

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MEMER: SCALING UP MEMORY FOR ROBOT CON- TROL VIA EXPERIENCE RETRIEVAL

Anonymous authors

Paper under double-blind review

ABSTRACT

Humans rely on memory to perform tasks; our goal is to endow robot policies with the same ability. Naively conditioning on long observation histories is computationally expensive and brittle under covariate shift, while indiscriminate subsampling of history leads to irrelevant or redundant information. We propose a hierarchical policy framework, where the high-level policy is trained to select and track previous task-relevant keyframes from its experience. The high-level policy uses selected keyframes and the most recent frames when generating text instructions for a low-level policy to execute. This design is compatible with existing vision-language-action (VLA) models and enables the system to efficiently reason over long-horizon dependencies. In our experiments, we fine-tune Qwen2.5-VL-7B-Instruct and $\pi_{0.5}$ as the high-level and low-level policies respectively, using demonstrations supplemented with minimal language annotations. Our approach, MemER, outperforms prior methods on three real-world long-horizon robotic manipulation tasks that require minutes of memory. Videos and code can be found at <https://memer-policy.github.io>.

1 INTRODUCTION

In recent times, we have seen significant strides in the language-following and generalization capabilities of robotic manipulation policies (Brohan et al. (2023); Intelligence et al. (2025); Kim et al. (2024); NVIDIA et al. (2025)). While these policies are getting better for real-world deployment, a critical limitation remains: the absence of long-term memory. Memory allows humans to handle the inherent partial observability found in their environment. For instance, if a person wanted to make a sandwich, they would have to recall where they saw the jar of peanut butter or the knife, especially if these items were not recently viewed. The ability to form and retrieve long-term visual memories is a crucial step towards robots solving complex, multi-step tasks. The goal of this paper is to provide an effective way to enable existing generalist policies to solve tasks that require long-term visual memory.

Because conditioning on long sequences of high-dimensional image and video sequences is computationally expensive, many existing generalist end-to-end policies are trained with little to no visual history. The high memory cost makes training prohibitively expensive and model deployment unacceptably slow. Furthermore, long observation histories can often introduce a form of overfitting — shortcut reliance on spurious correlations between inputs and demonstrator actions (Torne et al., 2025). The policy misgeneralizes under its own state distribution, leading to performance degradation during deployment due to compounding covariate shift between states visited by the demonstrator policy and the learned policy. The suboptimal policy will generate histories that differ from those seen by the expert, which is only made worse as observation history lengthens.

Some past works have shown it is possible to expand the observation context of their policy via auxiliary losses (Torne et al., 2025), or by finetuning pretrained foundation models for action prediction with native memory capabilities (Fang et al., 2025). Although these methods significantly increase the types of tasks a robot can execute, they are challenging to naively scale to long histories. To overcome this, policies must learn to filter out the task-relevant information from the full historical context to prevent the memory footprint from exploding on tasks that require long-range dependencies.

To this end, we propose approaching long-term memory for robotic policies with a hierarchical framework. The high-level policy is a fine-tuned video-understanding VLM trained to output action subtasks and, most importantly, to select keyframes from its fixed recent context that represent important information it will need to remember to solve the task. The low-level policy is a generalist robot policy fine-tuned to execute the subtasks specified by the high-level policy. Together, the low-level policy handles the robot-specific challenges of the task that require high-frequency inference such as kinematic control, and the high-level policy manages planning and memory-specific aspects of the task such as deciding what object or tool to manipulate next based on the high-level task and its memory. We take advantage of the fact that these open-source VLMs are finetuned on large amounts of video understanding data. With this strong prior, we find that we only need a relatively small number of teleoperated robot demonstrations with additional annotations to adapt these VLMs to accomplish robot-specific memory-based tasks (Bai et al., 2025).

Our contribution is MemER, a framework for scaling up **Memory** in robotic control via **Experience Retrieval**. We demonstrate MemER’s ability to utilize task-relevant past information effectively on three complex long-horizon tasks that require up to a couple of minutes of memory. To the best of our knowledge, our real-world robotic tasks necessitate reasoning over more image observations than prior work.

2 RELATED WORK

Memory in Robotics and Long-Context Policies. Memory is essential for generalist robots to complete complex tasks. Prior work primarily studies memory in the context of comparatively short-horizon tasks. For example, Torne et al. (2025) and Fang et al. (2025) use different approaches to extend the context of imitation policies from a few frames to at most two dozen. Our work investigate tasks that require building memory from hundreds of frames. **Unlike previous approaches, our method can choose to include task-relevant frames in the context spanning the entire episode.** Another body of work investigates the compression of images in the policy’s context. Li et al. (2025a) compresses similar observations in pixel space, which is effective for stationary camera setups but struggles with wrist-mounted cameras that are necessary for most dexterous manipulation tasks. Memory has also played a major role in robotic navigation research. Some navigation works represent memory with an explicit geometric and/or semantic map of the environment Henry et al. (2012); Yu et al. (2024). However, spatial maps of the environment are hard to apply in manipulation tasks since the robot often modifies the environment. **Other works directly prompt API-based VLMs with video context to decide where the robot should navigate** (Chiang et al., 2024; Sharma et al., 2023; Chen et al., 2024). We found that existing API-based VLMs are not sufficient to reason about robot affordances for our long-horizon, memory-aware tasks (Table 2), so we resort to finetuning open-weight models.

