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ABSTRACT

Explainable artificial intelligence (XAI) offers enhanced transparency by reveal-
ing key features, relationships, and patterns within the input data that drive model
decisions. In healthcare and clinical applications, where physiological signals
serve as inputs to the models for decision making, such transparency is critical
for facilitating analysis of inference causality, ensuring reliability, identifying bi-
ases, and uncovering new insights. In this work, we introduce a self-explaining
multi-view deep learning architecture, that generates task-relevant and human-
interpretable masks, attributing feature importance during model inference for
stratifying key information from input signals. We implement the 2-view version
of the proposed architecture for three clinically-relevant regression and classifi-
cation tasks related to cardiovascular health, involving electrocardiogram (ECG)
or photoplethysmogram (PPG) signals. Experimental results demonstrate that
the complementary masks, self-generated by our proposed architecture, outper-
form well-established post-hoc methods (LIME and SHAP), both qualitatively and
quantitatively in explainability. Furthermore, the 2-view model offers task-level
performance comparable to or better than the state-of-the-art methods, display-
ing its broad applicability across various cardiovascular-related tasks. Overall,
the proposed method offers new directions for interpretable machine learning and
data-driven analysis of cardiovascular signals, envisioning self-explaining models
for clinical applications.

1 INTRODUCTION

Data-driven end-to-end deep learning methods find applications in problems that are difficult to char-
acterize using manually-defined features or traditional statistical analysis. Examples include image
classification (He et al., 2016), disease diagnosis (Ronneberger et al., 2015), speech recognition
(Abdel-Hamid et al., 2014), and financial market prediction (Fischer & Krauss, 2018). However,
the behavior of these models generally lacks transparency, making it difficult to understand how
decisions are made by the model from its input.

To enhance the interpretability of deep learning methods, explainable artificial intelligence (XAI)
has recently received increased attention, contributing to reliable decision-making (Wang et al.,
2020; Hendricks et al., 2016; Ribeiro et al., 2016), analysis of model biases and failure modes (Ras
et al., 2018; Karpathy et al., 2016; Geirhos et al., 2018; Vilone & Longo, 2021), and revealing
key features, patterns and relationships within input data (Jumper et al., 2021). In healthcare and
clinically-relevant applications, where deep learning models are used to make diagnostic decisions
from physiological signals (Alberdi et al., 2016; Imani et al., 2016; Castaneda et al., 2018; Seshadri
et al., 2019; Betti et al., 2017; El-Hajj & Kyriacou, 2020; Liu et al., 2023; Mousavi et al., 2020;
Suresh & Duerstock, 2020), XAI has the potential to identify key patterns in physiological signals
that drive decision making, with implications for assessing clinical reliability (Mehta et al., 2023;
Chandrasekhar et al., 2020; González et al., 2023), personal health monitoring (Charlton et al.,
2022b), efficient distribution of medical resources (Kang & Exworthy, 2022), and continuous mon-
itoring of risk factors in critical care (Rao et al., 2023). However, at present, generalized solutions
for interpretable learning from physiological signals are still limited.
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Figure 1: Overview of existing methods for improving interpretability in machine learning models.

In this paper, we introduce a generalized new self-explaining deep learning method that reveals
key patterns in cardiovascular signals for stratifying health-related information, with minimum help
from prior expert knowledge. Our work offers the following contributions:

- We introduce a generalized approach for learning semantic information from consecutive intervals
of an input signal, by attributing each sample in the signal to one of N semantic states. Samples
attributed to the same semantic state are expected to form patterns that offer distinct information
for making the final clinically-relevant decision.

- We propose a multi-view end-to-end deep learning architecture to implement our learning princi-
ples. The proposed architecture includes a mask network that produces multiple mask-modulated
versions of the signal, each representing a “semantic view” formed by samples in the signal cor-
responding to the same semantic states. Each semantic view highlights distinct regions and in-
formative patterns within the signal. Concatenated with an embedding network and a decision
network, during supervised training using the task labels, the created semantic views are updated
based on the saliency information with respect to the model’s output, making the highlighted re-
gions of the signal more relevant to the task. As such, the semantic views can improve model’s
interpretability through explaining the correspondence between regions in the input signal and the
clinically-relevant information inferred from the signal.

- We implement the 2-view version of the proposed multi-view architecture for 3 different classi-
fication and regression tasks involving stratifying clinically-relevant information from 2 differ-
ent cardiovascular signals. We validate the proposed models by quantitatively and qualitatively
comparing the correctness of their self-generated explanations, against those created from well-
established post-hoc methods, as well as comparing their task-level performance against state-
of-the-art methods. We also demonstrate the alignment between the interpretable representations
generated by our models, and the domain knowledge from human experts, for each task.

