAI-o1, demonstrating its generalization ability
 346 in the multi-classification task. Regarding the more complex sarcasm task, emotion-o1 obtains com-
 347 petitive yet slightly suboptimal performance, achieving results marginally just below GPT-4o 1%,
 348 showing the effectiveness of Long CoT in handling complex tasks. For humor detection, Emotion-o1
 349 achieves parity with larger-scale models like Qwen3-14B, outperforming it by 3%, yet demonstrates a
 350 substantial gap against top competitors such as Claude-3.7 in complex humor tasks.

351 Overall, these results show that our 8B model delivers competitive or superior performance com-
 352 pared to SoTA LLMs across all tasks, and also exhibits strong generalization across model scales.

353 4.3 COT LENGTH ANALYSIS

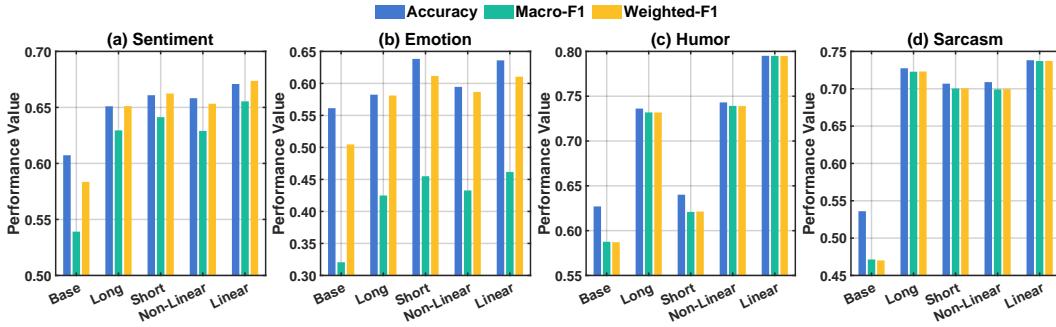
354
 355 We analyze the impact of each stage on the average length of CoT reasoning, as shown in Table 2.
 356 The base model LLaMA-3.1-8B produces shallow rationales with limited variation across tasks. In
 357 contrast, SFT introduces task-specific adaptation: it shortens reasoning for simple tasks like Senti-
 358 ment ($\downarrow 18\%$), while substantially increasing CoT depth for complex tasks such as Sarcasm ($\uparrow 281\%$)
 359 and Humor ($\uparrow 246\%$). The RL stage further refines this adaptation. It further reduces CoT length for
 360 Sentiment and Humor by **7%** and **13%**, respectively. Appendix E furnishes several typical cases.

361
 362 Table 2: The average CoT length of the model in each stage. \downarrow indicates shorter, \uparrow indicates longer.

	363 Base	364 SFT	365 RL
366 Sentiment	367 114	368 93 ($\downarrow 18\%$)	369 85 ($\downarrow 25\%$)
370 Emotion	371 123	372 186 ($\uparrow 51\%$)	373 183 ($\uparrow 49\%$)
374 Sarcasm	375 52	376 198 ($\uparrow 281\%$)	377 199 ($\uparrow 283\%$)
378 Humor	379 70	380 242 ($\uparrow 246\%$)	381 233 ($\uparrow 233\%$)

382 Based on the results shown in Table 1, it can be further observed that a shorter CoT length achieves
 383 the best results in the sentiment task, demonstrating the rationality of reducing redundant reasoning;
 384 in the emotion task, merely increasing CoT length by 49% can achieve comparable performance
 385 to the SoTA model OpenAI-o1 of Long CoT. In more complex tasks such as sarcasm, Emotion-o1
 386 with an extended structured reasoning ($\uparrow 283\%$) outperforms all models using Short CoT, and is only
 387 inferior to two larger-scale Long CoT models.

388 These results confirm that our two-stage pipeline enables Emotion-o1 to learn task-aware reasoning
 389 strategies, by using shorter CoTs for straightforward tasks and longer ones for cognitively demand-
 390 ing tasks, and improves both performance and inference efficiency.

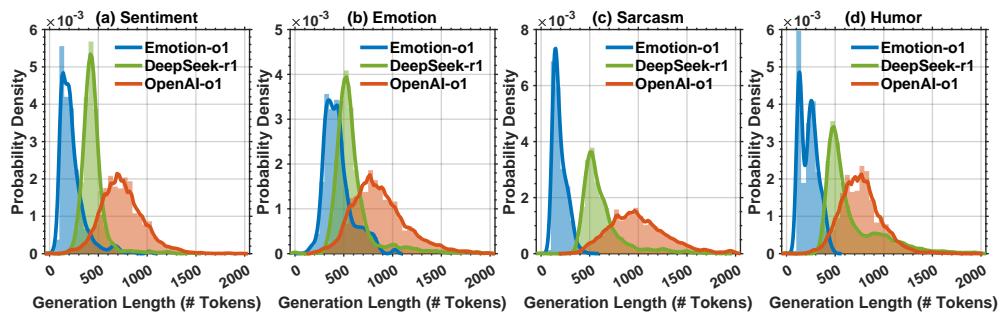
378 4.4 ABLATION STUDY
379380 We conduct ablation experiments to examine the effects of CoT length and structure, as illustrated
381 in Fig. 3. The key findings are summarized as follows:
382394 Figure 3: Ablation analysis of CoT variants: Long, Short, Linear and Non-Linear Reasoning
395