Foundation Models and Long-Horizon Tasks in Robotics. Recent progress in vision-language-action models (VLAs) have allowed for impressive generality in robotics. VLAs combine web-scale pretraining with expressive action decoding mechanisms to execute real-world tasks. Conceptually, two paradigms have emerged. The first is a single end-to-end model that directly maps images and a language task to actions (Intelligence et al., 2025; Brohan et al., 2023; Fan et al., 2025). **The second is a hierarchical approach that uses a high-level policy to output an intermediate representation to guide a low-level policy.** Possible intermediate representations include latent embeddings (Shentu et al., 2025; Wen et al., 2025; Wu et al., 2024), language subtasks (Shi et al., 2025; 2024), and waypoints (Li et al., 2025b). Prior work has shown that hierarchical approaches improve performance on long-horizon tasks (Shi et al., 2025; Wu et al., 2024; Wen et al., 2025) by introducing a temporal abstraction: a high-level policy operates at a lower frequency and decomposes a complex task into simpler subgoals (Zhang et al., 2023). The low-level policy can then focus on high-frequency, reactive motor control to achieve the current subgoal. Other methods that integrate LLM-based high-level planning with task and motion planning, imitation learning, and RL (Dalal et al., 2024; Zhou et al., 2024) similarly tackle long-horizon manipulation via task decompositions, but rely on a well-specified planning stack and do not provide an explicit long-term memory mechanism over raw visual histories.

Our work builds on the second paradigm, using language subtasks as the intermediate representation. What distinguishes MemER from prior hierarchical approaches is the addition of a stable, persistent

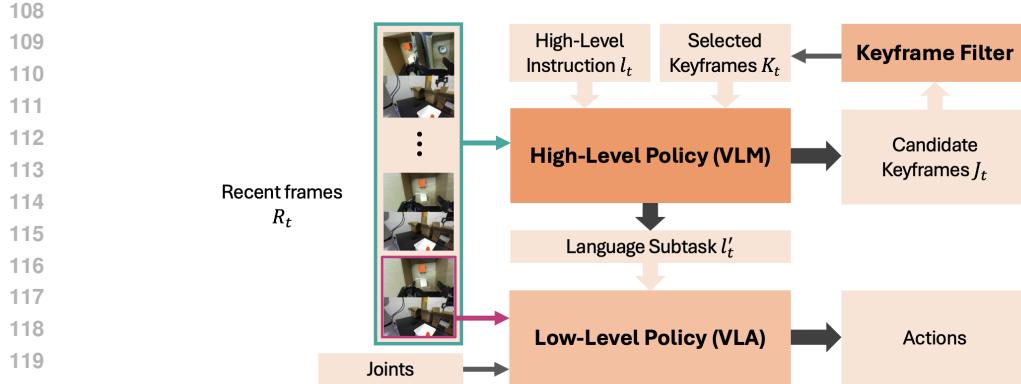


Figure 1: **Architecture of MemER.** The high-level policy processes task instructions, selected keyframes (if any), and `recent images` from base and wrist-mounted cameras to generate low-level language subtasks and candidate keyframes (if any). The low-level policy uses the subtask, `current image`, and robot joint states to produce actions. The candidate keyframe(s) are processed by the keyframe filter to obtain the selected keyframes for input during the next step of inference.

memory mechanism that preserves salient long-range dependencies while keeping inference fast enough for real-world deployment. We show that this memory system is essential for complex, long-horizon tasks that span multiple minutes, on which standard hierarchical methods with little or no memory reliably fail.

Video Keyframe Selection. Outside of robotics, previous work in computer vision has also studied incorporating longer contexts for VLMs (Goleto et al. (2024); Manigrasso et al. (2025)). Similar to our work, other works have used keyframe selection to improve video understanding and question answering (Yu et al., 2023; Ranasinghe et al., 2025). Many such methods incur a high per-frame cost because they estimate frame importance via separate multimodal-LLM calls. These methods are not directly applicable for robotic tasks because with increasing video context lengths they would not meet the task’s latency constraint during inference. Hu et al. (2025a) uses lightweight models to score all frames in a single pass, which reduces per-frame cost but lacks the ability to continuously stream image observations. Departing from existing VLM work for VQA, Hu et al. (2025a) uses non-uniform frame sampling through a lightweight scoring model; in contrast, we achieve non-uniform sampling without additional models. Designed for real-world robotics, our method emphasizes low-cost inference and streaming support.

3 MEMER

3.1 PRELIMINARIES

Language-Conditioned Control Policies. Language-conditioned robot policies are typically trained to model the conditional distribution $p(\mathbf{A}_t|o_t)$, where $\mathbf{A}_t = [a_t, a_{t+1}, \dots, a_{t+H-1}]$ is a chunk of actions modeled from the current timestep t to H timesteps in the future (Zhao et al., 2023) and o_t is the robot’s current sensor observation. The current observation is usually formulated $o_t = [\mathbf{I}_t, l_t, \mathbf{q}_t]$, where $\mathbf{I}_t = [I_t^1, I_t^2, \dots, I_t^n]$ are images from multiple cameras, l_t is the language instruction, and \mathbf{q}_t are the proprioceptive inputs from the robot (i.e. joint angles and gripper state) (Black et al., 2024; Team et al., 2024).

Memory-Based Tasks. We consider a set of tasks such that robot policy must leverage past information to successfully complete them due to partial observability in the environment. In other words, a robot policy trained to model $\pi(\mathbf{A}_t|o_t)$ could not complete the task, but a policy trained to model $\pi(\mathbf{A}_t|o_{0:t})$ could.

