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ABSTRACT

Long chain-of-thought (CoT) reasoning has shown great promise in enhancing
the emotion understanding performance of large language models (LLMs). How-
ever, current fixed-length CoT methods struggle to balance reasoning depth and
efficiency. Simple tasks (e.g., sentiment classification) are over-reasoned, while
complex tasks (e.g., sarcasm understanding) lack depth. To fill this gap, we
present Emotion-o1, an adaptive CoT framework that dynamically adjusts rea-
soning length based on task complexity. Emotion-o1 is trained by distilling adap-
tive CoT patterns from a large reasoning model (LRM), followed by supervised
fine-tuning and reinforcement learning with a four-part reward targeting accuracy,
brevity, structure, and redundancy. Experimental results on four emotion tasks
highlight: (1) Emotion-o1 demonstrates significant improvements over its back-
bone, with F1 score increases of 11%↑(Sentiment), 14%↑(Emotion), 18%↑(Hu-
mor), and 27%↑(Sarcasm). (2) In sentiment and emotion tasks, our 8B model
demonstrates superior performance against SoTA LLMs, outperforming Grok-3
by 2.1% in sentiment and within 1% of OpenAI-o1 in emotion. (3) The frame-
work maintains accuracy while reducing reasoning length by 83% compared to
OpenAI-o1, demonstrating effective precision-efficiency optimization. From a
lower-cost perspective, the framework also empowers SLMs to achieve reasoning
capabilities comparable to larger ones.

1 INTRODUCTION

CoT reasoning, which elaborates a series of intermediate steps, has significantly improved the abil-
ity of LLMs to solve complex problems Yao et al. (2025). This has led to the rise of a new class of
models known as large reasoning models (LRMs), such as DeepSeek-R1 Guo et al. (2025), OpenAI-
o1 Jaech et al. (2024), and Qwen-QwQ Team (2025). Such LRMs demonstrate that scaling CoT
length to hundreds or even thousands of steps can yield continual gains in reasoning accuracy, inter-
pretability, and robustness across a wide range of tasks.

Despite these advances, fixed-length CoT strategies are poorly suited for emotion understanding
tasks. For instance, simple tasks such as binary sentiment classification (e.g., “Is this review positive
or negative?”), often elicit excessively verbose reasoning, resulting in substantial computational
overhead and inefficient overthinking Xia et al. (2025). In contrast, complex tasks such as sarcasm
detection suffer from shallow reasoning, failing to capture nuanced pragmatic and contextual cues,
as shown in Fig. 1. This disconnect between fixed reasoning lengths and the inherently dynamic
nature of emotion understanding leads to both performance bottlenecks and wasted computation.

We posit that effective emotion reasoning demands adaptive flexibility. Simple emotion tasks benefit
from short, efficient reasoning paths, while complex emotional phenomena such as irony, ambiguity,
and humor require deeper, reflective chains of thought. However, existing CoT-based emotion un-
derstanding approaches lack the ability to dynamically adjust the length of the reasoning according
to the complexity of the task, limiting their generalization across different emotion domains.

To fill this gap, we introduce Emotion-o1, an adaptive reasoning framework that dynamically ad-
justs CoT length according to the complexity of the emotional task. Specifically, our approach first
distills variable-length, structurally diverse reasoning paths, such as backtracking and self-reflection,
etc., from SoTA LRMs (e.g., DeepSeek-R1). After supervised fine-tuning the model to acquire com-
prehensive reasoning capabilities, we further optimize reasoning quality via reinforcement learning,
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Query: [Sentiment Classification] '' Let's get that ball and 

really move, hey, hey, ho, ho. ''

[Sarcasm Detection] '' I thought that could be 

thrown onto the errors of The Great Awakening. ''

[Sentiment]: First, I need to recall what sentiment 
classification entails… Conclusion: This is clearly 
a positive sentiment. [678 tokens]

[Sarcasm]: I need to understand what the user is 
asking… Conclusion: This is sarcasm. [895 tokens]

[Sentiment]: No negative or neutral cues 
present.… Conclusion: Positive. [62 tokens]

[Sarcasm]: ''Thrown onto the errors'' uses 
informal, dismissive phrasing… Conclusion: Likely
sarcastic. [212 tokens]

Original CoT

Emotion-o1

Figure 1: Original long CoT may lead to redundant computations or insufficient reasoning against
our Emotion-o1.

guided by a multi-objective reward function across four dimensions: prediction accuracy, depth
adaptability, structural diversity, and redundancy suppression. This allows Emotion-o1 to develop
emotionally aligned, length-adaptive reasoning strategies tailored to the demands of each task.

Given that sentiment classification and emotion recognition mainly involve shallow emotional cues
and limited contextual dependencies, we follow prior work in treating them as simple tasks Evans
(2002). In contrast, sarcasm detection and humor understanding require complex pragmatic rea-
soning and deep contextual integration, and are therefore regarded as complex tasks that require
deeper reasoning Chauhan et al. (2020; 2022). Using sarcasm detection and sentiment classification
as illustrative tasks, we present detailed complexity proofs in Appendix A. We present empirical
evaluations of the proposed approach on four emotion understanding tasks, and compare its perfor-
mance against ten SoTA LLMs (e.g., DeepSeek-R1, GPT-4o, Claude 3.7, etc.). We highlight three
key findings: (1) compared to the backbone, Emotion-o1 achieves F1-score improvements of 11%,
14%, 18%, and 27% on the four tasks, demonstrating the effectiveness of incorporating diverse
reasoning structures; (2) Emotion-o1 achieves SoTA performance in sentiment and emotion classi-
fication. In sarcasm recognition, its F1 score is only 1% lower than that of GPT-4o, demonstrating
our cost-efficient 8B model parity with leading large-scale LLMs at substantially lower computa-
tional cost. (3) compared to OpenAI-o1 (DeepSeek-R1), Emotion-o1 reduces the average reasoning
length by 73% (54%), 52% (27%), 83% (70%), and 70% (58%) across the four tasks, highlighting
its efficiency advantage. Our main contributions are as follows:

• We propose Emotion-o1, an adaptive CoT reasoning framework that dynamically adjusts
reasoning length based on the complexity of emotion understanding tasks.