- **Sentiment:** Short CoT and linear CoT yield greater improvements. They achieve increases of approximately **6%** and **7%** in accuracy, respectively, suggesting concise reasoning is sufficient for such tasks, offering both effectiveness and computational efficiency.
- **Emotion:** Short CoT achieves **5%** higher accuracy than long CoT, and linear reasoning outperforms nonlinear reasoning by **4%**. This suggests that excessive reasoning may introduce unnecessary complexity or noise, and that direct, focused reasoning is more beneficial.
- **Humor:** Long CoT yields an **11%** improvement in F1 over short CoT, while linear reasoning provides a **5%** gain in accuracy. This confirms the need for deeper and more structured reasoning in humor understanding, where implicit intent and abstract cues are involved.
- **Sarcasm:** Similar to humor, the combination of long and linear CoT delivers the best results, highlighting the importance of detailed, explicit reasoning in handling pragmatic and context-dependent phenomena.

409 Overall, all CoT-based strategies clearly improve performance over the base model. Moreover, the
410 results validate that sentiment and emotion tasks benefit from concise and direct reasoning, while
411 sarcasm and humor tasks demand longer and deeper reasoning to capture subtle linguistic cues.
412

413 4.5 VISUALIZATION OF TOKEN CONSUMPTION
414

415 To intuitively compare the computational cost, we perform a comparative analysis of Emotion-
416 o1’s token consumption against the performance of mainstream reasoning models, which is linearly
417 correlated with FLOPs, as illustrated in Fig. 4. While achieving superior results, Emotion-o1 also
418 shows higher efficiency across all tasks compared to DeepSeek-R1 and OpenAI-o1. Specifically:
419



431 Figure 4: Token consumption distribution across reasoning models

The median tokens of Emotion-o1 consistently rank as the lowest among the models. This trend is particularly pronounced in the Sarcasm task, where the tokens reduces by **83%** compared to OpenAI-o1. Even in the Emotion task, which exhibits the smallest improvement, tokens decrease by approximately **52%** relative to OpenAI-o1.

Furthermore, Emotion-o1 demonstrates a lower maximum tokens compared to its competitors. In the Sarcasm task, the 90th percentile tokens reduces by nearly **4.8** times relative to OpenAI-o1, underscoring the model’s ability to effectively suppress extreme values.

The standard deviation of tokens generated by Emotion-o1 across tasks is consistently lower. For example, in the Sarcasm task, the standard deviation is only **1/3** that of OpenAI-o1, indicating Emotion-o1 produces more stable outputs with greater concentration in response values.

In summary, Emotion-o1 consistently exhibits superior output efficiency across all tasks while maintaining competitiveness against mainstream reasoning models.

4.6 SCALE ANALYSIS

In this section, we investigate how variations in model size affect performance across different tasks, using LLaMA models of three scales (1B, 3B, and 8B). As illustrated in Fig. 5, all three evaluation metrics show noticeable improvements as the model size increases.

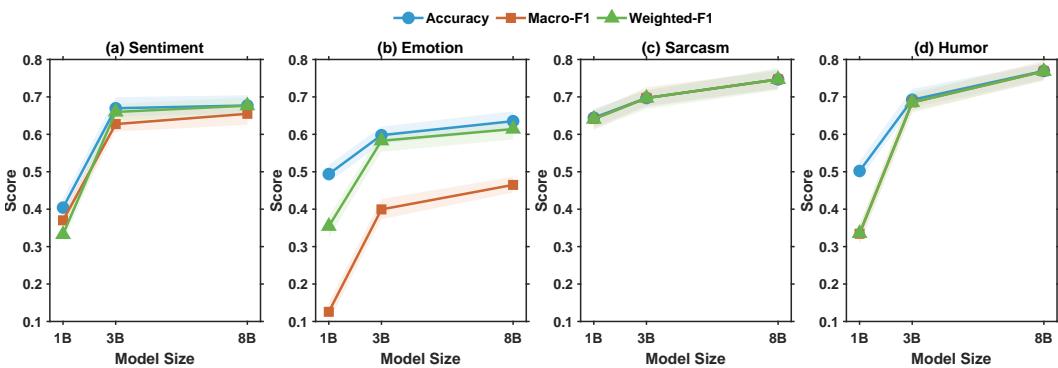


Figure 5: Model Scale Performance Comparison Across Different Tasks.

For the Sentiment, Emotion, and Humor tasks, expanding smaller models from 1B to 3B yields substantial gains, with the F1 score increasing by up to 35%. However, when further scaling from 3B to 8B, the improvements become less pronounced. These results indicate that small-scale models can achieve significant performance gains at relatively low computational cost.

In contrast, the Sarcasm task exhibits a consistent upward trend in performance with increasing model size, achieving about a 5% gain. This steady improvement underscores the potential advantages of larger models for tasks requiring more complex understanding.

