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Abstract
In the privacy-utility tradeoff of a model trained
on benchmark language and vision tasks, remark-
able improvements have been widely reported
when the model is pretrained on public data.
Some gain is expected as these models inherit
the benefits of transfer learning, which is the stan-
dard motivation in non-private settings. However,
the stark contrast in the gain of pretraining be-
tween non-private and private machine learning
suggests that the gain in the latter is rooted in a
fundamentally different cause. To explain this
phenomenon, we hypothesize that the non-convex
loss landscape of a model training necessitates the
optimization algorithm to go through two phases.
In the first, the algorithm needs to select a good
“basin” in the loss landscape. In the second, the
algorithm solves an easy optimization within that
basin. The former is a harder problem to solve
with private data, while the latter is harder to solve
with public data due to a distribution shift or data
scarcity. Guided by this intuition, we provide the-
oretical constructions that provably demonstrate
the separation between private training with and
without public pretraining. Further, systematic ex-
periments on CIFAR10 and Librispeech provide
supporting evidence for our hypothesis.

1. Introduction
As modern machine learning models are increasingly capa-
ble of memorizing the training data, membership inference
attacks and data reconstruction attacks have successfully
demonstrated the vulnerability of releasing models trained
on sensitive data. Differential Privacy (DP), introduced by
Dwork et al. (2006), is now a gold standard measure of pri-
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vacy leakage in training a model with two scalar parameters:
ε > 0 and δ ∈ [0, 1]. By introducing enough randomness
in the training, one can ensure that the model does not de-
pend too much on each individual training example. This
provides plausible deniability to the participants and evades
privacy attacks, achieving strong DP with small values of
(ε, δ). We give a formal definition in Definition 1.1.

One of the main challenges in training on private data is that,
without pretraining on some publicly available data, utility
and privacy trades off unfavorably on standard benchmark
tasks. Given a target task, such as table-to-text generation,
on a private dataset, say E2E dataset (Novikova et al., 2017),
state-of-the-art techniques suffer from significant perfor-
mance degradation to achieve even an acceptable level of
privacy. For example, a weak privacy guarantee of ε = 8 sig-
nificantly deteriorates the performance of the trained model
compared to the one trained without privacy, i.e. ε = ∞
(second row of Table 1). Perhaps surprisingly, there is one
simple change to the training algorithm that can significantly
reduce this cost of privacy: pretraining the model on some
public data (first row of Table 1).

cost of
ε =∞ ε = 8 privacy

with public pretrain 69.46 63.19 6.27
without public pretrain 65.73 24.25 41.48
gain of public pretraining 3.73 38.94

Table 1. BLEU score for generating descriptions of table entries on
E2E dataset reported in (Li et al., 2022b, Table 2) with δ = 10−5.
The first row is pretrained on GPT-2 (Radford et al., 2019).

Such remarkable gain of public pretraining has been widely
observed in standard benchmark vision and language tasks,
which we survey in Appendix B. This includes CIFAR-10,
MNIST, and Fashion MNIST in (Tramer & Boneh, 2020),
CIFAR-100, ImageNet, and Places-365 in (De et al., 2022),
text generation with E2E and DART in (Li et al., 2022b),
and next word prediction on Reddit dataset (Kerrigan et al.,
2020). Note that in all these cases, the public data distribu-
tion differs from the target task distribution. Nevertheless,
we expect some gain from public pretraining, drawing anal-
ogy from its success in non-private training of large models
(e.g., first column in Table 1). However, the stark difference
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in the gain of pretraining between the non-private case, i.e.,
ε = ∞, and the weakly private case, say ε = 8, is strik-
ing. This suggests that the benefit of public pretraining in
differentially private machine learning is a fundamentally
different phenomenon from the typical benefits of standard
transfer learning (Bozinovski & Fulgosi, 1976; Sharif Raza-
vian et al., 2014; Bommasani et al., 2021). Our goal is to
give an insight into when such a phenomenon can be ob-
served by carefully constructing synthetic public and private
tasks. Recently, (Li et al., 2022a) formally demonstrates
that public data improves on the curse of dimensionality
while fine tuning with privacy. To our knowledge, ours is
the first work to understand the necessity of public data in
private model training.

(a) (b)

Figure 1. An example of a non-convex loss function. While the
overall function is non-convex, it consists of many locally convex
“basins”, some better than others.

In this paper, we provide a theoretical example of a loss
function that requires pretraining on public data and fine-
tuning with private data. Our construction is guided by
our hypothesis that the typical population loss landscape of
standard machine learning tasks necessitates gradient based
algorithms to go through two stages. A conceptual two-
dimensional sketch of the landscape we envision is shown
in Figure 1. We start from a random initialization close to
the origin. In the first stage, the algorithm is directed by the
data towards a good basin with small local minima. This is
followed by the second stage, where the algorithm solves
what is effectively a convex optimization in the selected
basin to arrive at the local minima. The key insight is that
the first stage of selection should require significantly more
samples to solve privately, compared to the number of sam-
ples required to solve it without privacy. Concretely, for
the example in Figure 1, the gradient at the origin directs
to the correct basin with global minima, but the gradient
is small. A private gradient descent adds additional noise
to the update, increasing the chance of ending up at worse
basins. Hence, significantly more private data is needed to
overcome the privacy noise. This construction is motivated
by the private hypothesis selection problems where a simi-
lar fundamental separation in sample complexity is known
(Steinke & Ullman, 2017). This intuition would explain

the widely observed failure of private training when start-
ing from a random initialization. We turn this hypothesis
into concrete constructions in Section 2, where we formally
prove the separation in sample complexity.

Main contributions: In Section 2, we construct theoretical
tasks to demonstrate the fundamental separation in sample
complexity. First, we construct a theoretical loss function
and data distribution such that given npub public samples
and npriv private samples from this distribution, npub �
npriv , pretraining on the public data and fine tuning with the
private data achieves a much better loss than any algorithm
with access to either alone. Next, we extend our result to
a more relevant setting where npub is large but the public
data is out of distribution. This construction exhibits the
need to have little to no privacy noise in the first “phase” of
non-convex optimization. To the best of our knowledge, this
is the first theoretical lower bound demonstrating the need
for public pretraining. We wish to emphasize that this lower
bound is for a synthetic construction; while our construction
is made to capture our two-phase hypothesis, which is made
for the deep learning setting (and indeed supported by our
experiments), we do not claim that such a lower bound holds
for all deep learning problems.

In Section 3, we empirically validate our two-phase hypoth-
esis. First, treating CIFAR-10 as our target private task,
we consider a setup where we are allowed T epochs of
pre- or post-training on in-distribution public data, out-of-
distribution public data, or private data with low noise. In
all settings we demonstrate it is best to use all these low-
or non-private training epochs on pretraining. This demon-
strates that early rounds of training are most sensitive to
privacy noise, as conjectured in our two-phase hypothe-
sis. Secondly, we look at a manifold of the loss landscape
interpolated between three models trained on Librispeech.
We show that a publicly pretrained and privately fine-tuned
model ends up in the same basin as a fully publicly trained
model. On the other hand, a fully privately trained model
ends up in a different basin. This provides evidence that
public pretraining’s benefits are in part due to selecting a
better basin for fine-tuning.

1.1. Other Related Work

Pretraining on public data is now a default choice in large
scale private training for NLP tasks (Yu et al., 2022; He
et al., 2022; Bu et al.; Ginart et al., 2022), including 175
billion parameter GPT-3 with ε = 1, and vision tasks (Go-
latkar et al., 2022; Luo et al., 2021; Kurakin et al., 2022;
Bu et al., 2022; De et al., 2022). Motivated by pretraining
providing good feature representations, Tramer & Boneh
(2020) propose using handcrafted features for small scale
problems, as opposed to learned features, to improve utility-
privacy tradeoff. On the other hand, (Tramèr et al., 2022)
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cautions against the indiscriminate use of large-scale public
data in DP training, which we discuss in depth in Section 4.