2 RELATED WORKS

Figure 1 summarizes existing methods that facilitate interpretability in machine learning models.
Unlike white-box models with inherent explainability due to their simplicity, linearity or feature-
driven nature, learners in data-driven deep learning models, such as multi-layer perceptron (MLP),
convolutional neural network (CNN) or recurrent neural network (RNN), generally lack inter-
pretability when stacked with non-linear activations (Ali et al., 2023). To understand their working
principles, post-hoc model explanation methods were developed, to identify the input-output corre-
spondence learned by these models after training. For example, (Zeiler & Fergus, 2014) proposed
the occlusion sensitivity analysis for image classification models, to investigate how occluding each
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region in the input affects model’s output. Alternatively, (Simonyan, 2014) inspected the gradient
backpropagated from the class probability to each input pixel, to form a class-specific saliency map
that highlights regions in the input that changes the model’s output the most. Studies in (Zhou et al.,
2016) and (Selvaraju et al., 2017) used the 2-D feature maps generated by the last convolutional
layer in CNNs to produce class activation map (CAM) and gradient-weighted CAM (Grad-CAM)
that localize regions in the input that are most related to the output. The insights from these ap-
proaches were further generalized in later works, such as LIME, DeepLIFT and SHAP (Ribeiro
et al., 2016; Lundberg, 2017; Shrikumar et al., 2017), to explain any trained model by finding an
interpretable delegation model, with faithfulness to the original non-interpretable model.

Post-hoc model explanation methods explain previously-trained models based on local input-output
properties around each sample, which may limit their fidelity in representing the working princi-
ples of the original model (Rudin, 2019). Moreover, explanations provided by these methods are not
guaranteed to be human understandable, since the models are not regularized to encode interpretable
and task-specific concepts in the learned representations during training (Alvarez Melis & Jaakkola,
2018; Park & Hwang, 2023). For example, (Troncoso-Garcı́a et al., 2022) applied the LIME method
to a sleep apnea detection model that takes multi-modal inputs (blood pressure (BP), electrocar-
diogram (ECG), electroencephalogram (EEG), and nasal respiratory signals), however, the LIME
method only highlighted a few discrete samples in the input time series, offering limited insight into
the key patterns in the signals that characterize sleep apnea.

To address these limitations, recent works focused on developing self-explaining models, with in-
trinsic interpretability either learned during training or built-in to the model architecture, for of-
fering faithful, stable, and human-understandable explanations. (Alvarez Melis & Jaakkola, 2018)
proposed a locally-linear neural network, in which the model is regularized to have local linearity
around each sample, for offering inherent explainability. Sharing similar insights, (Sel et al., 2023)
proposed a physics-informed neural network (Raissi et al., 2019) for BP estimation, by optimiz-
ing an additional physics-based loss to embed physical constrains in the input-output correspon-
dence of the model. Besides, recent advancements in incorporating attention mechanisms in deep
learning models (Bahdanau, 2015; Dosovitskiy, 2021; Mousavi et al., 2020; Jin et al., 2021) also
enhances model’s interpretability, through investigating the attention maps generated by the model
that highlights informative patterns or relationships in the model’s inputs. Furthermore, the flex-
ibility of learning interpretable representations during model training, enables better human-level
understanding of the explanations produced by the model. For example, (Hendricks et al., 2016)
considered joint training of classification and language models for image classification tasks, to
generate human-understandable explanations to the produced classifications in natural language.

Due to the unique capabilities of self-explaining models, we seek to develop generalized solutions
that support healthcare decisions, by improving human understanding of health-related inference
from input signals.

3 METHODS

3.1 PROBLEM FORMATION

Let S = {x1,x2, · · · ,xT } = {xt}Tt=1 denotes a continuous multivariate time series interval with
T samples, where xt = [x1,t, · · · , xD,t] ∈ RD is a D-dimensional sample at time instant t. S is
labeled by y denoting the clinically-relevant information to be inferred from the signal. As such, the
stratification task can be defined in general as producing ỹ, an estimation of y, from S.

To enable generalized and interpretable estimations, we build on prior work (Wang et al., 2011;
Yue et al., 2022; Deldari et al., 2021; Gharghabi et al., 2019), which assumes that the input signals
reflect the behavior of their underlying system, whose dynamics are describable by a number of
latent semantic states closely related to y. To facilitate human-level interpretation and segment time
series into multiple distinct regions, each sample xt in the time series S is attributed to one and
only one of the N semantic states u1,u2, · · · ,uN . Samples sharing the same nth semantic state
form a sub-series sn, referred to as a semantic view reflecting distinct characteristics of S relevant
to y. Therefore, through extracting information from all N semantic views, one can retrieve features
from the time series S that comprehensively describe the characteristics of the underlying system, for
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Figure 2: The proposed multi-view model architecture for self-explaining deep learning. An exam-
ple of creating two views, as used in the experiments in this study, is shown. A mask network is
trained to form complementary semantic views from the input signal. A shared embedding network
is used to extract features from each semantic view. A decision network combines features extracted
from all semantic views to form the final output.

estimating the desired information y. We thereby describe the general process of signal stratification
in 3 steps:

- Semantic segmentation: Attribute each sample xt in S to one of the N semantic states, yielding
N semantic views, s1 = {xt|xt ∈ u1}, · · · , sN = {xt|xt ∈ uN}.

- Embedding extraction: Learn a low-dimensional embedding representation zn, from each of
the high-dimensional semantic views sn. As such, z1, · · · , zN are expected to form complete
representations of all distinct semantic information that S carries.