Overall, Emotion-o1 strikes an effective balance between cost and performance, making it a viable and efficient option for a range of applications. These findings provide useful guidance for future work in selecting appropriate model scales according to task requirements and resource constraints.

5 CONCLUSION

This work addresses the limitations of fixed-length chain-of-thought reasoning for emotional understanding in LLMs by proposing Emotion-o1, an adaptive framework that dynamically adjusts reasoning depth based on task complexity. Through multi-stage training with a multi-objective reward (accuracy, brevity, structure, redundancy), our approach achieves significant performance gains: F1 improvements of 11% (sentiment), 14% (emotion), 18% (humor), and 27% (sarcasm) over its backbone. Notably, the 8B model outperforms Grok-3 by 2.1% and within 1% of OpenAI-o1 in critical tasks while reducing reasoning length by 83% versus OpenAI-o1. Emotion-o1 establishes an efficient bridge between structured reasoning and emotional understanding.

486 REFERENCES
487

488 Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
489 inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczek, et al. Graph of
490 thoughts: Solving elaborate problems with large language models. In *Proceedings of the AAAI
491 conference on artificial intelligence*, volume 38, pp. 17682–17690, 2024.

492 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
493 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
494 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

495 Dushyant Singh Chauhan, SR Dhanush, Asif Ekbal, and Pushpak Bhattacharyya. Sentiment and
496 emotion help sarcasm? a multi-task learning framework for multi-modal sarcasm, sentiment and
497 emotion analysis. In *Proceedings of the 58th annual meeting of the association for computational
498 linguistics*, pp. 4351–4360, 2020.

499 Dushyant Singh Chauhan, Gopendra Vikram Singh, Aseem Arora, Asif Ekbal, and Pushpak Bhat-
500 tacharyya. A sentiment and emotion aware multimodal multiparty humor recognition in multilin-
501 gual conversational setting. In *Proceedings of the 29th international conference on computational
502 linguistics*, pp. 6752–6761, 2022.

503 Qiguang Chen, Libo Qin, Jiaqi Wang, Jingxuan Zhou, and Wanxiang Che. Unlocking the capa-
504 bilities of thought: A reasoning boundary framework to quantify and optimize chain-of-thought.
505 *Advances in Neural Information Processing Systems*, 37:54872–54904, 2024.

506 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
507 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
508 the North American chapter of the association for computational linguistics: human language
509 technologies*, volume 1 (long and short papers), pp. 4171–4186, 2019.

510 Dylan Evans. *Emotion: The science of sentiment*. Oxford University Press, USA, 2002.

511 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
512 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
513 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

514 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
515 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv
516 preprint arXiv:2412.16720*, 2024.

517 Rui Mao, Qian Liu, Kai He, Wei Li, and Erik Cambria. The biases of pre-trained language models:
518 An empirical study on prompt-based sentiment analysis and emotion detection. *IEEE transactions
519 on affective computing*, 14(3):1743–1753, 2022.

520 Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
521 Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
522 language models. *arXiv preprint arXiv:2410.05229*, 2024.

523 Guangtao Nie and Yibing Zhan. A review of affective generation models. *arXiv preprint
524 arXiv:2202.10763*, 2022.

525 Shereen Oraby, Vrindavan Harrison, Lena Reed, Ernesto Hernandez, Ellen Riloff, and Marilyn
526 Walker. Creating and characterizing a diverse corpus of sarcasm in dialogue. *arXiv preprint
527 arXiv:1709.05404*, 2017.

528 Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
529 Mihalcea. Meld: A multimodal multi-party dataset for emotion recognition in conversations.
530 *arXiv preprint arXiv:1810.02508*, 2018.

531 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
532 <https://qwenlm.github.io/blog/qwq-32b/>.

533 Palak Verma, Neha Shukla, and AP Shukla. Techniques of sarcasm detection: A review. In
534 *2021 international conference on advance computing and innovative technologies in engineer-
535 ing (ICACITE)*, pp. 968–972. IEEE, 2021.

540 Orion Weller and Kevin Seppi. Humor detection: A transformer gets the last laugh. *"Proceedings of*
 541 *the 2019 Conference on Empirical Methods in Natural Language Processing"*, November 2019.
 542

543 Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Control-
 544 lable chain-of-thought compression in llms, 2025. URL <https://arxiv.org/abs/2502.12067>.
 545

546 Ben Yao, Yazhou Zhang, Qiuchi Li, and Jing Qin. Is sarcasm detection a step-by-step reasoning pro-
 547 cess in large language models? In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 548 volume 39, pp. 25651–25659, 2025.
 549

550 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
 551 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
 552 URL <https://arxiv.org/abs/2305.10601>, 3:1, 2023.
 553

554 Yazhou Zhang, Yang Yu, Qing Guo, Benyou Wang, Dongming Zhao, Sagar Upadhyay, Dawei Song,
 555 Qiuchi Li, and Jing Qin. Cmma: benchmarking multi-affection detection in chinese multi-modal
 556 conversations. *Advances in Neural Information Processing Systems*, 36:18794–18805, 2023.
 557