Besides the aforementioned empirical results, public data
has been used to show theoretical improvements for prob-
lems such as query release (Alon et al., 2019; Bassily et al.,
2020a; Liu et al., 2021), mean estimation (Avent et al.,
2020; Bie et al., 2022), and optimization (Zhou et al., 2021;
Kairouz et al., 2020; Asi et al., 2021b; Amid et al., 2022).
In the optimization case, besides pretraining, these papers
use public data to learn the geometry of the private loss
in various ways and use geometry-aware gradient descent
methods, rather than vanilla DP-SGD.

(Steinke & Ullman, 2017) showed that for the problem of
selecting from d coins the k that land heads with the highest
probability given n sample flips from each coin, any (ε, δ)-
DP algorithm with constant error requires n = Ω(

√
k log d).

This is in contrast with the non-private case, where n =
O(log d) suffices for any k. Selection and non-convex opti-
mization are tightly connected: (Ganesh et al., 2022) show
a reduction from selection to non-convex optimization, by
designing a loss with d locally convex basins, each corre-
sponding to a different coin in the selection problem. This
gives a different perspective on why the first stage of non-
convex optimization may be difficult privately but not with
public data: it effectively involves solving a selection prob-
lem on the basins in the loss function.

1.2. Background on differential privacy and DP-SCO

Differential privacy is a privacy guarantee for algorithms
that can be viewed as random functions of datasets:

Definition 1.1 (Differential Privacy (Dwork et al., 2006)).
Let D be a data domain, and C be a set of outputs. An algo-
rithm A : D∗ → C is (ε, δ)-differentially private if for any
D,D′ ∈ D∗ such that D and D′ differ in at most one ele-
ment and any set of outputs S ⊆ C: Prθ∼A(D) [θ ∈ S] ≤
eεPrθ∼A(D′) [θ ∈ S] + δ.

A well-studied problem in the differential privacy literature
is differentially private stochastic (convex) optimization
(DP-SCO) (Bassily et al., 2014; 2019; Feldman et al., 2020;
Bassily et al., 2020b; Kulkarni et al., 2021; Asi et al., 2021b;
Gopi et al., 2022). In DP-SCO, there is a loss function
` : C × D → R, and an unknown distribution τ over D.
Given n i.i.d. samples from τ , we wish to find θ ∈ C min-
imizing the population loss L(θ) := Ed∼τ [`(θ; d)]. For
any τ we denote the population minimizer by θ∗(τ) :=
arg minθ∈C L(θ). The performance of a DP-SCO algorithm
is measured by its risk, ED∼τn,θ∼A(D) [L(θ)]− L(θ∗(τ)).
DP-SCO captures most machine learning tasks we are inter-
ested in. The most widely studied algorithm in the DP-SCO
literature is DP-SGD (Song et al., 2013; Bassily et al., 2014;
Abadi et al., 2016; Bassily et al., 2019; 2020b), which min-

imizes the empirical loss `(θ;D) = (1/|D|)
∑
d∈D `(θ; d)

over C ⊆ Rp as follows: DP-SGD starts with θ0, and for t
iterations computes θt+1 = θt − ηt∇`(θt;D) + ξt, where
ξt ∼ N(0, σ2I) and σ2 is chosen to satisfy (ε, δ)-DP.

Perhaps the simplest problem captured by DP-SCO is pri-
vate mean estimation with identity covariance. The follow-
ing lemma gives a lower bound on private mean estimation.
It follows from Theorem 5.5 of (Bassily et al., 2014) and
standard translation of ERM lower bounds to SCO lower
bounds (see Appendix C of (Bassily et al., 2019)):
Lemma 1.2. For `(θ; d) = (1/2) ‖θ − d‖22, C = Rp, and
D = Bp(0, 1) (the p-dimensional `2-ball of radius 1 cen-
tered at the origin), let θ∗(τ) := arg minθ∈C L(θ) for a
distribution τ over D. For p ≤ ε2n2 and δ = o(1/n), there
exists a set of distributions, T1, over D, such that the fol-
lowing is true. For every (ε, δ)-DP algorithm A : Dn → C,
there exists τ(A) ∈ T1 such that:

ED∼τ(A)n,θ∼A(D) [L(θ)]

= L(θ∗(τ(A))) + Ω

(
p

ε2n2
+

1

n

)
.

Furthermore, for some M = Ω(
√
p

εn ) and all such τ ∈ T1,
| ‖θ∗(τ)‖2 −M | ≤ 1/n.

Non-privately, this translates to:
Lemma 1.3. For `(θ; d) = 1

2 ‖θ − d‖
2
2, C = Rp, and D =

Bp(0, 1), there exists a set of distributions, T2, over D such
that the following is true. For every A : Dn → C there
exists τ(A) ∈ T2 such that:

ED∼τ(A)n,θ∼A(D) [L(θ)] = L(θ∗(τ(A))) + Ω

(
1

n

)
.

These lemmas are the basis of the results in Section 2. Re-
sults in (Bassily et al., 2014) and standard translations from
empirical loss bounds to population loss bounds via uniform
stability (see e.g. (Hardt et al., 2016)) show that DP-SGD
achieves upper bounds for mean estimation that match these
lower bounds up to polylogarithmic factors.

2. Necessity of public pretraining
A typical scenario in pretraining on public data is when the
public dataset is large but is Out-Of-Distribution (OOD);
there is a potentially large distribution shift between the
public and the private dataset (Yu et al., 2022; He et al.,
2022; Bu et al.; Ginart et al., 2022; Golatkar et al., 2022;
Luo et al., 2021; Kurakin et al., 2022; Bu et al., 2022; De
et al., 2022). In this section, we start with a simpler scenario
where a small number of In-Distribution (ID) samples are
used in public pretraining. This simplifies the explanation of
our construction and also corresponds to realistic scenarios
where public data comes from users who consented. The
more common OOD case is addressed in Section 2.4.
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2.1. Pretraining on in-distribution public data

When a small number of in-distribution samples are publicly
available, several techniques have been proposed to improve
the accuracy-privacy trade-off. An immediate use is to re-
duce the sensitivity of a mini-batch gradient by including the
public data in the mini-batch. The public data can also be
used to compute useful statistics; one can reduce the privacy
noise by projecting the gradient onto a low-dimensional sub-
space computed from public data (Kairouz et al., 2020; Yu
et al., 2021; Zhou et al., 2021; Golatkar et al., 2022) and by
improving the adaptive clipping method with the geometry
of the gradients estimated from public data (Golatkar et al.,
2022; Asi et al., 2021a; Nasr et al., 2022). However, by far
the most dominant technique in terms of the accuracy gain is
pretraining on the in-distribution public data. For example,
on CIFAR-10 dataset, one can train a (ε = 2, δ = 10−5)-
DP model that achieves 64.9% test accuracy. Treating 4%
of the training dataset as public data, the accuracy can be
improved by 7.1% (Nasr et al., 2022, Table 1). All the other
techniques only give 2.8% extra gain, which includes us-
ing public data in fine-tuning, public data assisted adaptive
clipping, and averaging past iterates. Such pretraining with
in-distribution public data has been successful also in train-
ing variational autoencoders (Jiang et al., 2022). We provide
systematic study of these gains with numerical experiments
on benchmark datasets in Section 3.