Hierarchical Policies. In order to execute complex, long-horizon tasks, we follow Shi et al. (2025) and hierarchically decompose the robot policy into a low-level control policy (π_l) and a high-level policy (π_h) that generates instructions.

$$\pi(\mathbf{A}_t|o_t) = \pi_l(\mathbf{A}_t|\mathbf{I}_t, l_t, \mathbf{q}_t)\pi_h(l'_t|\mathbf{I}_t, l_t) \quad (1)$$

162 The high-level policy models the conditional distribution $\pi_h(l'_t | \mathbf{I}_t, l_t)$, where l'_t is the current language
 163 subtask, which we also refer to as subtasks, that the low-level policy conditions on to complete
 164 the overall instruction l_t . The high-level policy could be represented as a separate VLM Shi et al.
 165 (2025) or share the same weights as the low-level control policy (Intelligence et al., 2025). In our
 166 method, the high-level policy will be responsible for reasoning about memory.

167 **Data Collection** Similar to prior work, we use language subtasks l'_t to label each observation in a
 168 trajectory (Shi et al., 2024; 2025; Intelligence et al., 2025). We end up with a dataset of trajectories
 169 of the following tuple $(\mathbf{I}_t, \mathbf{q}_t, l'_t, a_t)$ to train our high-level and low-level policies. For example,
 170 we can take the task "search for ketchup" and break it down into the following subtasks: "look in
 171 left bin", "look in right bin", and "take out ketchup from right bin." Examples of the subtasks and
 172 ground-truth frames for each task are shown in the Figure 3. In our expert data-collection setup,
 173 the operator executes a prescribed primitive and presses a key upon completion to advance to the
 174 next primitive. Consistent with previous work, we supplement the low-level policy training set with
 175 10–15 intervention demonstrations to improve robustness at deployment Hu et al. (2025b); Kim et al.
 176 (2025). To collect the intervention data, we first initialize the trajectories in common failure states
 177 we have seen the low-level policy reach, then we teleoperate the robot back into an in-distribution
 178 state. Since the low-level policy only uses the current frame, we can have the robot start from bad
 179 states then demonstrate the correct behavior from those states.

180 3.2 HIGH-LEVEL POLICY

182 Our method builds on the common hierarchical VLA paradigm, as in Shi et al. (2025), and extends
 183 it with the ability to tackle long-horizon tasks that require memory. We choose to adopt a hier-
 184 archical approach because open source VLMs like Qwen2.5-VL-7B-Instruct have a strong video
 185 understanding prior from the video datasets they have been trained on, and thus can be adapted
 186 for memory-based planning (Bai et al., 2025). We use a finetuned VLM as the high-level policy
 187 to both nominate candidate keyframes and predict subtasks for the low-level policy during closed-
 188 loop control, as shown in Figure 1. The candidate keyframes are then filtered for redundancy and
 189 added to a group of selected keyframes that the high-level policy conditions on continuously when
 190 predicting the next subtask and candidate keyframes. Concretely, at each timestep, we feed our
 191 high-level memory policy 1) the last N frames per camera $\mathbf{R}_t = \mathbf{I}_{t-N+1:t}$, where N is the integer
 192 context-window shared across cameras, 2) the high-level task instruction l_t , and 3) previously se-
 193 lected keyframes $\mathbf{K}_t \subseteq \mathbf{I}_{0:t-N+1}$, where practically $|K_t| \leq 8$. The high-level policy then predicts
 194 two things: (i) the current subtask to execute l'_t and (ii) the candidate keyframes $\mathbf{J}_t \subseteq \mathbf{R}_t$, a subset
 195 of frames from the recent context. All together, our high-level policy models $\pi_h(l'_t, \mathbf{J}_t | \mathbf{R}_t, \mathbf{K}_t)$.
 196 The low-level policy conditions on l'_t to predict the direct joint velocities for the robot as described
 197 in Section 3.3. In parallel, \mathbf{K}_{t+1} , the selected keyframes for the next timestep of high-level infer-
 198 ence, are calculated from the sequence of all candidate keyframes predicted since the start of the
 199 trajectory $\mathbf{J}'_{0:t} = (\mathbf{J}_0, \mathbf{J}_1, \dots, \mathbf{J}_t)$ using a simple 1D single-linkage clustering algorithm described
 in the following paragraphs.

200 **Building Visual Memory.** To build visual memory, our keyframe filter consolidates observations
 201 that have just exited our recent context, \mathbf{R}_t , into our selected keyframes \mathbf{K}_t . The filtering process
 202 operates on the temporal indices of these keyframes. The approach is task-agnostic and allows us
 203 to have coverage of all frames in the stream. By timestep t , the high-level policy has given us
 204 $\mathbf{J}'_{0:t} = (\mathbf{J}_i)_{i=0}^t$, the sequence of candidate sets nominated up to timestep t . We begin by extracting
 205 the temporal index of every frame nominated in this sequence and pooling them into a single tem-
 206 porally ordered list $\mathbf{G}_{0:t}$. Importantly, we preserve duplicate indices, as this allows the subsequent
 207 median selection to aggregate repeated nominations and yield the most representative frame from
 208 each cluster.