• We design a multi-objective reward function that jointly optimizes for prediction accuracy,
reasoning brevity, structural coherence, and redundancy suppression, enabling the LRM to
learn emotionally aligned and task-adaptive reasoning strategies.

• We validate Emotion-o1 on four emotion tasks, achieving SoTA performance with notably
reduced reasoning cost.

2 RELATED WORK

Affective Computing Affective computing (AC) enables machines to recognize, interpret, and
respond to emotions Zhang et al. (2023). Early methods used feature engineering; with PLMs
like BERT Devlin et al. (2019), fine-tuning became dominant for affective understanding (AU) and
generation (AG) Verma et al. (2021); Nie & Zhan (2022), but struggled in cross-domain and multi-
task reasoning Mao et al. (2022). LLMs Brown et al. (2020); Zhou et al. (2022) offer zero-shot and
instruction-based modeling, yet still underperform in fine-grained tasks such as sarcasm or humor
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detection Zhang et al. (2024). CoT prompting improves reasoning but often fixes template length.
Our Emotion-o1 distills variable-length, structure-rich reasoning traces via multi-stage training and
multi-objective rewards for dynamic reasoning depth.

Chain-of-Thought Reasoning CoT reasoning is central to enhancing LLM reasoning. Early short
CoT used shallow, linear paths with limited depth and little exploration or error correction Chen
et al. (2024), struggling on tasks requiring revisiting steps or exploring alternatives Mirzadeh et al.
(2024). Recent work introduced non-linear structures such as Tree-of-Thoughts (ToT) Yao et al.
(2023) and Graph-of-Thoughts (GoT) Besta et al. (2024), enabling branching, parallel reasoning,
multiple hypotheses, and backtracking—laying the foundation for long CoT. Long-CoT LLMs like
OpenAI-O1 Jaech et al. (2024) and DeepSeek-R1 Guo et al. (2025) scale reasoning to thousands
of steps with dynamic feedback, achieving SoTA in math, programming, and symbolic inference.
While Emotion-o1 bridges short and long CoT by adjusting reasoning depth and structure to task
complexity, combining shallow efficiency with deep flexibility.

3 METHODOLOGY

As shown in Fig. 2, our framework include three stages: (1) Structured Emotion Reasoning Distil-
lation extracts variable-length reasoning paths from leading LRMs; (2) Adaptive CoT-Augmented
SFT initializes the model with structured emotional reasoning ability; (3) Reward-based RL refines
reasoning quality via multi-objective optimization.

Sentiment Emotion Sarcasm Humor

Large Reasoning Model

Long Short

Linear
Non-

Linear

CoT

Structured Emotion Reasoning Distillation Adaptive CoT-Augmented SFT

Accuracy brevity Structure Redundancy

Verifiable Reward Reinforcement Learning

Simple ComplexConcise deeply

PPO
Response Feedback

CoT-Augmented SFT

Short-CoT

Sentiment

Emotion

Long-CoT

Sarcasm

Humor

prompt prompt prompt prompt

Figure 2: Overview of the proposed framework.

3.1 STRUCTURED EMOTION REASONING DISTILLATION

We construct labeled samples with diverse reasoning paths by distilling a leading LRM. Specifically,
we select four key emotion understanding tasks, each paired with a widely used benchmark dataset:
MELD Poria et al. (2018) for sentiment classification and emotion recognition, Sarcasm Corpus V2
Oraby et al. (2017) for sarcasm detection, and Reddit Humor Detection Weller & Seppi (2019) for
humor recognition. Each instance consists of a text input xi and its matching label yi.

For each sample (xi, yi), we construct a prompt template p(xi, yi, c), where c specifies the reasoning
strategy, including structure type (linear or non-linear) and length type (short or long), more details
are provided in Appendix C. We then use the DeepSeek-R1 for conditional sampling and generate
N candidate reasoning paths:

{ri,j}Nj=1 ∼ LLM(p(xi, yi, c)) (1)

where N is the number of candidate responses generated per prompt. We employ rejection sampling,
in which we use label(·) to extract the predicted label from each generated CoT and retain only those
whose labels match the ground-truth yi as correct reasoning processes:

Ri = {ri,j | label(ri,j) = yi, j ∈ [1, N ]} (2)

3
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where Ri denotes the set of valid CoT reasoning responses.

Different reasoning strategies exhibit task-specific efficacy across emotion understanding tasks. Our
prompt explicitly steers the model to generate responses with distinct reasoning strategies c. Specif-
ically, we considered two primary dimensions of reasoning structure:

• Length Type: Short (concise, direct reasoning) and Long (thorough, detailed analysis).
• Reasoning Type: Linear (step-by-step reasoning) and Non-linear (multi-path, branched

reasoning structures).

Thus, each textual input xi could yield multiple valid CoT responses across these dimensions, the fi-
nal dataset D was constructed by aggregating all valid CoT reasoning instances across input samples
and reasoning dimensions:

D =

{
(xi, yi, ri,j , ci,j , li,j)

∣∣∣∣∣
{

ri,j ∈ Ri

ci,j ∈ {linear, non-linear}
li,j ∈ {short, long}

}}
(3)

Next, we conducted SFT using the dataset D. More details are provided in the Appendix D.

3.2 ADAPTIVE COT-AUGMENTED SFT

We propose an Adaptive CoT-Augmented SFT method to enhance the reasoning capabilities of
LLMs across different emotion tasks. Given an input text sequence x = {x1, x2, . . . , xT } and a cor-
responding CoT rationale r, we construct task-adaptive instruction prompts according to the specific
task type τ , where τ ∈ {sentiment, emotion, sarcasm, humor}. The adaptive prompt construction
function is formally defined as:

P(x, r, y,D, τ) = Φ(τ)⊕ Γ(x)⊕Ψ(r)⊕ Ω(y,D, τ) (4)

here, Φ(τ) denotes the task-specific identifier that contextualizes the objective (e.g., Emotion Clas-
sification Task for τ = emotion); Γ(x) formats the input text; Ψ(r) incorporates the reasoning steps;
and Ω(y,D, τ) encodes the label y along with class definitions customized according to the task
type τ drawn from the dataset D. The operator ⊕ represents string concatenation.

