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ABSTRACT

Directed Acyclic Graphs (DAGs) are crucial for modeling causal structures and
complex dependencies in domains such as biology, healthcare, and finance. Ef-
fective structure learning must not only align with domain expert knowledge but
also produce interpretable model decisions. Though continuous structure learning
methods like NOTEARS are gaining popularity, an underexplored feature is their
ability to open up the black box of decisions made by traditional combinatorial
search by quantifying edge strengths in weighted adjacency matrices. Yet chal-
lenges persist in systematically integrating expert knowledge and ensuring learned
weights accurately reflect true edge relationships. We present Non-parametric Ex-
pert DAG (NEDAG), a novel method that formulates accurate weight matrices us-
ing Gaussian Processes (GPs) and incorporates realistic domain knowledge into
the continuous structure learning framework. Experiments on both synthetic and
real-world datasets demonstrate that NEDAG not only surpasses existing methods
in structure accuracy but also produces more accurate edge strengths. NEDAG
thus provides a robust and interpretable solution for structure discovery in real-
world applications.

1 INTRODUCTION

Directed Acyclic Graphs (DAGs) are critical tools for modeling complex dependencies and causal
structures in various domains such as healthcare (Lucas et al.), biology (Sachs et al.), and finance
(Sanford & Moosa).

For DAGs to be useful to domain experts, several key features are essential. First, expert knowl-
edge should be incorporated into the model. Since expert knowledge captures the understanding
of the field, DAG learning should align with, rather than overwrite, prior knowledge. Moreover,
prior knowledge alleviate the issue that from data, the DAG structure is often identifiable only up
to its Markov equivalence class (Ghoshal & Honorio). Additionally, to solve the NP hard problem,
(Chickering et al.), approximate search methods are frequently used, which often suffer from non-
convexity (Chickering; Zheng et al., a). Leveraging expert knowledge can narrow down the search
space and improve model accuracy by guiding the process closer to the global optimum, especially
in data-scarce scenarios.

Second, reliance on expert-specified parameters and distributional assumptions should be min-
imized. Solicitation of distribution or functional form assumptions from experts, as often requires
by parametric methods, necessitates significant expertise and risks misspecification (Zheng et al., b).

Third, the structure learning process should be interpretable rather than opaque. It is important
that the reasons for including or excluding certain edges are transparent, allowing domain experts to
understand the rationale behind the model’s decisions. This often requires that the parameters which
the models learns and makes decision based on are consistent with criteria meaningful for humans.

Traditional score-based, combinatorial structure learning methods, which search through the DAG
space to minimize an objective function, have incorporated the first two of these principles. Expert
knowledge in the form of required or forbidden edges has been used to constrain the search space
(Constantinou et al.; Cooper & Herskovits; de Campos & Castellano; Ma et al.). Nonparametric
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methods like Gaussian Processes (GPs), which do not require predefined parameters, have also been
applied (Weng & Doshi-Velez; Atienza et al., b; Boukabour & Masmoudi). However, the learning
process in these methods often remains opaque. In combinatorial search, local decisions about
adding, removing, or reversing edges are made without clear visibility into their global impact, only
revealed once the global objective is minimized (Chickering; Heckerman et al.).

A different formulation of DAG learning holds promise in opening up the black-box. Recent work
by Zheng et al. (a) and others (Bello et al.; Yu et al., b; Massidda et al.; Ng et al.) introduced
continuous structure learning approaches, where DAGs are represented through weighted adjacency
matrices.

While still underexplored, continuous structure learning shows great potential to fulfill the three
key principles for applied DAG learning. The weighted adjacency matrix formulation presents a
unique opportunity to increase transparency by directly revealing edge strengths as matrix weights,
effectively opening up the black box of model decisions on learned structures. Furthermore, the
matrix-based representation naturally facilitates the integration of domain knowledge, which re-
mains underutilized, particularly when combined with nonparametric methods.

In this work, we address each of the three principles for applied DAG learning within the continu-
ous learning framework. First, we systematically integrate multiple, realistic forms of knowledge:
Required Edges (REQ-EDG), Initial Graphs (INI-GRA), and (partial) Topological Orderings (TOP-
ORD). Second, we integrate nonparametric method Gaussian Processes (GPs) in continuous learn-
ing, which reduces reliance on expert-specified parameters. Third, we present the first nonlinear
weighted adjacency matrix formulation that accurately represents edge strength, improving the ac-
curacy of parameter and structure learning, while making the model’s rationale for edge selection
more transparent to experts.

By integrating expert knowledge with accurate Gaussian Process weights, we develop the Nonpara-
metric Expert DAG-GP (NEDAG-GP). Our contributions are twofold:

1. We enhance DAG learning by integrating diverse and realistic expert knowledge into the con-
tinuous learning framework (§4.2). By employing a fine-grained knowledge setup across various
conditions, we reveal patterns that would otherwise be obscured by population averages. We demon-
strate that incorporating knowledge significantly improves learning accuracy in both synthetic and
real-world scenarios, such as Gene Regulatory Networks (§6).