209 We then create clusters, \mathbf{C}_i , for all candidate indices in $\mathbf{G}_{0:t}$ by grouping keyframe indices that
 210 are at most d apart from each other. For example, if $\mathbf{G}_{0:t}$ has temporal indices $\{1, 3, 3, 4, 10\}$ and
 211 $d = 5$, then we would have two clusters $\mathbf{C}_1 = \{1, 3, 3, 4\}$ and $\mathbf{C}_2 = \{10\}$. After constructing the
 212 sequence of clusters, $(\mathbf{C}_1, \mathbf{C}_2, \dots)$, we select the median index from each \mathbf{C}_i to be that cluster's
 213 representative keyframe. The keyframes corresponding to these final median indices represent \mathbf{K}_t ,
 214 the selected keyframes for timestep t . For efficiency, clusters that have indices less than $t - N + 1 - d$
 215 do not need to be recalculated. Figure 2 is a visualization of the clustering and keyframe selection
 during deployment.

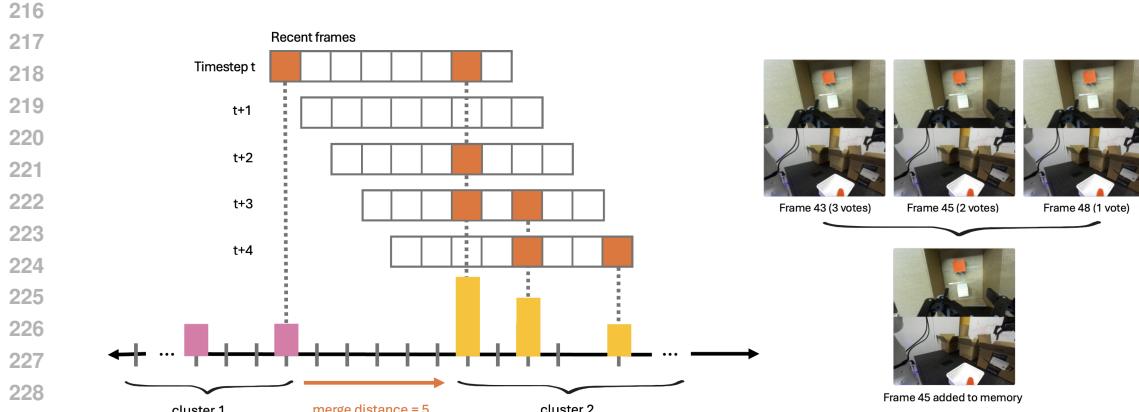


Figure 2: **1D single-linkage over nominated frames.** At each timestep, the high-level policy nominates candidate keyframe(s), as highlighted in orange. All candidate keyframes are aggregated across time with 1D single-linkage using a merge distance of $d = 5$ frames, yielding disjoint clusters. For each cluster, the colored bars indicate nominations for the observation at that timestamp, with bar height proportional to the number of nominations received. We select one representative frame per cluster by taking the median keyframe of all the candidates, and add that frame to memory.

3.3 PRACTICAL IMPLEMENTATION OF MEMER

Training the Low-Level Policy. For our low-level robot policy, we finetune a version of $\pi_{0.5}$ Intelligence et al. (2025) trained on the DROID dataset Khazatsky et al. (2025). Given we have trajectories of the tuple (I_t, q_t, l'_t, a_t) , we can train our low-level policy to model the conditional distribution $\pi_l(A_t | I_t, q_t, l'_t)$. We choose to finetune the $\pi_{0.5}$ checkpoint trained on the DROID dataset due to its strong out-of-the-box behavior on the DROID setup we use to conduct all of our experiments. Consequently, we find that we need only 50 demos of long-horizon trajectories to finetune a strong low-level policy. **We finetune a single low-level policy across all three tasks.** Refer to Appendix A for the specific training parameters.

Training the High-Level Policy. For our high-level policy, we finetune Qwen2.5-VL-7B-Instruct to predict two things: 1) the current subtask to execute and 2) any task-relevant keyframes to remember from the most recent frames (as described in Section 3.2). **We finetune a single high-level policy on all three tasks, and we observe this gives the added benefit of stronger object generalization (see Appendix F for comparisons with the single-task variant of MemER).** We freeze the weights of the vision encoder and projection layer during finetuning for training efficiency and to preserve the visual prior.

Annotating Keyframes for the High-Level Policy. To label keyframes for each task, we employ a semi-automatic annotation procedure. First, we extract the boundary frames between consecutive subtasks, which are simply the last frame of each subtask segment. Next, we review a small number of demonstrations (~ 3) to determine a simple annotation rule per subtask—deciding whether or not to keep the last frame of that subtask segment as a ground-truth keyframe, since these transition points usually contain a visually informative state. For example, the rule may indicate selecting the last frame in "look inside the center bin," or no frame for "reset scooper position." Once established, these rules are fixed per subtask and automatically applied to all demonstrations of each task; this process is not a manual, per-frame effort, but a quick, one-time setup that makes keyframe labeling practically free. The resulting set of keyframes forms the ground-truth targets used to train the high-level policy. See Appendix E for the specific keyframe annotation rules for all of the subtasks.

