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Abstract—We present the atomic autoencoder architecture,
which decomposes an image as the sum of elementary parts that
are parametrized by simple separate blocks of latent codes. We
show that this simple architecture is induced by the definition
of a general atomic low-dimensional model of the considered
data. We also highlight the fact that the atomic autoencoder
achieves disentangled low-dimensional representations under
minimal hypotheses. Experiments show that their implementation
with deep neural networks is successful at learning disentangled
representations on two different examples: images constructed
with simple parametric curves and images of filtered off-the-grid
spikes.

I. INTRODUCTION

The autoencoder is a well-known neural network architec-
ture whose goal is to project data to and from a latent space,
which is usually of much smaller dimensionality than the
original data space, this feature being useful for a wide variety
of tasks. Given a collection of samples X = (x1, . . . , xN )
with xi ∈ Rn, autoencoders provide a low dimensional
representation of the xi by using an encoder/decoder pair:
the autoencoder f is the composition of an encoder fE and
a decoder fD and is typically trained by minimizing the
quadratic reconstruction loss LX(f) :=

∑N
i=1‖f(xi) − xi‖22,

i.e.
f∗ = f∗D ◦ f∗E ∈ arg min

f∈F
LX(f) (1)

where F is the set of autoencoders having a given architecture.
Typically, the encoder fE projects data samples to a low-
dimensional “latent” space Rd, and the decoder fD performs
the opposite operation, producing data in Rn from a latent
code. In practice, estimating f∗ as a deep neural network
parametrized by its weights and biases has shown a huge num-
ber of applications from solving inverse problems [17] to photo
realistic image rendering which employs this architecture in
recent diffusion models.

Autoencoders provide a generative model of the considered
data, i.e. data points can be generated as the image of low
dimensional points by the decoder. However, we can not only
generate but also edit or manipulate data by moving in the
latent space. Towards this goal, several fundamental questions
arise: how can one navigate the latent space with the guarantee
that the chosen path does not leave the latent set? Is it
possible to manipulate latent codes in a meaningful way? Such
questions are linked to what is known as the “disentanglement”
problem. Indeed, the ultimate goal of generative models is to

establish a latent space where each coordinate corresponds to a
given feature of the data, thus disentangling these features. For
example, for facial images, this could be high-level attributes
such as an expression. Thus, editing an image would corre-
spond simply to moving along a coordinate in the latent space.
In this article, we focus on low-level features of signal and
images such as positions, amplitudes and shapes of objects.

Moreover, we remark that autoencoders are heavily linked
to the theory of low-dimensional representation of data that
has seen much development in the past twenty years with
the theory of sparse recovery and compressed sensing and its
extensions (see [9] for an overview). Thus, it appears natural
to consider the disentanglement problem from the viewpoint
of this theory.

a) Contributions: In this paper, we design an autoen-
coder architecture tailored for the learning of sparse atomic
models. Examples of such models include sketch images and
off-the-grid sums of spikes (used in microscopy, astronomy,
echo retrieval etc.). This design leads to disentangled low-lvel
low-dimensional representations that can be manipulated in a
meaningful way.

We define in Section II the atomic autoencoder. We show
how this architecture is induced by the definition of the general
atomic model of the data and discuss its practical imple-
mentation with deep neural networks (DNN). We show two
properties of such autoencoders: under a perfect learning hy-
pothesis, they provide a naturally disentangled representation
(for a specific notion of atomic disantanglement defined in this
Section). Secondly, considered atoms should be indivisible to
avoid entanglement. Note that these properties are elementary
from a mathematical perspective and are mainly induced by
the atomic structure.