- Decision: Form a final output ỹ based on embeddings extracted from all semantic views.

Essentially, the semantic segmentation process is equivalent to performing a N -class sample-by-
sample classification on S. However, unlike its conventional form, where the segmentation is learned
under the supervision of manual annotations (Peimankar & Puthusserypady, 2021; Moskalenko
et al., 2020), here, no prior implication is specified to each of the N semantic states. During train-
ing, the model is left to spontaneously learn how samples in S should be attributed to each semantic
state, such that the patterns retained in each semantic view are most informative for optimizing the
estimation of y. As such, the semantic views produced by the model during inference, can explain
informative patterns in S that drives the estimation of y.

3.2 PROPOSED METHOD

We propose a multi-view model architecture to implement the abovementioned semantic segmen-
tation, embedding extraction, and decision procedures, within a unified end-to-end deep learning
framework (Figure 2 displays a 2-view implementation).

3.2.1 LEARNING FOR SEGMENTATION

For interpreting and optimizing each semantic view with deep learning models, we form unified
semantic views ŝn by padding sn with zero vectors to the same length as S, following

ŝn = {x̂t}Tt=1, x̂t =

{
xt if xt ∈ un

0 otherwise
. (1)

As such, each semantic view ŝn is derived, by applying a segmentation mask Mn to the original
signal S through calculating element-wise multiplication, as

Mn = {mn,t}Tt=1, mn,t =

{
1 if xt ∈ un

0 otherwise
,

ŝn = S⊗Mn = {mn,t × xt}Tt=1.

(2)
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Since each sample in the time series S is attributed to one and only one semantic state, the masks
M1, · · · ,MN are complementary to each other. To enable automatic learning of these segmentation
masks through deep learning and gradient-based optimization, we use a softmax activation function
to facilitate the complementary constraints among N semantic views, following

M̃n = {pn,t}Tt=1, pn,t =
ehn,t∑N
n=1 e

hn,t

, (3)

where hn,t are the logit outputs of the mask network for each semantic state un and sample xt, and
pn,t are the normalized probabilities that attribute each sample at t = 1, · · · , T , to each semantic
state n = 1, · · · , N . As such, M̃n can be learned from S using the mask network. These learned
masks are applied to S itself to create N semantic views s̃n to be optimized by the subsequent
embedding and decision networks, as

s̃n = S⊗ M̃n = {pn,t × xt}Tt=1. (4)

Applying M̃n to S thereby retains samples in S attributed to the semantic state un with high am-
plitudes, and attenuates the remaining samples that correspond to other semantic states, in s̃n. To
enable learning of informative patterns from consecutive segments of the input signal, one can en-
force a minimum duration L for each semantic mask, ensuring consecutive samples within the mask
share the same semantic state and {pn,t} values. We utilize this approach for ECG and PPG signals
in our experiments, as explained in Appendix A.2.

During backpropagation, each semantic view is updated, through optimizing the segmentation masks
M̃n for fitting the model’s output ỹ to y. The gradient of each element in M̃n with respect to the
loss function f evaluated between ỹ and y is

∂f(ỹ, y)

∂pn,t
=

∂f(ỹ, y)

∂ỹ
×

D∑
d=1

∂ỹ

∂s̃n,d,t
× xd,t, (5)

where ∂ỹ
∂s̃n,d,t

is the saliency map of the embedding and decision networks in the model that localize
samples in each semantic view with the greatest effect on the model’s output (Simonyan, 2014;
Selvaraju et al., 2017). Such saliency information in the gradient can thereby facilitate inclusion of
different informative patterns in the input signal in each semantic view during optimization, which
drive the final decision of the model.

Overall, the mask network in the proposed muti-view deep learning architecture offers self-
explainability, through creating and optimizing multiple semantic views s̃1, · · · , s̃N from the in-
put. Each semantic view forms a different interpretable perspective of S, highlighting characteristic
patterns in the signal that provides semantic information toward the output. Meanwhile, all comple-
mentary semantic views together retain all samples in S, to ensure comprehensive feature extraction
from S for making the final decision.

3.2.2 LEARNING FOR MAKING DECISIONS

An embedding network is employed to encode a low-dimensional embedding representation zn, for
each semantic view s̃n created by the mask network. Inspired by the use of shared encoders for
learning representations from augmented views (Zagoruyko & Komodakis, 2015; Chen et al., 2020;
Yue et al., 2022; Yang et al., 2022b; Deldari et al., 2021), we employ weight sharing in the embed-
ding network across all semantic views. This approach enables the learning of generalized filters and
ensures informative gradients are propagated to all semantic states, such that the mask network can
learn to segment the input signal properly. Moreover, weight sharing also ensures feature compara-
bility across semantic views, enabling the decision network to distinguish and extract comparative
features from different semantic states (Wang et al., 2024; Schlesinger et al., 2020).

Based on the embedding vectors z1, · · · , zN extracted comprehensively from all semantic views,
the decision network in the model is trained to form the final output ỹ that estimates the task label
y. For general tasks, a simple concatenation of all embeddings z = [z1, · · · , zN ] forms the input of
the decision network.