Closed-Loop Deployment. Our policy decomposition is the following:

$$\pi(A_t | o_{0:t}) = \pi_l(A_t | I_t, q_t, l'_t) \pi_h(l'_t, J_t | I_{t-N+1:t}, K_t) \quad (2)$$

The interaction between the low-level and high-level policy for closed loop deployment is shown in Figure 1. The low-level policy predicts π_l actions chunks at ~ 2 Hz, while the the high-level policy

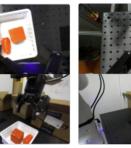
270	1	TASK	"search for the ketchup"			
271		SUBTASK	look inside the left bin	take ketchup from left bin and place in white bin	look inside the center bin	look inside the right bin
272		ROBOT EXECUTION				
273						take red block from right bin and place in white bin
274	2	TASK	"search for the red block"			
275		SUBTASK	take wooden block from right bin and place in white bin			
276		ROBOT EXECUTION				
277						
278						
279	3	TASK	"search for the wooden block"			
280						
281	COUNTING	SUBTASK	place a scoop of peanuts in the green bowl	place a scoop of peanuts in the green bowl	place a scoop of peanuts in the green bowl	place a scoop of jelly beans in the blue bowl
282		ROBOT EXECUTION				
283						place a scoop of jelly beans in the blue bowl
284						
285						
286						
287						
288	DUST & REPLACE	TASK	"remove the items from the shelves, dust the shelves, and place the items back on the shelves"			
289		SUBTASK	remove the item from bottom shelf	remove the item from top shelf	dust bottom shelf	dust top shelf
290		ROBOT EXECUTION				
291						place purple plushie on bottom shelf
292						
293						
294						
295						
296						
297						

Figure 3: **Task used in our evaluation.** Across three domains, we evaluate complex instructions, intermediate subtasks, and keyframe predictions. We report performance across 20 trials per task per method.

π_h predicts keyframes and subtasks at roughly $\sim 1\text{Hz}$. We run both policies on their own server. Like Shi et al. (2025), we choose to run the policies asynchronously, as we find it to improve performance. While the high-level policy is predicting the next primitive, the low-level policy conditions on the latest predicted primitive. We add the image observations sampled at 2Hz to a queue, and then send this queue to the high-level policy to query the next primitive prediction after the current high-level policy prediction is complete. Following Anonymous (2025), we found that linearly interpolating the weights of the finetuned high-level policy with its base model Qwen2.5-VL-Instruct-7B improves performance of the hierarchical policy on most tasks (more details in Appendix H).

4 EXPERIMENTS

In this section, we aim to evaluate the extent to which our method and alternative approaches can tackle long-horizon manipulation tasks that require some form of memory. We first describe our tasks and evaluation protocols, then we discuss the following questions:

1. To what extent can our approach tackle tasks that require memory, in comparison to a memory-less policy (i.e. current robot foundation models), a human high-level (Human HL) policy, and other naive approaches?
2. How does our high-level policy, fine-tuned from an open-source VLM, compare to proprietary off-the-shelf vision-language models?
3. How does representing memory via images compare to other modalities?

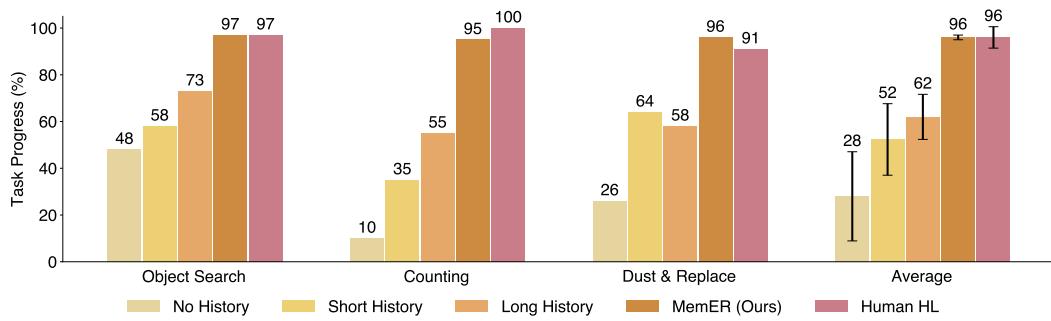


Figure 4: **Main Results.** Our method clearly outperforms the no history, short history (8 frames of context), and long history (32 frames of context) baselines on the three long-horizon memory-based tasks. It is on par with the human high level policy.

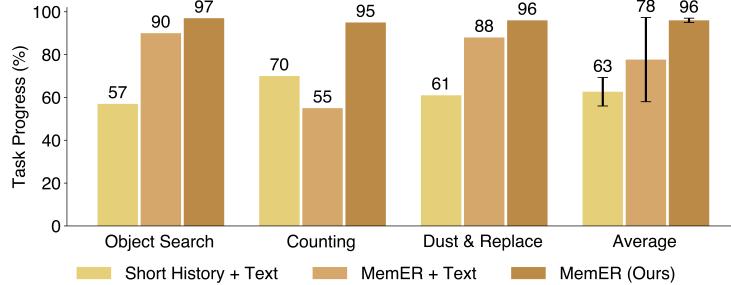


Figure 5: **Modality Results.** Using only images to represent the memory performs better than the baselines that use only text or text and images. We hypothesize that the high-level policy over-indexes on the text tokens in the memory, causing it to miss important details in the visual input.

We design three complex, real-robot tasks that entail using memory in multiple distinct ways, including remembering object locations, keeping track of previously completed actions, and counting repeated task steps, as illustrated in Fig. 3. Since all of the tasks are long-horizon, we record different metrics for each task to provide a granular view of task completion.

Object Search. In the task, we randomly place three to five objects across three opaque bins. Then, the robot is sequentially given three objects to find; each new instruction is issued only after the robot has attempted to retrieve the previous object. Our goal is an optimized search: the robot remembers which bins it has already examined (and what it saw), skips re-searching them, and explores additional bins only as needed; it should proceed directly to the target bin if it has already been searched. This task requires cross-episodic memory as finding each object is its own l_t , thus requiring recall of information gathered while executing prior instructions. We train and test with the same set of 15 objects, which are various small toys. *Evaluation metric.* We measure task completion by two criteria for each of the three objects: successful retrieval and adherence to the optimal path without unnecessary exploration, for a maximum score of 6 (2 points per object).