558 Yazhou Zhang, Chunwang Zou, Zheng Lian, Prayag Tiwari, and Jing Qin. Sarcasmbench: Towards
 559 evaluating large language models on sarcasm understanding, 2024. URL <https://arxiv.org/abs/2408.11319>.
 560

561 Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
 562 Jimmy Ba. Large language models are human-level prompt engineers. In *The eleventh interna-*
 563 *tional conference on learning representations*, 2022.
 564

565 A THEORETICAL JUSTIFICATION OF TASK DIFFICULTY

566
 567 In this section, we present a theoretical analysis to justify why sarcasm detection is intrinsically
 568 more difficult than sentiment classification. We formalize the two tasks, analyze their Bayes error
 569 bounds, provide a task reduction argument, and compare their statistical learning complexity using
 570 VC-dimension theory. Together, these results show that sarcasm detection requires strictly more
 571 information and model capacity to achieve comparable performance.
 572

573 A.1 PROBLEM FORMALIZATION

574 Let x denote a text utterance and c denote its context, which may include dialogue history, speaker
 575 identity, social background, or cultural knowledge. We define the following:
 576

- 577 • $S(x) \in \{0, 1\}$: the *literal sentiment polarity* of x , where 0 indicates negative and 1 indi-
 578 cates positive sentiment.
- 579 • $C(x, c) \in \{0, 1\}$: the *contextual polarity*, i.e., the true stance once context c is taken into
 580 account.
- 581 • $Z(x, c) = \mathbb{1}[S(x) \neq C(x, c)]$: the *sarcasm indicator*, which equals 1 if the literal senti-
 582 ment disagrees with the contextual stance, and 0 otherwise.

583 The sentiment classification task is to predict $S(x)$ from x , while sarcasm detection requires predict-
 584 ing $Z(x, c)$ from (x, c) . Intuitively, sarcasm arises when the surface form of an utterance is positive
 585 but the intended meaning is negative (or vice versa). This naturally suggests that sarcasm detection
 586 involves reasoning about both literal semantics and pragmatic intent.
 587

589 A.2 IRREDUCIBLE ERROR BOUND

591 We first compare the Bayes error of the two tasks. If only x is observable, the optimal classifier for
 592 sarcasm detection must rely on the conditional probability
 593

$$p(x) = \Pr(Z = 1 \mid x) = \Pr(S(x) \neq C(x, c) \mid x). \quad (13)$$

594 The corresponding Bayes error is
 595

$$596 \quad \mathcal{E}_{\text{sar}}^{(x)} = \mathbb{E}_x [\min\{p(x), 1 - p(x)\}]. \quad (14)$$

598 If there exists a subset
 599

$$600 \quad A_\varepsilon = \{x : \varepsilon \leq p(x) \leq 1 - \varepsilon\}, \quad \varepsilon \in (0, 0.5], \quad (15)$$

601 then
 602

$$603 \quad \mathcal{E}_{\text{sar}}^{(x)} \geq \varepsilon \cdot \Pr(A_\varepsilon) > 0. \quad (16)$$

604 **Interpretation.** Whenever context c is essential for disambiguating whether an utterance is
 605 sarcastic, the Bayes error given only x is strictly positive. This irreducible error reflects the inherent
 606 ambiguity of sarcasm. In contrast, sentiment classification typically assumes that $S(x)$ is a deter-
 607 ministic function of x , yielding $H(S | x) = 0$, where $H(S | x)$ is the *conditional entropy*:

$$608 \quad H(S | x) = - \sum_{s \in \mathcal{S}} \Pr(S = s | x) \log \Pr(S = s | x) \quad (17)$$

609 measuring the uncertainty of sentiment label S given text x , and consequently zero irreducible error.
 610

612 A.3 TASK REDUCTION ARGUMENT

614 Sarcasm detection can be formalized as an XOR composition:
 615

$$616 \quad Z(x, c) = S(x) \oplus C(x, c), \quad (18)$$

617 where \oplus denotes logical exclusive-or. This representation shows that detecting sarcasm requires
 618 distinguishing two sources of evidence: the literal polarity $S(x)$ derived from the surface text, and
 619 the contextual polarity $C(x, c)$ inferred from background knowledge.
 620

621 Formally, if \mathcal{H}_S and \mathcal{H}_C are hypothesis classes that approximate S and C , then sarcasm detection
 622 requires approximating functions of the form

$$623 \quad \mathcal{H}_{\text{sar}} = \{h(x, c) = h_S(x) \oplus h_C(x, c) : h_S \in \mathcal{H}_S, h_C \in \mathcal{H}_C\}. \quad (19)$$

625 **Implication.** Any model that solves sarcasm detection must have the representational capacity to
 626 jointly encode both literal sentiment and contextual stance. Thus, sarcasm detection is at least as
 627 hard as solving both subtasks simultaneously.
 628

629 A.4 STATISTICAL LEARNING COMPLEXITY

631 We now analyze the VC-dimension of sarcasm detection. By standard results for composite hypoth-
 632 esis classes, we obtain the following bounds:
 633

$$634 \quad \max\{\text{VCdim}(\mathcal{H}_S), \text{VCdim}(\mathcal{H}_C)\} \leq \text{VCdim}(\mathcal{H}_{\text{sar}}) \leq \text{VCdim}(\mathcal{H}_S) + \text{VCdim}(\mathcal{H}_C). \quad (20)$$