Overall, the proposed multi-view deep learning framework combines the mask, embedding, and
decision networks together, as one unified deep learning model trained under single supervision of
the task label y, for self-explaining physiological signal stratification.
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4 EXPERIMENTS

For validation of usability and interpretability of the proposed architecture, we considered 3 dif-
ferent tasks for stratifying clinically-relevant information (obstructive sleep apnea (OSA) detection
(classification), heart rate variability (HRV) estimation (regression), and BP elevation (∆BP) detec-
tion (classification), from 2 cardiovascular signals: the ECG, and the photoplethysmogram (PPG).
These two cardiovascular signals are characteristically different in waveform morphology and the
physiological information they provide. Although our model architecture allows choosing an arbi-
trary number of semantic states (N ) for different granularity of segmentation and interpretability,
here we focus on N = 2 to highlight the most discernible patterns in the signal that deliver different
information for optimal human understandability, and leave explorations of other settings for future
studies. Detailed descriptions of each task as well as information of datasets used for validation can
be found in Appendix A.1. The hyperparameter settings used for implementing the 2-view model
for each task are summarized in Appendix A.2.

5 RESULTS AND DISCUSSIONS

5.1 QUANTITATIVE INTERPRETABILITY ANALYSIS

For each task, we first quantitatively compare the correctness of self-generated explanations from our
proposed 2-view model against those created from two well-established post-hoc methods, LIME
and SHAP.

- LIME (Ribeiro et al., 2016) considers a linear surrogate model that maps the presence or absence
of interpretable elements, encoded as binary vectors, to the local outputs of the explained model
around a particular input signal, such that the linear coefficients of the fitted model attribute the
importance of each element in the input signal toward model’s output.

- SHAP (Lundberg, 2017) uses the Shapley value (Shapley, 1953) to evaluate the importance of
each element in the input signal, which assesses changes in model’s output when trained on dif-
ferent subsets of input elements, including or withholding the attributed element. SHAP ap-
proximates Shapley values using various methods (Ribeiro et al., 2016; Shrikumar et al., 2017;
Štrumbelj & Kononenko, 2014). Here, we used the Gradient SHAP method (Lundberg, 2017).

To evaluate the quality of semantic segmentation masks generated by the 2-view model as inter-
pretable representations, we treat the amplitudes of each of the two masks (denoted as mask 1 and
mask 2) as feature attribution weights that rank the importance of each length-L window in the in-
put signal toward model’s output. The interpretations self-generated by the 2-view model, are then
compared with feature attributions created on the same model, through LIME and SHAP.

For an objective quantification of interpretability, we used the well-established incremental dele-
tion method (Petsiuk, 2018; Nauta et al., 2023; Samek et al., 2016). This method evaluates how
incrementally perturbing important input features, identified by high mask amplitudes of the 2-view
model or large absolute values of attribution scores by LIME or SHAP, impacts the model’s output.
We investigated how perturbing input signal windows affects the 2-view model’s test performance,
to evaluate the correctness and sensitivity of window importance suggested by different explanation
methods. Additionally, a baseline is considered by perturbing each window in the input signal at a
random sequence.

Figure 3 summarizes the incremental deletion curves evaluated on the three 2-view models trained
for each of the considered tasks. A lower area under deletion curve (AUDC) indicates better expla-
nations that highlight essential regions in the signal closely related to model’s decision.

Across all tasks, LIME and SHAP outperformed the baseline, with SHAP having improved perfor-
mance over LIME due to its better adherence to desirable properties of model explainers (Lundberg,
2017). Meanwhile, for the proposed 2-view model, one (HRV task) or both (OSA and ∆BP tasks)
self-generated masks offered optimal AUDC performance over the post-hoc and baseline methods.
This superior performance can be attributed to the multi-view network’s architecture, which uses the
created masks to modulate the inputs to the embedding and decision networks, ensuring a straight-
forward correspondence between the interpretations and the model’s output. Interestingly, for the
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Figure 3: Evaluation of testing performance of the 2-view model in incremental deletion tests, using
window importance suggested by LIME, SHAP, and each of the 2 semantic segmentation masks
self-created by the proposed model for each of the considered tasks. A lower area under the deletion
curve (AUDC) implies that the corresponding explanation method provides more accurate attribu-
tions of the signal regions that drive the model’s decision.
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Figure 4: Rows (a) and (b): absolute attribution scores generated by LIME and SHAP, respec-
tively, for explaining the 2-view model trained for ECG-based OSA classification task. Row (c):
self-generated semantic segmentation masks from the 2-view model itself. Columns (1) and (2) rep-
resent examples of OSA condition, and columns (3) and (4) represent examples of normal condition.
Deeper color indicates higher importance.

HRV regression task, it can be observed that mask 1 performs worse than the random baseline,
which can be due to two factors. First, Equation (3) constraints samples with high amplitudes in one
mask to correspond to low amplitudes in the other, causing mask 1 to highlight regions of reversed
importance relative to mask 2. Second, tasks relying primarily on one semantic view limit the influ-
ence of the other mask. Figure 3 shows that OSA and ∆BP tasks use both views, while the HRV
task depends mainly on the view modulated by mask 2. As will be seen, these align with qualitative
analysis (Section 5.2) and clinical knowledge related to each task.