Counting Scoops. In this task, the robot is asked to fill two separate bowls with scoops of food. Specifically, the robot is asked to place an exact number of scoops of two different ingredients into different bowls. The robot needs to keep track of how many scoops have already been obtained per ingredient. This counting task has appeared in prior work (Torne et al., 2025), we modify it to require much longer-horizon reasoning by increasing the potential number of scoops and ingredients to scoop from. This task is challenging because the keyframes corresponding to each ingredient are nearly indistinguishable—piles look almost identical after each scoop—so missing or duplicating a keyframe can cause the high-level policy to misjudge its progress. We train and test with peanuts and jelly beans. *Evaluation metric.* Task completion is measured by the absolute value of the difference between the number of scoops requested and obtained, for each ingredient. Here, a lower metric is better. We also report the 0-1 success rate for satisfying the instruction.

Method	Object Search		# wrong scoops (\downarrow)	Dust & Replace			
	# times object retrieved (\uparrow)	# times used optimal path (\uparrow)		Dust bottom shelf (\uparrow)	Dust top shelf (\uparrow)	Replace bottom object (\uparrow)	Replace top object (\uparrow)
MemER (Ours)	59	57	1	20	19	18	20
No history	32	25	61	5	4	5	7
Short History	38	31	26	14	14	11	12
Long History	47	41	12	11	11	12	12
Human HL	58	58	0	19	19	18	17

Table 1: **Detailed Main Results.** Online evaluation of our method and the baselines for Q1. We provide task-specific evaluation metrics and the raw counts across 20 trials for each component of the task. Bold marks the best non-oracle method in each row. \uparrow and \downarrow indicate higher and lower is better, respectively.

Dust & Replace. In this task, the robot is asked to remove objects from a two-tiered shelf, pick up a duster, dust each shelf, and replace the objects to their original positions. Between dusting the two shelves, we return the duster to its reset position, making it unclear from recent context which shelf has already been dusted. This task is challenging because the robot must simultaneously remember two types of information: the original locations of the objects and which shelf, if any, has already been dusted. We train and test with a set of 9 objects, which are various plushies. *Evaluation metric.* Task completion is measured by the binary success of each object being replaced correctly on the shelf and each shelf being dusted, for a max score of 4.

Evaluation Setup: Our robot setup resembles that within DROID (Khazatsky et al., 2025) having a Franka arm, parallel jaw gripper and two cameras: a third-person ZED camera and a wrist-mounted miniZED camera. For all tasks the π_h operates at $\sim 1\text{Hz}$ and the π_l operates at $\sim 2\text{Hz}$. π_l outputs an action chunk \mathbf{A}_t of 15 actions, and we execute 8 open loop before replanning. The cameras stream 320×180 resolution images at 15Hz , but we subsample to 2Hz to input to hierarchical policy.

4.1 MAIN RESULTS

Q1: To what extent can our approach tackle tasks that require memory compared to other methods? All evaluated methods incorporate a π_h and π_l , and the baselines change the input context of the high-level policy π_h while using the same π_l . We compare to the following baselines: 1) No history: a memory-less high-level policy that only views the current frame (i.e. current robot foundation models), similar to (Shi et al., 2025) 2) Short History: a policy that views only the recent N frames ($N = 8$ for our setup) 3) Long History: a policy that naively receives a longer context ($4 \times$ that of Short History or $N = 32$ recent frames), and 4) Human HL: a human provides the correct subtasks. The Human HL policy establishes a rough estimate of the upper bound performance for all tasks, with failures stemming from the low-level policy. From Figure 4, we see that No History and Short History baselines perform poorly as all of the tasks simply require more context than what was provided. The Long History baseline shows that increasing the context can slightly help, but 32 frames (~ 16 seconds of memory) incurs an inference cost of 1 second, which approaches the limit of what can be tolerated in closed-loop settings. The Long History policy still performs on average 34% worse than MemER, necessitating strategies such as our method that consolidate keyframes rather than naively extending the context. Lastly, our method has $> 95\%$ on all tasks with the most common failure case being failures in the low-level policy executing the subtask, which can be rectified with better low-level correction data.

Q2: How does our high-level policy, fine-tuned from an open-source VLM, compare to proprietary off-the-shelf VLMs? Since our approach outperforms other selections of π_h and performs similar to the Human HL policy, we investigate if our method is necessary given existing state-of-the-art VLMs may already have this capability. **We test both GPT-5 and Gemini Robotics-ER 1.5 (Team et al., 2025) given the former’s strong multimodal reasoning performance and the latter’s robotics-specific agentic capabilities.** Because the API latency for both ranged from 10-15 seconds, these API-based high-level policies led to complete failures when we deployed it in the same

Method	Object Search		Counting		Dust & Replace	
	Trajectory acc. (↑)	Boundary acc. (↑)	Trajectory acc. (↑)	Boundary acc. (↑)	Trajectory acc. (↑)	Boundary acc. (↑)
	MemER (Ours)	0.80	0.76	0.67	0.65	0.87
GPT-5	0.15	0.16	0.43	0.47	0.67	0.63
Gemini Robotics-ER 1.5	0.21	0.23	0.13	0.14	0.19	0.22

Table 2: **Comparison with API-Based VLMs.** Offline evaluations of the per-task trajectory and boundary accuracy of subtask predictions between MemER, GPT-5, and Gemini Robotics-ER 1.5 (Team et al., 2025), to compare our finetuned high-level policy from an open-source VLM against proprietary VLMs.