635 The lower bound shows that sarcasm detection is at least as complex as the harder of the two sub-
 636 tasks, while the upper bound suggests that under mild independence assumptions, the complexity
 637 may approach the sum of both. In practice, this implies that sarcasm detection requires significantly
 638 larger sample sizes and stronger inductive biases to achieve the same generalization performance as
 639 sentiment classification.
 640

641 A.5 DISCUSSION AND CONCLUSION

643 The above analysis yields three important insights:
 644

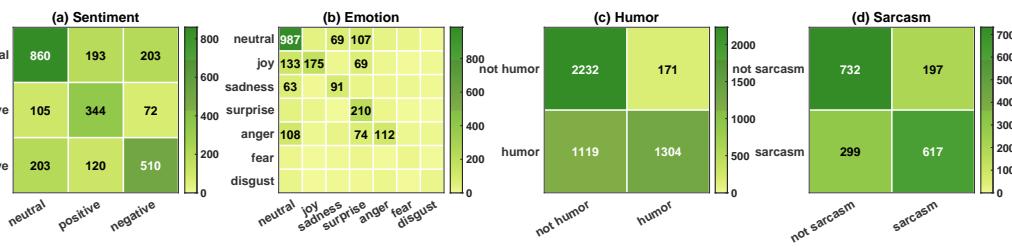
- 645 1. Sarcasm detection has a strictly positive irreducible error when context is missing, while
 646 sentiment classification does not.
- 647 2. The sarcasm label is definable only as an XOR of sentiment and contextual stance, making
 648 the task intrinsically compositional.

648 3. The VC-dimension of sarcasm detection is strictly larger than that of sentiment classifica-
 649 tion, often close to the sum of both subtasks.
 650

651 Taken together, these results demonstrate that sarcasm detection is provably more difficult than
 652 sentiment classification. This conclusion aligns with empirical findings that sarcasm models require
 653 richer contextual modeling, more complex architectures, and substantially more data to achieve
 654 robust performance.

656 B ERROR ANALYSIS

658 Fig. 6 shows the error analysis for the four tasks. Sarcasm and Humor detection show notable false
 659 negatives, indicating difficulties in identifying complex contextual cues. Sentiment analysis exhibits
 660 polarity interpretation challenges, particularly in distinguishing neutral from negative expressions.
 661 Emotion recognition demonstrates a tendency to default to neutral classifications, with authentic
 662 emotions like joy and anger frequently misclassified, alongside cross-category confusion. The ob-
 663 served false positives in sentiment and sarcasm tasks suggest occasional oversensitivity to certain
 664 linguistic signals. Collectively, these patterns highlight room to refine contextual understanding and
 665 develop task-specific approaches to capture linguistic nuances more effectively.



675 Figure 6: The confusion matrices of the four tasks.

677 C INSTRUCTION STUDY

679 This section presents the prompt design used in constructing part of the CoT dataset. For each emotion
 680 task, we designed prompts tailored to the specific characteristics of the task (see task definitions
 681 in Table 3). To extract long CoT from LLMs, as shown in Table 4, we first defined several distinct
 682 reasoning structures. These structures served as guidelines to steer the model in flexibly selecting
 683 and applying different reasoning approaches, without restrictions on their order or frequency of use.
 684 After completing the reasoning process, the model was required to perform conclusion verification
 685 and error checking to ensure completeness and logical soundness.

687 Table 3 Task definitions for sentiment, emotion, sarcasm, and humor classification

689 Task	690 Task Definition
691 Sentiment	0=neutral: no clear emotional cues 1=positive: features like positive lexicon, uplifting emojis, achievement 692 expressions 2=negative: contains negative elements, expressions of unpleasant events
693 Emotion	0=neutral: no clear emotional cues 1=joy: features like positive lexicon, uplifting emojis, achievement expressions 694 2=sadness: contains loss/grief elements, negative event descriptions 3=surprise: unexpected events or cognitive dissonance 4=anger: aggressive language, confrontational rhetoric 695 5=fear: threat-related content, anxiety indicators 6=disgust: expressions of revulsion, descriptions of unpleasant events

702 Table 3 Task definitions for sentiment, emotion, sarcasm, and humor classification
703
704

705 Task	706 Task Definition
707 Sarcasm	708 1=sarcasm: contains features like surface praise with underlying criticism, 709 contextual incongruity, exaggerated contrast, etc. 710 0=not sarcasm
711 Humor	712 1=humor: contains features like wordplay/puns, exaggerated scenarios, 713 unexpected twists, contextual incongruity, absurd juxtapositions, etc. 714 0=not humor

715 Specifically, for each dataset sample *text*, we generated four long CoTs and one short CoT. The
716 short CoT followed the conventional step-by-step prompting approach and is not further discussed
717 here. Among the four long CoTs, two were required to employ non-linear reasoning patterns, such
718 as Tree-of-Thought or Graph-of-Thought structures. One was constrained to follow a multi-path
719 reasoning strategy, in which the model was encouraged to explore multiple reasoning trajectories;
720 in our work, the trajectories were not split into separate CoTs but were instead treated as multi-step
721 reasoning within a single CoT. This design preserves structural diversity in the reasoning process.