Motivated by the practical successes, we first consider the
following setup. We are given npub public examples, Dpub,
and npriv private examples, Dpriv, both drawn i.i.d. from
the same distribution τ , where npub � npriv. We con-
struct τ such that pretraining on small ID public data can
significantly improve the performance of a private training.
Concretely, we will show that for any integer p, there ex-
ists a loss function `, sample sizes npub and npriv, and a
data distribution τ such that (i) any non-private algorithm
Apub given only Dpub has worst-case excess population
loss lower bounded by Ω(1); (ii) any (ε, δ)-DP algorithm
Apriv given only Dpriv has worst-case excess population
loss lower bounded by Ω(1); and (iii) a gradient-based algo-
rithmAmixed that pretrains onDpub and privately fine-tunes
on Dpriv achieves excess population loss upper bounded
by O(1/p). In particular, the dimensionality of `, npub,
and npriv are polynomial functions of p. We focus on the
unconstrained case where C = Rp, as it aligns with how
differentially private learning models are trained in practice.

2.2. Construction

We first give a high-level overview of a construction for our
main theorem and defer details to Appendix C.1. While our
construction builds on upper/lower bounds for public/private
mean estimation, one can build a similar construction using
upper/lower bounds for linear regression instead. This fol-

lows via standard reductions from mean estimation to linear
regression. We focus here on mean estimation for simplicity
of presentation. A reference for notation is in Appendix A.

Our strategy is to concatenate the two known lower bounds
for mean estimation with private data in Lemma 1.2 and
with public data in Lemma 1.3. Our construction is param-
eterized by p, the desired multiplicative gap between the
excess loss achievable with just public or private data, and
the excess loss achievable with both. We consider a distri-
bution τ over a data point d = (d1, d2) ∈ Rp4 × Rp whose
population mean is θ∗(τ) = (θ∗1(τ), θ∗2(τ)) ∈ Rp4 × Rp.
The first p4 coordinates are used to construct a hard dis-
tribution for private mean estimation with a loss function
`1 : Rp4 × Rp4 → R, and the following p coordinates are
used to construct a hard distribution for public mean estima-
tion with a loss function `2 : Rp×Rp → R. We assume we
have npub public samples and npriv private samples from
the same distribution with npub � npriv .

We will define an appropriately chosen basin S ⊂ Rp4 in
Eq. (2) such that if θ1 is far from S, then `((θ1, θ2)) =
`1(θ1), but inside of S, `((θ1, θ2)) = `1(θ1) + `2(θ2). In
particular, we will choose `2 that is non-positive everywhere,
so that is desirable to be in S with respect to minimizing `.

Starting outside of S, the algorithm first needs to minimize
`1 to reach S. We use `1 from the private lower bound
(Lemma 1.2) such that any private algorithm achieves high
excess loss with respect to `1. On the other hand, an algo-
rithm with a small amount of public data can easily optimize
`1. We will eventually choose S that contains all points close
to the optimum of `1, so any public algorithm will reach S
after optimizing `1, and will not touch θ2 in doing so. Once
inside the basin S, the algorithm needs to also minimize `2
to reach a small total loss. We use `2 from the public lower
bound (Lemma 1.3) such that a small-size public data alone
is not sufficient to (approximately) reach global minima but
large-size private data can.

Precisely, we can combine the two loss functions as follows:
We first define a parameter R2 > 0 whose value will be
specified later. R2 can be thought of as the width of the
“slope” leading into the basin S. Given R2, we let

`((θ1, θ2); (d1, d2)) = `1(θ1; d1)+p q(θ1)·`2(θ2; d2), (1)

where ∆(θ1) := ‖θ1 −ΠS(θ1)‖2 with ΠS being the Eu-
clidean projection into S, and

q(θ1) :=


0, ∆(θ1) > R2

1− ∆(θ1)
R2

, 0 < ∆(θ1) ≤ R2

1 ∆(θ1) = 0

,

for some S ⊂ Rp4 . We note that the value of R2 is largely
immaterial to our construction; we could even take R2 = 0,
but R2 > 0 gives a continuous ` for a cleaner construction.
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If θ1 is far from S, ` is just `1(θ1). If θ1 is in S, then ` is
just `1(θ1) + p · `2(θ2). In between these two regimes, `
interpolates between these two loss functions; this interpo-
lation is technically not necessary for our eventual theorem
and proof, but gives a more realistic loss function. Note that
`2 is non-positive, so having larger q(θ1) (i.e., being in or
close to S) is advantageous with respect to minimizing the
term depending on θ2.

In Figure 2 is an example of our eventual construction. S
consists of two basins, centered at −0.5 and 0.5. If θ1 is
near one of these points, then ` is a quadratic centered at
.005 with respect to θ2. If θ1 is far from these points, ` is a
constant with respect to θ2. So, if we start at the origin, using
gradient-based methods we would first have to optimize θ1

to get to one of the basins, and then optimize θ2. With
private data choosing the right basin is hard, with public
data optimizing θ2 within a basin is hard.

(a) (b)

Figure 2. (a) A 3-D visualization of the toy example of our con-
struction for `, for one-dimensional θ1 and θ2. (b) A heatmap of
the same example.

The loss functions: In the initial stage of the al-
gorithm (outside of S), the lower bound for private
algorithm follows from the choice of `1(θ1; d1) :=

min{(1/2) ‖θ1 − d1‖22 ,
9
2} defined over the first p4 coor-

dinates. Note that as long as ‖θ1‖2 ≤ 2 and d1 is in D1,
this is equivalent to a loss function of ‖θ1 − d1‖22, i.e. we
can still apply Lemma 1.2 to `1. The minimum is used in
our upper bound to keep `1 bounded in the low-probability
event that DP-SGD adds a large amount of noise to θ1.

For any Apriv, we define our basin to include the global
minima of `1 on the distribution τ(A) in Lemma 1.2. Let
M = Ω(1) be defined as in Lemma 1.2 for the case when
dimension is p4, ε = 1, and npriv = p2, and choose some
R1 (which can be thought of as the radius of our basin) such
that 1/n ≤ R1 < M . Since we know |‖θ∗(τ(Apriv))‖ −
M | = O(1/n), we define our basin S as

S := Bp4(0,M +R1) \Bp4(0,M −R1) .. (2)

Note that S is the set of all points where `2-norm of θ1 is
close to M ; the basin is a single non-convex set. Our con-
struction can seamlessly generalize to the case where there

are numerous disconnected basins to resemble more realis-
tic landscapes. If R1 is sufficiently large, then Lemma 1.2
guarantees that the population minimizer of `1 is contained
in S and far from the boundary of S for distributions in
T1 as defined in that lemma. Further, by a vector Azuma
inequality (Hayes, 2003) the same is true of the empirical
minimizer of `1 over the public data with high probability.
We will specify a value of R1 in Appendix C.1.

In the next stage of the algorithm (inside S), the loss is
dominated by `2(θ2, d2) := min{0, ‖θ2−d2‖

2
2

2r2 − 9
2} where r

is a parameter that scales the domain of `2. In particular, let
T ′2 be the set of p-dimensional data distributions overD′2 :=
Bp(0, r), and T ′2 is defined by shrinking the support of each
distribution in T2 (as defined in Lemma 1.3) by a factor of
r < 1. We will specify the value of r in Appendix C.1;
for now, one can think of r � 1. Since rescaling does not
fundamentally change the problem, again Lemma 1.3 (up to
a 1/r2 rescaling) holds also in T ′2 .