The training objective maximizes the conditional likelihood of the complete reasoning path and label
prediction, where the model implicitly adapts the reasoning depth and structure according to τ :

LSFT-CoT = −
L∑

t=1

logP (wt | P(x, r, y,D, τ), w<t, τ ; θ) (5)

Here, wt denotes the t-th token in the response, L is the total length of the reasoning and label
sequence, and θ represents the model parameters. Incorporating τ as a conditioning variable in the
likelihood term allows the model to progressively adapt its reasoning strategy to diverse tasks.

3.3 VERIFIABLE REWARD RL

We propose a verifiable reward RL approach to optimize the reasoning quality of the model fur-
ther. Initialized with a fine-tuned SFT model, our method employs the proximal policy optimization
(PPO) algorithm for training. By sampling multiple candidate responses during each update, the
model learns to adjust its reasoning length according to task complexity adaptively.

The reward function is constructed as a weighted sum of prediction accuracy, depth adaptivity,
structural diversity, and redundancy reduction. The components are given as follows:

3.3.1 ACCURACY REWARD

The first and most important reward is the accuracy reward, ensuring that the model prioritizes
generating correct predictions aligned with the ground-truth labels. It is written as:

racc =


+1.0, if ŷ = y

−1.0, if ŷ ̸= y

−ϵacc, if prediction is missing
(6)
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where ŷ is the predicted label, y is the ground truth label, and ϵacc is a small constant introduced
to impose an appropriate penalty when the prediction is missing, thereby encouraging the model to
generate correct labels.

3.3.2 TASK-AWARE VARIABLE-LENGTH REWARD

To enable the model to flexibly choose between long and short inference modes for each emotion
task, we first define an expected length Lbase, a maximum length Lmax, and a minimum length
Lmin for each inference mode within each task. Specifically, we statistically analyze the length
distribution of responses under different inference modes within our constructed SFT dataset D.
And utilize quantile-based statistics derived from the response length distribution Ll to establish the
inference length boundaries. Thus, the minimum and maximum lengths are defined as follows:

Lmin = ⌊P5(Ll)⌋, Lmax = ⌈P95(Ll)⌉ (7)

where Pk denotes the k-th percentile of the distribution. Given the varying complexity of different
emotion tasks, we empirically set an expected length Lexp based on domain expertise. Meanwhile,
we adopt the statistical median of the length distribution as Lsts = median(Ll). Thus, the final
expected length Lbase is formulated as a weighted combination of empirical and statistical values:

Lbase = α · Lexp + (1− α) · Lsts (8)

where α is a tunable parameter that trades off empirical knowledge and statistical observations.

Furthermore, we introduce a length-based reward rlength to penalize responses deviating from the
expected length range and reward responses close to the desired length. Specifically, the length
reward is computed as follows:

rlength =


(
smin

L
Lmin

)2
, L < Lmin

exp
(
− smax

L−Lmax

Lmax

)
, L > Lmax

exp
(
− 1

2

(
L−Lbase

sbase(Lmax−Lmin)

)2)
, Lmin ≤ L ≤ Lmax

(9)

here, L denotes the length of the generated response, while smin, smax, and sbase are scaling fac-
tors that control the intensity of rewards and penalties within the reward function. Specifically, for
responses shorter than the minimum length, we apply a quadratic penalty to encourage the model
to produce more comprehensive inferences. For responses exceeding the maximum length, we em-
ploy an exponential penalty to discourage the generation of redundant information. For responses
within the acceptable length boundaries, a Gaussian-shaped reward is used to incentivize the model
to generate outputs close to the expected length.

3.3.3 REASONING STRUCTURE REWARD

During reasoning, whether to use structured reasoning approaches significantly determines the
length and clarity of the CoT generated by the model. Thus, we propose a novel structure-oriented
reward rstruct. This reward explicitly evaluates key reasoning behaviors (e.g., “decomposition”,
“reflection”, and “verification”) and the appropriate usage of logical connectives (e.g., “therefore”,
“however”, and “thereby”). Formally, the proposed reward function is defined as follows:

rstruct = λ ·min

(
|A|
NA

, 1

)
+ (1− λ) ·min

(
|C|
NC

, 1

)
(10)

The set A denotes valid reasoning actions appearing in the response, while C represents the logi-
cal connectives used. NA and NC are predefined target numbers of reasoning actions and logical
connectives, respectively, and λ is a hyperparameter balancing their relative importance. Given the
variability of optimal reasoning patterns across tasks, our reward design deliberately refrains from
constraining the sequence or positioning of reasoning actions and connectives. A response receives
the reward if it contains the targeted number of reasoning actions and connectives. Through this
carefully designed reward mechanism, we expect the model to autonomously adjust its inference
length based on the varying difficulty levels of different emotion tasks.

5
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3.3.4 REPETITION PENALTY

Additionally, we introduce a repetition penalty rrepeat, which discourages redundant content within
generated responses. The similarity between sentence pairs within the response is determined by
combining lexical overlap and semantic similarity from BERT embeddings by parameter β:

Sim(si, sj) = β · Slex(si, sj) + (1− β) · Ssem(si, sj) (11)

where lexical similarity Slex(si, sj) =
|W (si)∩W (sj)|
|W (si)∪W (sj)| is computed using the Jaccard similarity be-

tween two sentences, with W (s) representing the set of words in sentence s. Semantic similarity
Ssem(si, sj) =

BERT(si)·BERT(sj)
|BERT(si)||BERT(sj)| is calculated as the cosine similarity between BERT embeddings

of the two sentences. The similarity threshold τ is set empirically. And the repetition penalty rrepeat
is defined as the proportion of sentence pairs whose similarity exceeds τ : rrepeat = min

(
Cτ

T , 1.0
)

, where Cτ is the number of such pairs and T is the total number of pairs.

This ensures that responses with higher redundancy receive a greater negative penalty, effectively
promoting more concise and diverse generated content.

3.3.5 FINAL REWARD FUNCTION

The total reward rtotal for each response is defined as the weighted sum of four components:

rtotal = wacc · racc + wlength · rlength + wstruct · rstruct − wrepeat · rrepeat (12)

We assign the highest weight to wacc to ensure prediction accuracy remains the top priority. For
Long-CoT reasoning, wstruct receives the second-highest weight to encourage structured reasoning;
for Short-CoT, we set wstruct = 0 to disable this term. To encourage appropriate response lengths,
wlength is given the third-highest weight. Finally, wrepeat receives the lowest weight, applying mild
penalties to promote output diversity without sacrificing accuracy.

