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Abstract
Recent work reported that simple Bayesian op-
timization (BO) methods perform well for high-
dimensional real-world tasks, seemingly contra-
dicting prior work and tribal knowledge. This pa-
per investigates why. We identify underlying chal-
lenges that arise in high-dimensional BO and ex-
plain why recent methods succeed. Our empirical
analysis shows that vanishing gradients caused by
Gaussian process (GP) initialization schemes play
a major role in the failures of high-dimensional
Bayesian optimization (HDBO) and that meth-
ods that promote local search behaviors are better
suited for the task. We find that maximum likeli-
hood estimation (MLE) of GP length scales suf-
fices for state-of-the-art performance. Based on
this, we propose a simple variant of MLE called
MSR that leverages these findings to achieve state-
of-the-art performance on a comprehensive set of
real-world applications. We present targeted ex-
periments to illustrate and confirm our findings.

1. Introduction
Bayesian optimization (BO) has found wide-spread adop-
tion for optimizing expensive-to-evaluate black-box func-
tions that appear in aerospace engineering (Lukaczyk et al.,
2014; Lam et al., 2018), drug discovery (Negoescu et al.,
2011), robotics (Lizotte et al., 2007; Calandra et al., 2016;
Rai et al., 2018; Mayr et al., 2022) or finance (Baudiš &
Pošı́k, 2014).

While BO has proven reliable in low-dimensional settings,
high-dimensional spaces are challenging due to the curse
of dimensionality (COD) that demands exponentially more
data points to maintain the same precision with increas-
ing problem dimensionality. Several approaches have ex-
tended BO to high-dimensional spaces under additional
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assumptions on the objective function that lower the data
demand, such as additivity (Duvenaud et al., 2011; Kan-
dasamy et al., 2015; Hoang et al., 2018; Han et al., 2021;
Ziomek & Ammar, 2023; Bardou et al., 2024) or the exis-
tence of a low-dimensional active subspace (Wang et al.,
2016; Nayebi et al., 2019; Letham et al., 2020; Papenmeier
et al., 2022). Without such assumptions, it was widely be-
lieved that BO with a Gaussian process (GP) surrogate is
limited to approximately 20 dimensions for common evalua-
tion budgets (Frazier, 2018; Moriconi et al., 2020). Recently,
Hvarfner et al. (2024) and Xu & Zhe (2024) reported that
simple BO methods perform well on high-dimensional real-
world benchmarks, often surpassing the performance of
more sophisticated algorithms.

Due to its many impactful applications, high-dimensional
Bayesian optimization (HDBO) has seen active research in
recent years (Binois & Wycoff, 2022; Papenmeier et al.,
2023). While the boundaries have been pushed signifi-
cantly, the causes of performance gains have not always
been thoroughly identified. For example, in the case of the
BODi (Deshwal et al., 2023) and COMBO (Oh et al., 2019)
algorithms, later work found that the methods benefited
from specific benchmark structures prevalent in their eval-
uation (Papenmeier et al., 2023). Similarly, an evaluation
of Nayebi et al. (2019) showed that the performance of some
prior methods is sensitive to the location of the optimum in
the search space.

This paper is motivated by the recent call for more scrutiny
and exploratory research (Herrmann et al., 2024). By ex-
haustive experimentation, we first identify underlying chal-
lenges arising in high dimensions and then examine state-
of-the-art HDBO methods to understand how they mitigate
these obstacles. Equipped with these insights, we propose
a simpler approach that uses maximum likelihood estima-
tion (MLE) of the GP length scales called MLE Scaled with
RAASP (MSR). We demonstrate that MSR is sufficient for
state-of-the-art HDBO performance without the need for
specifying a prior belief on length scales as in maximum
a-posteriori estimation (MAP). We note that practitioners
usually do not possess such priors and instead rely on empir-
ical performances on benchmarks.In particular, we change
the initialization of length scales to avoid vanishing gradi-
ents of the GP likelihood function that easily occur in high-
dimensional spaces but, so far, have been overlooked for BO.
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Furthermore, we provide empirical evidence suggesting that
good BO performance on extremely high-dimensional prob-
lems (on the order of 1000 dimensions) is due to local search
behavior and not to a well-fit surrogate model. In summary,
we make the following contributions.

1. We identify underlying challenges that arise in HDBO
and explain why recent methods succeed. We show that
vanishing gradients and local search behaviors are important
in HDBO.

2. We find that MLE of GP length scales suffices for state-
of-the-art performance. We propose a simple variant of
MLE called MSR.

3. We evaluate MSR on a comprehensive set of real-world
applications and a series of targeted experiments that illus-
trate and confirm our findings.

2. Problem Statement and Related Work
We aim to find x∗ ∈ argminx∈X f(x), where f : X → R
is an unknown, only point-wise observable, and expensive-
to-evaluate black-box function and X = [0, 1]d is the d-
dimensional search space, sometimes called “input space”.
Bayesian optimization (BO) is a popular approach to op-
timize problems with the above characteristics. We give
a summary of BO and Gaussian processes (GPs) in Ap-
pendix A and restrict the discussion to high-dimensional
BO.

Extending the scope of BO to high-dimensional problems
was, for a long time, considered “as one of the holy
grails” (Wang et al., 2016) or “one of the most important
goals” (Nayebi et al., 2019) of the field. Several contribu-
tions extended the scope of BO to specific high-dimensional
problems. However, for the longest time, no fully scal-
able method has been found to extend in arbitrarily high-
dimensional spaces without making additional assumptions
about the problem structure. The root problem of extending
Bayesian optimization (BO) to high dimensions is the curse
of dimensionality (COD) (Binois & Wycoff, 2022) that not
only requires exponentially many more data points to model
f with the same precision but also complicates the fitting
of the GP hyperparameters and the maximization of the
acquisition function (AF). The growing demand for train-
ing samples stems from increasing point distances in high
dimensions, where the average distance in a d-dimensional
hypercube is

√
d (Köppen, 2000).

This paper focuses on high-dimensional Bayesian optimiza-
tion (HDBO) operating directly in the search space. Other
methods for HDBO include linear (Nayebi et al., 2019;
Wang et al., 2016; Letham et al., 2020; Papenmeier et al.,
2022; 2023) or non-linear (Tripp et al., 2020; Moriconi et al.,
2020; Maus et al., 2022; Bouhlel et al., 2018; Chen et al.,
2020) embeddings to map from a low-dimensional subspace

to the input space.