2. We present NEDAG-GP, the first nonparametric method in continuous structure learning that rep-
resents edge strength more accurately than existing nonlinear methods. Proven theoretically (§4.1)
and validated empirically (§6), it significantly boosts both DAG learning accuracy and interpretabil-
ity.

2 RELATED WORK

2.1 CONTINUOUS LEARNING

In continuous learning, DAGs are represented through weighted adjacency matrices. This approach
has been developed to handle both linear (Massidda et al.; Ng et al.) and nonlinear models (Zheng
et al., b; Bello et al.; Yu et al., b; Lachapelle et al.). However, two key challenges remain:

1. Inaccurate Weights in Nonlinear Models

Defining a weighted adjacency matrix that accurately reflects edge strengths in nonlinear models,
such as multilayer perceptrons (MLPs), is challenging, especially when the nonlinear functions lack
a closed-form expression for edge strength (see definition of edge strength in 3.2). Most existing
methods concede to using weighted adjacency matrices that only guarantee binary performance;
that is, zero and nonzero entries represent the absence and presence of edges, respectively, but the
magnitude of the weights does not correlate with edge strength. For instance, NOTEARS-MLP
and DAGMA use the first-layer weights of an MLP to represent edge strength (Zheng et al., b;
Bello et al.). This effectively binary matrix can result in arbitrarily large discrepancies between the
learned weights and the true edge strengths (see A for proof), as demonstrated by Waxman et al.,
who proposed an approximation to partially mitigate this issue. This inaccuracy introduces three
key issues: (i) inaccurate structure selection based on edge weights; (ii) lack of interpretability of
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weights as edge strengths and of model decisions; and (iii) suboptimal optimization due to a weak
correlation between weights and edge strengths.

2. Lack of Nonparametric Methods in Continuous Learning Another limitation in continuous
DAG learning is the reliance on parametric methods. Parametric methods, for instance MLP (Zheng
et al., b) or GNN (Yu et al., a), often require expert input to specify model architectures, functional
and distributional assumptions, as well as tunable hyperparameters, placing an undue burden on
users and leading to the risk of model misspecification. For instance, experts may oversimplify
complex relationships by assuming linear DAGs, or when they opt for more flexible nonlinear mod-
els, they must choose from a wide range of potential specifications. Moreover, parametric models
may suffer performance degradation when their assumptions are violated.

In this work, we address both challenges by introducing Nonparametric Expert DAG-Gaussian Pro-
cesses (NEDAG-GP), the first nonparametric method with accurate weight formulation within the
continuous learning framework (see 4.1). Unlike parametric methods like MLP, our GP formulation
does not rely on expert specification of parameters and offers improved accuracy in representing true
edge strengths, outperforming existing methods on both model interpretation and structure learning
(see 6).

2.2 INCORPORATING PRIOR KNOWLEDGE IN STRUCTURE LEARNING

DAGs are widely used to represent causal structures and dependencies across domains, and incor-
porating prior knowledge can significantly enhance their construction. For example, in Gene Reg-
ulatory Networks (GRNs), domain experts often have insights into gene interactions that can guide
the structure learning process (Sachs et al.).

In combinatorial structure learning, prior knowledge has been incorporated through several mecha-
nisms. The presence or absence of specific edges has been encoded as prior probabilities (Castelo &
Siebes), embedded as rewards or penalties in the objective function (Heckerman et al.), or enforced
as hard constraints that limit the search space (de Campos & Castellano). Additionally, topologi-
cal orderings—whether full or partial—have been used to impose further constraints (Cano et al.;
Cooper & Herskovits; Ma et al.).

In continuous structure learning, however, the integration of prior knowledge has seen limited ex-
ploration. Sun et al. enforce required and forbidden edges as hard constraints on nonzero and zero
edge weights, respectively, in Dynamic Bayesian Networks. Similarly, Chowdhury et al. apply
constraints sequentially, enforcing required or forbidden edges after model errors are identified. Fo-
cusing on the same knowledge types, Hasan & Gani encode required edges as 1 and forbidden edges
as 0 in a reinforcement learning framework.

Existing knowledge incorporation in continuous structure learning is limited in the types of knowl-
edge it can handle, the granularity it supports, and its applicability to real-world scenarios. For
instance, prior knowledge isn’t simply about specifying required or forbidden edges—edges can
exist with varying degrees of confidence. Moreover, enforcing constraints on required versus for-
bidden edges may not be as straightforward as suggested by Chowdhury et al.; the effectiveness
of these constraints likely depends on factors such as network sparsity and sample size. In applied
domains, particularly those involving sparse graphs, experts often lack complete information about
forbidden edges, making it unrealistic to demand such specifications. However, negative knowl-
edge—regarding forbidden edges—can still exist in alternative forms, such as topological orderings
that implicitly prohibit edges from lower-tier nodes to higher-tier nodes. This suggests the need for
more nuanced approaches to soliciting and incorporating expert knowledge.