Note that as long as ‖θ2‖2 ≤ 2r and d2 ∈ D′2, minimizing

`2 is equivalent to minimizing ‖θ2−d2‖
2
2

2r2 , which is just a

rescaling of minimizing ‖θ2−d2‖
2
2

2 . In other words, we can
still apply Lemma 1.3 to `2. Putting `1 and `2 together, our
loss is defined in Eq. (1) with a choice of R2 < M − R1,
which implies q(0) = 0; the exact value of R2 is immaterial
to our construction and eventual theorem statement.

Toy example of the loss function: In Figure 2 we provide
a visualization of our loss `(·, d) for a single data point
d = (0.5, 0.005) as defined in Eq. (1) for p = 1. Here,
to simplify the visualization we have chosen r = 0.01,
M = 0.5, R1 = 0.1, R2 = 0.2, which may not correspond
to the actual values we choose in our construction. This
gives S = [−0.6,−0.4] ∪ [0.4, 0.6], and q(θ1) = 0 if θ1 ∈
[−∞,−0.8] ∪ [−0.2, 0.2] ∪ [0.8,∞]. Since 0.5 ∈ S and
thus q(0.5) = 1, the minimizer is (0.5, 0.005). We can
observe the following.

Figure 3. A projection of our two-dimensional toy example loss
onto θ2 = 0.005 and θ2 = −0.005.

The first stage of the optimization (which corresponds to
pretraining) tries to find the right part of the basin S with
small `1(θ1). For a fixed θ2, ` is a quadratic with re-
spect to θ1, except for the “wells” centered at θ1 = 0.5
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and −0.5 (Figure 3). In our construction, the population
minimizer of θ1 would always be in one of the basins in
S = [−0.6,−0.4] ∪ [0.4, 0.6]. Note that the two basins are
disconnected only because of the choice of p = 1.

The second stage of the optimization (which corresponds to
fine-tuning) tries to minimize the second loss `2(θ2). For
a fixed θ1, ` is a quadratic with respect to θ2. The strong
convexity of this quadratic increases with q; when q(θ1) = 0
(e.g. at θ1 = 0) then ` is a constant with respect to θ2.

In particular, we can see from Figure 2 that if we are at
the origin, we can see that a (non-noisy) gradient step will
only optimize over θ1, but once θ1 is inside S then gradient
steps will optimize both θ1 and θ2. Furthermore, if we start
at θ1 in S and run (DP) gradient descent, the scale of θ2,
which is controlled by the choice of r in the definition of
`2, is much smaller than the scale of θ1. So it should be
possible to optimize θ2 using gradient descent once θ1 is
inside S, without causing θ1 to move very far. This roughly
corresponds to fine-tuning staying within a basin in our
hypothesis.

2.3. Analysis

With the above construction, we formally guarantee that for
certain sizes of public and private datasets, both datasets are
necessary to optimize the loss to a desired level. We defer
the proof to Appendix C.1.

Theorem 2.1. For every integer p ≥ 1, for some r > 0,
C = Rp4×Rp,D = Bp4(0, 1)×Bp(0, r) there exists ` and
a set of distributions T over D such that:

(1) For δ = o(1/p2), any (1, δ)-DP algorithm Apriv :

Dp2 → C, and any Apub : Dp → C there exists τ ∈ T
such that:

ED∼τp2 ,θ∼Apriv(D) [L(θ)] = L(θ∗(τ)) + Ω(1),

ED∼τp,θ∼Apub(D) [L(θ)] = L(θ∗(τ)) + Ω(1)

(2) For any δ ≥ 2−p, there exists an algorithm Amixed :
Dp+p2 → C which runs gradient descent on the first
p examples, followed by (1, δ)-DP-SGD on the last p2

examples, such that for any τ ∈ T :

ED∼τn,θ∼Amixed(D) [L(θ)] = L(θ∗(τ)) +O(1/p)

This demonstrates that there exist data distributions where
a small number of public in-distribution data is necessary
to achieve small loss, and pretraining on that public data is
sufficient for DP-SGD to achieve the desired level of loss.
The first part of the theorem shows that there are data distri-
butions where neither a small-size, npub = p, public data or

a large-size, npriv = p2, private data can reach the desired
loss. However, on the same data distribution, pretraining
on the small-size public data, followed by finetuning on the
large-size private data, achieves a desired level, O(1/p), of
the excess loss.

Proof Sketch of Theorem 2.1. The high-level idea behind
the construction is: Using private data alone cannot achieve
risk o(1) on `1, because `1 has a high dimension, but us-
ing public data can achieve risk O(1/p) because the public
mean estimation risk guarantees are dimension-independent.
Similarly, using public data alone cannot achieve risk o(1)
on `2, because `2 has a multiplier of p and the amount of
public data we are allowed to use is small. However, using
private data can achieve risk O(1/p) on `2 because `2 has
low dimension, and there is more private data to use.

To prove (1) using these observations, we show that the
risk guarantee of A on ` is at least its risk on `1 or `2
alone. If Apub only uses public data, this implies a lower
bound on Apub’s risk on ` from Lemma 1.3, which holds
for some distribution τ2 ∈ T ′2 . Similarly, if Apriv only uses
private data, this implies a lower bound on Apriv’s risk on
from Lemma 1.2, for some distribution τ1 ∈ T1. Then, the
product distribution τ = τ1× τ2 gives a simultaneous lower
bound on the risk of Apub and Apriv, as desired.

To prove (2), we observe that a single step of (full-batch)
gradient descent on the public data takes us the empirical
minimizer of `1, which achieves risk O(1/p) for `1. If we
use an initialization such that q(θ1) = 0, a single step of
gradient descent has no effect on θ2, since the gradient of `
with respect to θ2 at the initialization is zero. Furthermore,
if R1 is sufficiently large, then with high probability after
this single step θ1 ∈ S and is far from the boundary of S,
i.e. q(θ1) = 1 and we have ` = `1 + `2. Then, running
DP-SGD with optimal parameters from this point will take
θ2 to a point achieving risk O(1/p) on `2. However, DP-
SGD will also move θ1, which could worsen our risk on `1
substantially. We show that if r is sufficiently small, then
for DP-SGD with optimal parameters, the amount by which
θ1 moves is O(1/p), and in turn θ1 remains in S and the
risk guarantee on `1 does not worsen by more than O(1/p).
Then, our overall risk guarantee is at most the sum of the risk
guarantee on `1 and `2 individually, which is O(1/p).

We note that, based on the above argument, we believe any
algorithm has excess loss Ω(1/p) for some τ ∈ T (i.e.,
Amixed is minimax optimal for the set of distributions T ),
although we do not have a formal proof of this claim.

2.4. Pretraining on out-of-distribution public data

A more common setting in practice is when out-of-
distribution large-scale public data is used in pretraining,
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as we surveyed in the introduction and at the beginning of
Section 2. We modify our previous construction in Theo-
rem 2.1 so that (i) there is a distribution mismatch between
the public and private examples and (ii) an arbitrarily large
amount, npub, of public data is available.

Theorem 2.2. For every integer p ≥ 1 and npub ≥ p, for
some r > 0, C = Rp4×Rp,D = Bp4(0, 1)×Bp(0, r) there
exists ` and a set T of pairs of distributions (τpub, τpriv)
over D such that:

(1) For δ = o(1/p2), any (1, δ)-DP algorithm Apriv :

Dp2 → C, and any Apub : Dp → C there exists
(τpub, τpriv) ∈ T such that:

E
D∼τp2

priv,θ∼Apriv(D)
[L(θ)] = L(θ∗(τpriv)) + Ω(1),

E
D∼τ

npub
pub ,θ∼Apub(D)

[L(θ)] = L(θ∗(τpriv)) + Ω(1)

(2) For any δ ≥ 2−p, there exists an algorithm Amixed :
Dnpub+p2 → C which runs gradient descent on the
first npub examples, followed by (1, δ)-DP-SGD on the
last p2 examples, such that for any τ ∈ T :

E
D∼τ

npub
pub ×τ

p2

priv,θ∼Amixed(D)
[L(θ)]

= L(θ∗(τ)) +O(1/p)

Here, L refers to the population loss over τpriv .

