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Abstract

Active learning is based on selecting informative data points to enhance model pre-
dictions, often using uncertainty as a selection criterion. However, when ensemble
models such as random forests are used, there is a risk of the ensemble containing
models with poor predictive accuracy or duplicates with the same interpretation. To
address this, we develop a novel approach to only ensemble the set of near-optimal
models called the Rashomon set in order to guide the active learning process. We
demonstrate how taking a Rashomon approach can improve not only the accuracy
and rate of convergence of the active learning procedure, but can also lead to
improved interpretability compared to traditional approaches.

1 Introduction

Collecting labeled data to train data-hungry modern artificial intelligence (AI) and machine learn-
ing (ML) models can be expensive or time-consuming. This challenge arises in a wide range of
applications: sentence classification [17], image labelling [23] [10], and verbal autopsy [4] . In
such scenarios, strategically determining which observations merit labeling will greatly reduce data
redundancy and improve the learning of covariate-label relationships.

To address time and budget constraints, active learning allows researchers the freedom to adaptively
choose which observations to label. The key task in active learning is choosing the most informative
observations that will enhance the predictive quality of the model when labelled. Amongst the many
metrics of informativity [12] [5] [15], uncertainty is the most commonly employed [13].

Due to their ease in measuring uncertainty, ensemble techniques such as random forests are a popular
model used for active learning [14]. Since the weak learners of ensemble methods are independent
by design, the individual base learners naturally form a committee. When used in active learning, the
disagreement in "votes" between the ensemble committee members is often used as a measure of
uncertainty and informativity [11] [3].

While ensemble methods offer a natural way to quantify uncertainty through the random diversity
of their weak learners, this diversity comes with a potential drawback. Specifically, most ensemble
methods tend to aggregate over the space of all models, even if some of the models may have
relatively poor accuracy. While some approaches such as Bayesian model averaging account for this
by weighting the models by how likely they are given the data, having a large number of mediocre
models are known to make such weighting approaches difficult, especially in cases of limited, noisy,
or high-dimensional data [6]. Aggregating such poor and implausible models compromises the
query-selection criteria, potentially leading to a suboptimal query in the active learning process.

To address this limitation, we propose a novel approach to improving the quality of ensemble methods
used in active learning. Specifically, we propose an algorithm that enhances active learning with
random forests by restricting aggregation to a subset of well-performing, high-evidence models
known as the Rashomon set. The Rashomon set consists of near-optimal models that have strong
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support from the observed data. By ensembling only models within the Rashomon set, our approach
ensures that the active learning process is driven by models with high evidence, leading to better
query-selection criteria and improved query-selection.

The main results illustrating the benefits of aggregating across the Rashomon set in ensemble
learning can be seen in Figure 2, in which the TreeFarms approach (blue and orange lines, whose
distinction will become clear later) consistently outperforms the traditional random forest approach.
We also demonstrate that one can further restrict the Rashomon set to only select models with
similar "explanations" while still preserving the performance of the active learning process. This
Rashomon-based method ensures that the ensemble incorporates the interpretability of the weak
learners in our ensemble while maintaining prediction accuracy.

2 Rashomon Sets

When constructing machine learning models, researchers face two district types of uncertainty. The
first originates from the variability in the predicted outcomes generated by a given model, often
referred to as a model’s intrinsic risk. The second originates from selecting the right model from
a vast and diverse hypothesis space, a phenomenon known as model ambiguity. This distinction,
originally articulated by economist Kenneth Arrow in 1951, separates the uncertainty of prediction
from given a model from the uncertainty of choosing among many plausible models [1]. In his
2013 Nobel lecture, Lars Hansen further highlights this idea by characterizing the distinction as
"uncertainty outside and inside [economic] models" [7].

Current machine learning approaches have become exceedingly good at reducing the predictive
uncertainty within a model, but often fail to fully account for model ambiguity. Methods such
as LASSO search for a single optimal model while ensemble methods such as Bayesian Model
Averaging [9] sample across the full hypothesis space. However, both approaches overlook model
ambiguity and are ambivalent to how many models with similar predictive power exist for a given
dataset [16]. This oversight is underscored by the Rashomon Effect, first noted by Leo Breiman in
2001 [2]. The Rashomon Effect highlights the existence of near-optimal models that have similarly
high predictive performance, but explain the data in different, potentially conflicting ways. Rudin
furthers this idea by noting that this phenomenon exposes a core issue in the current machine learning
paradigm: a reliance on a single predictive model that is overly-sensitive [16] [18]. This reliance
fails to notice the complexity of modeling heterogeneity, where different models can explain the data
nearly equally well but offer substantively different insights.