High-dimensional BO in the input space. In the liter-
ature, HDBO operating directly in the high-dimensional
search space X is often considered infeasible due to the
COD. Numerous approaches have been proposed, often
leveraging assumptions made on the objective function f
such as additivity (Kandasamy et al., 2015; Gardner et al.,
2017; Wang et al., 2018; Mutny & Krause, 2018; Ziomek
& Ammar, 2023) or axis-alignment (Eriksson & Jankowiak,
2021; Hellsten et al., 2023; Song et al., 2022), which sim-
plify the problem and improve sample efficiency if they are
met. Other methods identify regions in the search space
relevant for the optimization, for example, using trust re-
gions (TRs) (Regis, 2016; Pedrielli & Ng, 2016; Eriksson
et al., 2019) or by partitioning the space (Wang et al., 2020).

Recently, multiple works re-evaluated basic BO setups for
high-dimensional problems, presenting state-of-the-art per-
formance on various high-dimensional benchmarks with
only small changes to basic BO strategies. Hvarfner et al.
(2024) use a dimensionality-scaled log-normal length scale
hyperprior that shifts the mode and mean of the log-normal
distribution by a factor of

√
d, designed to counteract the

increased distance between randomly sampled points. To
optimize the AF, they change BoTorch’s (Balandat et al.,
2020) default strategy of performing Boltzmann sampling
on a set of quasi-randomly generated points by sampling
over both a set of quasi-randomly generated points and a
set of points that are generated by perturbing the 5% best-
performing points. By perturbing 20 dimensions on average,
this strategy creates candidates closer to the incumbent ob-
servations and enforces a more exploitative behavior (Regis
& Shoemaker, 2013; Regis, 2016; Eriksson et al., 2019).
The effect of the sampling strategy was recently revisited
by Rashidi et al. (2024). They argue that TuRBO’s random
axis-aligned subspace perturbations (RAASPs) are crucial
to performance on high-dimensional benchmarks and, moti-
vated by this observation, derive the cylindrical Thompson
sampling (TS) strategy that maintains locality but drops the
requirement of axis alignment. Independently of Hvarfner
et al. (2024), Xu & Zhe (2024) reported that “standard GPs
can be excellent for HDBO” which they show empirically on
several high-dimensional benchmarks1. They use a uniform
U(10−3, 30) length scale hyperprior, which, in their exper-
iments, performs superior to BoTorch’s Gamma Γ(3, 6)
length scale hyperprior.

1We discuss an earlier preprint (https://arxiv.org/
abs/2402.02746v3). In a later version, presented at ICLR
2025, the authors – concurrently to our work – developed an ini-
tialization strategy similar to the one presented in Section 4.
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Figure 1. Maximum MLE gradient magnitude for the 50 first gra-
dient steps initialized with different initial length scales (y-axis)
and problem dimensionalities (x-axis). With short initial length
scales, the gradients vanish even for low dimensions.

3. Facets of the Curse of Dimensionality
This section discusses how the curse of dimensionality im-
pacts high-dimensional Bayesian optimization (HDBO) and
techniques to mitigate these challenges.

3.1. Vanishing Gradients at Model Fitting
Bayesian optimization uses a probabilistic surrogate model
of f to guide the optimization. Gaussian processes (GPs) are
the most popular surrogates due to their analytical tractabil-
ity. They allow for different likelihoods, mean, and covari-
ance functions, each often exposing several hyperparame-
ters, including the function variance σ2

f , the noise variance
σ2
n, and the d model length scales ℓ that need to be fitted

to the task at hand. In the absence of prior information
about the objective function f , maximum likelihood estima-
tion (MLE) is commonly used to fit the model hyperparame-
ters by maximizing the GP marginal log-likelihood (MLL):

θ∗
MLE = argmax

θ
log p(y|X,θ), (1)

Here, X are points in the search space X , y are the associ-
ated function values, and θ is the vector of GP hyperparam-
eters. See Appendix A for more information.

The MLL is usually maximized using a multi-start gradient
descent (GD) approach. A crucial component of fitting a
GP is choosing starting points for the MLE hyperparame-
ters. In this section, we show that an ill-suited length scale
initialization scheme can cause the gradient of the MLL
function with respect to the GP length scales to vanish for
high-dimensional problems. Thus, the length scales remain
at the numerical values that they have been initialized to and
will not be fitted to the objective function.

Fig. 1 shows the severity of the vanishing-gradients phe-
nomenon. We plot the maximum magnitude (element-wise)
of the length scale gradient across 50 gradient updates of an
isotropic GP with a 5/2-Matérn kernel as a function of the
input dimensionality of the objective function (x-axis) and

the initial value for the length scale hyperparameter with
which the gradient-based optimizer starts when maximiz-
ing the MLE (y-axis). The objective function is sampled
from a GP with a 5/2-Matérn kernel and ℓ = 0.5, i.e., a GP
prior sample. We provide additional implementation details
in Appendix B. The dashed line shows the default initial
length scale of ln 2 used in GPyTorch. We consider gradi-
ents smaller than the machine precision for single floating
point numbers ‘vanished’. The reason is that even after 500
gradient updates, the length scale would change at most by
≈ 6× 10−5 from the value with which the gradient-based
optimizer was initialized.

Methods to Mitigate Vanishing Gradients. One strategy
to counteract the vanishing gradients is to replace MLE
with maximum a-posteriori estimation (MAP) by choosing
a hyperprior on the length scales that prefers long length
scales:

θ∗
MAP = argmax

θ
log p(y|X,θ)︸ ︷︷ ︸

evidence

+ log p(θ)︸ ︷︷ ︸
prior

. (2)

MAP maximizes the unnormalized log posterior, which is
the sum of the MLL and the log prior. We sometimes use
the terms ‘MLL’ and ‘unnormalized log-posterior’ inter-
changeably if what is meant is clear from the context. The
gradient of the recently popularized dimensionality-scaled
log-normal hyperprior of (Hvarfner et al., 2024) directs the
optimizer toward the mode of the hyperprior log p(θ) that
corresponds to long length scales.

If the gradient-based optimizer of the MLE reaches suffi-
ciently long length scales, the MLL log p(y|X,θ) no longer
vanishes. Fig. 2 shows the length scales of a GP condi-
tioned on random observations of a realization drawn from
an isotropic 1000-dimensional GP prior with length scale
ℓ = 0.5 and a 5/2-Matérn kernel when fitting with MLE and
MAP. We initialize the length scales with ln 2 ≈ 0.69, draw
1 and 10 observations uniformly at random, and maximize
the MLL for 500 iterations with MLE and MAP, using a
log-normal hyperprior. We average over 10 random restarts.
When conditioning on only 1 observation, the MAP opti-
mization starts at the initialization ln 2 and converges to the
hyperprior mode. For 10 observations, the length scales
first move toward the mode but then converge to a different
point, which trades off the attraction of the prior mode and
the ground truth length scale. With MLE, the length scale
does not change because of the vanishing gradients issue.