This demonstrates that there exist data distributions where
out-of-distribution public data is necessary to achieve small
test loss on the target private task, and pretraining on the
OOD public data is sufficient for DP-SGD to achieve the
desired test loss. Note that all three cases are evaluated
on the same private population loss, as is the case in real-
world scenarios where we care about the performance on
the private task.

We prove Theorem 2.2 in Appendix C.1 and give here a
proof sketch for what modifications of Theorem 2.1 are
needed. In particular, the value of d2 in the public exam-
ples is irrelevant in the upper bound in Theorem 2.1. For
example, we could have d2 = 0 in all public examples, and
the upper bound is unaffected. With the extra freedom we
have in the construction under this distribution mismatch,
showing the lower bound on the risk on the private task
for algorithms using only public data is easy; the value of
d2 in the public examples encodes no information about
the distribution of d2 in the private examples, so clearly no
algorithm with only access to public data can achieve good
risk on `2 alone, regardless of how much public data it has
access to.

Data abundance: If we had p2 ID public examples or p5

private examples in Theorem 2.1, we could achieve risk
O(1/p) in the above construction using only public data or
only private data. Of course, if we also have the distribution
mismatch in the preceding paragraph, no amount of public
data achieves low risk on the private population. In light
of this, Theorem 2.1 should not be interpreted as saying
that both public and private data are strictly necessary to
optimize some loss functions. Instead, a better interpretation
might be that a small amount of public data greatly reduces
the amount of private data needed to solve an optimization
problem. This can be seen as theoretical backing for an
empirical observation made in (Tramer & Boneh, 2020; De
et al., 2022; Li et al., 2022b; Kerrigan et al., 2020).

Convex losses: Our construction is inherently non-convex,
due to the term q(θ1) we use to “activate” `2 only after op-
timizing over the public data. Surprisingly, in Appendix D
we show that Theorem 2.1 can be proven even for (non-
isotropic) quadratic losses, at the cost of operating in a
constrained setting (i.e. C is finite). The constrained require-
ment is necessary since unlike in the construction in this
section, we cannot guarantee that gradient descent on the
public data does not affect θ2. However, in the constrained
setting we have the guarantee that θ2 cannot leave the con-
straint set, so it is okay to take (arbitrarily large) public
gradient steps that affect θ2.

3. Experiments
In this section, we conduct experiments to verify our hy-
pothesis about the two-stage optimization phenomenon.

3.1. CIFAR10 Experiments

Setup: For the ID public data experiment in Figure 4 (left),
we train a ConvNet model on CIFAR10 using DP-SGD. We
train for 60 epochs with a clipping norm of one, learning rate
of 0.001, batch size of 256, and Adam optimizer. Simulating
an ID public data setting, we split CIFAR10 (60,000 images)
into a public dataset of size 2,000 and a private dataset of
size 58,000. We use Adam optimizer with learning rate of
0.002 for the public dataset. For the large-size OOD public
data in Figure 4 (right), we used 20,000 images from the
training part of the CINIC10 images as the public data.

Results: In Figure 4, we allow a limited number of epochs
Tpub on the public data. We show test accuracy as a func-
tion of t (the x-axis), which is the number of epochs used
in public pretraining. The remaining Tpub − t epochs are
used in public post-training after the private training. For ID
public data in the left panel, we choose Tpub = 200. Using
this budget for pretraining has the highest accuracy. This
demonstrates that the initial rounds of training are the most
sensitive to noise, as is the case in both our hypothesis from
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Figure 4. On CIFAR10, pretraining on the public data significantly
improves accuracy compared to post-training on the public data
for both ID public data (left) and OOD public data (right).

ε first epoch last epoch

1 46.7%± 0.3 46.3%± 0.3
3 49.6%± 0.6 48.0%± 0.5
8 54.0%± 0.8 52.0%± 0.9

Table 2. Effect of having higher budget (σ2 = 0.6) on the first
epoch compared to the last epoch on CIFAR10.

Section 1 and our theoretical construction in Section 2. Note
that the benefits of longer pretraining is small after t = 100.
It is possible that after around 100 epochs, pretraining con-
verges to a good basin and the benefits of public pretraining
plateaus afterwards. We see the same trend with OOD pub-
lic data using CINIC10 dataset with Tpub = 30, shown in
Figure 4 (right). Again, we observe that reducing privacy
noise in the earlier rounds of training is more beneficial.

To further demonstrate the importance of the earlier iter-
ations in the training, we designed an experiment where
instead of using the same privacy budget for all iterations
of private training, we train the first iteration with a lower
noise multiplier (using more privacy budget) and compared
it a setting where we train the last iteration with the lower
noise multiplier. Table 2 compares the results for various
choices of the end-to-end ε. Again, we observe that reduc-
ing privacy noise in the earlier rounds of training is more
beneficial.

3.2. Manifold on Large Speech Model

Setup To better understand the geometry of the loss func-
tion for training machine learning models, we evaluate
training a ConformerM (Gulati et al., 2020) model on Lib-
rispeech (Panayotov et al., 2015) dataset with/without public
data pretraining using DP-Adam. Specifically, we train the
following three models:

• Oracle model: We train a ConformerM model on the
complete Librispeech dataset for 100k steps. This is
considered as the global minima of the manifold.

• Private model: We train a ConformerM model on

(a) (b)

Figure 5. Projected manifold of ConformerM on Librispeech by
interpolating 3 models. (0, 0) is the oracle model, with weights w1.
(1, 0) is the private model with public pretraining, with weights
w2. (0, 1) is the private model, with weights w3. Any other point
(x, y) is the model with weights (1−x−y) ·w1+x ·w2+y ·w3.
We can tell that (0, 0) and (1, 0) are within the same basin while
(0, 1) is in a different basin separated by a hill on the manifold.
The manifold is constructed by RNNT loss (Graves, 2012) on a
128-sample subset of Librispeech’s testother dataset.

90% samples drawn uniformly from the Librispeech
dataset using DP-Adam for 20k steps.

• Private model with public pretraining: We pretrain
a ConformerM model on the 10% of the samples with
Adam for 10k steps and then fine-tune on the remaining
90% samples with privacy for 1k steps.

Note that the hyper-parameters for the latter two settings are
tuned to optimize the test word error rate under the same
privacy budget ε = 9.8. We fix the privacy parameter δ
to 1e-6, ensuring that δ < n−1, where n is the number of
private samples.