In this work, we systematically integrate more realistic prior knowledge into continuous structure
learning (see §4.2), study their fine-grained effects under various conditions, and demonstrate their
efficacy on synthetic datasets and a real-world GRN inference task (see §6).

2.3 NONPARAMETRIC METHODS IN DAG LEARNING

Nonparametric methods offer greater flexibility and are better suited for capturing complex, un-
known relationships without the strict assumptions of parametric models. Approaches such as
Gaussian Processes (GPs), Kernel Density Estimation, and the Nadaraya-Watson estimator have
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been employed to augment oversimplified linear DAG models in combinatorial structure learning
(Weng & Doshi-Velez; Atienza et al., a; Boukabour & Masmoudi).

Beyond the general advantages of nonparametric methods, additive Gaussian Processes (GPs) with
an RBF kernel possess unique features that make them particularly suitable for formulating in-
terpretable and accurate weights in continuous structure learning, especially when combined with
expert knowledge.

The additive and smooth nature of GPs with RBF kernels enables the isolation of local influences
(Friedman & Nachman), allowing individual edge strengths to be derived in closed form. Such GPs
learn only two interpretable hyperparameters: amplitude (i.e., the significance of the dependence)
and length scale (i.e., the distance over which dependence diminishes) (Luger et al.), both of which
intuitively contribute to our derived edge weight formulation. These characteristics of additive GP
with RBF kernels ensure that the derived weights accurately reflect edge strengths (see §4.1).

Furthermore, the probabilistic nature of GPs allows for seamless incorporation of expert knowledge
as priors on these hyperparameters (Weng & Doshi-Velez).

Together, these features make additive GPs with RBF kernels particularly well-suited for continuous
DAG learning, as they minimize the need for parametric assumptions from experts, provide accurate
and interpretable weights, and facilitate the integration of domain knowledge.

3 BACKGROUND

3.1 STRUCTURE LEARNING

DAG structure learning aims to uncover the underlying graphical model from observed data. Let
X ∈ Rn×d represent n i.i.d. observations of a random vector X = (X1, . . . , Xd).

A nonparametric structural equation model (SEM) is defined by:

Xj = fj(X,Zj), j ∈ [d], (1)

where each fj : Rd+1 → R is a nonparametric function, and Zj are independent exogenous vari-
ables representing noise. Each fj depends only on a subset of X (the parents of Xj) and Zj , inducing
a graphical structure G(f), which we assume is a DAG. Our goal is to learn this graph G(f) from
data.

In score-based learning, a score function L(f ;X) evaluates the quality of a candidate SEM, which
is the sum of loss-least squares or negative log-likelihood-and often regularized with penalties like
BIC or ℓ1-norms. The structure learning problem then becomes:

min
f∈F

L(f ;X) subject to G(f) ∈ D, (2)

where D is the space of DAGs on d nodes, and F is a function space.

3.2 CONTINUOUS STRUCTURE LEARNING

Unlike the traditional approach that searches through the discrete space of DAGs D, continuous
structure learning operates in the continuous space of weighted adjacency matrices W ∈ Rd×d,
where a directed edge Xk → Xj exists if and only if wkj ̸= 0.

A function h(W ) is introduced to enforce the DAG constraint, ensuring that W represents a valid
DAG. Yu et al. (a) proposed a polynomial constraint:

hpoly(W ) = Tr
(
(I +

1

d
W ◦W )d

)
− d, (3)

where ◦ denotes the Hadamard product and I is the identity matrix. This formulation prevents closed
walks, a defining property of DAGs.

The problem is then formulated as:

min
f∈H1(Rd)

L(f) subject to h(W (f)) = 0, (4)
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where W represents the learned adjacency matrix.

At a minimum, the weight matrix W should correctly represent the graph structure: zero weights
indicate no edge, and nonzero weights imply the presence of an edge. However, in practice, weights
rarely reach exact zeros, necessitating an additional step to retain only the significant weights, which
is often thresholding in existing works. To retain the correct edges, the consistency between edge
strengths and learned weights is required. Thus, ideally, W should not only indicate the presence of
edges but also accurately reflect their true strengths, defined as the L2-norm of the partial derivative
of fj with respect to xk Rosasco et al.:

[W (f)]kj :=

∥∥∥∥ ∂fj
∂xk

∥∥∥∥
L2

. (5)

In the following section, we review the fundamentals of GPs before presenting our method for
defining such weights that accurately reflect true edge strengths.

3.3 ADDITIVE GAUSSIAN PROCESSES

An additive Gaussian Process (GP) models the function f(x) as a sum of independent GPs, each
corresponding to different input dimensions. For a single GP that encodes a single edge, it is defined
by a mean function m(x) and a covariance function k(x, x′), and can be expressed as f(x) ∼
GP(m(x), k(x, x′)).

In practice, the mean function is often assumed to be zero, centering the GP around zero. When
the covariance function k(x, x′) is evaluated for specific input points, the function values follow a
multivariate normal distribution: f ∼ N (0,K), where K is the covariance matrix with [K]ij =
k(xi, xj).