These weights are empirically tuned through extensive experimentation to effectively balance accu-
racy, structure, length control, and content diversity.

4 EXPERIMENTS

4.1 BASELINE AND EXPERIMENTAL SETUP

Ten SoTA LLMs are included for comparison, including models without intermediate reasoning
steps (No-CoT): LLaMA-3.1-8B, Qwen-2.5-7B; models employing a few concise reasoning steps
(Short-CoT): DeepSeek-V3, GLM-4, Qwen-3-14B, Grok-3; and models supporting more detailed
and structured reasoning (Long-CoT): DeepSeek-R1, OpenAI-o1, GPT-4o, Claude-3.7.

Our experiments are conducted on 4×A100 40G GPUs, running on Ubuntu 22.04, with Python 3.12,
PyTorch 2.4.0, and CUDA 12.1. We adopt the LLaMA-3.1-8B as our base model and use evaluation
metrics widely used for classification tasks: Accuracy, Macro-F1, and Weighted-F1. Additional
details of the experimental parameter settings can be found in the Appendix F.

4.2 MAIN RESULT

Table 1 summarizes the performance comparison between Emotion-o1 and 10 baseline models
across four emotion tasks, using the average results from 3 experiments. Results show that Emotion-
o1 consistently outperforms baselines to varying degrees. Further details about error analysis and
limitations are provided in Appendix B and Appendix G.

Specifically, compared with the backbone model LLaMA-3.1-8B, emotion-o1 achieves accuracy
improvements of 7%, 7%, 14%, and 21% on the sentiment, emotion, humor, and sarcasm tasks, re-
spectively. Additionally, significant enhancements are observed in terms of Macro-F1 and Weighted-
F1 scores. For simple tasks (sentiment and emotion), the Macro-F1 score increases by up to 14%,
while for more complex tasks (humor and sarcasm), the Weighted-F1 score improves by up to
27%. These findings confirm the effectiveness of explicitly modeling and adapting varying rea-
soning lengths and strategies to diverse emotion understanding tasks.

6
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Table 1: Model performance comparison across four emotion recognition tasks, Bold and underline
indicate the best and second-best results for each task.

Paradigm Model
Sentiment Emotion Humor Sarcasm

Acc Ma-f1 We-f1 Acc Ma-f1 We-f1 Acc Ma-f1 We-f1 Acc Ma-f1 We-f1

No-CoT
Qwen-2.5-7B 0.6437 0.6086 0.6381 0.5586 0.4158 0.5700 0.6475 0.6092 0.6097 0.5030 0.3460 0.3437

LLaMA-3.1-8B 0.6073 0.5391 0.5835 0.5613 0.3206 0.5047 0.6270 0.5876 0.5871 0.5360 0.4714 0.4701

Short-CoT

Grok-3 0.6559 0.6295 0.6518 0.6261 0.5058 0.6265 0.8869 0.8858 0.8859 0.7257 0.7126 0.7121

GLM-4 0.6326 0.6106 0.6326 0.6215 0.4819 0.6146 0.8989 0.8989 0.8989 0.7247 0.7174 0.7171

Qwen-3-14B 0.6494 0.6007 0.6331 0.5966 0.4261 0.5811 0.7373 0.7233 0.7236 0.7084 0.6895 0.6890

DeepSeek-V3 0.6314 0.6148 0.6316 0.5801 0.4783 0.5878 0.8506 0.8481 0.8482 0.6802 0.6518 0.6511

Long-CoT

GPT-4o 0.6326 0.5924 0.6196 0.6015 0.4499 0.5812 0.9043 0.9041 0.9041 0.7577 0.7570 0.7569

Claude-3.7 0.6483 0.6184 0.6408 0.6310 0.4814 0.6098 0.9488 0.9488 0.9488 0.7328 0.7267 0.7270

OpenAI-o1 0.6379 0.6060 0.6306 0.6398 0.4984 0.6341 0.9231 0.9231 0.9231 0.7724 0.7717 0.7718

DeepSeek-R1 0.6402 0.6134 0.6381 0.5900 0.4697 0.5967 0.8342 0.8306 0.8307 0.7062 0.6947 0.6943

Adaptive-CoT Emotion-o1(ours) 0.6770 0.6548 0.6766 0.6352 0.4649 0.6141 0.7694 0.7684 0.7684 0.7469 0.7468 0.7469

We further conducted a comparative evaluation of emotion-o1 against several widely recognized
LLMs. Experimental results demonstrate that emotion-o1 achieves SoTA performance on the senti-
ment task, surpassing established baselines in terms of accuracy, Macro-F1, and Weighted-F1 met-
rics. In the emotion task, accuracy is on par with OpenAI-o1, demonstrating its generalization ability
in the multi-classification task. Regarding the more complex sarcasm task, emotion-o1 obtains com-
petitive yet slightly suboptimal performance, achieving results marginally just below GPT-4o 1%,
showing the effectiveness of Long CoT in handling complex tasks. For humor detection, Emotion-o1
achieves parity with larger-scale models like Qwen3-14B, outperforming it by 3%, yet demonstrates
a substantial gap against top competitors such as Claude-3.7 in complex humor tasks.

Overall, these results show that our 8B model delivers competitive or superior performance com-
pared to SoTA LLMs across all tasks, and also exhibits strong generalization across model scales.

4.3 COT LENGTH ANALYSIS

We analyze the impact of each stage on the average length of CoT reasoning, as shown in Table 2.
The base model LLaMA-3.1-8B produces shallow rationales with limited variation across tasks. In
contrast, SFT introduces task-specific adaptation: it shortens reasoning for simple tasks like Senti-
ment (↓18%), while substantially increasing CoT depth for complex tasks such as Sarcasm (↑281%)
and Humor (↑246%). The RL stage further refines this adaptation. It further reduces CoT length for
Sentiment and Humor by 7% and 13%, respectively. Appendix E furnishes several typical cases.

Table 2: The average CoT length of the model in each stage. ↓ indicates shorter, ↑ indicates longer.