To “ensure meaningful correlation” in increasingly high-
dimensional space, Hvarfner et al. (2024) scale a log-normal
hyperprior for the GP length scales with the problem’s di-
mensionality. Xu & Zhe (2024) pursue a different approach
of initializing the gradient-based optimizer of the length
scales with large values. Specifically, they posit a uniform
U(10−3, 30) hyperprior to the length scales and initialize
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Figure 2. Gradient-based optimization of a GP length scale with
MAP and MLE. When conditioning the GP on only one random
observation, MAP converges to the prior mode. We plot ± one
standard error, which is too small to be visible.

the gradient-based optimization of the automated relevance
determination (ARD) kernel with d samples from the hy-
perprior. Although their method does not scale the hyper-
prior mode with the problem’s dimensionality, the expected
length scale of ≈ 15 is sufficiently long to avoid vanishing
gradients for the problems studied by the authors.

While these methods mitigate the issue of vanishing gradi-
ents, increasing length scales by any constant factor does
not always solve it, as Fig. 1 indicates. Whether scaling
the hyperprior of the length scale with the problem’s dimen-
sionality achieves a good fit of the surrogate model depends
on the properties of f . The success of the two methods de-
scribed above is related to the effect of the increased length
scales on mitigating the problem of vanishing gradients. If
the underlying function varies quickly, the GP needs to use a
short length scale to model f . In such cases, the GP cannot
model the function globally, as shown in Appendix C.4.

3.2. Vanishing Gradients of the Acquisition Function
Several popular acquisition functions for Bayesian optimiza-
tion (BO), such as upper confidence bound (UCB) (Srini-
vas et al., 2010), expected improvement (EI) (Jones et al.,
1998), and probability of improvement (PI) (Jones, 2001),
rely solely on the GP posterior, exhibiting only small
variation when the posterior itself changes only moder-
ately. In high-dimensional spaces, the expected distance
between two points sampled uniformly at random increases
with

√
d (Köppen, 2000). Thus, there are typically large

‘unexplored regions’ in the search space where the algorithm
has not sampled. Suppose a commonly used GP with con-
stant prior mean function and a stationary kernel. The GP
posterior corresponds to the prior in those regions unless the
kernel has sufficiently long length scales. Therefore, the GP
posterior and the acquisition surface are flat in those vast
unexplored regions. Acquisition functions (AFs) are usually
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Figure 3. Average distances between the initial and the final can-
didates of LogEI for various model length scales and dimension-
alities without RAASP sampling. Values in the gray region are
numerically zero. In high dimensions, the gradient of the AF van-
ishes, causing no movement of the gradient-based optimizer.

optimized with gradient-based approaches. Thus, these ‘flat’
areas of the AF also lead to vanishing gradients, but this
time of the AF. This affects the selection of the next sample
in the BO procedure.

The LogEI (Ament et al., 2024) AF provides a numerically
more stable implementation of EI, mitigating the problem
of vanishing gradients but not solving it, as we demonstrate
next. Fig. 3 shows the average distances the gradient-based
optimizer travels for LogEI. The surrogate is a GP with
20 observations drawn uniformly at random. The unknown
objective function is a realization of the same GP. We
run BoTorch’s multi-start GD acquisition function opti-
mizer, initialized with 512 random samples and 5 random
restarts, and measure the distances between the starting and
end points of the gradient-based optimization of the AF.
Average distances increase with

√
d; thus the plot shows

average distances between the starting and endpoints of the
gradient-based optimization that are normalized by d−

1
2 .

Gray regions correspond to a numerically zero average dis-
tance, indicating vanishing gradients. Vanishing gradients
of the AF remain a problem, even when using LogEI and
operating in moderate dimensions.

Methods to Mitigate Vanishing Gradients of the AF.
One technique for handling vanishing gradients in the AF
optimization is locality. TuRBO (Eriksson et al., 2019), for
example, uses trust regions (TRs) to constrain the optimiza-
tion to a subregion of the search space. Even if the GP
surrogate is uninformative, TuRBO performs local search
and can optimize high-dimensional problems even if data
is scarce. TuRBO also uses random axis-aligned subspace
perturbation (RAASP) sampling (Rashidi et al., 2024; Regis
& Shoemaker, 2013), i.e., with a probability of min

(
1, 20

d

)
,

it replaces the value of each dimension of the incumbent
solution with a value drawn uniformly at random within
the TR bounds. This process is repeated multiple times to
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Figure 4. Left: Average distances between the initial and the final
candidates of LogEI with RAASP sampling. The vanishing gradi-
ent issue decreases. Right: Fraction of multi-start GD candidates
originating from the RAASP samples when evaluating LogEI on
random samples. In high dimensions, RAASP samples are increas-
ingly more likely to get picked, even for longer length scales.

create several candidates evaluated on a realization of the
GP posterior, a process known as Thompson sampling. The
point of maximum value is then chosen for evaluation in the
next iteration of the BO loop. This design choice further
enforces locality as new candidates only differ on average
from the incumbent in 20 dimensions for d ≥ 20.

Differing slightly from TuRBO’s approach, RAASP sam-
pling has been implemented in BoTorch’s AF maximiza-
tion and can optionally be enabled with the parameter
sample around best. BoTorch augments a set of
globally sampled candidates with the RAASP samples, re-
sulting in twice as many initial candidates. It perturbs the
best-performing points by replacing the value of each di-
mension with a probability of min

(
1, 20

d

)
by a value drawn

from a Gaussian distribution, truncated to stay within the
bounds of the search space. BoTorch then chooses the
points of maximum initial acquisition value to start the GD
optimization of the AF.