To quantify the number of near-equivalent models exist for a given dataset, one can employ techniques
from Rashomon Theory. Rashomon Theory is focused on the Rashomon sets — a collection of
models that are all near-optimal in terms of predictive accuracy. By enumerating the Rashomon set,
researchers can explore the full range of plausible explanations supported by the data. Traditional
ensemble methods on the other hand such as random forests aggregate base learners based on the
random sampling of features and data. This leads to diverse but potentially suboptimal ensembles
due to the inclusion of implausible models with no way of removing such poor models. In contrast,
Rashomon sets allow for the targeted aggregation of models that are only high-performing, reducing
the risk of incorporating poor models in the query-selection process.

In the space of decision trees, Xin et al. is the first to provide an algorithm that completely enumerate
the Rashomon set for sparse decision trees [22]. Their algorithm, TreeFarms, provides an exhaustive
yet computationally feasible method to generate, store, and view the entire Rashomon set of decision
trees. However, due to the inherent structure and geometry of decision trees, many trees in this set
may offer redundant explanations of the data. This can be seen in Figure 1 and more deeply in Figure
3 in the appendix. As such, duplicate trees in the ensemble method have the potential to further skew
our metric of uncertainty in the committee by artificially inflating agreement in votes.

To address this limitation, section 4 will propose a method to group trees based on their unique
explanations of the data and select a representative from each group. We will then show how
ensembling the Rashomon set to account for model ambiguity in the active learning process will
improve our query-selection criteria.
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3 Active Learning

3.1 Notation

Borrowing notation from Liu et. al (2022) [13], let observation i be composed of data (xi, yi) for
vector xi in covariate space X and label yi in output space Y . The data is sent through a supervised
learning model F (·) : X → Y . When F (·) is an ensemble method consisting of base learners, denote
the base learners at {fm}Mm=1. The model is learned from a training dataset Dtr = {(xi, yi)}Ii=1 and
tested by an independent dataset Dts = {(xj , yj)}Jj=1. The goal is to train F (·) to predict the labels
of the out-of-sample test set with a budget-constrained number of labeled observations.

Active learning seeks to adaptively and strategically choose which unlabelled observations should
be queried for oracle labeling and to then be used in the supervised learning model. Let the query
iteration in the active learning framework be denoted by n. Denote the reservoir of unlabelled
candidate observations as D(n)

cdd = {(xk, yk)}Kk=1 with yk initially unknown. A selector S(·) is the
strategy used to select samples from D

(n)
cdd to be oracle labelled. At each iteration, S(·) will sample

a subset of observations, denoted B(n), from the candidate dataset D(n)
cdd without replacement to

query for oracle labeling. B(n) is then added to the training set and removed from the candidate set:
D

(n+1)
cdd = D

(n)
cdd ∪B(n) and D

(n+1)
cdd = D

(n)
cdd\B(n). The model is then retrained on the new training

set as F (n+1)
(
D

(n+1)
tr

)
. As such, the B(n) is chosen so as to find the observations that are most

informative to improving predictive performance.

The process is repeated, gradually expanding the training set with informative observations, until the
labelling budget is reached or a desired classification metric threshold is met.

3.2 Query-By-Committee Metrics

Picking a selector metric is a key topic in the active learning literature. Common methods are
uncertainty [12], Query-By-Committee metrics [5] [19], or expected error [15]. Due to the ensembling
nature of our methods, we choose to measure informativity by Query-By-Committee (QBC) metrics,
particularly Argamomn-Engelson and Dagan’s vote entropy [3]:

δ(y,x, C) = max
x

−
∑
y∈Y

voteC(y,x)
|C|

log
voteC(y,x)

|C|
(1)

where voteC(y,x) =
∑

c∈C I{c(x) = y} is the number of "votes" that label y ∈ Y receives for x
amongst the members c of committee C. This selector metric is a committee-based generalization of
uncertainty measures that considers the confidence of each committee member and is essentially a
Bayesian adaptation of Shannon’s 1948 uncertainty sampling entropy [20]. One can observe, from
Equation 1 that ensembling duplicate models has the potential to overinflate the vote entropy [14]
with trees from the best performing explanation group.