722 Table 4 Task-Specific prompt designs for sentiment, emotion, sarcasm, and humor classification
723

724 Task	725 Prompt Example
726 Sentiment	727 Perform rigorous sentiment analysis by dynamically applying selected 728 reasoning methods. Use the following framework (choose steps, order, and 729 iterations as needed): 730 [Reasoning Framework] 731 1.Decomposition: Break down text elements (semantics/context/rhetoric) 732 2.Reflection: Question initial assumptions and verify their rationality 733 3.Verification: Cross-check logical consistency 734 4.Transition: Handle contradictory information (using "however" - like 735 analysis) 736 5.Retry: Correct the reasoning path when errors are found 737 [Process Requirements] 738 1.Must include ≥ 5 reasoning steps, freely combining the above components, 739 without limitation on the number of times or order, and also free to explore 740 other reasoning methods. 741 2.Each step must clearly indicate the type of reasoning used (e.g., Step 1 - 742 Decomposition) 743 3.At least two verification stages must be included: Preliminary conclusion 744 verification and Final decision verification 745 4.Contradictions in the text must be addressed (demonstrating the use of 746 "however" - like analysis). 747 5.Error correction must show the complete adjustment of the reasoning path. 748 6.Final conclusion must align with <i>sentiment_definition</i> 749 [Error Checkpoints] 750 1.Sentiment intensity validation 751 2.Context-text consistency check 752 3.Emoji-semantic alignment verification 753 Tweet content: <i>text</i> , conclude with "Therefore, the sentiment label is: 754 "(0=neutral,1=positive,2=negative)" 755
756 Emotion	757 Perform rigorous multi-dimensional emotion analysis by dynamically applying 758 selected reasoning methods. Use the following framework (choose steps, order, 759 and iterations as needed): 760 [Reasoning Framework] 761 1.Decomposition: Break down text elements (semantics/context/rhetoric) 762 2.Reflection: Question initial assumptions and verify their rationality 763 3.Verification: Cross-check logical consistency

756 Table 4 Task-Specific prompt designs for sentiment, emotion, sarcasm, and humor classification
757

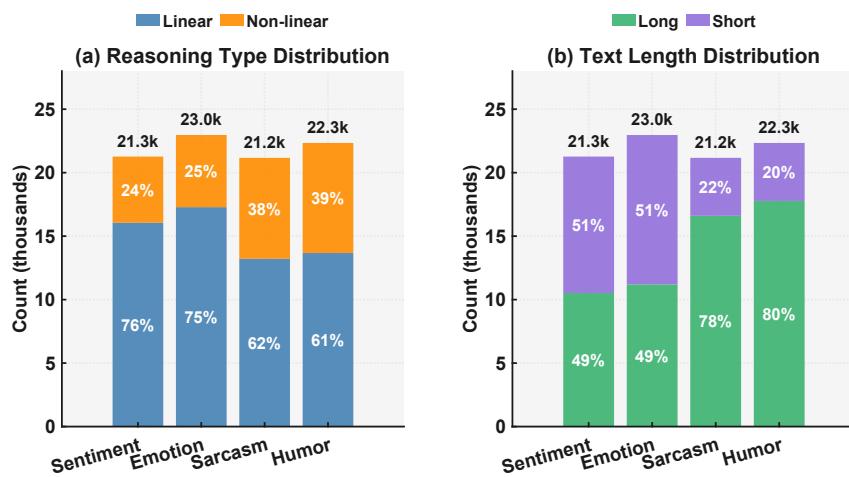
758 Task	759 Prompt Example
760	761 4.Transition: Handle contradictory information (using "however" - like 762 analysis) 763 5.Retry: Correct the reasoning path when errors are found 764 [Process Requirements] 765 1.Must include ≥ 5 reasoning steps, freely combining the above components, 766 without limitation on the number of times or order, and also free to explore 767 other reasoning methods. 768 2.Each step must clearly indicate the type of reasoning used (e.g., Step 1 - 769 Decomposition) 770 3.At least two verification stages must be included: Preliminary conclusion 771 verification and Final decision verification 772 4.Contradictions in the text must be addressed (demonstrating the use of 773 "however" - like analysis) 774 5.Error correction must show the complete adjustment of the reasoning path 775 6.Final conclusion must align with <i>emotion_definition</i> 776 [Error Checkpoints] 777 1.Emotional intensity validation 778 2.Trigger event analysis 779 3.Emoji/textual consistency verification 780 4.Cultural context alignment check 781 Tweet content: <i>text</i> , conclude with "Therefore, the emotion label is: 782 "(0=neutral,1=joy,2=sadness,3=surprise,4=anger,5=fear,6=disgust) 783
784 Sarcasm	785 Perform rigorous sentiment analysis reasoning please strictly follow the 786 structured reasoning process. The reasoning framework includes the following 787 optional components: 788 [Reasoning Framework] 789 1.Decomposition: Break down text elements (semantics/context/rhetoric) 790 2.Reflection: Question initial assumptions and verify their rationality 791 3.Verification: Cross-check logical consistency 792 4.Transition: Handle contradictory information (using "however" - like 793 analysis) 794 5.Retry: Correct the reasoning path when errors are found 795 [Process Requirements] 796 1.Must include ≥ 5 reasoning steps, freely combining the above components, 797 without limitation on the number of times or order, and also free to explore 798 other reasoning methods. 799 2.Each step must clearly indicate the type of reasoning used (e.g., Step 1 - 800 Decomposition). 801 3.At least two verification stages must be included: Preliminary conclusion 802 verification and Final decision verification 803 4.Contradictions in the text must be addressed (demonstrating the use of 804 "however" - like analysis). 805 5.Error correction must show the complete adjustment of the reasoning path. 806 6.Final conclusion must align with <i>sarcasm_definition</i> 807 [Error Checkpoints] 808 1.Rhetorical analysis completeness check 809 2.Contextual factor weight validation 810 3.Counterfactual outcome consistency verification 811 Tweet content: <i>text</i> , conclude with "Therefore, the sarcasm label is: 812 "(1=sarcasm, 0=none) 813
814 Humor	815 Perform rigorous sentiment analysis reasoning please strictly follow the 816 structured reasoning process. The reasoning framework includes the following 817 optional components: 818 [Reasoning Framework] 819 1.Decomposition: Break down text elements (semantics/context/rhetoric)