Method	Input Components			Object Search		Counting		Dust & Replace			
	Short History	Image Keyframes	Text Subtasks	# times object retrieved (↑)	# times used optimal path (↑)	# wrong scoops (↓)	Dust bottom shelf (↑)	Dust top shelf (↑)	Replace bottom object (↑)	Replace top object (↑)	
MemER (Ours)	✓	✓	✗	59	57	1	20	19	18	20	
Short History + Text	✓	✗	✓	40	28	10	16	16	7	10	
MemER + Text	✓	✓	✓	59	49	13	20	18	17	20	

Table 3: **Detailed Modality Results.** Online evaluation across methods ablating the textual modality. Bold marks the best method. ↑ and ↓ indicate higher and lower is better, respectively.

closed-loop evaluation as the other baselines, which require latencies of less than 1 second to react accordingly to the environment.

To still offer a means of comparison between π_h and the API-based high-level policies, we designed an offline experiment using a held-out set of trajectories generated by the low-level policy commanded by ground-truth subtasks l'_t . This simulates closed-loop execution under realistic behaviors (i.e. retries after missed grasps, pauses, and jerky motions), while allowing the model to build its visual memory in the same way. We carefully craft the prompt to include specific task-relevant instructions and an explicit list of all possible actions that the low-level policy can follow, and ask the model to choose among them (Appendix C). Just like our setup, the model takes in the $N = 8$ most recent frames of context and selected keyframes K_t at every timestep, and outputs the subtask l'_t for the low-level policy to execute and candidate keyframes J_t . We measure *trajectory accuracy*, which is how often the correct subtask is predicted at each timestep in the trajectory, since we know the ground-truth subtask command that the low-level policy is executing at that moment. We also measure *boundary accuracy*, computed as the trajectory accuracy within a fixed window centered on transition points between subtasks. These are critical moments that expose the high-level policy’s grasp of task progress by knowing when to move on to the next subtask; correct timing in transitioning between subtasks plays a major role in proper coordination with the low-level policy during deployment. From Table 2, we observe that both zero-shot API-based models perform poorly compared to our finetuned Qwen2.5-VL model, primarily failing by predicting too many non-informative candidate keyframes, reflecting its limited ability to identify which frames are truly useful. Consequently, even with a significantly stronger base VLM such as GPT-5 or Gemini Robotics-ER 1.5, the model lacks the capacity to interpret robot-specific perceptual cues and identify meaningful keyframes, resulting in less accurate subtask predictions and necessitating additional fine-tuning.

Q3: How does representing memory via images compare to other modalities?

We now discuss which modalities are best suited for building memory—visual, textual, or both. Storing memory in text offers natural benefits as it’s interpretable and much more condensed. We test two additional methods that use text memory, in the form of the predicted subtask l'_t that is associated with each of the selected keyframes in K_t : 1) Short History + Text uses the most recent $N = 8$ frames and predicted subtasks and 2) MemER + Text interleaves the predicted subtasks and visual keyframes in memory. Table 3 shows the input for each baseline.

We see from Figure 5 (left) that relying on textual memory underperforms compared to our vision-only approach. Specifically, replacing the visual memory with text (Short History + Text) leads to the most significant performance drop. Furthermore, adding text to our visual memory (MemER +

486 Text) provides no benefits, consistently under-performing across all tasks, especially the Counting
 487 task. We find that both the baselines' subtask predictions are brittle, largely due to overreliance on
 488 the most recently predicted subtask stored in memory. This leads to failures when policy retries
 489 or freezes shift the recent context out of distribution. In such cases, the model tends to overfit to
 490 the canonical ordering of subtasks observed in expert demonstrations and misidentifies the subtask
 491 being executed given the current environmental state. In contrast, directly grounding predictions in
 492 the current observation combined with the robust visual memory proves more reliable.

493 For the Short History + Text baseline, the language-based subtasks do not capture all of the in-
 494 formation required to successfully complete the task. For example, in the Object Search task, the
 495 predicted language subtasks only specify the objects the robot has previously been asked to locate or
 496 is currently searching for, but have no reference to objects it has seen that may need to be retrieved
 497 in subsequent episodes. For the MemER + Text baseline, the model disproportionately attends to
 498 the text stored in memory, which can be incorrect for the reasons stated above, and subsequently
 499 ignores important information stored in visual memory. Such behavior has been noted before in
 500 (Zheng et al., 2025; il Lee et al., 2025). Thus, from our tasks, we find that visual memory alone pro-
 501 vides the most robust representation, though exploring multimodal memory remains an interesting
 502 future direction.

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 5 DISCUSSION AND FUTURE WORK

We introduced MemER, a hierarchical vision–language–action framework that *scales memory via experience retrieval*. A high-level memory policy processes streamed observations, nominates keyframes to retain, and emits language subtasks that a low-level controller executes. A simple on-line consolidation strategy converts per-timestep candidate keyframes into a compact, stable episodic memory that is fed back into the high-level policy. Across three real-world, long-horizon manipulation domains, MemER significantly improves performance on tasks requiring minutes of recall while retaining low-latency inference and strong compatibility with existing VLA backbones.