In Section III, we use atomic autoencoders for the decom-
position of images composed of parametric curves and for the
estimation of off-the-grid spikes. In both cases, we access a
disentangled representation and manipulate this representation
in a meaningful way: we modify the local shape of the image
in the first and access the position and amplitudes of the spikes
in the second example. This shows that we have access to
a disentangled latent representation with no more constraints
in the training than the general architecture of the atomic
autoencoder. To the best of our knowledge, no other DNN
architecture provides the same features.
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work at https://github.com/alasdairnewson/atomic_ae/.
b) Related work: The goal of automatically discovering

a hidden parametrisation of a class of objects is the ob-
jective of representation learning. Autoencoders are an ideal
setting for this problem, and have existed for a long time,
starting in the 1980’s [1], [4], [8]. The work of Cheung
et al. [7], Kumar et al. [13] and Lezama [16] attempt to
achieve disentanglement in autoencoders by incorporating a
covariance loss function into the training process. Lample et
al. [14] proposed Fader networks, which try to isolate a single
image characteristic in a single latent component, with an
innovative use of a discriminator network. This produces a
network where the characteristic can be effectively controlled
with a slider. Finally, the authors of β-VAE B [10], β-VAE
H [5], FactorVAE [12] and β-TCVAE [6], propose frameworks
or regularisation to disentangle variational autoencoders by
weighting the Kullback-Leibler divergence term to encourage
factorised representations in the latent space.

Our approach is closely related to dictionary learning (see
e.g. [19] for an overview), where signals of interest are
decomposed on a family of vectors (atoms). For example,
early works on nonnegative matrix factorization for image
decomposition show how a dictionary with sparse features
can be used to represent an image [15]. Atomic autoencoders
can be seen as a continuous version of dictionary learning.
Extension to continuous dictionary with DNN has been pro-
posed using composition of autoencoders in [18]. However,
this architecture does not permit to isolate simple features in
a given block of latent code like atomic autoencoders.

Finally, recent work [20] indicates that trained DNNs can
learn the simplest model, i.e. this model can be learned with
minimal distortion, even if worst case bounds suggest that it
is difficult to achieve in practice [3]. We note that the general
architecture proposed in this paper shares some similarities
with “branching” [11], however our architecture is geared
towards disentangled latent representations, which is novel.

II. ATOMIC AUTOENCODERS: FROM SPARSE MODELS TO
DISENTANGLED REPRESENTATIONS WITH DNN

In this section, we introduce the atomic autoencoder archi-
tecture as a consequence of considering a class of generalized
sparse models, we discuss some of its elementary properties
and their implementation with DNNs.

A now almost canonical sparsity model is the following:

ΣA,k = {x : x =

k∑
i=1

ai, ai ∈ A} (2)

where A is a set of atoms (often called a dictionnary) and k
is the number of atoms required to represent the data x. For
example, in classical sparsity, atoms are weighted vectors of
sparsity 1. Such models are ubiquitous in signal and image
processing and have been proven powerful for the resolution
of ill-posed inverse problems.

In the following, we consider first an ideal data model and
its induced ideal atomic autoencoder. We make the hypothesis

Theoretical model

...
...

...
...

Autoencoder (learned) model

Latent code

Latent code

Fig. 1. Atomic autoencoder model. In this model, we consider a ideal
latent space Θ. Starting from an ideal latent code θ ∈ Θ, an ideal data point
is generated by the sum of the same function ψ applied to k sub-blocks of
θ: φ(θ) =

∑k
i=1 ψ(θi), thus defining an atomic decoder architecture.

that the xi belong to a model defined by Equation (2). Of
course, a more realistic modeling would consider xi which
approximately belong to ΣA,k (e.g. by considering that some
distance d(xi,ΣA,k) between the xi and ΣA,k is bounded),
however the impact of this approximation goes beyond the
scope of this paper and is left for future work. Afterwards,
we consider a learned neural network architecture which
approximates this ideal model. Recent work indicates [20] that
given a large enough dataset the ideal model can be learned
up to a given distortion.

A. Ideal atomic autoencoders: definition and elementary prop-
erties

We suppose that elements x ∈ ΣA,k ⊂ Rn are generated
from a vector of parameters θ, via a function φ, i.e. x = φ(θ).
We refer to θ as the ideal latent code.