A commonly used smooth covariance function is the Radial Basis Function (RBF) kernel, defined
as:

kRBF(x, x
′) = σ2

f exp

(
−||x− x′||2

2ℓ2

)
, (6)

where σ2
f controls the amplitude, and ℓ is the length scale, determining how quickly correlations

decay with distance.

Additive GPs with RBF kernels allow for closed-form, interpretable edge strengths in DAG structure
learning, as derived in §4.1.

4 METHOD

Our model is two-part, focusing on formulating interpretable GP weights, and incorporating knowl-
edge, respectively.

4.1 FORMULATING GP WEIGHTS AS EDGE STRENGTHS

Current weight formulations in continuous structure learning often fail to ensure that non-zero
weights correspond to accurate edge strengths. To address this, we develop a precise weight for-
mulation for Gaussian Processes (GPs). In parametric methods, edge strength is typically defined
as the L2-norm of partial derivatives. However, for GPs—which model a distribution over func-
tions—the L2-norm can vary across different function realizations.

To extend this to GPs, we propose using the expected L2-norm of the partial derivative, ensuring that
the weighted adjacency matrix reflects the average influence of xk on fj across all GP realizations.
This approach adapts the consensus definition of edge strength to the GP context, addressing the
inherent variability in nonparametric models.

Since xk is continuous, the L2-norm is defined as the integral of the squared function over the
domain:
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E

[∥∥∥∥ ∂fj
∂xk

∥∥∥∥2
L2

]
=

∫
X
E

[(
∂fj(x)

∂xk

)2
]
dx (7)

Here, E
[(

∂fj(x)
∂xk

)2
]

represents the variance of the partial derivative ∂fj(x)
∂xk

, which for an additive

GP corresponds to the variance of the derivative with respect to a single parent xk. This variance is
computed from the GP covariance function K(x, x′). For the Radial Basis Function (RBF) kernel,
the covariance of the partial derivative at x = x′ is:

E

[(
∂fj(x)

∂xk

)2
]
= Kk(x, x

′) =
∂2K(x, x′)

∂xk∂x′
k

∣∣∣∣
x=x′

=
σ2

ℓ2
(8)

Substituting this into the integral for the expected L2-norm gives σ2

ℓ2 Vol(X ). To match the interpre-
tation in linear models, where the L2-norm of the partial derivative is proportional to β

√
Vol(X ),

we normalize by the square root of the domain volume
√

Vol(X ). This normalization ensures that
GP-based weights are interpretable and comparable across different datasets, providing a consistent
measure of edge strength.

Thus, the final weight formulation becomes:

[W (f)]kj :=

E
[∥∥∥ ∂fj

∂xk

∥∥∥
L2

]
√

Vol(X )
=

σ

ℓ
(9)

This formulation shows how the decomposability of additive GPs and the smoothness of RBF ker-
nels allow for exact, closed-form edge strength expressions. Notice how, thanks to GP’s interpretable
hyperparameters, the derivation result shows that each edge strength can be represented through the
learned hyperparameters in an intuitive way, with σ (amplitude) and ℓ (length scale) reflecting the
magnitude and range of dependencies, respectively.

4.2 KNOWLEDGE TYPES AND REPRESENTATION

Knowledge Definition Examples in GRN Constraint
Required
Edges
(REQ-EDG)

High confidence in
the existence of spe-
cific edges.

Gene interactions exper-
imentally validated with
high confidence (consen-
sus network).

Enforce Wij ≥ ϵ, where
Wij represents the weight
of the required edge i →
j, and ϵ is a predefined
threshold.

Initial Graph
(INI-GRA)

Experts’ best guess
of the full graph
structure, which can
be updated.

Gene interactions that
may be established or
merely reported in some
literature.

Initialize W = Winit,
where Winit is the expert-
provided initial adjacency
matrix.

Topological
Ordering
(TOP-ORD)

Grouping of vari-
ables into tiers,
representing a (par-
tial) topological
order.

Genes grouped into mas-
ter regulators, intermedi-
ates, and targets in GRNs.

Constrain Wij ≤ δ for
edges i → j that vio-
late the topological order,
where δ is a small upper
bound (e.g., close to 0).

Table 1: Overview of the three knowledge types, their definitions, instances in GRNs, and the
corresponding constraints in NEDAG.

Focusing on qualitative structural knowledge that is practical for experts to specify, we incorporate
three types of knowledge: Required Edges (REQ-EDG), Initial Graph (INI-GRA), and (partial)
Topological Orderings (TOP-ORD), adapted from Constantinou et al.. Our experiments utilize these
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knowledge types based on information derived from synthetic datasets and the literature on Gene
Regulatory Networks (GRNs) (Sachs et al.).

5 EXPERIMENTS

Our GP weight formulation and knowledge incorporation are general and can be integrated into
any continuous learning framework. To maintain fairness in comparing our GP-based method with
the MLP formulation, we primarily adopt the setup from NOTEARS (Zheng et al., b), including
the learning algorithm, simulation setup (graph types, data models, sample sizes), and evaluation
metrics (see B for details). While DAGMA offers speed advantages, we chose NOTEARS due to its
flexible initialization conditions and comparable performance (Bello et al.).