With increasing dimensionality or descending length scale,
the starting points for the multi-start GD routine chosen by
the AF maximizer are increasingly more likely to originate
from the RAASP samples. Fig. 4 (right panel) illustrates
this. Here, we draw realizations from GPs, initialized with
different dimensionalities (x-axis) and length scales (y-axis).
For each realization, we maximize the AF with RAASP sam-
pling and plot the percentage of candidates of maximum ac-
quisition value originating from the RAASP samples across
all candidates. A higher percentage indicates a more ‘local’
sampling. We further average across five random restarts.
The percentage of RAASP candidates with maximum ac-
quisition value increases with the input dimensionality and
decreases with the length scale. At the same time, those
candidates stay close to the initial candidates. This is shown
in the bottom right of Fig. 4 (left panel), which shows the
average distance traveled by candidate points of the AF
maximizer when using RAASP sampling. With RAASP
sampling, candidates travel a positive distance, visualized
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Figure 5. OTSD for BoTorch’s AF maximizer operating on a
100-dimensional space and GPs of various length scales with and
without RAASP sampling. The behavior of short-length-scale GPs
reverts to local search (ℓ = 0.05 in the left panel) with RAASP
sampling and to local search without RAASP sampling (ℓ = 0.05
and ℓ = 0.28 in the right panel). Shaded areas show the standard
error of the mean obtained by 10 random repetitions. In the right
panel, the blue line masks the black line.

by the lack of gray color. This indicates a reduction of the
vanishing-gradient issues. We attribute this to candidates
being created close to the incumbent observations where the
AF is less likely to be flat.

In general, when the length scales of the GP are short and
the dimensionality is high, BO shows a local-search-like be-
havior with RAASP sampling and a random search behavior
without it. We demonstrate this using the observation travel-
ing salesperson distance (OTSD) (Papenmeier et al., 2025),
which quantifies an algorithm’s exploration by finding the
shortest path connecting all observations made up to a cer-
tain iteration. The OTSD curve of an algorithm A consis-
tently lying above the curve of algorithm B indicates that al-
gorithm A is more explorative as its observations are spread
more evenly across X . The OTSD is always monotonic in-
creasing. Fig. 5 shows the OTSDs for 100-dimensional GPs
with different length scales, each initialized with 10 random
samples in the design of experiments (DOE) phase and sub-
sequently optimized with LogEI and RAASP sampling for
20 iterations. Unless the model length scale is sufficiently
long for the AF gradient not to vanish (as for ℓ = 0.5 in the
right panel of Fig. 5), the AF maximizer picks one of the
initial random candidates without further optimizing it. This
is supported by the trajectories for the BO phase (iteration
≥ 9) following the trajectory of the DOE phase (iteration
< 9) for ℓ = 0.05 and ℓ = 0.28 in the right panel of Fig. 5.
We generally recommend the RAASP sampling method as
it improves BO by automatically reverting to local search
when encountering flat AFs.

3.3. Bias-Variance Trade-off for fitting the GP
GP models are commonly fitted by maximizing the MLL,
either using unbiased MLE estimation or using MAP, which
places a hyperprior on one or several GP hyperparameters.
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higher dimensional function if few points have been observed.

MLE exhibits a higher variance and sensitivity to noise,
particularly when fitting a model in high-dimensional spaces
with scarce data. MAP, on the other hand, has a lower
variance in the length-scale estimates but comes at the cost
of bias unless accurate prior information is available. The
MLL is given by

log p(y|X,θ) = −1

2
y⊺

(
K(X,X) + σ2

nI
)−1

y︸ ︷︷ ︸
data fit

− 1

2
log|K(X,X) + σ2

nI|︸ ︷︷ ︸
complexity penalty

−n

2
log 2π

(3)

The first and second terms are often called data fit and
complexity penalty (Williams & Rasmussen, 2006). For
more details, see Appendix A. This section explores the bias-
variance trade-off between these two popular approaches
for GP model fitting.

MLE. Fig. 6 shows the length scale obtained when using
(blue) or MAP (orange) to fit a GP surrogate model with an
5/2-ARD-Matérn to a realization drawn from an isotropic
GP prior with length scale ℓ = 1 and noise term 10−8. We
examine a 10 and a 50-dimensional GP and repeat each ex-
periment 50-times. As before, the gradient-based optimizer
starts with an initial length scale of

√
d

10 . We observe that
the length scales estimated by MLE vary significantly less
for the 10-dimensional function than for the 50-dimensional
one. As we increase the number of observations on which
the GP surrogate is conditioned, the variance of the esti-
mated length scales decreases.

The dotted curves in the bottom row of Fig. 7 show
the likelihood surface for MLE as specified in Eq. (3).
The penalty term 1

2 log |K| and the data fit term
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Figure 7. The MLL surface (bottom), the penalty (top row), and
data fit terms (center) for various length scales and numbers of
observations. Fewer observations lead to more erratic changes
in the data fit term, leading to higher variance in the length scale
estimates unless a prior gives additional shape to the surface.

− 1
2y

⊺
(
K(X,X) + σ2

nI
)−1

y are shown in the first two
rows, respectively; the constant term −n

2 log 2π is omitted
from the figure. We account for the different number of
samples between the left and right figures by scaling the
penalty, data fit, MLE, and MAP terms with s−1. We show
the surface for s = 5 (left) and s = 50 (right) data points.
As the length scales increase, the entries of the kernel matrix
increase. The determinant |K| decays more quickly, and the
penalty term decreases, adding a more distinct global trend
to the likelihood surface. In the limit, ℓ → ∞, the kernel ma-
trix becomes a matrix of ones, and the determinant becomes
zero. In low dimensions, the data fit term decreases for long
length scales, but the decreasing penalty compensates for
this, resulting in a relatively flat MLL surface. The fast de-
cay of the data fit term increases the “signal-to-noise” ratio,
making it easier for the optimizer to converge in 10 than 100
dimensions. This can be seen by comparing the green and
brown MLL curves in Fig. 7 for s = 50 samples. For more
observations, MLL becomes smoother in all dimensions, as
indicated by the left vs. right panel in Fig. 7.

MAP. MAP allows for incorporating prior beliefs about
reasonable values for hyperparameters. However, practi-
tioners often do not possess such prior information and
hence resort to hyperpriors that reportedly perform well in
benchmarks. Karvonen & Oates (2023) criticized this as an
‘arbitrary’ determination of hyperparameters.

The orange distributions in Fig. 6 show the average length
scales obtained by MAP with a Gamma(3, 6) prior, which
has been the default in BoTorch before version 12.0. We
use this prior as it has a substantial mass around its mode 1/3,
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Figure 8. BO with the ‘scaled’ initialization of MLE performs com-
parably to the state-of-the-art in HDBO.

simplifying our analysis compared to wider priors, which
reduce the difference between MLE and MAP. Compared
to MLE, the MAP estimates vary less but exhibit significant
bias. This is pronounced for the 50-dimensional GP sample,
where the MAP estimates for the length scales revert to the
prior mode for 100, 200, 500, and 1000 initial samples. The
solid lines in the lower row of Fig. 7 show the surface for
the MAP estimation, using the same GP sample as for MLE.
The log prior term adds additional curvature, resulting in
length scale estimates of lower variance. This is particu-
larly noticeable for little data (left column of Fig. 7) and
consistent with Fig. 6. With more data, MLE and MAP be-
come increasingly more similar, with MAP’s log posterior
decreasing faster for longer length scales due to the Gamma
prior.