Additionally, we should state that the self-generated feature attribution is more computationally
efficient than LIME and SHAP, since the masks are retrieved through single model inference on
the evaluated input signal. Comparatively, both LIME and SHAP run model inferences repeatedly
on numerous augmented samples around the input signal to capture the model’s behavior, thereby
requiring higher computational budget.

5.2 QUALITATIVE INTERPRETABILITY ANALYSIS

We now present and discuss the semantic views generated by the proposed 2-view model for each
task qualitatively, in comparisons with attributions created by SHAP and LIME.

5.2.1 OBSTRUCTIVE SLEEP APNEA (OSA)-TASK: CLASSIFICATION, INPUT: ECG

Figure 4 summarizes examples of interpretations of the 2-view model trained for OSA classification,
generated through LIME, SHAP, and the semantic masks of the 2-view model itself.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a
) L

IM
E

PPG

(1) Stable PPG (2) Stable PPG (3) Interfered PPG

importance

(4) Interfered PPG

(b
) S

H
A

P

PPG importance

PPG

(c
) 2

-v
ie

w

mask 1
mask 2

Figure 5: Rows (a) and (b): absolute attribution scores generated by LIME and SHAP, respec-
tively, for explaining the 2-view model trained for PPG-based HRV regression task. Row (c): self-
generated semantic segmentation masks from the 2-view model itself. Columns (1) and (2) represent
examples of stable PPG, and columns (3) and (4) represent examples of interfered PPG. Deeper color
indicates higher importance.

Clinical studies have found OSA to be characterized by cyclical variation of the heart rate (CVHR)
in the ECG signal (Guilleminault et al., 1984; Hayano et al., 2011). From Figure 4, one can see that
the segmentation masks generated by the proposed 2-view model clearly capture such information.
Specifically, for examples labeled as OSA (columns (1)-(2) in Figure 4), segments corresponding to
high heart rate (HR) (manifested as dense peaks in ECG) are attributed to mask 2. Consequently,
segments with low HR (manifested as sparse peaks in ECG) are retained by mask 1. Over time, the
dominant semantic state showing the highest probability swaps between the two states correspond-
ing to low-HR and high-HR for multiple times in OSA examples, matching the characteristics of
CVHR corresponding to OSA. This explains the AUDC performance in Figure 3(a) when regions
are deleted based on the importance scores from either mask 1 or mask 2, as both are essential for
capturing CVHR. Although LIME and SHAP also capture some CVHR properties (subfigures (a1),
(b1), (a2) and (b2) of Figure 4), they do not localize consecutive regions with high or low HR, or
the occurrence of HR changes, as good as the semantic masks created by the 2-view model, result-
ing in their inferior AUDC performance in Figure 3(a). Meanwhile, in normal examples (columns
(3)-(4) in Figure 4), due to the lack of CVHR pattern in the signal, the model either consistently
suggests highest probability for a single semantic state over time (subfigure (c3) of Figure 4), or
shows uncertainties in distinguishing between semantic states (subfigure (c4) of Figure 4).

5.2.2 HEART RATE VARIABILITY (HRV)-TASK:REGRESSION, INPUT: PPG

Figure 5 summarizes examples of window importance in stable and interfered PPG signals, evaluated
by LIME, SHAP, and the semantic masks of the 2-view model that is trained for the HRV regression
task.

PPG-based HRV metrics are derived by calculating the variability of inter-beat interval (IBI), which
requires the deep learning model to locate occurrence of cardiac cycles in the PPG signal. In Figure
5, mask 2 of the 2-view model clearly and steadily captures this feature among cardiac cycles,
for PPG signals with both stable (columns (1)-(2) in Figure 5) and interfered (columns (3)-(4) in
Figure 5) morphologies, respectively. This explains the superior AUDC performance of mask 2 in
Figure 3(b), since it highlights the most essential feature (peaks of PPG indicating cardiac cycles) for
accurate HRV evaluation. Meanwhile, mask 1 highlights other regions in the PPG signal with weak
relevance to HRV, resulting in the worst AUDC performance. Comparatively, LIME and SHAP
have very limited ability to locate PPG cycles related to HRV estimation. For SHAP, although it
highlights some PPG beats (subfigures (b1)-(b4) of Figure 5), it lacks the beat-to-beat stability seen
in the self-created semantic mask from the 2-view model, which captures all beats in the signal.

5.2.3 BLOOD PRESSURE ELEVATION (∆BP)-TASK: CLASSIFICATION, INPUT: PPG

Figure 6 illustrates two examples of PPG and its derivatives for each of the normal and elevated BP
conditions, along with channel-specific model interpretations generated by LIME, SHAP, and the
semantic masks from the 2-view model, trained on the BP-elevation detection classification task.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a
) L

IM
E

BP:100 107 140 137

PPG

PPG'

PPG''

PPG'''

BP:141 166 158 167 BP:189 189 193 193

importance

BP:121 121 122 122
(1) Elevated BP (2) Elevated BP (3) Stable BP (4) Stable BP

(b
) S

H
A

P

PPG

PPG'

PPG''

PPG'''

importance

PPG

PPG'

PPG''

PPG'''

(c
) 2

-v
ie

w
 

mask 1
mask 2

Figure 6: Rows (a) and (b): channel-specific absolute attribution scores generated by LIME and
SHAP, respectively, for explaining the 2-view model trained for PPG-based ∆BP classification task.
Row (c): self-generated semantic segmentation masks from the 2-view model itself. Columns (1)
and (2) represent examples corresponding to elevated BP, and columns (3) and (4) represent exam-
ples corresponding to stable BP. Deeper color indicates higher importance.