In the literature of sparse representations, it is often sup-
posed that the set of atoms A has some additional structure. It
can be parametrized using a function ψ : Rd0 → Rn. Hence,
each atom can be written ai = ψ(θi) and for any x ∈ ΣA,k,

x = φ(θ) =

k∑
i=1

ψ(θi) (3)

where θi ∈ Rd0 represents a sub-block of size d0 of the ideal
latent code1. We refer to a coordinate of a sub-block θi as a
latent coordinate, and note θi,j the jth coordinate of the ith

block. We have θ = (θ1, . . . , θk) ∈ Rkd0 , as in Equation (3).
We refer to φ as the ideal decoder: data points x ∈ ΣA,k can
be coded with kd0 parameters, using φ (and ψ). The ideal
atomic data model as illustrated in Figure 1 is given by:

1We also refer to a sub-block θi simply as a latent block



ΣA,k = Σψ,k := {x : x =

k∑
i=1

ψ(θi), θi ∈ Θ0}, (4)

where Θ0 ⊂ Rd0 is the set in which individual blocks of ideal
latent codes live. We suppose that the ideal latent set is Θ =
φ−1(Σψ,k) = Θk

0 ⊂ Rkd0 (we start out with the ideal data, and
find the ideal latent set via φ−1). Note that low-dimensional
representations, i.e. kd0 << n, are often sought after; e.g. to
serve as a prior model in inverse imaging problems.

As an example, for off-the-grid spikes convolved with a
Gaussian kernel, we can set ψ(θ) = ψ(a, t) = aiG(t) where
θ = (a, t), G is a Gaussian function centered at t, and ai is
the amplitude of the spike. Hence the function ψ parametrizes
individual spikes with their amplitude and position. In another
case, with images of non-overlapping disks, ψ is a function
which produces an image of a disk from the position and size
of the disk.

From the definition of Σψ,k, we see that there exists ζ :
Rn → Θ, such that φ ◦ ζ(x) = x for any x ∈ Σ: just define
ζ that arbitrarily choses one of the representations of x in Θ
(e.g. using lexicographical order). Indeed, due to the sum in
Equation (3), the ordering of the latent blocks does not matter.
We call ζ the ideal atomic encoder. We have just defined the
ideal atomic autoencoder φ◦ζ induced by the model with the
following constraints: the latent set has a block structure, ie
θ = (θ1, . . . , θk) ∈ Rkd0 , and the decoder is the sum of the
same function ψ of different blocks of latent codes.

To provide useful disentangled representations, the main
ingredient is to perform encoding with the smallest dimension
possible. We formalize this by supposing that the ideal latent
set is in a (smooth) bijection with the cube [0, 1]kd0 (i.e. it
is a smooth manifold). In other words, there is no space left
around Θ for codes that do not produce an element of Σ. This
relies on the fact that there is no smooth bijection from [0, 1]d

′

to [0, 1]d if d′ < d. Given sets U, V , let C1(U, V ) be the set of
continuously differentiable functions from U to V (networks
are continuously differentiable almost everywhere, activations
can also be smoothed if necessary).

Assumption II.1 (Filling latent set). We say an atomic au-
toencoder φ ◦ ζ of Σ yields a filling latent set Θ = φ−1(Σ)
if there is a bijection h ∈ C1([0, 1]kd0 ,Θ) with C1 inverse
between [0, 1]kd0 and Θ.

Now that we have defined the atomic autoencoder, we
come back to our initial question: disentanglement. An ideal
atomic autoencoder that verifies Assumption II.1 has the two
following properties. Firstly, as Θ is in a smooth bijection
with [0, 1]kd0 , given a point θ in the interior of Θ there
is an open set containing θ such that all points of this set
parametrize an element of Σ: we can generate elements of
the model set Σ freely and navigate safely in all directions
of the latent set, without “falling outside”, which is a direct
consequence of Assumption II.1. Of course we would need to
know the function h to do this fully, without this knowledge

we can still do it locally. Secondly, thanks to the intrinsic
atomic structure, we can modify individually each code to
change only one “simple” feature of x at a same time. If
θ ∈ Θ and we want to modify one latent block i by a
(sufficiently) small change ∆i, the previous property ensures
that θ + (0, . . . , 0,∆i, 0, . . . , 0) ∈ Θ.