4 Algorithm/Methods

In our proposed work, the committee C in Equation 1 is the Rashomon set of decision trees R.
For predictor F , we construct a Rashomon set R of "near-equal" decision trees defined as the set
of models whose objective function is within ϵ of the overall best model given the data. Since
each near-equal model in the Rashomon set will describe the data differently, conflicting prediction
labels/probabilities will arise amongst models in the Rashomon set.

To enumerate the Rashomon set of decision trees, we use Xin et al.’s TreeFarms approach [22].
TreeFarms exhaustively enumerates the Rashomon set of decision trees, allowing us to aggregate
the best models in our ensemble method. However, unlike random forests, TreeFarms lacks the
random sampling of features and data, making the models in TreeFarms correlated. This correlation
in decision trees is a significant limitation, as correlation amongst committee members may both
artificially inflate agreement in the vote and complicate interpretability [14]. To address this issue, we
reduce the redundancy in TreeFarms by grouping trees based on their unique explanation of the data
and selecting a single representative tree from each of these groups to ensemble. This ensures that
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Figure 1: A depiction of how to ensemble Rashomon trees: redundantly and uniquely. This plot
shows the classification error by the ordered indices of the tree. As shown, many trees have the exact
same misclassification rate. For instance, the top 4 trees (whose geometry can be seen in Figure 3 of
the appendix) share a misclassificaiton rate of 0.108. If this redundancy in the trees is not accounted
for, committee agreement will be overinflated and dominated by the best performing group.

each chosen tree is meaningfully distinct while faithfully representing the Rashomon set, ultimately
leading to a valid query-by-committee voting approach.

Our approach can be visualized in Figure 1. Suppose we want to define the committee of vote
entropy by ensembling the top four decision trees of TreeFarms. If we ignore the the redundancy of
explanations in TreeFarms, then trees 53, 54, 75, and 78 will be ensembled despite offering the same
explanation and prediction. This, as noted in Equation 1, will artificially inflate agreement amongst
our committee by own ensembling the trees in the top explanation groups. If we instead account for
the redundancy of the trees, the unique selection method will instead choose one tree arbitrarily from
Groups 1, 2, 3, and 4, diversifying our committee and more fully representing the Rashomon set. Our
method is summarized in Algorithm 1.

Algorithm 1: Unique Tree Farms Active Learning

Input :D(0)
tr ; Dts; D(0)

cdd; ϵ;
1 repeat
2 Train F on D

(n)
tr ;

3 Test F on D
(n)
ts ;

4 Enumerate the Rashomon set R of predictor F with TreeFarms;
5 (Optionally) Reduce the Rashomon set R to the top k models in R;
6 Predict labels ŷ(n)tr,m and calculate the classification error for each tree fm in R;
7 Define the the smallest classification error from the R as the current iteration error;
8 Compute the vote-entropy metric δ(n)(y, x, C) from equation 1 with R as the committee;
9 Resample B(n) from D

(n)
cdd based on the observation with the highest vote entropy:

B(n) := argmaxx δ
(n)(y, x, C);

10 Query B(n) for oracle labeling;
11 Set D(n+1)

tr = D
(n)
tr ∪B(n) and D

(n+1)
cdd = D

(n)
cdd \B(n);

12 until labelling budget is depleted or test error is sufficiently small;

5 Experiments

One hundred active learning simulations were ran and averaged on the 1978 Boston Housing dataset
of Harrison and Rubinfeld [8]. The goal was to classify whether the median value of a home was in
the top 25% quantile based on five covariates: capita crime rate per town, nitric oxides concentration,
average number of rooms per household, pupil-teacher ratio by town, and percent of lower status
of the population. Due to the structure of TreeFarms, we discretized the five covariates into three
categories (low, medium, and high) and one-hot encoded the variables. This resulted in the covariates
being encoded in 15 binary variables. Open source code for the simulation is available on Github.
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We compared the active learning process ensembling the top ten and 100 trees with unique ex-
planations from the Rashomon set to its counterpart without considering the redundancy in tree
explanations. At each iteration, TreeFarms was refitted with a regularization penalty on splits of 0.01
and a Rashomon ϵ of 0.05. Results can be seen in Figure 2. Figure 4 of the appendix shows the same
simulation results without the baseline random forest.