Key adjustments to the NOTEARS framework include the introduction of an additive sine function,
a nonlinear function with known closed-form edge strengths (see C for derivation), allowing us to
evaluate the accuracy of the learned edge weights against a known ground truth.

Instead of relying on an arbitrary fixed threshold to remove edges, we select the top e strongest edges,
with e determined by the specific dataset (refer to each dataset for the value of e). This selection
method is further validated by the strong correlation between the learned weights of NEDAG-GP
and the true edge strengths, as demonstrated in §6.

6 RESULTS

(a) NOTEARS-MLP (b) NEDAG-GP

Figure 1: Comparison of learned weight differences from true edge strengths for a random 10-
node, 20-edge Erdős-Rényi graph. NEDAG-GP (right) shows significantly smaller deviations from
the true values compared to NOTEARS-MLP (left), indicating superior edge strength capture by
NEDAG-GP.

NEDAG-GP Learns Edge Strengths More Accurately than NOTEARS-MLP Using simulated
data from an additive sine function f(x) = A sin(Bx), where true edge strength is AB√

2
(see C for

derivation), we evaluate the accuracy of NEDAG-GP’s learned edge strengths compared to those of
NOTEARS-MLP. NEDAG-GP’s learned weights consistently approximate true edge strengths more
closely, as shown in Fig 1 and Table 2.

Additionally, NEDAG-GP achieves a higher rank correlation with true edge strengths (Table 2),
indicating a more accurate mapping between learned and true structures. This contrasts with
NOTEARS-MLP, which shows weaker alignment with actual edge strengths, reaffirming the the-
oretical limitations of MLP-based weight formulations (See A).

The importance of absolute differences lies in the accurate recovery of true parameters, while the
relative ranking of edges is crucial for guiding structure selection. This provides domain experts with
clearer insights into which edges are most significant. NEDAG-GP’s strong correlation between

7
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learned and true edge strengths supports our decision to select the top strongest edges, rather than
relying on arbitrary thresholds as in previous studies.

Method Difference Ranking Correlation
NEDAG-GP 7.531 ± 1.665 0.827 ± 0.093

NOTEARS-MLP 16.558 ± 2.441 0.740 ± 0.260

Table 2: NEDAG-GP outperforms NOTEARS-MLP in both weight accuracy and ranking correla-
tion. Results reported as mean ± standard deviation.

(a) Limited data, n = 200 (b) Ample data, n = 1000

Figure 2: Effect of prior knowledge on structure learning accuracy, measured by the Balanced Scor-
ing Function (BSF, higher is better). The graphs compare the impact of three knowledge types
(REQ-EDG, TOP-ORD, INI-GRA) across varying knowledge rates in both limited (n = 200) and
ample (n = 1000) data scenarios. Higher knowledge rates consistently lead to improved perfor-
mance, with the most effective knowledge type varying by dataset size. Error bars represent standard
deviations.

Higher Rates of All Knowledge Types Improve Learning in Small and Large Datasets We first
evaluate the performance of NEDAG-GP without knowledge in a wide range of graph types, data
types and network sizes. We test NEDAG-GP on both additive GP and Additive Noise Model with
MLP datasets across six graphs—Erdos-Rényi (ER) and scale-free (SF) with d = (5, 10, 20) nodes
and 2d edges across two sample sizes (n = 200 and n = 1000). We keep only the top 2d significant
edges. NEDAG-GP outperforms NOTEARS-MLP in the additive GP setting, while NOTEARS-
MLP performs better on MLP data; as graph size increases, the learning challenge intensifies (see
Appendix D).

Focusing on the most challenging scenario (ER with 20 nodes and 40 edges), we evaluate the effect
of different types and levels of prior knowledge on NEDAG-GP performance across two sample
sizes (n = 200 and n = 1000). Three knowledge types are tested: REQ-EDG (required edges),
TOP-ORD (temporal order), and INI-GRA (initial graph), each at varying levels (0.2, 0.5, 1 for
REQ-EDG/INI-GRA and 0.25, 0.5, 0.75, 1 for TOP-ORD). Higher rates are used for TOP-ORD as
it is usually more accessible to experts (e.g., temporal sequences or upstream-downstream relation-
ships), and even 100% knowledge only forbids edges violating the partial topological order, leaving
flexibility within tiers.

Knowledge consistently improves structure learning across all conditions. However, our fine-grained
analysis of the effects of different knowledge types across sample sizes reveals that the impact of
knowledge varies with dataset size and type of knowledge. While smaller sample sizes are expected
to benefit more from expert knowledge, the relationship is more nuanced, indicating additional in-
fluencing factors.

With limited data, REQ-EDG and INI-GRA yield the most significant gains, as these positive con-
straints guide the search toward better local minima. In larger datasets, negative constraints like

8
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TOP-ORD have a greater impact. As the model has more data to uncover the true structure, forbid-
ding edges may help prevent overfitting to spurious relationships.