Within a given duration, BP elevation occurs when higher BP values follow lower ones. Following
this definition, the 2-view model divides the earlier and later regions of the PPG signal into different
semantic states that potentially correspond to baseline and elevated BP (Figure 6). This property
is also partially captured by SHAP in subfigures (b2) and (b4), but not as clear as the self-created
semantic masks from the 2-view model, where the transition from one to the other semantic state
clearly locates a potential change point. In subplot (c1) of Figure 6, the masks precisely locate the
instance where major changes in PPG signal’s morphology and its peak-to-peak interval take place.
In subplots (c2), although no apparent changes are seen in PPG or its first derivative (PPG’), the
mask locates the instance of minor changes in the patterns of second and third derivatives (PPG”
and PPG”’), supporting the observation that certain BP-related information is only present in the
higher-order derivatives of the PPG signal (Gupta et al., 2022). Since it would be necessary to extract
information before and after BP elevation to characterize the level of elevation, regions retrained by
high amplitudes in both masks would be essential for driving model’s output, which explains the
low AUDC values observed when using either mask 1 or 2 in Figure 3(c).

5.3 TASK-LEVEL PERFORMANCES ANALYSIS

Table 1 compares the task-level regression and classification performance of the proposed 2-view
model for each of the 3 considered tasks, with results from task-specific state-of-the-art methods.
Additionally, from the 2-view model, a basic end-to-end deep learning model is configured for each
task by removing the mask network, and extracting a single embedding vector directly from the input
signals using the same embedding network, to infer the outputs. All 2-view and ablation models are
trained for estimating the labels of each task from scratch.

For the OSA and ∆BP classification tasks, the proposed models were compared to prior deep learn-
ing models, using the same dataset for training and testing. For the HRV regression task, results
from the proposed model were compared against direct pulse rate variability (PRV) estimates from
the PPG signal, obtained using widely-accepted beat-detection algorithms (QPPG (Vest et al., 2018)
and ERMA (Elgendi et al., 2013)), benchmarked in (Charlton et al., 2022a) and used in state-of-the-
art PPG-based HRV studies (Mejı́a-Mejı́a et al., 2022; Guichard et al., 2024).

From Table 1, it can be seen that the proposed 2-view models show comparable or better results com-
pared to the state-of-the-art methods and the ablation models, while also offering self-explainability.
The 2-view model outperforms the ablation model through training a shared embedding network
to learn from two mask-modulated versions of the input signals. This suggests the effectiveness of
leveraging complementary perspectives for learning from time series data.

It is worth noting that the state-of-the-art models (Yang et al., 2022a; Yeh et al., 2022; Shen et al.,
2021; Chang et al., 2020) are distinctively different in architectures, while some solutions (Yang
et al., 2022a; Shen et al., 2021) require manual extraction of task-specific features from the input
signal before deep learning models can be applied. Consequently, a model solution for one task
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Table 1: Performance comparison of the proposed approach against task-specific state-of-the-art
methods and ablation models, for each cardiovascular-relevant task with ECG or PPG as inputs.

ECG
OSA Classification

PPG
HRV Regression

PPG
∆BP Classification

Methods ACC↑ AUC↑ Methods MAE↓ Methods ACC↑ F1↑MNN SDNN RMSSD
SEResGNet (Yang et al., 2022a)
CNN+Wavelet (Yeh et al., 2022)
MSDA-CNN (Shen et al., 2021)

CNN (Chang et al., 2020)

0.903
0.886
0.894
0.879

0.965
-

0.964
0.94

PRV from QPPG (Guichard et al., 2024)
PRV from ERMA (Mejı́a-Mejı́a et al., 2022)

6.226
4.706

7.598
5.457

11.398
8.099 ∆BP-Net (Wang et al., 2024) 0.760 0.751

(Proposed) 2-view 0.869 0.939 (Proposed) 2-view 3.295 2.406 2.966 (Proposed) 2-view 0.746 0.729

(Ablation) Remove Mask Network 0.827 0.904 (Ablation) Remove Mask Network 3.054 2.538 3.091 (Ablation) Remove Mask Network 0.672 0.665

may not be applicable to other tasks involving different types of signals. In contrast, the proposed
2-view model has shown to work with two distinct cardiovascular signals with differing waveform
morphologies and physiological information, on three diverse tasks, including both classification
and regression, with minimal to no performance compromise, demonstrating its broad applicability.