(a) Ensembling the top 10 trees. (b) Ensembling the top 100 trees.

Figure 2: This plot gives the classification error comparing three ensemble methods: TreeFarms
selecting redundant trees, TreeFarms selecting unique trees, and random forests.

Our findings demonstrate the remarkable predictive power of the Rashomon set. Ensembles of
decision trees from the Rashomon set (both unique and duplicate) significantly outperformed random
forests, highlighting the robustness and prediction accuracy achievable with this approach. Further-
more, removing redundant explanations in the Rashomon set by only ensembling trees with unique
explanations of the data maintained classification accuracy.

This result has profound implications for interpretability. While redundancy in explanations can
hinder the interpretability of an ensemble, the Rashomon framework allows us to overcome this
challenge by selecting a smaller, coherent set of unique trees while maintaining prediction accuracy.
This approach combines the robustness of random forests with the interpretability of individual trees

6 Concluding thoughts and future work

Our work offers two key insights. Firstly, we demonstrate that ensembling over the Rashomon set
of decision trees enhances the active learning process by a significant margin. Unlike traditional
ensemble methods which aggregate over the entire space of models, potentially including models
that are poor performing or implausible, the Rashomon set only contains models with high posterior
probability. This allows active learning processes to form a commmitee with only the strong and
plausible models whose disagreements will then provide a more robust measure of uncertainty for
more efficient query selection.

Secondly, we address the issue of redundant and duplicate explanations when constructing a
Rashomon set by only considering trees with unique explanations. Redundant explanations can inflate
query-by-committee metrics and obscure interpretability. By only ensembling over the Rashomon’s
subset of trees with unique explanations, we ensure that the ensemble remains parsimonious and
interpretable while maintaining prediction accuracy.

This work plants the seeds for future research into other methods that form the Rashomon set without
an inherent geometric structure. In particular, Rashomon Partition Sets (RPS) [21] offer a promising
framework for comprehensively enumerating the Rashomon set. Investigating the use of RPS in
active learning may further deepen our understanding of the Rashomon’s benefits in both prediction
and interpretability.
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7 Appendix

7.1 Geometry of trees in Group 1

The images in Figure 3 give insight into the decision rules of the top four decision trees. Note that
feature 0 represents whether an observation is within an area with lowest levels of crime (bottom 33%
quantile), and feature 9 represents an observation in an area with the lowest pup-teacher ratio (bottom
33% quantile). Features 6, 7, and 8 represent whether an observation is in one of the three categories
of rooms per household respectively: low, medium, and high.

As seen, the trees exhibit very similar decision paths to each other, resulting in each one having
the exact same misclassification error of 0.108. As described in the main corpus, ensembling these
four trees as a committee and calculating the vote entropy metric off this committee will result in an
inflated agreement and will recommend the observation that the best decision tree is most uncertain
of rather than consider the uncertainty of the ensemble as a whole.

7.2 Experimental results plotted with random forests

Figure (4) gives the classification error comparing the two ensemble methods: TreeFarms selecting
redundant trees and its counterpart with only unique trees It is the same plot as Figure 2 but removes
the classification error line for random forests to better visualize the differences between the inclusion
of redundant vs. duplicate trees in the ensemble method. The value given in each subfigure represents
the p-value from a Wilcoxon ranked-sign test.

7

https://aclanthology.org/K19-1044
https://doi.org/10.1145/3531146.3533232
https://api.semanticscholar.org/CorpusID:268857158
https://api.semanticscholar.org/CorpusID:268857158
https://api.semanticscholar.org/CorpusID:14631999


Figure 3: Geometry of the best four decision trees in Group 1 of Figure 1.

(a) Ensembling the top 10 trees (p = 0.00031). (b) Ensembling the top 100 trees (p = 0.10174).

Figure 4
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