Base SFT RL
Sentiment 114 93 (↓18%) 85 (↓25%)
Emotion 123 186 (↑51%) 183 (↑49%)
Sarcasm 52 198 (↑281%) 199 (↑283%)
Humor 70 242 (↑246%) 233 (↑233%)

Based on the results shown in Table 1, it can be further observed that a shorter CoT length achieves
the best results in the sentiment task, demonstrating the rationality of reducing redundant reasoning;
in the emotion task, merely increasing CoT length by 49% can achieve comparable performance
to the SoTA model OpenAI-o1 of Long CoT. In more complex tasks such as sarcasm, Emotion-o1
with an extended structured reasoning (↑283%) outperforms all models using Short CoT, and is only
inferior to two larger-scale Long CoT models.

These results confirm that our two-stage pipeline enables Emotion-o1 to learn task-aware reasoning
strategies, by using shorter CoTs for straightforward tasks and longer ones for cognitively demand-
ing tasks, and improves both performance and inference efficiency.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.4 ABLATION STUDY

We conduct ablation experiments to examine the effects of CoT length and structure, as illustrated
in Fig. 3. The key findings are summarized as follows:
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(c) Humor
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(d) Sarcasm
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Figure 3: Ablation analysis of CoT variants: Long, Short, Linear and Non-Linear Reasoning

• Sentiment: Short CoT and linear CoT yield greater improvements. They achieve increases
of approximately 6% and 7% in accuracy, respectively, suggesting concise reasoning is
sufficient for such tasks, offering both effectiveness and computational efficiency.

• Emotion: Short CoT achieves 5% higher accuracy than long CoT, and linear reasoning
outperforms nonlinear reasoning by 4%. This suggests that excessive reasoning may intro-
duce unnecessary complexity or noise, and that direct, focused reasoning is more beneficial.

• Humor: Long CoT yields an 11% improvement in F1 over short CoT, while linear reason-
ing provides a 5% gain in accuracy. This confirms the need for deeper and more structured
reasoning in humor understanding, where implicit intent and abstract cues are involved.

• Sarcasm: Similar to humor, the combination of long and linear CoT delivers the best
results, highlighting the importance of detailed, explicit reasoning in handling pragmatic
and context-dependent phenomena.

Overall, all CoT-based strategies clearly improve performance over the base model. Moreover, the
results validate that sentiment and emotion tasks benefit from concise and direct reasoning, while
sarcasm and humor tasks demand longer and deeper reasoning to capture subtle linguistic cues.

4.5 VISUALIZATION OF TOKEN CONSUMPTION

To intuitively compare the computational cost, we perform a comparative analysis of Emotion-
o1’s token consumption against the performance of mainstream reasoning models, which is linearly
correlated with FLOPs, as illustrated in Fig. 4. While achieving superior results, Emotion-o1 also
shows higher efficiency across all tasks compared to DeepSeek-R1 and OpenAI-o1. Specifically:
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Figure 4: Token consumption distribution across reasoning models
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The median tokens of Emotion-o1 consistently rank as the lowest among the models. This trend
is particularly pronounced in the Sarcasm task, where the tokens reduces by 83% compared to
OpenAI-o1. Even in the Emotion task, which exhibits the smallest improvement, tokens decrease
by approximately 52% relative to OpenAI-o1.

Furthermore, Emotion-o1 demonstrates a lower maximum tokens compared to its competitors. In
the Sarcasm task, the 90th percentile tokens reduces by nearly 4.8 times relative to OpenAI-o1,
underscoring the model’s ability to effectively suppress extreme values.

The standard deviation of tokens generated by Emotion-o1 across tasks is consistently lower. For
example, in the Sarcasm task, the standard deviation is only 1/3 that of OpenAI-o1, indicating
Emotion-o1 produces more stable outputs with greater concentration in response values.

In summary, Emotion-o1 consistently exhibits superior output efficiency across all tasks while main-
taining competitiveness against mainstream reasoning models.

4.6 SCALE ANALYSIS

In this section, we investigate how variations in model size affect performance across different tasks,
using LLaMA models of three scales (1B, 3B, and 8B). As illustrated in Fig. 5, all three evaluation
metrics show noticeable improvements as the model size increases.
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Figure 5: Model Scale Performance Comparison Across Different Tasks.

For the Sentiment, Emotion, and Humor tasks, expanding smaller models from 1B to 3B yields
substantial gains, with the F1 score increasing by up to 35%. However, when further scaling from
3B to 8B, the improvements become less pronounced. These results indicate that small-scale models
can achieve significant performance gains at relatively low computational cost.

In contrast, the Sarcasm task exhibits a consistent upward trend in performance with increasing
model size, achieving about a 5% gain. This steady improvement underscores the potential advan-
tages of larger models for tasks requiring more complex understanding.

Overall, Emotion-o1 strikes an effective balance between cost and performance, making it a viable
and efficient option for a range of applications. These findings provide useful guidance for future
work in selecting appropriate model scales according to task requirements and resource constraints.

5 CONCLUSION

This work addresses the limitations of fixed-length chain-of-thought reasoning for emotional under-
standing in LLMs by proposing Emotion-o1, an adaptive framework that dynamically adjusts rea-
soning depth based on task complexity. Through multi-stage training with a multi-objective reward
(accuracy, brevity, structure, redundancy), our approach achieves significant performance gains: F1
improvements of 11% (sentiment), 14% (emotion), 18% (humor), and 27% (sarcasm) over its back-
bone. Notably, the 8B model outperforms Grok-3 by 2.1% and within 1% of OpenAI-o1 in critical
tasks while reducing reasoning length by 83% versus OpenAI-o1. Emotion-o1 establishes an effi-
cient bridge between structured reasoning and emotional understanding.
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A THEORETICAL JUSTIFICATION OF TASK DIFFICULTY

In this section, we present a theoretical analysis to justify why sarcasm detection is intrinsically
more difficult than sentiment classification. We formalize the two tasks, analyze their Bayes error
bounds, provide a task reduction argument, and compare their statistical learning complexity using
VC-dimension theory. Together, these results show that sarcasm detection requires strictly more
information and model capacity to achieve comparable performance.

A.1 PROBLEM FORMALIZATION

Let x denote a text utterance and c denote its context, which may include dialogue history, speaker
identity, social background, or cultural knowledge. We define the following:

• S(x) ∈ {0, 1}: the literal sentiment polarity of x, where 0 indicates negative and 1 indi-
cates positive sentiment.