It should be noted that the proposed model has the potential to enhance task-level performance. As
a proof-of-concept study, here, we used very basic deep learning architectures (CNN, MLP, and
long-short term memory (LSTM)) to highlight the architectural design of our model for enabling
self-explainability. Replacing modules in the current model with more advanced alternatives, could
further enhance classification and regression performance. As an example, we found that substitut-
ing the 1-D modified ResNet blocks (He et al., 2016) in the embedding network of the 2-view model
(shown in Figure 7(b)) with 1-D modified Res2Net blocks (Gao et al., 2019), can further improve
the testing performance of PPG-based ∆BP classification, to ACC= 0.751 and F1= 0.739.

6 LIMITATIONS

While we proposed a multi-view architecture for self-explainability, as a proof-of-concept, our ex-
periments were limited to a 2-view configuration and focused on cardiovascular signals. The pro-
posed model, however, has the potential to be extended to configurations with more views to uncover
hidden insights, and to be applied to a broader range of signal types or domains, which are left for
future studies. Furthermore, there are potentials to improve explainability. In the current multi-view
model, the embedding and decision networks lack integrated interpretability, thus making it hard to
quantify the correspondence between each semantic view and the model’s output directly. Using
alternative architectures for the embedding network, or considering domain-agnostic model inter-
pretation methods in combination with the semantic masks, may further improve the interpretability
of the proposed model.

7 CONCLUSIONS

Self-explaining models provide unique opportunities for understanding the working principles of
deep learning models. To facilitate self-explaining learning from input signals, we introduced a gen-
eralized form for learning distinct semantic information from continuous intervals, and proposed
a generalized multi-view deep learning architecture that creates multiple complementary semantic
views from the input signal for enhanced interpretability and feature extraction. Trained under the
supervision of the task label only, the model optimizes its semantic views through the saliency of em-
bedding and decision networks, achieving interpretability by highlighting input patterns that convey
relevant physiological information. Tested on 3 real-world cardiovascular signal stratification tasks
with 2 different signals, the feature attributions self-created by 2-view implementation of the pro-
posed model outperforms post-hoc model explanation methods both quantitatively and qualitatively,
providing clearer explanations of patterns in the input signal that drive decisions, while achieving
task-level classification and regression performance comparable to or better than task-specific state-
of-the-art methods. Overall, we expect the proposed multi-view framework to enhance data-driven,
interpretable analysis of physiological signals, advancing self-explaining models for accurate, reli-
able computer-aided diagnosis and health monitoring in clinical applications.
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8 REPRODUCIBILITY STATEMENT

The code base, datasets, and trained models used for producing results summarized in Table 1 and
Figures 4, 5, and 6 are available from Kaggle at https://www.kaggle.com/datasets/
anonymous6bg09hn/n4txg4xmtuyj.
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A APPENDIX

A.1 TASKS AND DATASETS INFORMATION

1) ECG-based OSA detection: OSA is a sleep breathing disorder with major negative effects
on sleep quality, leading to fatigue, hypertension, cerebrovascular complications, and sudden deaths
(Javaheri et al., 2017). Traditional OSA diagnosis requires overnight monitoring and manual scoring
of multiple signals at sleep labs, which is obtrusive, time consuming, and costly. Recent studies on
ECG-based OSA detection using machine learning envisions timely and automatic OSA diagnosis
outside hospital, through compact wearable devices (Liu et al., 2023; Yang et al., 2022a; Chang
et al., 2020). The Apnea-ECG database (Penzel et al., 2000) was considered in this study for OSA
detection, to form a binary classification task of attributing each 60-s ECG segment in the dataset
as “apnea” or “normal”. The proposed models are trained and tested on the predefined partition
of 17, 023 “released” and 17, 248 “withheld” segments in the dataset, for a fair comparison with
recently-proposed SOTA solutions validated using the same dataset and train-test partition (Yang
et al., 2022a; Yeh et al., 2022; Shen et al., 2021; Chang et al., 2020).

2) PPG-based HRV estimation: Evaluation of ultra-short term HRV within 10-s intervals has found
emerging applications in assessing mental stress (Can et al., 2019; Landreani et al., 2017), cardio-
vascular risk factors (Kang et al., 2022), and cognitive functions (Mahinrad et al., 2016). However,
acquiring gold-standard HRV from the ECG signal can have limitations in certain scenarios, and the
PPG signal has been considered as an ideal and low-cost surrogate for HRV estimation (Georgiou
et al., 2018; Mejı́a-Mejı́a et al., 2021). In this study, we formed training, validation and testing
sets consisting of 524, 868, 61, 676, and 74, 736 10-s ECG and PPG segments from the “Training”
and “Calibration-free testing” partitions of PulseDB (Wang et al., 2023). We extracted ground-truth
HRV metrics (mean normal-to-normal interval (MNN), standard deviation of normal-to-normal in-
terval (SDNN), and root mean square of successive interval differences (RMSSD)) from each 10-s
segment of ECG, and evaluated the regression performance of estimating the same metrics from
only the PPG signal recorded simultaneously with the ECG.