4. Discussion
Experimental Setup and Benchmarks. We propose a
simple initialization for the gradient-based optimizer used
for fitting the length scales of the Gaussian process (GP)
surrogate via MLE and evaluate its performance for BO
tasks. In what follows, we suppose a BO algorithm with a
5/2-ARD-Matérn kernel and LogEI (Ament et al., 2024).
To address the issue of vanishing gradients at the start of the
MLE optimization, we choose the initial length scale as 0.1
and scale with

√
d to account for the increasing distances of

the randomly sampled design of experiments (DOE) points.
Thus, the initial length scale used in the optimization is

√
d

10 ,

Table 1. Comparison of the simple BO methods used for the em-
pirical evaluation.

Method length scale scaling RAASP sampling

MSR ✓(initial value) ✓
MLE (scaled) ✓(initial value) ✗
MLE (ℓ = ln 2) ✗ ✗
DSP ✓(prior) ✓

and we refer to this new BO method as ‘MLE scaled’. The
second method in the evaluation is the same BO method,
but now using the default value ℓ = ln 2 of GPyTorch
as initial length scale in MLE. This value is not scaled
with d. Based on our analysis of the impact of random axis-
aligned subspace perturbation (RAASP) sampling when op-
timizing the acquisition function (AF), we combine ‘MLE
scaled’ with RAASP sampling and call the method ‘MLE
Scaled with RAASP’ (MSR). We detail the RAASP sam-
pling and the AF maximization in Appendix B. The next
method, DSP, is the new default in BoTorch (Balandat
et al., 2020), which uses a maximum a-posteriori estima-
tion (MAP) estimate of length scales and initializes the
optimization with the mode of the dimensionality-scaled
length scale prior (DSP) (Hvarfner et al., 2024). Table 1
summarizes the methods with basic BO setups we use for
the empirical evaluation.

We also compare against SAASBO (Eriksson & Jankowiak,
2021), TuRBO (Eriksson et al., 2019), and Bounce (Pa-
penmeier et al., 2023). SAASBO has a large computational
runtime. Hence, we run it only for 500 iterations and termi-
nate runs that exceed 72 hours. That is why SAASBO has
fewer evaluations for Ant and Humanoid.

Our benchmarks are the 124-dimensional soft-constrained
version of the Mopta08 benchmark (Jones, 2008) in-
troduced by Eriksson & Jankowiak (2021), the 180-
dimensional Lasso-DNA (Šehić et al., 2022), the 388-
dimensional SVM (Eriksson & Jankowiak, 2021), the 60-
dimensional Rover (Eriksson et al., 2019), and two
888- and 6392-dimensional Mujoco benchmarks used
by Hvarfner et al. (2024). The first four benchmarks are
noise-free, while the others exhibit observational noise.

MLE Works Well for HDBO. Fig. 8 shows the perfor-
mance of the BO methods on the four real-world applica-
tions. Each plot gives the average objective value of the
best solution found so far in terms of the number of itera-
tions. We show the ranking of the methods according to
the final performance in Table 2 in Appendix C.1. The
confidence bands indicate the standard error of the mean.
MSR achieves competitive performance across all bench-
marks, matching the SOTA DSP. Notably, MSR outper-
forms DSP on 124d Mopta08 and 888d Ant, and performs
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Figure 9. Average length scales of MSR and the other methods.
RAASP sampling gives more consistent length scale estimates.

slightly worse than DSP other benchmarks. Bounce (Pa-
penmeier et al., 2023) is consistently outperformed by
MSR, MLE, and DSP but surpasses SAASBO (Eriksson
& Jankowiak, 2021), especially on Ant. Although the con-
stant length scale initialization (ℓ = ln 2) without RAASP
achieves satisfactory results on lower-dimensional bench-
marks such as 124d Mopta08 and 180d Lasso-DNA, it
fails on higher-dimensional benchmarks like 888d Ant and
6392d Humanoid. We attribute this breakdown to vanish-
ing gradients as shown in Fig. 13 in Appendix C.2.

Fig. 9 compares the mean length scales per BO iteration,
averaged over dimensions and 15 repetitions. For the 124-
dimensional Mopta08 and 180-dimensional Lasso-DNA
applications, ‘MLE (ℓ = ln 2)’ learns length scales similar
to the other methods. However, this constant initialization
strategy fails to make progress from the initial value for the
more high-dimensional problems in the bottom row of Fig. 9.
We attribute this to vanishing gradients of the marginal log-
likelihood (MLL) as discussed in Sec. 3 and highlighted in
Fig. 13 in Appendix C.2.

RAASP Reduces Variance. Fig. 9 shows a surprising
behavior for DSP. As one would anticipate, the estimated
length scales are typically close to the mode of the hyper-
prior at the start of the optimization. However, they then
converge to an even higher value on all benchmarks but the
6392-dimensional Humanoid benchmark. Furthermore,
the deviation from the prior mode is more pronounced for
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Figure 10. DSP exhibits the least exploration. MLE with fixed
initial length scales performs like random search on Ant and
Humanoid.

the lower-dimensional benchmarks, being in line with our
analysis of the bias-variance trade-off in Sec. 3.3. At the
beginning of its execution, the BO algorithm that uses MLE
with scaled initial length scales (‘MLE (scaled)’) uses longer
length scales than all other methods. The resulting esti-
mates vary significantly for the high-dimensional Ant and
Humanoid problems, supporting our analysis in Sec. 3.3
where we study the comparatively high variance of MLE
compared to MAP.

The length scales obtained by MSR lie between the values of
DSP and of ‘MLE without RAASP sampling’ (green dots,
‘MLE (scaled)’) for most benchmarks. An exception is
Ant where MSR sometimes results in shorter length scales
than DSP. Overall, the RAASP sampling, which is the only
difference between MSR and ‘MLE (scaled)’, obtains more
consistent length scale estimates.