Interestingly, REQ-EDG does not always outperform INI-GRA, despite REQ-EDG encompassing
INI-GRA and maintaining the additional edges. This discrepancy might stem from suboptimal
weighting of required edges, which could limit optimization in other parts of the graph.

Our results provide a more nuanced view compared to Chowdhury et al., who concluded that positive
constraints are generally more useful for improving accuracy than negative constraints. This suggest
the necessity of systematically studying the effects of knowledge types across diverse conditions to
obtain a fuller understanding.

Overall, NEDAG-GP consistently benefits from the incorporation of expert knowledge, showing
significant improvements across both small and large datasets. Higher rates of knowledge, whether
REQ-EDG, TOP-ORD, or INI-GRA, progressively enhance performance. The effectiveness of each
knowledge type varies with dataset size, demonstrating NEDAG-GP’s robustness in addressing di-
verse structure learning challenges.

Method SHD ↓ # Predicted Edges
Baselines

Empty Graph 17 0
NOTEARS-MLP 16 13

NoCurl + DAG-GNN 16 18
GOLEM 14 11

GraN-DAG 13 N/A
NEDAG

No Knowledge 13 12
+ INI-GRA 50% 14 12

+ REQ-EDG 50% 11 13
+ TOP-ORD 3-tiers 9 10

+ REQ-EDG 50% + TOP-ORD 3-tiers 5 12

Table 3: SHD scores (lower is better) and predicted edges for different methods on the Sachs GRN.
NEDAG-GP, enhanced with expert knowledge, achieves the best performance with a combination
of REQ-EDG and TOP-ORD.

Real-World Data: NEDAG-GP Excels in GRN Inference We evaluate NEDAG-GP on the
Sachs consensus Gene Regulatory Network (GRN), a real-world 11-node graph with 853 obser-
vational samples.

In real-world applications like this, expert knowledge is often readily available. Sachs et al. in-
ferred a 17-edge model, 15 of which are supported by literature consensus. We incorporate these
15 established edges either as REQ-EDG or INI-GRA, while TOP-ORD is derived from categorical
knowledge common in GRNs, dividing genes into three tiers: master regulators (which regulate oth-
ers), intermediates, and targets (which can only be regulated). We select the top e significant edges,
where e is optimized within a reasonable range around the 15 established edges (between 10 and
20). Consistent with previous studies (Zheng et al., a; Yu et al., a; Ng et al.; Lachapelle et al.), we
report the SHD against the 17-edge graph from Sachs et al..

NEDAG-GP is compared against baselines including NOTEARS-MLP, NoCurl + DAG-GNN,
GOLEM, and GraN-DAG. Without expert knowledge, NEDAG-GP achieves an SHD of 13, already
outperforming most baselines. However, the real gains appear with expert knowledge incorporation:
REQ-EDG reduces SHD to 11, and introducing a simple 3-tier TOP-ORD further reduces SHD to
9. Most notably, combining both REQ-EDG and TOP-ORD results in a substantial SHD reduction
to 5—an over 60% improvement, marking the best performance across all methods.

This combination highlights that integrating both positive (REQ-EDG) and negative (TOP-ORD)
constraints complements each other and significantly enhances model performance. Leveraging
multiple knowledge types proves essential in tackling complex real-world networks like GRNs.

9
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INI-GRA, however, shows no improvement (SHD = 14), likely due to suboptimal initial graph
weights or its reduced effectiveness as a positive constraint in larger datasets, consistent with the
synthetic data results.

Interestingly, TOP-ORD’s ability to forbid edges results in better accuracy than positive constraints
alone, again contradicting Chowdhury et al.. This might be because even a simple 3-tier TOP-
ORD encodes information about a large number of forbidden edges, despite being easy for experts
to specify. This finding underscores the importance of designing knowledge types that align with
domain-specific realities, rather than focusing on mathematical convenience.

Overall, NEDAG-GP demonstrates strong capabilities in leveraging expert knowledge, producing
interpretable edge weights that closely match true edge strengths. This leads to significant improve-
ments in structure learning accuracy, with robust performance across both synthetic and real-world
datasets.

7 DISCUSSION

This work demonstrates the potential of NEDAG-GP in leveraging expert knowledge to enhance
both structure learning accuracy and interpretability, particularly in gene regulatory networks
(GRNs) and other small-scale systems where domain expertise is critical and the interpretability
of learned graphs is essential.

The two core goals of this paper—formulating accurate edge weights and systematically incorporat-
ing realistic expert knowledge—address important but underexplored principles in applied continu-
ous DAG structure learning. These methods have been shown to effectively improve both learning
accuracy and the interpretability of model decisions. Importantly, the principles and techniques de-
veloped here are generalizable and can be applied to any continuous learning framework or domain.