We call the combination of these two properties atomic
disentanglement. Given a low-dimensional model and an au-
toencoder, it is verified if Assumption II.1 is verified.

Lemma II.1. Suppose Σ,Θ, φ ◦ ζ, h verify Assumption II.1
and int(h−1(Θ)) 6= ∅ (where int denotes the interior). Let
θ ∈ Θ such that h−1(θ) ∈ int(h−1(Θ)). Then there exists an
open set O of Rkd0 such that θ +O ⊂ Θ.

An example of an ideal autoencoder that achieves atomic
disentanglement is one which addresses the off-the-grid sparse
spike estimation problem. Indeed, in this case, we have Σ ={
aG(t1) + bG(t2), a, b ∈ [amin, amax]; t1, t2 ∈ [0, 1]

d
, t1 6=

t2;

}
. Note that in many cases, if Σ contains an element

composed of k atoms, then any “simpler” signal composed of
less atoms is still in the model (as is usually done in classical
sparsity model), i.e. for all (θi)i∈I , with I ⊂ {1, . . . , k}, we
have that

∑
i∈I ψ(θi) ∈ Σ. We observe in experiments that

trained atomic DNN autoencoders seem to have this property
without any explicit constraint for this in the training.

We can also show two important facts (see supplemen-
tary material). Firstly, perfectly trained atomic autoencoders
achieve atomic disantanglement. Secondly, it must not be
possible to split the function ψ into simpler functions if we
want to ensure that a latent code encoding a given feature is
not mixed across latent blocks. This is natural, since we want
the function ψ to decode fundamental features of the image
(penstrokes, spikes etc.).

B. A tailored neural architecture

We showed that a large class of datasets can be represented
with atomic auto-encoders. In the experimental part of this
article, we train autoencoders using (leaky) ReLu DNN ar-
chitectures. It is natural to train autoencoders fD ◦ fE with
the structure fD(z) =

∑k
i=1 g(zi), i.e. the decoder is made

of k identical blocks which approximate (up to a bijection)
φ(z) =

∑
i=1,k ψ(zi) and the encoder must approximate ζ. We

highlight the fact that the decoder block g is indeed repeated,
so that during training, its parameters are the same when
applied to all zi’s (see Figure 1 for a representation of the
atomic autoencoder).

We highlight the fact that the decoder block g is indeed
duplicated, so that during training, its parameters are the same
when applied to all zi’s. Note that the symmetrical architecture
proposed by early works on autoencoders does not have any
really satisfying theoretical explanation. It is known from
low-dimensional recovery that low-dimensional signals can be
encoded almost universally by linear encoders while decoders
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Fig. 2. Decomposition of an mnist image. The image of the number 5 has
been broken down into several simple strokes, which are spatially localized.

are often non-convex functions that are generally NP-hard to
calculate.

With a fixed autoencoder parametrized by a leaky ReLU
DNN, complex data can only be represented on a bounded
latent set in Rkd0 . We see this by noticing that such an
architecture can be seen as a piecewise affine functions. In
particular, the width of unbounded affine regions necessarily
grows when the norm of the code increases to infinity. Deter-
mining the bounds of the latent set is an open question in itself.
In our examples we suppose that they can be well estimated
by looking at the bounds of the latent codes of the training
data fE(xi).

Of course, the question of determining the size of the latent
code is important in itself. This question is outside the scope of
this paper, but ideas such as sparse regularization of the atomic
latent code may be useful in estimating these parameters. Also,
the properties of atomic autoencoders show that d0 must be
chosen small enough so that atoms cannot be “split” into
smaller atoms.

We give practical implementation details for the experiments
in the supplementary material. We draw attention to the fact
that the resulting architecture is simple, with around 300,000
parameters (depending on the exact application), which is an
extremely lightweight network.