RAASP Promotes Locality. Fig. 10 compares the amount
of exploration that the algorithms perform through the lens
of the observation traveling salesperson distance (OTSD)
metric; see Section 3.2 for details on OTSD. We observe
that DSP (blue curves) is the most exploitative method on
all benchmarks, being in line with the fact that, after MLE
with constant length scale initialization (‘MLE (ℓ = ln 2)’),
DSP has the shortest length scales on most benchmarks. The
fact that ‘MLE (ℓ = ln 2)’ is the most explorative method,
coinciding with the ‘random search’ line in Fig. 10, de-
spite having the shortest length scales is explained by our
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analysis in Sec. 3.2: the random initial points for the AF
optimization are not further optimized if the gradient of the
AF vanishes, because the method does not employ RAASP
sampling. We observe that ‘MLE (ℓ = ln 2)’ does not learn
longer length scales during the optimization for Ant and
Humanoid, as indicated by the horizontal brown line in in
Fig. 9. Thus, it does not recover later. For Mopta08 and
Lasso-DNA, which have a lower input dimension, the ef-
fect is less pronounced because ‘MLE (ℓ = ln 2)’ sometimes
learns longer length scales that avoid vanishing gradients of
the AF. MLE with scaled initial length scale values (green
curves in Fig. 10) is the second-most explorative method.
However, this is not due to vanishing gradients but caused
by overly long length scales, shown as green dots in Fig. 9.
MSR (red curves) is more explorative than DSP and more ex-
ploitative than ‘MLE (scaled)’, which does not use RAASP
sampling. This is consistent with the shorter length scales
of MSR (red dots in Fig. 9), confirming that MSR not only
yields more consistent length scale estimates but also acts
more local than its RAASP-sampling-free equivalent.

Notes on Popular HDBO Benchmarks. In Fig. 9, all
methods converge to similarly long length scales on the
Mopta08 and Lasso-DNA benchmarks. This is likely at-
tributable to a specific property of these popular benchmarks,
as we discuss in Appendix D. In short, these benchmarks
have a simple structure that benefits models with long length
scales, posing the risk of algorithms being ‘overfitted’ to
these benchmarks.

5. Conclusions and Future Work
Our analysis reveals underlying challenges in high-
dimensional Bayesian optimization (HDBO) while offer-
ing practical insights for improving HDBO methods. We
demonstrate that common approaches for fitting Gaussian
processes (GPs) cause vanishing gradients in high dimen-
sions. We propose an initialization for maximum likelihood
estimation (MLE) that achieves state-of-the-art performance
on established HDBO benchmarks without requiring the as-
sumptions of maximum a-posteriori estimation. Finally,
we provide empirical evidence that combining MLE with
random axis-aligned subspace perturbation (RAASP) sam-
pling reduces the variance of the length scale estimates and
yields values closer to the ones learned by DSP, providing
a fresh argument for the inclusion of RAASP sampling in
HDBO.

In future work, we will continue to carefully vet popular
benchmarks and propose novel, challenging benchmarks
that preserve the traits of real-world applications. Further-
more, this work emphasizes the importance of numerical
stability for the performance of Bayesian optimization (BO)
in high dimensions. Thus, we propose approaching the de-
velopment of models and acquisition functions (AFs) from

this perspective.

Our work focuses on GP surrogate models but we will ex-
plore in how far our findings can be extended to other sur-
rogate models, such as random forests or Bayesian neural
networks.

Finally, we will explore how our findings help improve
the performance of established techniques for HDBO by
combining MSR with trust regions (TRs) (Eriksson et al.,
2019), adaptive subspace embeddings (Papenmeier et al.,
2022), or additive structures (Duvenaud et al., 2011).

Impact Statement
This paper presents work that aims to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. A Review of Gaussian Processes and Bayesian Optimization
A.1. Gaussian Processes
Gaussian processes (GPs) model a distribution over functions, i.e., assume that f is drawn from a GP: f ∼
GP(m(x), k(x,x′) + σ2

n1[x=x′]) where m and k are the mean and covariance function of the GP, respectively (Williams
& Rasmussen, 2006). Common kernel functions include the radial basis function (RBF) kernel:

kRBF(x,x
′) = σ2

f exp
(
−r

2

)
, (4)

or the 5/2automated relevance determination (ARD)-Matérn kernel:

kMat5/2(x,x
′) = σ2

f

(
1 +

√
5r +

5r

3

)
exp

(
−
√
5r
)

(5)

with r =
∑d

i=1
(xi−x′

i)
2

ℓ2i
. Here, ℓ is a d-dimensional vector of component-wise length scales. Thus, the kernel’s number of

hyperparameters (HPs) in Eq. (5) is d+ 1.

Given some training data D := {(x1, y1), . . . , (xN , yN )}, X := (x⊺
1 , . . . ,x

⊺
N )⊺, y = (y1 . . . , yN )⊺, the function values

y∗ of a set of query points X∗ is normally distributed as

y∗|X,y, X∗ ∼N (K(X∗, X)(K(X,X) + σ2
nI)

−1y, (6)

K(X∗, X∗)−K(X∗, X)(K(X,X)−1 + σ2
nI)K(X,X∗)) (7)

Let θ = {σ2
n, σ

2
f , ℓ} be the set of GP hyperparameters. The GP surrogate is then typically fitted by maximizing the marginal

log-likelihood w.r.t. θ, also known as maximum likelihood estimation (MLE), i.e.

θ∗ ∈ argmax
θ

log p(y|X,θ) (8)

log p(y|X,θ) = −1

2
y⊺

(
K(X,X) + σ2

nI
)−1

y − 1

2
log|K(X,X) + σ2

nI| −
n

2
log 2π (9)

With a gradient-based approach, this is done by maximizing Eq. (9), which is usually multi-modal and difficult to optimize.
The gradient of the marginal log-likelihood w.r.t. θi is given by

∂

∂θi
log p(y|X,θ) =

1

2
y⊺

(
K + σ2

nI
)−1 ∂K

∂θi

(
K + σ2

nI
)−1

y − 1

2
tr
((

K + σ2
nI

)−1 ∂K

∂θi

)
, (10)

where ∂K
∂θi

is the symmetric Jacobian matrix of partial derivatives w.r.t. θi.

One often endows the GP hyperparameters with hyperpriors and seeks the mode of the posterior distribution, known as
maximum a-posteriori estimation (MAP):

θ∗ ∈ argmax
θ

log p(y|X,θ) + log p(θ). (11)

A.2. Bayesian Optimization
Bayesian optimization (BO) is an iterative approach, alternating between fitting the model and choosing query points. Query
points are found by maximizing an acquisition function (AF), e.g., expected improvement (EI) (Mockus, 2005). The EI AF
measures how much observing a point x is expected to improve over the best function value observed thus far. It is defined
as

EI(x) = Ef(x)

[
[f(x)− y⋆]+

]
= (µN (x)− y⋆) Φ(Z) + σN (x)ϕ(Z) (12)

with Z = µ(x)−y⋆

σ(x) , Φ and ϕ being the standard normal cumulative distribution function (CDF) and probability density
function (PDF), and µN and σ2

N being the posterior mean and posterior variance at x, i.e.,

µN (x) = K(x, X)(K(X,X) + σ2
nI)

−1y (13)

σ2
N (x) = (k(x,x) + σ2

n)(K(X,X) + σ2
nI)

−1K(X,x) (14)
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Figure 11. Distribution of EI values for GPs in various dimensionalities. When conditioning on the same amount of data points and
maintaining the length scale as the dimensionality grows, the distribution of EI values becomes more peaked.