Although Gaussian Processes (GPs) come with computational and sample complexity challenges,
they were chosen for this study due to their unique suitability for both tasks. Additive GPs with
RBF kernels provide closed-form, interpretable edge strength representations due to their local de-
composability, smoothness, and interpretable hyperparameters—such as amplitude and length scale.
Furthermore, the probabilistic nature of GPs makes them well-suited for knowledge incorporation,
such as through Bayesian priors on hyperparameters.

For future work on knowledge incorporation, our evaluation scheme sets the groundwork by offering
a finer-grain, more realistic analysis of knowledge types. Our results emphasize the need to study the
effects of different knowledge types under various conditions, as averaging across populations can
obscure important patterns, similar to Simpson’s Paradox. Additionally, our findings underscore the
importance of designing knowledge incorporation methods that align with domain-specific needs,
rather than being driven solely by mathematical convenience.

Taken together, these insights highlight the strong potential of GPs for future research, particularly
in incorporating nuanced types of knowledge via Bayesian methods. While this study focused on
more straightforward constraints on the weight matrix—which already showed strong performance,
further investigation into GP-based models for domain-specific knowledge integration is a promising
direction.
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A NON-INTERPRETABILITY OF MLP WEIGHT FORMULATION IN
CONTINUOUS LEARNING

A key motivation for NEDAG-GP is the non-interpretability of the weighted adjacency matrix Aθ in
existing nonlinear methods. Specifically, methods like NOTEARS-MLP use weights derived from
the first layer of an MLP, which may differ significantly from the true edge strengths, defined by the
partial derivatives of child nodes with respect to parent nodes.

Let fj : Rd → R be an MLP with weight matrices A(1), A(2), . . . , A(M) and activation function
σ(·). The MLP with M − 1 hidden layers can be expressed as:

fj(x) = A(M)σ
(
A(M−1)σ

(
· · ·σ

(
A(1)x

)))
.

It is known that: ∥∥∥∥∂fj∂xi

∥∥∥∥
L2

= 0 ⇐⇒
∥∥∥A(1)

i·

∥∥∥
L2

= 0,
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but continuous structure learning relies on thresholding nonzero values, which can result in signifi-
cant discrepancies. The following lemmas show that, under sigmoid activation, the two norms can
differ arbitrarily.

Lemma 1: Let σ(·) be the sigmoid activation. For any δ, ϵ > 0, there exists an MLP fj with weight

matrices A(1), A(2), . . . , A(M) such that
∥∥∥A(1)

i·

∥∥∥
L2

< ϵ but
∥∥∥∂fj
∂xi

∥∥∥
L2

> δ.

Proof: Consider a 1-hidden layer MLP g(x) = A(2)σ
(
A(1)x

)
. If A(2) is a K ×H matrix, then:

[g(x)]k =

H∑
h=1

A
(2)
khσ

 d∑
j=1

A
(1)
hj xj

 .

Let zh = σ
(∑d

j=1 A
(1)
hj xj

)
. Since σ′(zh) > 0, applying the chain rule shows that ∂zh

∂xi
> ϵ for

some ϵ > 0. Therefore, by calculating the norm,
∥∥∥∂fj
∂xi

∥∥∥
L2

can be made larger than δ, even when∥∥∥A(1)
i·

∥∥∥
L2

is small.

Lemma 2: Let σ(·) be the sigmoid activation. For any δ, ϵ > 0, there exists an MLP fj with weight

matrices A(1), A(2), . . . , A(M) such that
∥∥∥A(1)

i·

∥∥∥
L2

> ϵ but
∥∥∥∂fj
∂xi

∥∥∥
L2

< δ.

Proof: Similarly, for a 1-hidden layer MLP g(x) = A(2)σ
(
A(1)x

)
, if the entries of A(1) are large,

then zh =
∑d

j=1 A
(1)
hj xj becomes large. As |zh| → ∞, σ′(zh) → 0, so the gradients ∂g(x)

∂xi
become

small. Thus, despite
∥∥∥A(1)

i·

∥∥∥
L2

> ϵ, we can ensure that
∥∥∥∂fj
∂xi

∥∥∥
L2

< δ.

B EXPERIMENTAL SETUP

B.1 CONTINUOUS LEARNING FRAMEWORK

We adopt the NOTEARS framework of Zheng et al. (b), solving the problem as an unconstrained
minimization after Lagrangian augmentation:

min
θ

F (θ) + λ∥θ∥1, F (θ) = L(θ) +
ρ

2
|h(W (θ))|2 + αh(W (θ)),

where ρ is a penalty parameter, α is a dual variable, and h is the polynomial DAG constraint as
defined earlier in 3.2. We solve this using the L-BFGS algorithm with ℓ1-regularization. The pri-
mary differences between our approach and NOTEARS-MLP lie in the model and weight matrix
formulation.

B.2 MODELS

Nonparametric DAG-Gaussian Process (NEDAG-GP) We use a GP with an RBF kernel, with
amplitude σ and length scale ℓ initialized to 0.01 and 1, respectively. The weight is defined as σ/ℓ,
aligning with our interpretability objective. The loss function used is the negative log-likelihood.