• C(x, c) ∈ {0, 1}: the contextual polarity, i.e., the true stance once context c is taken into
account.

• Z(x, c) = ⊮[S(x) ̸= C(x, c)]: the sarcasm indicator, which equals 1 if the literal senti-
ment disagrees with the contextual stance, and 0 otherwise.

The sentiment classification task is to predict S(x) from x, while sarcasm detection requires predict-
ing Z(x, c) from (x, c). Intuitively, sarcasm arises when the surface form of an utterance is positive
but the intended meaning is negative (or vice versa). This naturally suggests that sarcasm detection
involves reasoning about both literal semantics and pragmatic intent.

A.2 IRREDUCIBLE ERROR BOUND

We first compare the Bayes error of the two tasks. If only x is observable, the optimal classifier for
sarcasm detection must rely on the conditional probability

p(x) = Pr(Z = 1 | x) = Pr(S(x) ̸= C(x, c) | x). (13)
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The corresponding Bayes error is

E(x)
sar = Ex

[
min{p(x), 1− p(x)}

]
. (14)

If there exists a subset

Aε = {x : ε ≤ p(x) ≤ 1− ε}, ε ∈ (0, 0.5], (15)

then
E(x)

sar ≥ ε · Pr(Aε) > 0. (16)

Interpretation. Whenever context c is essential for disambiguating whether an utterance is sar-
castic, the Bayes error given only x is strictly positive. This irreducible error reflects the inherent
ambiguity of sarcasm. In contrast, sentiment classification typically assumes that S(x) is a deter-
ministic function of x, yielding H(S | x) = 0, where H(S | x) is the conditional entropy:

H(S | x) = −
∑
s∈S

Pr(S = s | x) log Pr(S = s | x) (17)

measuring the uncertainty of sentiment label S given text x, and consequently zero irreducible error.

A.3 TASK REDUCTION ARGUMENT

Sarcasm detection can be formalized as an XOR composition:

Z(x, c) = S(x)⊕ C(x, c), (18)

where ⊕ denotes logical exclusive-or. This representation shows that detecting sarcasm requires
distinguishing two sources of evidence: the literal polarity S(x) derived from the surface text, and
the contextual polarity C(x, c) inferred from background knowledge.

Formally, if HS and HC are hypothesis classes that approximate S and C, then sarcasm detection
requires approximating functions of the form

Hsar =
{
h(x, c) = hS(x)⊕ hC(x, c) : hS ∈ HS , hC ∈ HC }. (19)

Implication. Any model that solves sarcasm detection must have the representational capacity to
jointly encode both literal sentiment and contextual stance. Thus, sarcasm detection is at least as
hard as solving both subtasks simultaneously.

A.4 STATISTICAL LEARNING COMPLEXITY

We now analyze the VC-dimension of sarcasm detection. By standard results for composite hypoth-
esis classes, we obtain the following bounds:

max{VCdim(HS),VCdim(HC)} ≤ VCdim(Hsar) ≤ VCdim(HS) + VCdim(HC). (20)

The lower bound shows that sarcasm detection is at least as complex as the harder of the two sub-
tasks, while the upper bound suggests that under mild independence assumptions, the complexity
may approach the sum of both. In practice, this implies that sarcasm detection requires significantly
larger sample sizes and stronger inductive biases to achieve the same generalization performance as
sentiment classification.

A.5 DISCUSSION AND CONCLUSION

The above analysis yields three important insights:

1. Sarcasm detection has a strictly positive irreducible error when context is missing, while
sentiment classification does not.

2. The sarcasm label is definable only as an XOR of sentiment and contextual stance, making
the task intrinsically compositional.

12
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3. The VC-dimension of sarcasm detection is strictly larger than that of sentiment classifica-
tion, often close to the sum of both subtasks.

Taken together, these results demonstrate that sarcasm detection is provably more difficult than
sentiment classification. This conclusion aligns with empirical findings that sarcasm models require
richer contextual modeling, more complex architectures, and substantially more data to achieve
robust performance.

B ERROR ANALYSIS

Fig. 6 shows the error analysis for the four tasks. Sarcasm and Humor detection show notable false
negatives, indicating difficulties in identifying complex contextual cues. Sentiment analysis exhibits
polarity interpretation challenges, particularly in distinguishing neutral from negative expressions.
Emotion recognition demonstrates a tendency to default to neutral classifications, with authentic
emotions like joy and anger frequently misclassified, alongside cross-category confusion. The ob-
served false positives in sentiment and sarcasm tasks suggest occasional oversensitivity to certain
linguistic signals. Collectively, these patterns highlight room to refine contextual understanding and
develop task-specific approaches to capture linguistic nuances more effectively.
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Figure 6: The confusion matrices of the four tasks.

C INSTRUCTION STUDY

This section presents the prompt design used in constructing part of the CoT dataset. For each emo-
tion task, we designed prompts tailored to the specific characteristics of the task(see task definitions
in Table 3). To extract long CoT from LLMs, as shown in Table 4, we first defined several distinct
reasoning structures. These structures served as guidelines to steer the model in flexibly selecting
and applying different reasoning approaches, without restrictions on their order or frequency of use.
After completing the reasoning process, the model was required to perform conclusion verification
and error checking to ensure completeness and logical soundness.

Table 3 Task definitions for sentiment, emotion, sarcasm, and humor classification

Task Task Definition
Sentiment 0=neutral: no clear emotional cues

1=positive: features like positive lexicon, uplifting emojis, achievement
expressions
2=negative: contains negative elements, expressions of unpleasant events

Emotion 0=neutral: no clear emotional cues
1=joy: features like positive lexicon, uplifting emojis, achievement expressions
2=sadness: contains loss/grief elements, negative event descriptions
3=surprise: unexpected events or cognitive dissonance
4=anger: aggressive language, confrontational rhetoric
5=fear: threat-related content, anxiety indicators
6=disgust: expressions of revulsion, descriptions of unpleasant events
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Table 3 Task definitions for sentiment, emotion, sarcasm, and humor classification
Task Task Definition

Sarcasm 1=sarcasm: contains features like surface praise with underlying criticism,
contextual incongruity, exaggerated contrast, etc.
0=not sarcasm

Humor 1=humor: contains features like wordplay/puns, exaggerated scenarios,
unexpected twists, contextual incongruity, absurd juxtapositions, etc.
0=not humor

Specifically, for each dataset sample text, we generated four long CoTs and one short CoT. The
short CoT followed the conventional step-by-step prompting approach and is not further discussed
here. Among the four long CoTs, two were required to employ non-linear reasoning patterns, such
as Tree-of-Thought or Graph-of-Thought structures. One was constrained to follow a multi-path
reasoning strategy, in which the model was encouraged to explore multiple reasoning trajectories;
in our work, the trajectories were not split into separate CoTs but were instead treated as multi-step
reasoning within a single CoT. This design preserves structural diversity in the reasoning process.