As discussed by (Ament et al., 2024), EI often suffers from vanishing gradients, which only worsens in high-dimensional
spaces due to the plethora of flat regions. This is shown in Fig. 11. Here, we condition a GP on 100 random points in [0, 1]d

for which we obtain function values by drawing from a GP prior with an isotropic RBF kernel with ℓ = 10. We evaluate the
AF on 2000 points drawn from a scrambled Sobol sequence and plot the histograms for various dimensionalities. As the
dimensionality grows, there are more equal EI values, indicating flat regions in the AF and possible problems with vanishing
gradients of the EI function. (Ament et al., 2024) propose LogEI, a numerically more stable version of EI that solves many
of the numerical issues with EI.

B. Additional Implementation Details
B.1. Implementation of RAASP
We perturb the top 5% observations using a normal distribution with σ = 10−3, truncated within X . For d ≥ 20, we also
generate samples with only a subset of dimensions perturbed, each with a 20

d probability. Of 4m random samples, 2m are
global samples from a scrambled Sobol sequence, m are local samples around the top 5%, perturbing all dimensions, and m
are local samples around the top 5%, perturbing 20 dimensions on average if d ≥ 20, or all dimensions if d < 20. We call
the 2m local samples the RAASP samples. The starting points for the gradient-based optimization of the AF are drawn from
the 4m overall samples using Boltzmann sampling (Ament et al., 2024).

B.2. Optimization of the Acquisition Function
We use the LogEI AF (Ament et al., 2024) for its numerical stability. It is maximized by evaluating it on 512 scrambled
Sobol points, then selecting five starting points via Boltzmann sampling for gradient-based optimization using L-BFGS-B,
with up to 2000 iterations. The budget of 2000 iterations is rarely exhausted, as the optimizer typically converges much
earlier (see Fig. 12). This aligns with previous work claiming that EI attains maxima close to good observations (Ament et al.,
2024; Hvarfner et al., 2024) and our observation that the starting points for the gradient-based AF maximizer predominantly
originate from the RAASP samples.
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Figure 12. Number of gradient updates for the AF optimization for MSR, and with and without RAASP sampling. RAASP sampling
reduces the number of gradient updates.

C. Additional Experiments
C.1. Ranking of Optimization Algorithms

MSR DSP Bounce MLE (scaled) MLE (ℓ = ln 2)

Mopta08 (d = 124) 1 2 5 3 4
Lasso-DNA (d = 180) 4 1 5 3 2
Ant (d = 888) 2 4 3 1 5
Humanoid (d = 6392) 2 1 - 3 4

Table 2. Ranking for the different optimizers on the benchmark problems according to their final performance. SAASBO is excluded from
the comparison as it was not run for the entirety of the optimization; Bounce ran into memory issues on Humanoid and, therefore, does
not have a rank on this benchmark.

C.2. MLE Gradients for Real-World Experiments
Complementing our analysis in Sec. 4, Fig. 13 shows the average absolute gradients of the different MLE methods, including
our proposed MSR method. The constant length scale initialization (‘MLE (ℓ = ln 2)’) is the only method consistently
exhibiting vanishing gradients on the 888-dimensional Ant and the 6392-dimensional Humanoid problems as depicted by
the solid orange lines for those benchmarks. On Mopta08 and Lasso DNA, all methods have non-vanishing gradients.
Furthermore, both MLE methods scaling the initial length scale do not suffer from vanishing gradients on Ant and
Humanoid.
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Figure 13. Mean absolute value of the gradients for the different MLE methods, including the proposed MSR. The constant length scale
initialization exhibits vanishing gradients for the high-dimensional Ant and Humanoid problems.
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C.3. High-dimensional Benchmark Functions
By the no-free-lunch theorem (Wolpert & Macready, 1997), the relative performance of an optimization algorithm depends
on the properties of the problems it operates on. Here, we show that for several benchmark problems, no state-of-the-art
algorithm strictly dominates the other methods.

Table 3 shows the relative performances of CMA-ES, DSP, and TuRBO after 1000 optimization steps on the 100-dimensional
versions of the Levy, Schwefel, and Griewank benchmarks. We evaluate Levy in the bounds [−10, 10], Schwefel
in the bounds [−500, 500], and Griewank in the bounds [−600, 600] by scaling from the unit hypercube in which the GP
operates to the respective bounds before evaluating the function.

To better understand the reason for the performance differences, we study the observation traveling salesperson distance
(OTSD) for the different functions, shown in Fig. 14. Plots of the 2-dimensional versions of all three benchmarks are shown
in Fig. 17 and the performance and OTSD plot of 100-dimensional Levy figure can be found in Fig. 15. CMA-ES shows
the lowest level of exploration and has the lowest OTSD on the Schwefel function, where it outperforms the two other
algorithms. On Griewank (see Fig. 16), DSP has the highest average OTSD performs best while the less explorative
CMA-ES shows the worst performance. For Levy, both TuRBO and DSP are relatively explorative and outperform CMA-ES
by a considerable margin. We conclude that more explorative algorithms are advantageous on the benchmarks with a clear
global trend like Griewank, which resembles a paraboloid, and Levy, which has a parabolic shape along the x1 dimension
(see Fig. 17). In contrast, the Schwefel benchmark is more “stationary” in that a point’s function value depends less on
that point’s absolute position in the space. Noteworthy, stationarity as assumed by GP models with a stationary covariance
function, which, by far, are the most common covariance functions for high-dimensional Bayesian optimization (HDBO). A
more local approach such as CMA-ES is beneficial on this highly multi-modal benchmark.
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Figure 15. OTSD (solid lines) and performance curves (dashed lines) of the 100-dimensional Levy function

Figs. 15 and 16 show the OTSD and performance plots for the 100-dimensional Levy and Griewank functions. Fig. 17
shows the two-dimensional versions of the Levy, Griewank, and Schwefel benchmark functions.