NEDAG incorporates expert knowledge through constraints on required edges (REQ-EDGE), initial
graphs (INI-GRA), and topological ordering (TOP-ORD). As outlined in Section 4.2, REQ-EDGE
sets a lower bound of 1 for required edges, INI-GRA assigns a weight of 1 to pre-existing edges,
and edges violating TOP-ORD are constrained to weights below 0.01.

B.3 SIMULATIONS

We adopt the nonlinear setup from Zheng et al. (b), generating ground truth DAGs from Erdos-Rényi
(ER) and scale-free (SF) random graph models. ER2 refers to an ER graph with 2d edges, similarly
for SF. For each DAG, we simulate a structural equation model (SEM):

Xj = fj(Xpa(j)) + Zj , Zj ∼ N (0, 1),

where fj varies across synthetic datasets, as described below.
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Synthetic Dataset with Ground Truth Edge Strengths We simulate an additive sine function:

f(Xi) = A sin(BXi),

where the true edge strength is AB√
2

(see C for derivation), allowing direct comparison of the weights
learned by NEDAG-GP and NOTEARS-MLP with the known, closed-form edge strengths of the
nonlinear sine function.

Adversarial Dataset to Test Knowledge Incorporation We evaluate NEDAG-GP on two mod-
els: (1) additive models with GPs and (2) additive noise models (ANMs) with MLPs. NEDAG-GP
performs well on additive GP data, but the MLP dataset is more challenging. We focus on MLP to
assess how varying types and rates of prior knowledge in NEDAG-GP affects learning.

B.4 BASELINES

For weight interpretability, we compare our GP-based formulation with the MLP formulation,
which is the standard approach in nonlinear continuous structure learning, used in methods such
as NOTEARS and DAGMA (Zheng et al., b; Bello et al.). While DAGMA improves optimization
speed over NOTEARS-MLP, it requires the initial matrix to start within a specific feasible space
(such as a zero matrix as a sufficient condition). This restriction makes DAGMA incompatible with
our GP-based weight formulation, which depends on non-degenerate hyperparameters. As a result,
we focus on comparing against NOTEARS-MLP, which, like DAGMA, uses an MLP formulation
but allows for more flexible initialization conditions, making it a more suitable baseline for our
approach.

For the evaluation of prior knowledge in synthetic datasets, we primarily compare NEDAG-GP with
its expert knowledge-enhanced counterpart, NEDAG-GP. In the real-world dataset, NEDAG-GP is
compared against multiple baselines, including NOTEARS-MLP, NoCurl + DAG-GNN (Yu et al.,
b), GOLEM (Ng et al.), and GraN-DAG (Lachapelle et al.).

B.5 METRICS

We evaluate the learned DAGs using standard structure learning metrics, false discovery rate (FDR),
true positive rate (TPR), false positive rate (FPR), and structural Hamming distance (SHD). In addi-
tion to these traditional metrics, we employ the Balanced Scoring Function (BSF), which adjusts the
evaluation based on the relative difficulty of discovering edges or the absence of edges. BSF ranges
from -1 (a completely incorrect graph) to 1 (a perfect match with the true graph).

C EDGE STRENGTH OF SINE FUNCTION: L2 NORM FOR f(x) = A sin(Bx)

Given f(x) = A sin(Bx), its derivative is df
dx = AB cos(Bx). The L2 norm of df

dx over a domain
X is:

∥∥∥∥ dfdx
∥∥∥∥
L2(X )

=

(∫
X
A2B2 cos2(Bx) dx

)1/2

.

Using the identity cos2(Bx) = 1+cos(2Bx)
2 , the integral becomes:

∫
X
cos2(Bx) dx =

1

2
Vol(X ),

where Vol(X ) is the volume of the domain X . Thus, the norm is:

∥∥∥∥ dfdx
∥∥∥∥
L2(X )

= AB

√
1

2
Vol(X ).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

In linear models, the L2-norm of the partial derivative is proportional to β
√

Vol(x), where β rep-
resents the edge strength. To ensure consistency with linear weights, we normalize the L2-norm by
the square root of the domain volume.

Thus, the final expression for the ground truth edge strength is:

W (f) :=
AB√
2
.

D COMPARISON OF NEDAG-GP AND NOTEARS-MLP PERFORMANCE
ACROSS DATA TYPES, GRAPH TYPES, AND NETWORK SIZES

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Additive GP, ER, n = 200 (b) Additive GP, ER, n = 1000

(c) MLP, ER, n = 200 (d) MLP, ER, n = 1000

(e) Additive GP, SF, n = 200 (f) Additive GP, SF, n = 1000

(g) MLP, SF, n = 200 (h) MLP, SF, n = 1000

Figure 3: NEDAG-GP performs better on Additive GP data (blue), while NOTEARS-MLP excels on
MLP data (red). As the network size increases (higher d-values), the task becomes more challenging,
and both methods show higher SHD for larger networks. Results are shown for both n = 200 and
n = 1000 sample sizes. Error bars represent std.
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