III. APPLICATIONS

We train an atomic autoencoder in two different examples
and show that it yields low-dimensional representations with
atomic disantanglement. To the best of our knowledge, no
other existing generative DNN architecture yields such prop-
erties without additional constraints during learning.

A. Application to images consisting of parametric curves

We first consider images x consisting of a set of parametric
curves: we suppose x =

∑K
i=1 S(θi), where S(θi) is a para-

metric curve, with parameters θi (e.g. a stroke parametrized
by Bezier curves). We apply this modelling to the MNIST
database, which is a good fit since each number in mnist is an
amalgamation of small penstrokes, which are approximately

Input Output

Image decomposition : gD(zi)

Fig. 3. Decomposition of an image of off-the-grid spikes convolved with
a Gaussian using 10 blocks of latent codes of dimension d0 = 3. Out
atomic autoencoder separates spikes in each latent code block, even though
our method is wholly unsupervised. This is due to its atomic structure.

simple splines convolved with the shape of the tip of the pen.
We use a high-resolution version of MNIST [2] (500× 500),
which we downscale to 128× 128. The final latent space size
is 96 (block size d0 = 6, and k = 16).

We verify that the autoencoder has indeed worked by show-
ing the input and output in the supplementary material (with
some distortion typical of raw autoencoder architectures). We
show that the decomposition given by the model is meaningful
in Figure 2. In this Figure, we show both the input and output
of the network, and the individual decomposition images
g(zi)’s. We observe that the network successfully separates
the different strokes. We also remark that the network does
not mix up the spatial locations of the strokes: each one is
connected and continuous. This is very satisfying behaviour,
since at no point have we shown any such examples to the
autoencoder: it learns these simple atoms on its own. In the
supplementary material, we perform a linear interpolation in
the latent space between two numbers. We verify that each
point of the interpolation does not leave the space of images
that are sum of parametric curves.

B. Application to off-the-grid sparse spike modelling

An important inverse problem with applications in mi-
croscopy, astronomy or acoustic signal processing is spike
detection in images. This corresponds to the task of estimating
positions and amplitudes of a series of spikes in an image
convolved with a filter. We create a synthetic database where
we allow for a maximum of 10 spikes, which are convolved
with a Gaussian filter. The spikes have minimum separation
larger than the standard deviation of the Gaussian filter. In
this situation, we know that the size of latent blocks is d0 = 3
(position and amplitude). We show in Figure 3 the application
of the trained atomic autoencoder. Again, the network has
learned, with no supervision, to separate the spikes in each
image g(zi). Futhermore, in Figure 4, we see an example
of navigation in the latent space. We have chosen a certain
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Fig. 4. Navigation in the latent space for images of spikes. Green: original
spike. Left to right: linearly modification of a latent coordinate in a block,
keeping the others constant. Top to bottom: modification of the three different
coordinates of the latent block. The first coordinate changes the amplitude,
while the second and third modify the position (red mark). No supervision in
the training was involved here.

block i and then modified each latent coordinate of zi. This
modifies the behaviour of the third spike from the top of the
image. The network codes the amplitude of the spike in the
first coordinate, then two perpendicular motions in the next
two. With a conventional architecture it could have mixed
amplitude and positions. Finally, we observe that the motion is
faster in one direction than the other; indeed there is nothing
which imposes them to be the same.
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IV. CONCLUSION

We have introduced a simple architecture for the design
of autoencoders induced by the theory of low-dimensional
models. We gave elementary qualitative properties about the
behaviour of this architecture. We show in two different
applications how atomic autoencoders yields disentangled low-
level interpretable parametetric representations.

Many questions arise from these works. Can this architec-
ture achieve high level disentangled semantic representations
in images? Could we further normalize latent blocks to ease
navigation in the latent space? Many applications could benefit
from this architecture and adapting it to their specificities is
an open line of work. On the theoretical side, what exact
behaviour can we expect from atomic autoencoders when they

learn the data model up to a given distortion? In order to
better understand the disentanglement properties of atomic
autoencoders, can we further expand the notion of functions
ψ that cannot be broken down into simpler functions?
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