Benchmark Rank 1 Rank 2 Rank 3

Levy100 TuRBO DSP CMA-ES
Schwefel100 CMA-ES DSP TuRBO
Griewank100 DSP TuRBO CMA-ES

Table 3. Relative performances of CMA-ES, DSP, and TuRBO after optimizing for 1000 iterations averaged over 10 repetitions. No
algorithm performs best for all benchmarks.
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Figure 14. OTSD (solid lines) and performance curves (dashed lines) of the 100-dimensional Schwefel function

0 500 1000
iteration

101

102

103

be
st

 v
al

ue

Griewank100

0

200

400

OT
SD

Griewank100

CMA-ES
best value

DSP
OTSD

TuRBO

Figure 16. OTSD (solid lines) and performance curves (dashed lines) of the 100-dimensional Griewank function
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Figure 17. The two-dimensional versions of the Levy, Griewank, and Schwefel benchmark functions used above.
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C.4. Hard Optimization Problems
We reiterate that the curse of dimensionality (COD) remains a reality and exists even for low-dimensional problems. Fig. 18
shows 100 evaluations made by EI on a 2-dimensional GP prior sample as the benchmark function. There is no model
mismatch; the length scales of the surrogate model are set to the correct value (ℓ = 0.025). However, EI operates locally
and fails to find the global optimum (marked by a red cross).

f(x) GP mean

GP sample, =0.025

Figure 18. LogEI run on a two-dimensional GP prior sample for 100 evaluations. The right panel shows the posterior mean at the end of
the optimization. For highly multimodal benchmarks, EI reverts to a local search behavior and does not obtain a global optimum (red
cross).
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D. Popular Benchmarks Seem Simpler Than Expected
This section examines two popular high-dimensional benchmarks, the 180d Lasso-DNA and 124d Mopta08. In what
follows, we will demonstrate that many input variables seem to have little influence on the objective value. These empirical
findings suggest that these benchmarks are not truly as high-dimensional as their nominal number of input variables might
suggest, potentially misleading the perceived difficulty of these benchmarks and confounding the assessment of what
state-of-the-art algorithms will be able to accomplish in practice.

We begin by collecting the top 10% best points identified by the SOTA algorithm using dimensionality-scaled length scale
prior (DSP) (Hvarfner et al., 2024) for each benchmark. For each dimension xi separately, we then count how often these
points lie on the boundary of the search space. If over half of the points place xi on the boundary, we label xi as secondary,
and as dominant otherwise. To ensure consistency across runs, we perform 15 repetitions and consider those dimensions
that have been identified as dominant in eight or more of the repetitions.

Table 4 reports the number of dominant and secondary dimensions. In both benchmarks, a large fraction of the dimensions
are classified as secondary, meaning that the best solutions obtained by DSP method set the corresponding input variables to
value near the boundary of the search space. Note that our finding is directionally aligned with the 43 active dimensions that
Šehić et al. (2022) reported for Lasso-DNA, using a different method to estimate the number of relevant dimensions.

We further investigate the impact of each set of dimensions by replacing, at each iteration, either the dominant dimensions
(fdominant) or the secondary dimensions (fsecondary) with randomly chosen binary values. The rows f̄dominant and f̄secondary in
Table 4 indicate the corresponding average objective values (with standard errors in parentheses). Replacing secondary
dimensions impairs the result only slightly, whereas randomizing the dominant dimensions yields a markedly larger
performance drop. A two-sided Wilcoxon test shows that all differences are statistically significant at p < 0.001.

Next, we examine how Gaussian process (GP) models account for this structure during HDBO. As illustrated in Fig. 19,
the estimated length scales of secondary dimensions are typically large, which is consistent with the observation that they
influence the (predicted) objective value less. Intuitively, if a dimension’s optimal value often lies at the boundary, the GP
can assign it a very large length scale, learning the trend toward the boundary with few evaluations and leaving more of the
budget to explore the truly dominant dimensions. In effect, the BO loop focuses on those dimensions that genuinely drive
performance.

Below, we demonstrate that for these problems, BO will set most of the input variables to exactly zero or one –that is,
to the boundary of the search space– regardless of whether the GP is fit by MLE or MAP. Thus, we conclude that the
task effectively has a lower dimensionality than its nominal number of input variables. While this property was already
recognized for Lasso-DNA, our results demonstrate for the first time that it also applies to Mopta08. Furthermore, it is
interesting to note that a simple GP surrogate fitted via MLE or MAP can leverage this structure, a behavior that had not
been previously observed.

Above, we showed that 1) dimensions of the best points observed by MLE and MAP that predominantly lie on the border
have significantly longer length scales than the “dominant” dimensions, and 2) most of the dimensions have marginal impact.
MLE shows a similar behavior and is omitted for brevity. We further omit the 388-dimensional SVM benchmark as it is
known to have a low-dimensional effective subspace (Eriksson & Jankowiak, 2021).

To complement our analysis, we show that MLE and MAP assign dominant dimensions mainly values at the boundary. This

Lasso-DNA (d=180) Mopta08 (d=124)

# dominant 69.33 30.80
# secondary 110.67 93.20
f̄dominant 0.315 (±4× 10−4) 328.824 (±1.920)
f̄secondary 0.445 (±4× 10−3) 430.474 (±8.164)
f̄rand 0.410 (±3.3× 10−2) 403.428 (±48.976)

Table 4. The number of dimensions identified as dominant and secondary and the average function values obtained when replacing the
dominant (f̄1) or secondary (f̄2) parameters with uniformly random values. The average values and standard deviations for uniformly
random points are shown as f̄rand. Replacing secondary parameters harms performance considerably less than replacing dominant
parameters.
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Figure 19. The mean average length scales of “dominant” and “secondary” dimensions for the Mopta08 (left) and Lasso-DNA (right)
benchmarks for DSP.
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Figure 20. Fraction of dimensions set to a value at the border (0 or 1) by DSP. The shaded area shows the standard error of the mean
across 15 repetitions.
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Figure 21. Fraction of dimensions set to a value at the border (0 or 1) by our MLE method. The shaded area shows the standard error of
the mean across 15 repetitions.

indicates that the GP model actually makes use of the specific characteristics of these benchmarks.

Figs. 20 and 21 further show that BO consistently evaluates a large share of the parameters at the border. Fig. 20 shows this
for DSP by (Hvarfner et al., 2024) whereas Fig. 21 uses MLE as proposed in Section 4. The general trend is that, during the
course of the optimization, increasingly many parameters are evaluated at the border, which is consistent with Fig. 19.
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We thus argue that two HDBO benchmarks do not fully capture the complexity of HDBO because of this simple structure.
While this is to be expected for Lasso-DNA and SVM, this property has not been discussed for the soft-constrained
Mopta08 benchmark introduced in (Eriksson et al., 2019) to the best of our knowledge.
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