Results As shown in Figure 5, we interpolate the three
models above to draw a projected slice of the manifold.
From both the heatmap and the contour figures, we can tell
that private model with public training falls into the same
“basin” as the oracle model, which we refer to as the global
minima basin. The private model without pretraining falls
into a different basin, separated from the global minima
basin by a “hill”. This is evidence for our hypothesis that
public pretraining is useful specifically because it picks
a good basin. The `2-distance between the oracle model
and the private model with public pretraining is 671.22,
much smaller than the distance between the oracle model
and the private model which is 1738.27. This parallels the
construction in Section 2, in which private fine-tuning takes
place on a smaller scale than pretraining on public data. We
also altered the pre-training hyper-parameters of the private
model with public pre-training and the results are similar
(check Section E for more details).
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4. Discussion
In this paper we show that there exists natural learning tasks
where public data is necessary and sufficient to achieve a
target accuracy under DP model training. However, while
empirically we observed this is true for deep learning tasks,
theoretically we only showed this for a carefully constructed
example. It is an interesting research direction to try to close
the gap between our theoretical example for a synthetic con-
struction and our empirical observations on loss landscapes
for deep learning models trained on standard benchmarks.
Furthermore, we showed the necessity of public data is inde-
pendent of whether the public data is in-distribution with the
private training data or not. (Tramèr et al., 2022) discusses
the perils of indiscriminate use of public data in DP train-
ing, few of which are: (i) Publicly available data does not
necessarily mean that one can use that data set for training
models without privacy consideration, as the trained model
can release information from the data set verbatim, and (ii)
Many existing empirical works on achieving better accu-
racy for DP training by using public data do not necessarily
reflect realistic scenarios for model training. In particular,
in real-world settings the available public data can be far
out-of-distribution from the private data set. The authors
provide prescriptive recommendations on being judicious in
the choice of public data for DP training. Our work is com-
plementary to (Tramèr et al., 2022), and we concur with
all the concerns in their paper. Given our current impossi-
bility result, and the concerns in (Tramèr et al., 2022), an
important research question for future exploration is given
a public data set which may be far out-of distribution from
the private training data, what is the best DP training pro-
cedure that exploits the public data set to obtain higher
accuracy? To the best of our knowledge, all current works
(see Section 1 for reference) on the use of public data in DP
training do not provide an answer.
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A. Notation Reference

Notation Meaning
A algorithm, i.e. a randomized map from datasets to outputs

Bp(c, r) p-dimensional ball of radius r centered at c
C constraint set
D data set (∈ D∗)
d (singular) data point (∈ D)
D data domain
ε, δ privacy parameters
η step size in gradient descent
` (per-example) loss function
L population loss function
n dataset size

N(µ,Σ) normal distribution with mean µ and covariance matrix Σ
p dimension
Π projection operator
q the “activation function” in Section 2
R, r radii of various sets in our construction
τ data (population) distribution
T set of data distributions
θ model

θ∗(τ) population minimizer on the distribution τ

Table 3. Summary of notation

In Table 3, we give a summary of the notation used throughout the paper.

B. Survey of the gain of pretraining
The stark difference in the gain of public pretraining between private and non-private model training has been widely
observed in several tasks both in natural language and vision.

Table-To-Text Generation. The experiment details can be found in (Li et al., 2022b).

BLEU ROUGE-L
ε ∞ 8 3 ∞ 8 3

with public pretrain 69.46 63.19 61.52 71.36 66.43 65.67
without public pretrain 65.73 24.25 15.46 68.75 39.95 35.24

gain of public pretraining 3.73 38.94 46.06 2.61 26.48 30.43

Table 4. BLEU and ROUGE-L scores for generating natural language descriptions of table entries on E2E dataset (Novikova et al., 2017)
reported in (Li et al., 2022b, Table 2) with δ = 10−5. The pretrained model in the first row is GPT-2.

Image classification. The experimental details can be found in (De et al., 2022).

C. Missing Details from Section 2
Before turning to the proof, we fill in the details of the construction given in Section 2: We chooseR1 = 1/p2+κ log(p)/

√
p,

where κ is a sufficiently large constant. Any R2 < M − R1 suffices for our proof. We choose r = O( 1

p5/2
√

log(1/δ)
).

We formally define the range of data distributions we use in our construction as a set of products of two distributions:
T := {τ1 × τ2|τ1 ∈ T1, τ2 ∈ T ′2}, where T1 is defined as in Lemma 1.2, and T2 is defined as in Section 2.

12



Why Is Public Pretraining Necessary for Private Model Training?

BLEU ROUGE-L
ε ∞ 8 3 ∞ 8 3

with public pretrain 42.78 35.06 31.03 56.72 54.58 52.06
without public pretrain 26.79 7.77 3.00 37.86 21.68 17.14

gain of public pretraining 15.99 27.29 28.03 18.86 32.90 34.92

Table 5. BLEU and ROUGE-L scores for generating natural language descriptions of table entries on DART dataset (Nan et al., 2020)
reported in (Li et al., 2022b, Table 8) with δ = 10−5. The pretrained model in the first row is GPT-2.

CIFAR-10 ImageNet
ε 8 4 2 1 8 4 2 1

with public pretrain 96.7 96.1 95.4 94.7 81.8 79.2 74.7 70.3
without public pretrain 81.4 73.5 65.9 56.8 32.4 − − −

gain of public pretraining 15.3 22.6 29.5 37.9 49.4 − − −

Table 6. Test accuracy for image classification on CIFAR-10 and ImageNet datasets reported in (De et al., 2022, Table 1) with δ = 10−5

and 8 · 10−7, respectively. The pretraining public data for CIFAR-10 is ImageNet and for ImageNet is JFT-4B. Without pretraining,
private training on ImageNet failed to converge, indicated by −.

C.1. Proof of Theorem 2.1

In our proof we will use DP-SGD as instantiated in (Bassily et al., 2014). Combined with results on uniform stability of
gradient descent on strongly convex losses (see e.g. (Hardt et al., 2016)), Theorem 2.4 of (Bassily et al., 2014) and its proof
implies the following:

Theorem C.1. Suppose ` has Hessian mIp and for any d, d′, ‖∇`(θ; d)−∇`(θ; d′)‖2 ≤ L. Then for T = n2, ηt = 1
mt ,

σ2 = O(L
2 log(1/δ)
ε2n2 ), if ‖θ0 − θ∗‖2 ≤ O(L/m) running T steps of DP-SGD with step size ηt in iteration t and variance σ2

is (ε, δ)-DP and achieves population loss:

O

(
L2p log(n) log(1/δ)

mε2n2
+
L2

mn

)
.

We also have the following lemma, which effectively says that unconstrained and DP-SGD stays within a ball with high
probability.

Lemma C.2. With probability 1− T2−Ω(p) over (unconstrained) DP-SGD using the parameters in Theorem C.1, for all
0 ≤ t ≤ T , we have ‖θt − θ∗‖2 ≤ max{2√pσ/m, ‖θ0 − θ∗‖2}.

Proof. By a multivariate Gaussian tail bound, w.p. 1− T2−Ω(p) in each iteration of DP-SGD the noise we add has `2-norm
at most 2

√
pηtσ. Conditioned on this event, since we have an identity quadratic loss and ηt ≤ 1/m for all t, each step of

gradient descent is (1−mηt) contractive. So we have:

∀t : ‖θt − θ∗‖2 ≤ (1−mηt) ‖θt−1 − θ∗‖2 + 2
√
pηtσ.

The lemma follows by induction.

Proof of Theorem 2.1. We use S, ` as defined in Section 2, (and the associated definitions of D, T , q, etc.).

We will prove (1) in two parts. First, we will show that for any Apriv , there exists τ1 ∈ T1 such that the desired lower bound
holds for τ1 × τ2 for all τ2 ∈ T ′2 . Second, we show that for any Apub there exists τ2 ∈ T ′2 such that the desired lower bound
holds for τ1 × τ2 for all τ1 ∈ T1. Then taking τ1 from the first statement and τ2 from the second statement, both lower
bounds hold for τ1 × τ2 as desired.