Table 4 Task-Specific prompt designs for sentiment, emotion, sarcasm, and humor classification

Task Prompt Example
Sentiment Perform rigorous sentiment analysis by dynamically applying selected

reasoning methods. Use the following framework (choose steps, order, and
iterations as needed):
[Reasoning Framework]
1.Decomposition: Break down text elements (semantics/context/rhetoric)
2.Reflection: Question initial assumptions and verify their rationality
3.Verification: Cross-check logical consistency
4.Transition: Handle contradictory information (using ”however” - like
analysis)
5.Retry: Correct the reasoning path when errors are found
[Process Requirements]
1.Must include ≥ 5 reasoning steps, freely combining the above components,
without limitation on the number of times or order, and also free to explore
other reasoning methods.
2.Each step must clearly indicate the type of reasoning used (e.g., Step 1 -
Decomposition)
3.At least two verification stages must be included: Preliminary conclusion
verification and Final decision verification
4.Contradictions in the text must be addressed (demonstrating the use of
”however” - like analysis).
5.Error correction must show the complete adjustment of the reasoning path.
6.Final conclusion must align with sentiment definition
[Error Checkpoints]
1.Sentiment intensity validation
2.Context-text consistency check
3.Emoji-semantic alignment verification
Tweet content: text, conclude with ”Therefore, the sentiment label is:
”(0=neutral,1=positive,2=negative)

Emotion Perform rigorous multi-dimensional emotion analysis by dynamically applying
selected reasoning methods. Use the following framework (choose steps, order,
and iterations as needed):
[Reasoning Framework]
1.Decomposition: Break down text elements (semantics/context/rhetoric)
2.Reflection: Question initial assumptions and verify their rationality
3.Verification: Cross-check logical consistency

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4 Task-Specific prompt designs for sentiment, emotion, sarcasm, and humor classification
Task Prompt Example

4.Transition: Handle contradictory information (using ”however” - like
analysis)
5.Retry: Correct the reasoning path when errors are found
[Process Requirements]
1.Must include ≥ 5 reasoning steps, freely combining the above components,
without limitation on the number of times or order, and also free to explore
other reasoning methods.
2.Each step must clearly indicate the type of reasoning used (e.g., Step 1 -
Decomposition)
3.At least two verification stages must be included: Preliminary conclusion
verification and Final decision verification
4.Contradictions in the text must be addressed (demonstrating the use of
”however” - like analysis)
5.Error correction must show the complete adjustment of the reasoning path
6.Final conclusion must align with emotion definition
[Error Checkpoints]
1.Emotional intensity validation
2.Trigger event analysis
3.Emoji/textual consistency verification
4.Cultural context alignment check
Tweet content: text, conclude with ”Therefore, the emotion label is:
”(0=neutral,1=joy,2=sadness,3=surprise,4=anger,5=fear,6=disgust)

Sarcasm Perform rigorous sentiment analysis reasoning please strictly follow the
structured reasoning process. The reasoning framework includes the following
optional components:
[Reasoning Framework]
1.Decomposition: Break down text elements (semantics/context/rhetoric)
2.Reflection: Question initial assumptions and verify their rationality
3.Verification: Cross-check logical consistency
4.Transition: Handle contradictory information (using ”however” - like
analysis)
5.Retry: Correct the reasoning path when errors are found
[Process Requirements]
1.Must include ≥ 5 reasoning steps, freely combining the above components,
without limitation on the number of times or order, and also free to explore
other reasoning methods.
2.Each step must clearly indicate the type of reasoning used (e.g., Step 1 -
Decomposition).
3.At least two verification stages must be included: Preliminary conclusion
verification and Final decision verification
4.Contradictions in the text must be addressed (demonstrating the use of
”however” - like analysis).
5.Error correction must show the complete adjustment of the reasoning path.
6.Final conclusion must align with sarcasm definition
[Error Checkpoints]
1.Rhetorical analysis completeness check
2.Contextual factor weight validation
3.Counterfactual outcome consistency verification
Tweet content: text, conclude with ”Therefore, the sarcasm label is:
”(1=sarcasm, 0=none)

Humor Perform rigorous sentiment analysis reasoning please strictly follow the
structured reasoning process. The reasoning framework includes the following
optional components:
[Reasoning Framework]
1.Decomposition: Break down text elements (semantics/context/rhetoric)
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Table 4 Task-Specific prompt designs for sentiment, emotion, sarcasm, and humor classification
Task Prompt Example

2.Reflection: Question initial assumptions and verify their rationality
3.Verification: Cross-check logical consistency
4.Transition: Handle contradictory information (using ”however” - like
analysis)
5.Retry: Correct the reasoning path when errors are found
[Process Requirements]
1.Must include ≥ 5 reasoning steps, freely combining the above components,
without limitation on the number of times or order, and also free to explore
other reasoning methods.
2.Each step must clearly indicate the type of reasoning used (e.g., Step 1 -
Decomposition).
3.At least two verification stages must be included: Preliminary conclusion
verification and Final decision verification
4.Contradictions in the text must be addressed (demonstrating the use of
”however” - like analysis).
5.Error correction must show the complete adjustment of the reasoning path.
6.Final conclusion must align with humor definition
[Error Checkpoints]
1.Rhetorical analysis completeness check (wordplay/puns detection)
2.Contextual absurdity validation
3.Expectation-subversion consistency verification
Tweet content: text, conclude with ”Therefore, the humor label is: ”(1=humor,
0=none)

D DATASET STATISTICS

The emotion CoT dataset is shown in Fig. 7. After filtering, we compile 21,266, 22,966, 21,169,
and 22,341 samples for the sentiment, emotion, sarcasm, and humor tasks, respectively. The ratio of
linear to non-linear reasoning is approximately 7:3 across all tasks. The ratio of long to short CoT
is roughly 1:1 for Sentiment and Emotion, and about 8:2 for Sarcasm and Humor.
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Figure 7: Overview of the CoT Dataset
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E CASE STUDY

In this section, we selected the most representative sentiment classification and sarcasm detection
tasks from simple and complex tasks to demonstrate their reasoning details, as shown in Fig. 8. For
tasks of different difficulties, Emotion-o1 can adaptively select the reasoning mode for reasoning.