3) PPG-based BP elevation detection: Hypertension is a leading cause of death. PPG-based track-
ing of changes in BP (∆BP) is essential for non-invasive and unobtrusive identification of hyperten-
sive emergencies (Wang et al., 2024), which also forms the basis of cuff-less BP estimation (Stergiou
et al., 2023) for continuous tracking of cardiovascular risk factors. In this study, we used the same
training, validation, and testing partitions of PulseDB (Wang et al., 2023) used in (Wang et al.,
2024), with 202, 954, 23, 718 and 23, 684 training, validation and testing samples, to evaluate the
accuracy of detecting abrupt systolic BP (SBP) elevations from the PPG signal. In consistence with
(Wang et al., 2024), we considered a binary classification task of identifying the presence of acute
SBP elevation greater than 10mmHg, within 40-s intervals of PPG as well its first to third order
derivatives.
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For the OSA detection task, following (Chang et al., 2020), the ECG signal was band-pass filtered
using a 4th-order Butterworth filter between 0.5 and 15 Hz. For all tasks, all ECG and PPG signals
were resampled to 125 Hz, and linearly remapped between 0 and 1 within the segment used as the
input of the model, for unified machine learning using the proposed model.

A.2 MODEL IMPLEMENTATION AND HYPERPARAMETER SELECTION
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Figure 7: Layer-wise implementation of the proposed multi-view self-explaining deep learning ar-
chitecture for stratifying ECG and PPG signals in 3 different tasks. Different tasks were fulfilled
with different configurations of hyperparameters. (a): The mask network. (b): The embedding net-
work. (c): The decision network.

Figure 7 depicts the layer-wise implementation of the multi-view model used for addressing all 3
tasks, following the architecture introduced in Figure 2. For the mask network, a CNN-LSTM archi-
tecture is considered for modeling the transitions between different semantic states over time. For
extracting low-dimensional embedding from each semantic view, a hierarchical CNN with ResNet
backbone (He et al., 2016) is considered for simplicity, with a final global average pooling (GAP)
layer in the network for reducing the temporal dimension of the embedding to 1, which has shown to
help enforces correspondence between each semantic view and the extracted embedding (Lin et al.,
2014), and facilitate inclusion of all related regions in the signal in each semantic view (Zhou et al.,
2016). Finally, a fully-connected decision network taking the concatenation of embedding vectors
from all semantic views as input, is used to generate the final output of the model.

To facilitate learning of informative patterns from the ECG and PPG waveform, we enforce a mini-
mum duration L, within which consecutive samples should be attributed to the same semantic state,

∀xt ∈ un, ∃i, L, s.t. L > 0, 0 ≤ i ≤ L,

{xt−i,xt−i+1, · · · ,xt−i+L} ⊆ un,
(6)
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such that the embedding and decision networks in the model learn from patterns formed by at least
L consecutive samples in S in any semantic view, which prevents the model from creating semantic
views that overfit to individual samples in the signal, not corresponding to informative patterns.

In practice, (6) is implemented by evenly placing piecewise-constant windows Wn,1, · · · ,Wn,K in
the learned segmentation masks M̃n. All pn,t within each window Wn,k are assigned to the same
value pn,k, such that

Wn,k = {pn,t}k×L
t=(k−1)×L+1, pn,t = pn,k, ∀pn,t ∈ Wn,k. (7)

This is facilitated by using maxpooling and nearest neighbor upsampling in the mask network,
shown in Figure 7(a). Maxpooling not only enlarges the reception field for learning global informa-
tion from the input for generating segmentations, but also produces the mask kernels M̃K ∈ RN×K ,
that learns pn,k for each window Wn,k. Then, the nearest neighbor method was used to upsample
M̃K to M̃n, fulfilling Equation (7). Consequently, T = K×L, and L equals to the total downsam-
pling factor of the maxpooling layers in the mask network, before the upsampling takes place.

For each task, the same model architecture in Figure 7 was implemented, while different combina-
tions of hyperparameters were selected manually for optimized performances and interpretability.
Table 2 summarizes the hyperparameter configurations used for each task.

Table 2: Summary of hyperparameter and model training settings used for each of the 3
cardiovascular-related signal stratification tasks. BCE: binary cross entropy. MSE: mean squared
error.

Parameter Explaination ECG
OSA Classification

PPG
HRV Regression

PPG
∆BP Classification

N Number of semantic views created by network 2 2 2
D Dimension of each sample in input signal 1 1 4
T Number of samples in the input time series interval 7500 1250 5000
L Duration of each piece-wise constant window in each learned mask 125 5 125
K Number of piece-wise constant windows in each learned mask 60 250 40

in ch Number of convolutional filters for input adaptation 64 64 32
in ks Kernel size of convolutional layer for input adaptation 33 7 7
m ks Kernel size of convolutional layers in the mask network 7 3 7
m pool Kernel size of max pooling layers in the mask network [5,25] [1,5] [5,25]
emb ks Kernel size of convolutional layers in the embedding network [33,33,7,7] [7,7,7,7] [7,7,7,7]
emb st Stride of convolutional layers in the embedding network [5,5,2,2] [1,2,5,5] [2,2,2,1]

n outputs Number of final model outputs 1 3 1

Dropout p = 0.2 disabled disabled
Loss BCE with logits MSE BCE with logits

Learning rate 3e-4 1e-4 1e-4
Batch size 32 64 64

*L =
∏

m pool, K × L = T .
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