Proof of (1) for Apriv: Let τ2 be an arbitrary, fixed member of T ′2 . Fix any Apriv and take any distribution τ1 ∈ T1. Let
τ(τ1) ∈ T be the distribution over (d1, d2) given by sampling d1 ∼ τ1 and d2 ∼ τ2. Let L refer to the population loss

13
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over `, and let L1 refer to the population loss over `1(θ1, d1) for d1 ∼ τ1. Consider the following algorithm A′priv for
minimizing `1 given p2 samples from τ1: For each of these samples d1, A′priv draws an i.i.d. sample d2 from τ2 and pads
d1 with d2, giving p2 i.i.d samples from τ(τ1). A′priv then runs Apriv on these samples, and takes θ1 from the output of
Apriv. Note that A′priv is allowed to know the distribution τ2 since it is fixed and independent of the data Apriv receives.
We observe a few facts about L. First:

L((θ1, θ2))− L((θ1, θ
′
2)) = q(θ1)(L2(θ2)− L2(θ′2)). (3)

Since q is non-negative, this gives:

L2(θ2) ≤ L2(θ′2)↔ L((θ1, θ2)) ≤ L((θ1, θ
′
2)) (4)

This implies that replacing θ2 with the population minimizer of L2 can only improve our risk on `. Next, note that for any
τ1 ∈ T1, since its population minimizer is in S, q(θ∗(τ1)) = 1. In turn, θ∗(τ1 × τ2) = (θ∗(τ1), θ∗(τ2)) for all τ1 ∈ T1.
Finally, since q is in [0, 1] and L2 is non-positive this gives:

L((θ1, θ
∗(τ2)))− L(θ∗(τ(τ1))) = L1(θ1)− L1(θ∗(τ1))− (1− q(θ1)) · L2(θ∗(τ2)) ≥ L1(θ1)− L1(θ∗(τ1)). (5)

In other words, if we choose θ2 to be the minimizer of L2, then our risk on L is at least our risk on L1 alone. Putting it all
together:

ED∼τ(τ1)p2
[
Eθ∼Apriv(D) [L(θ)]− L(θ∗(τ(τ1)))

]
(4)
≥ ED∼τ(τ1)p2

[
E(θ1,θ2)∼Apriv(D) [L((θ1, θ

∗(τ2)))]− L(θ∗(τ(τ1)))
]

(5)
≥ E

D∼τp2

1

[
Eθ1∼A′

priv(D) [L1(θ1)]− L1(θ∗(τ1))
]
.

Using Lemma 1.2, since we are solving a p4-dimensional mean estimation problem with p2 samples and (1, o(1/n)-DP, we
know that the final expression (the risk of A′priv) is Ω(1) for some τ1 ∈ T1, which implies the same lower bound on the risk
of Apriv for τ1 × τ2.

Proof of (1) for Apub: Fix an arbitrary τ1 ∈ T1. Let τ(τ2) denote τ1 × τ2. Given any Apub, consider A′pub that takes p
samples from τ2, pads them with i.i.d. samples from τ1 to get p samples from τ(τ2). It then runs Apub on these samples,
clips the norm of the θ2 in Apub’s output to be at most r, and uses this as its output.

We again make some observations on `. First, since the population minimizer θ∗(τ1) is always in S by definition, we have
q(θ∗(τ1)) = 1. Then, since `2 is non-positive:

L(θ1, θ2) ≥ L(θ∗(τ1), θ2) (6)

Next, by definition of `2 and non-expansiveness of Euclidean projection, clipping θ2 to a ball of radius r can only decrease
the loss, i.e., if we define CLIP(θ2, r) := θ2

max{1,‖θ2‖2/r}
:

L2 (CLIP(θ2, r)) ≤ L2(θ2). (7)

Then we have:

ED∼τ(τ2)p
[
Eθ∼Apub(D) [L(θ)]− L(θ∗(τ(τ2)))

]
(6)
≥ ED∼τ(τ2)p

[
E(θ1,θ2)∼Apub(D) [L((θ∗(τ1), θ2))]− L(θ∗(τ(τ2)))

]
(3)
= ED∼τ(τ2)p

[
E(θ1,θ2)∼Apub(D) [L2(θ2)]− L2(θ∗(τ2))

]
14
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(7)
≥ ED∼τp

2

[
Eθ2∼A′

pub(D) [L2(θ2)]− L2(θ∗(τ2))
]
.

Since θ2 in the last line has norm at most r, the last expression (the risk of A′pub on `2) is equal to p times the risk of A′pub
on a rescaling of the mean-estimation problem in Lemma 1.3, which is Ω(1) for some τ2 ∈ T ′2 . This implies the same lower
bound on the risk of Apub for τ1 × τ2.

Proof of (2): We initialize θ1 = θ2 = 0 for simplicity1. Then, note that the term p · q(θ1) · `2(θ2) is a constant in the region
where q(θ1) = 0, which includes the origin. So, the gradient of this term is 0 at the origin, and a single step of gradient
descent on the public data sets θ1 to the empirical minimizer of `1 (which achieves risk O(1/p) on `1 alone in expectation),
and does not affect θ2. We will then run DP-SGD from this point.

By a vector Azuma inequality, with probability at least 1 − p−Ω(κ), θ1 ∈ S and is distance at least Ω( log p√
p ) from the

boundary of S. In the p−Ω(κ) probability event this does not happen, since both `1 and `2 take on values in an interval of
length O(p), our risk is at most O(p), and so for sufficiently large constant κ the contribution of this event to our expected
risk is negligible. So we just need to show our overall risk is O(1/p) in expectation when after a single step of gradient
descent on the public data, θ1 ∈ S and is distance Ω( log p√

p ) from the boundary.

Note that as long as θ1 ∈ S, q(θ1) = 1 and thus the Lipschitzness of ` with respect to θ1 is O(1). We will argue that if
r is sufficiently small, then θ1 does not move by more than O(1/p) with probability 1 − p−Ω(1) (and as before, if this
high probability event does not occur, the contribution to the risk is negligible). As long as θ1 does not move by more
than O(1/p) while we run DP-SGD, it will remain in S since we assume at the start of DP-SGD, θ1 is distance Ω( log p√

p )

from the boundary of S. Putting it all together, this implies that (i) the excess loss on `1 does not increase by more than
O(1/p), since `1 is O(1)-Lipschitz with respect to θ1, and (ii) since θ1 stays within S and thus q(θ1) = 1, the change in θ2

is the same as the change if we ran DP-SGD on `2(θ2) alone. Lemma C.2 implies that θ2 stays within Bp(0, 2r), and thus
DP-SGD on `(θ2) is the same as running DP-SGD on the purely quadratic loss p

2r2 ‖θ2 − d2‖22, with high probability. So by
Theorem C.1, DP-SGD with optimal parameters will give θ2 achieving risk Õ(1/p2) on `2 alone. This gives an overall risk
bound of O(1/p), completing the proof.

Now, the idea is that in DP-SGD as in Theorem C.1, the total movement of θ1 due to both gradient steps and noise is an
increasing function of r, so we can set r to be sufficiently small to guarantee θ1 does not move by more than O(1/p).
Specifically, as long as θ1 ∈ S we have ` = `1 + `2, and so the loss ` satisfies ‖∇`(θ; d)−∇`(θ; d′)‖2 = O(p/r) for
all d, d′ (the gradient difference bound on `2) as long as θ1 ∈ S. We use the optimal setting of parameters in DP-SGD
corresponding to L = O(pr ),m = p

r2 , noting that the initialization condition in Theorem C.1 is satisfied by θ2 = 0. If
we plug these into the parameter settings in Theorem C.1, we get that we should use T = Θ(p2) iterations with step-size

ηt = r2

pt and per-iteration variance σ = Θ(

√
log(1/δ)

r2 ), and achieves risk Õ(1/p) on `2 alone. Then, the movement of θ1

due to unnoised gradients in DP-SGD is at most O(1) ·
∑
t ηt = Θ(r2p log p) (here we use the fact that the Lipschitz

constant with respect to θ1 is O(1) within S, not O(p/r)), and with high probability the movement due to the noise is
O(
√
p4
√∑

t η
2
t σ) = O(p3/2r

√
log(1/δ)). So if r = O( 1

p5/2
√

log(1/δ)
), we get the desired upper bound on the movement

of θ1 during DP-SGD.