Query: [Sentiment Classification] '' C'mon, we're roommates!  My eyes!! My eyes!! ''

              [Sarcasm Detection] ‘’ I love how you managed to make a counter-troll sound        

          like a serious reply :) ''

[Sentiment]: “C‘mon could imply frustration or urgency. My eyes!! repeated 
suggests distress or alarm. No positive words or emojis. The context of 
roommates might hint at a conflict or unexpected situation causing physical 
discomfort (e.g., eye irritation). The repeated exclamation marks and urgent tone 
align with negative sentiment.  Therefore, the sentiment label is: Negative” [53 

tokens]

[Sarcasm]: “Surface praise: “I love how...” suggests admiration.  Underlying 
criticism: “Counter-troll” implies the reply was unserious or disruptive.  
Exaggerated contrast: Comparing a “counter-troll” (chaotic) to a “serious reply” 
(orderly) creates incongruity.  Tone marker: The smiley emoji “:)” softens the 
statement but doesn’t negate the sarcastic contrast. Verification: Preliminary 
conclusion: Sarcasm via surface praise masking criticism. Counterfactual check: If 
the reply were genuinely serious, the statement would lack irony. Here, “counter-
troll” invalidates sincerity. Rhetorical completeness: Exaggeration and contextual 
mismatch are fully addressed. Final decision: The text satisfies sarcasm criteria 
(surface praise + underlying criticism + incongruity).  Therefore, the label is 

Sarcasm” [99 tokens]

Emotion-o1

[Sentiment]: "The utterance "C'mon, we're roommates! My eyes!! My eyes!!" 
expresses strong distress or shock. - "C'mon, we're roommates!" suggests 
exasperation or protest, likely reacting to an inappropriate action by the 
roommate. - "My eyes!! My eyes!!" (with repeated exclamations) conveys visceral 
horror, pain, or discomfort, implying the speaker witnessed something deeply 
unpleasant or violating.  No positive or neutral elements are present—the tone is 
purely reactive and negative. Sentiment: Negative" [70 tokens]

[Sarcasm]: "The text "i love how you managed to make a counter-troll sound 
like a serious reply :)" exhibits sarcasm through surface praise ("i love how") that 
underlies criticism. The phrase implies that the person's attempt at a counter-troll 
(which should be ironic or humorous) was ineffective by making it sound serious, 
thus failing to achieve the intended effect. The exaggerated praise combined with 
the contextual incongruity of praising a failed tactic, along with the ironic use of 
the smiley emoticon, confirms sarcasm. Sarcasm: 1" [84 tokens]

DeepSeek-r1

Figure 8: Reasoning details for simple task(Sentiment) and complex task(Sarcasm)

For the sentiment classification task, using a short CoT allows the sentiment to be inferred directly
from salient keywords in the text, requiring only a concise response (53 tokens) to achieve the target
task, thereby making the reasoning notably more succinct than that of DeepSeek-r1 (70 tokens)
and effectively avoiding any unnecessary output. In contrast, for the sarcasm detection task, a long
CoT—incorporating verification and reflection—enables the exploration of implicit meanings in
the context. This process produces a more detailed response (99 tokens) and, when compared with
DeepSeek-r1, presents a noticeably clearer and more organized reasoning structure, thereby ensuring
comprehensive coverage of the entire inference process.
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Through task-oriented adaptive length reasoning, Emotion-o1 can achieve more reasonable use of
computing resources, thereby maximizing model efficiency under limited costs.

F PARAMETER SETTINGS

Table 5 summarizes the detailed parameter configurations for the various stages of the process.
In order to address the specific demands of the Long CoT task, the encoding length was set to
relatively large values in each stage. For the PPO stage, initial weight values were assigned based
on prior empirical experience, and the optimal parameters were subsequently determined from the
best-performing settings across 5 recorded experimental iterations.

Table 5 Summary of experimental parameter settings

Stage Parameter
Distillation temperance = 0.7

max tokens = 8192

SFT max length = 2048
per device train batch size = 2
gradient accumulation steps = 8
num train epochs = 3
learning rate = 2e-5
bf16 = True
gradient checkpointing = True

PPO ϵacc = 0.1
smin = 1
smax = 4
sbase = 0.4
NA = 4
NC = 5
τ = 0.75
wacc = 0.7 if CoT is Short else 0.6
wlength = 0.25 if CoT is Short else 0.15
wstruct = 0 if CoT is Short else 0.2
wrepeat = 0.05
seed = 42
max length = 4096
learning rate = 1e-5
batch size = 4
ppo epochs = 4

G LIMITATIONS

First, our method is evaluated on four curated emotion-related tasks, which, while diverse, may not
cover the full spectrum of affective reasoning challenges in real-world applications. Second, our
framework focuses solely on textual input, excluding multimodal signals (e.g., visual or acoustic
cues), which are often crucial for understanding emotions in human communication.

18


	Introduction
	Related Work
	Methodology
	Structured Emotion Reasoning Distillation
	Adaptive CoT-Augmented SFT
	Verifiable Reward RL
	Accuracy Reward
	Task-Aware Variable-Length Reward
	Reasoning Structure Reward
	Repetition Penalty
	Final Reward Function


	Experiments
	Baseline and experimental setup
	Main Result
	CoT Length Analysis
	Ablation Study
	Visualization of Token Consumption
	Scale Analysis

	Conclusion
	Theoretical Justification of Task Difficulty
	Problem Formalization
	Irreducible Error Bound
	Task Reduction Argument
	Statistical Learning Complexity
	Discussion and Conclusion

	Error Analysis
	Instruction Study
	Dataset Statistics
	Case Study
	Parameter Settings
	Limitations