810 Table 4 Task-Specific prompt designs for sentiment, emotion, sarcasm, and humor classification

811 Task	812 Prompt Example
	<p>2.Reflection: Question initial assumptions and verify their rationality</p> <p>3.Verification: Cross-check logical consistency</p> <p>4.Transition: Handle contradictory information (using "however" - like analysis)</p> <p>5.Retry: Correct the reasoning path when errors are found</p> <p>[Process Requirements]</p> <p>1.Must include ≥ 5 reasoning steps, freely combining the above components, without limitation on the number of times or order, and also free to explore other reasoning methods.</p> <p>2.Each step must clearly indicate the type of reasoning used (e.g., Step 1 - Decomposition).</p> <p>3.At least two verification stages must be included: Preliminary conclusion verification and Final decision verification</p> <p>4.Contradictions in the text must be addressed (demonstrating the use of "however" - like analysis).</p> <p>5.Error correction must show the complete adjustment of the reasoning path.</p> <p>6.Final conclusion must align with <i>humor_definition</i></p> <p>[Error Checkpoints]</p> <p>1.Rhetorical analysis completeness check (wordplay/puns detection)</p> <p>2.Contextual absurdity validation</p> <p>3.Expectation-subversion consistency verification</p> <p>Tweet content: <i>text</i>, conclude with "Therefore, the humor label is: "(1=humor, 0=none)</p>

838 D DATASET STATISTICS

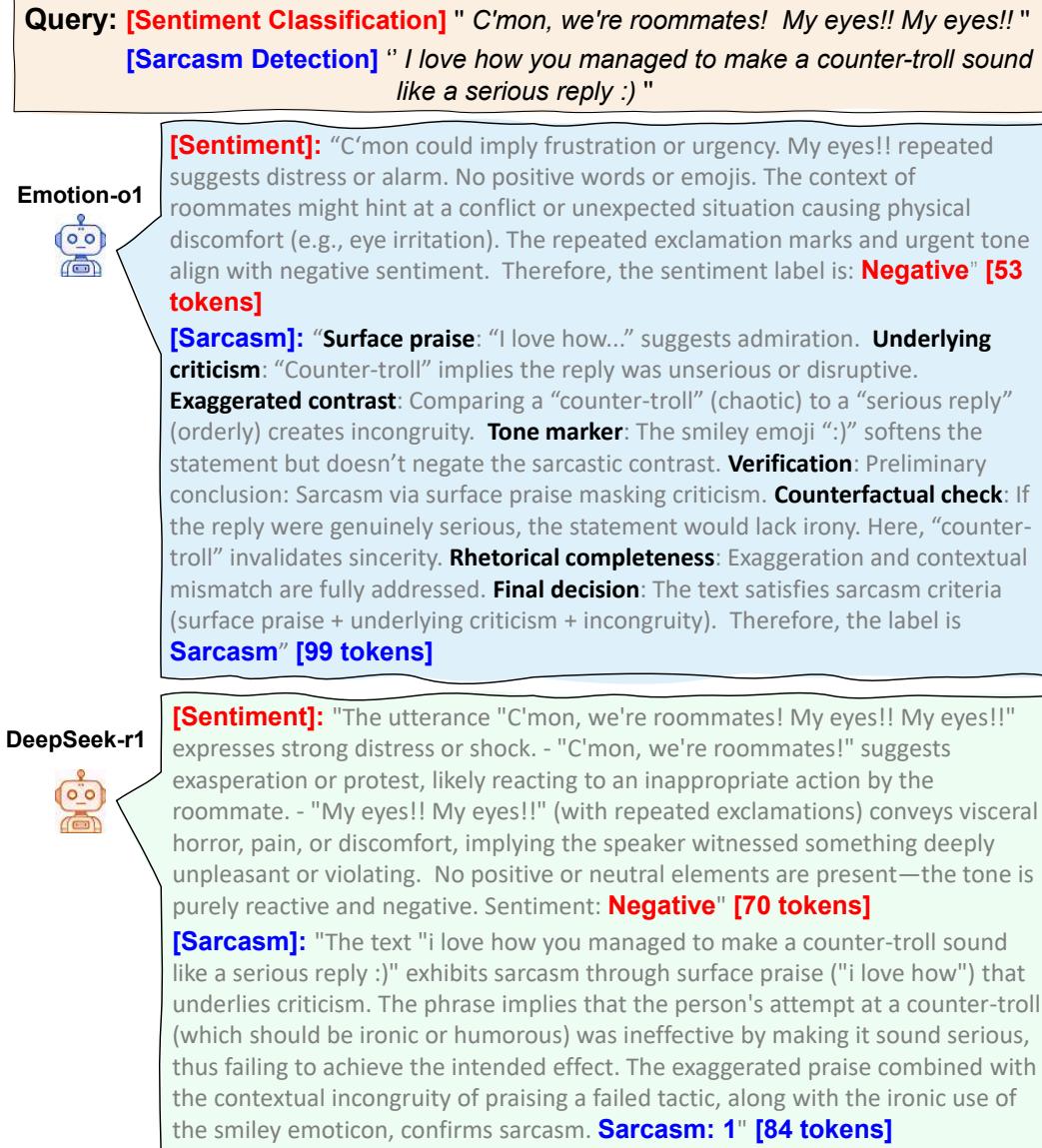
839
840 The emotion CoT dataset is shown in Fig. 7. After filtering, we compile **21,266**, **22,966**, **21,169**,
841 and **22,341** samples for the *sentiment*, *emotion*, *sarcasm*, and *humor* tasks, respectively. The ratio of
842 linear to non-linear reasoning is approximately **7:3** across all tasks. The ratio of long to short CoT
843 is roughly **1:1** for Sentiment and Emotion, and about **8:2** for Sarcasm and Humor.