Proof of Theorem 2.2. The proof is almost exactly the same as Theorem 2.1, so we only highlight the changes to that proof.

We define T similarly to Theorem 2.1: For each τ = τ1 × τ2 in T as defined in Theorem 2.1, we replace it with
(τpub = τ1 × Z, τpub = τ1 × τ2) where Z is a point distribution on the origin.

Now, the lower bound in on Apriv in (1) can be proven exactly the same as in Theorem 2.1 since we’re using the same set
of private distributions. The lower bound on Apub follows similarly to Theorem 2.1, since we proved it holds for τ1 × τ2
where τ1 can be arbitrary. Alternatively, one can note that Apub learns no information about τ2 from the public data, so it
cannot do better on `2 than outputting a fixed point, which has risk Ω(1)

The upper bound in (2) follows since the algorithm only evaluates gradients on the public data where q(θ1) = 0, i.e. it never
uses the coordinates in the public data that are changed between this theorem and Theorem 2.1.

1As long as q(θ1) = 0 and ‖θ2‖2 ≤ r initially with high probability, the proof still goes through.
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D. Quadratic Example
In this section, we show that our construction holds even if the loss function is quadratic, as long as we are okay with using
a constrained optimization problem.

Theorem D.1. For every integer p ≥ 1, for C = D = Bp4(0, 1)×Bp(0, 1) there exists ` such that:

(1) For δ = o(1/p2), any (non-private) algorithm Apub : Dp → C, and any (1, δ)-DP algorithm Apriv : Dp2 → C there
exists τ such that:

EDpriv∼τp2

[
Eθ∼Apriv(Dpriv) [L(θ)]− L(θ∗(τ(Apriv)))

]
= Ω(1)

EDpub∼τp

[
Eθ∼Apub(Dpub) [L(θ)]− L(θ∗(τ(Apub)))

]
= Ω(1)

(2) For any δ ≥ 2−p, there exists an algorithm Amixed : Dp+p2 → C which runs projected gradient descent on the first p
examples, followed by (1, δ)-DP-SGD on the last p2 examples, such that for any τ :

ED∼τp+p2

[
Eθ∼Amixed(D) [L(θ)]− L(θ∗(τ))

]
= O(1/p)

Proof. We will first state ` and then prove each item in the theorem statement. We use the following construction:
C = D = Bp4(0, 1) × Bp(0, r). Let (θ1, θ2) denote an element of C, with θ1 ∈ Bp4(0, 1) and θ2 ∈ Bp(0, r) for
r = O( 1

p5/2
√

log(1/δ)
), and similarly with (d1, d2) and D. We let `((θ1, θ2), (d1, d2)) = 1

2 ‖θ1 − d1‖22 + p
2r2 ‖θ2 − d2‖22.

As in the proof of Theorem 2.1, we will show (1) in two parts: for any Apriv, there exists τ1 ∈ T1 such that the desired
lower bound holds for τ1 × τ2 for all τ2 ∈ T ′2 , and that for any Apub there exists τ2 ∈ T ′2 such that the desired lower bound
holds for τ1 × τ2 for all τ1 ∈ T1.

Proof of (1) for Apriv: Fix Apriv and take any distribution τ1 over Bp4(0, 1). Let τ(τ1) be the distribution over (d1, d2)
given by sampling d1 ∼ τ1 and letting d2 be the origin with probability 1. Let L refer to the population loss over `, and let
L1 refer to the population loss over `1(θ1) := ‖θ1 − d1‖22 , d1 ∼ τ1.

Now, consider an algorithm A′priv that takes p2 samples from τ1, pads them with the origin to get p2 samples from τ(τ1) in
the preceding paragraph, runs Apriv on these samples, and then takes θ1 from the output of Apriv . Notice that:

ED∼τ(τ1)p2
[
Eθ∼Apriv(D) [L(θ)]− L(θ∗(τ(τ1)))

]
≥ ED∼τ(τ1)p2

[
E(θ1,θ2)∼Apriv(D) [L((θ1, 0))]− L(θ∗(τ(τ1)))

]
= E

D∼τp2

1

[
E(θ1,θ2)∼Apriv(D),d1∼τ1

[
1

2
‖θ1 − d1‖22

]
− L1(θ∗(τ1))

]
= E

D∼τp2

1

[
Eθ1∼A′

priv(D) [L1(θ1)]− L1(θ∗(τ1))
]
.

By Lemma 1.2, the final expression is Ω(1) for some distribution τ1(Apriv). In turn, for the corresponding τ(τ1(Apriv)),
Apriv has excess population loss Ω(1) in expectation as desired.

Proof of (1) for Apub: This follows by an argument symmetric to the previous part, except we use Lemma 1.3 instead of
Lemma 1.2, and the observation that minimizing p

2r2 ‖θ2 − d2‖22 is equivalent to minimizing p
2 ‖θ2 − d2‖22 over Bp(0, 1).

In particular, the lower bound on just ‖θ2 − d2‖22 given by Lemma 1.2 is Ω(1/p), and the lower bound of Ω(1) on L follows
after using the same reduction as in the proof of (1) and taking into account the multiplier p2 .

Proof of (2): This follows similarly to Theorem 2.1, so we only highlight the high-level proof and major changes here.
A single step of projected gradient descent on the public data gets us to the empirical minimizer of θ1, which achieves
excess risk O(1/p) on 1

2 ‖θ1 − d1‖22. Then, since we are using projected gradient descent, we know θ2 is distance O(r)
from the population minimizer of θ2, so projected DP-SGD on the private data gets to a point which achieves risk O(1/p)
on p

2r2

∥∥θ2 − d2
2

∥∥
2
. By a similar argument to Theorem 2.1, projected DP-SGD does not cause θ1 to move by more than

O(1/p) with high probability if r = O( 1

p5/2
√

log(1/δ)
).
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If we want to take this same example and make it unconstrained, an issue arises: A single step of gradient step with step size
1 will cause θ2 to move by 1/r2, which is far larger than the radius of the ball that θ2 was restricted to in the constrained
setting. In turn, the DP-SGD guarantees worsened. We can remedy this by taking smaller step sizes on the public data so
that each step is non-expansive, i.e. θ2 does not leave the ball and the DP-SGD guarantees still hold. However, in order to
do so we need to use step sizes where η = O(r2), which means we will need to take Ω(1/r2) steps in order to reduce our
distance to the minimizing θ1 by a constant. Since r is being set to a small value, this is a large number of steps. In other
words, it is possible to take this example and make it unconstrained, while still satisfying that public-then-private gradient
descent achieves the desired excess loss, but the algorithm will not be efficient.

E. Additional Experiments for Section 3.2
To validate whether Figure 5 is a persistent phenomenon, we altered the public pre-training hyper-parameters and conducted
two more sets of experiments. After changing the pre-training sample size and pre-training steps, we observe similar results
as shown in Figure 6.

(a) (b) (c) (d)

Figure 6. Projected manifold of ConformerM on Librispeech by interpolating 3 models. In 6(a) and 6(b), the fine-tuned model is
pre-trained on 1% of the training samples. In 6(c) and 6(d), the fine-tuned model is pre-trained for only 5k steps. Other hyper-parameters
are exactly the same as Figure 5.
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