862 Figure 7: Overview of the CoT Dataset

864 E CASE STUDY
865

866
867 In this section, we selected the most representative sentiment classification and sarcasm detection
868 tasks from simple and complex tasks to demonstrate their reasoning details, as shown in Fig. 8. For
869 tasks of different difficulties, Emotion-o1 can adaptively select the reasoning mode for reasoning.
870

908
909 Figure 8: Reasoning details for simple task(Sentiment) and complex task(Sarcasm)
910

911 For the sentiment classification task, using a short CoT allows the sentiment to be inferred directly
912 from salient keywords in the text, requiring only a concise response (53 tokens) to achieve the target
913 task, thereby making the reasoning notably more succinct than that of DeepSeek-r1 (70 tokens)
914 and effectively avoiding any unnecessary output. In contrast, for the sarcasm detection task, a long
915 CoT—incorporating verification and reflection—enables the exploration of implicit meanings in
916 the context. This process produces a more detailed response (99 tokens) and, when compared with
917 DeepSeek-r1, presents a noticeably clearer and more organized reasoning structure, thereby ensuring
918 comprehensive coverage of the entire inference process.

918 Through task-oriented adaptive length reasoning, Emotion-o1 can achieve more reasonable use of
 919 computing resources, thereby maximizing model efficiency under limited costs.
 920

921 F PARAMETER SETTINGS

923 Table 5 summarizes the detailed parameter configurations for the various stages of the process.
 924 In order to address the specific demands of the Long CoT task, the encoding length was set to
 925 relatively large values in each stage. For the PPO stage, initial weight values were assigned based
 926 on prior empirical experience, and the optimal parameters were subsequently determined from the
 927 best-performing settings across 5 recorded experimental iterations.
 928

929 Table 5 Summary of experimental parameter settings
 930

931 Stage	932 Parameter
933 Distillation	temperance = 0.7 max_tokens = 8192
935 SFT	max_length = 2048 per_device_train_batch_size = 2 gradient_accumulation_steps = 8 num_train_epochs = 3 learning_rate = 2e-5 bf16 = True gradient_checkpointing = True
942 PPO	$\epsilon_{acc} = 0.1$ $s_{min} = 1$ $s_{max} = 4$ $s_{base} = 0.4$ $N_A = 4$ $N_C = 5$ $\tau = 0.75$ $w_{acc} = 0.7$ if CoT is Short else 0.6 $w_{length} = 0.25$ if CoT is Short else 0.15 $w_{struct} = 0$ if CoT is Short else 0.2 $w_{repeat} = 0.05$ seed = 42 max_length = 4096 learning_rate = 1e-5 batch_size = 4 ppo_epochs = 4

958 G LIMITATIONS

960 First, our method is evaluated on four curated emotion-related tasks, which, while diverse, may not
 961 cover the full spectrum of affective reasoning challenges in real-world applications. Second, our
 962 framework focuses solely on textual input, excluding multimodal signals (e.g., visual or acoustic
 963 cues), which are often crucial for understanding emotions in human communication.
 964

965
 966
 967
 968
 969
 970
 971