Despite its benefits, our approach has several limitations. We continuously accumulate informative keyframes but currently lack a mechanism to discard them when they become too numerous—an issue that may arise for tasks requiring hours of memory. Enabling the high-level policy to reason about which keyframes to not only *add* but also *delete* for modifiable long-term memory is an exciting direction for future work. [Aghajohari et al. \(2025\)](#) proposes an approach that uses reinforcement learning to train an LLM to maintain a fixed-size memory state throughout its chain-of-thought reasoning. Adapting this idea could provide a promising way to endow MemER with a learned memory management system that includes an explicit *forgetting* mechanism. In addition, our memory is limited to visual observations; incorporating other sensory modalities such as tactile or audio is a promising extension. Finally, we study a single robot embodiment, and extending to mobile manipulation and multi-room tasks, where memory must interleave spatial mapping with episodic recall, would bring the system closer to human-like memory. We view MemER as a step toward robot policies that *decide what to remember and leverage those memories when needed* for effective long-horizon control.

6 REPRODUCIBILITY STATEMENT

We link the code for creating the training data and practical real-world deployment on our website.

7 ETHICS STATEMENT

We are not presently aware of significant ethical issues arising from this work.

8 THE USE OF LARGE LANGUAGE MODELS (LLMs)

We only used LLMs to rephrase and polish the text for clarity and readability.

540 REFERENCES

542 Milad Aghajohari, Kamran Chitsaz, Amirhossein Kazemnejad, Sarath Chandar, Alessandro Sor-
543 doni, Aaron Courville, and Siva Reddy. The markovian thinker: Architecture-agnostic linear
544 scaling of reasoning, 2025. URL <https://arxiv.org/abs/2510.06557>.

545 Anonymous. Robust fine-tuning of vision-language-action robot policies via parameter merging.
546 In *ICLR 2026 Conference Submission (OpenReview)*, 2025. URL <https://openreview.net/forum?id=uWJwQ5Sz0M>. conference submission on OpenReview.

547

548 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
549 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
550 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
551 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report, 2025.
552 URL <https://arxiv.org/abs/2502.13923>.

553

554 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
555 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
556 Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
557 James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π_0 : A vision-
558 language-action flow model for general robot control, 2024. URL <https://arxiv.org/abs/2410.24164>.

559

560 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
561 manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
562 Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexan-
563 der Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalash-
564 nikov, Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu,
565 Henryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael
566 Ryoo, Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu
567 Soricut, Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul
568 Wohlhart, Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich.
569 Rt-2: Vision-language-action models transfer web knowledge to robotic control, 2023. URL
570 <https://arxiv.org/abs/2307.15818>.

571

572 Annie S. Chen, Alec M. Lessing, Andy Tang, Govind Chada, Laura Smith, Sergey Levine, and
573 Chelsea Finn. Commonsense reasoning for legged robot adaptation with vision-language models,
574 2024. URL <https://arxiv.org/abs/2407.02666>.

575

576 Hao-Tien Lewis Chiang, Zhuo Xu, Zipeng Fu, Mithun George Jacob, Tingnan Zhang, Tsang-
577 Wei Edward Lee, Wenhao Yu, Connor Schenck, David Rendleman, Dhruv Shah, Fei Xia, Jas-
578 mine Hsu, Jonathan Hoech, Pete Florence, Sean Kirmani, Sumeet Singh, Vikas Sindhwani,
579 Carolina Parada, Chelsea Finn, Peng Xu, Sergey Levine, and Jie Tan. Mobility vla: Multi-
580 modal instruction navigation with long-context vlms and topological graphs, 2024. URL
581 <https://arxiv.org/abs/2407.07775>.

582

583 Murtaza Dalal, Tarun Chiruvolu, Devendra Chaplot, and Ruslan Salakhutdinov. Plan-seq-learn:
584 Language model guided rl for solving long horizon robotics tasks, 2024. URL <https://arxiv.org/abs/2405.01534>.

585

586 Yiguo Fan, Pengxiang Ding, Shuanghao Bai, Xinyang Tong, Yuyang Zhu, Hongchao Lu, Fengqi
587 Dai, Wei Zhao, Yang Liu, Siteng Huang, Zhaoxin Fan, Badong Chen, and Donglin Wang. Long-
588 vla: Unleashing long-horizon capability of vision language action model for robot manipulation,
589 2025. URL <https://arxiv.org/abs/2508.19958>.

590

591 Haoquan Fang, Markus Grotz, Wilbert Pumacay, Yi Ru Wang, Dieter Fox, Ranjay Krishna, and
592 Jiafei Duan. Sam2act: Integrating visual foundation model with a memory architecture for robotic
593 manipulation, 2025. URL <https://arxiv.org/abs/2501.18564>.

594

595 Gabriele Goletto, Tushar Nagarajan, Giuseppe Averta, and Dima Damen. Amego: Active memory
596 from long egocentric videos. In *European Conference on Computer Vision*, pp. 92–110. Springer,
597 2024.

594 Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox. Rgb-d mapping: Using
 595 kinect-style depth cameras for dense 3d modeling of indoor environments. *International Journal*
 596 *of Robotic Research - IJRR*, 31:647–663, 04 2012. doi: 10.1177/0278364911434148.

597

598 Kai Hu, Feng Gao, Xiaohan Nie, Peng Zhou, Son Tran, Tal Neiman, Lingyun Wang, Mubarak Shah,
 599 Raffay Hamid, Bing Yin, and Trishul Chilimbi. M-llm based video frame selection for efficient
 600 video understanding, 2025a. URL <https://arxiv.org/abs/2502.19680>.

601 Zheyuan Hu, Robyn Wu, Naveen Enock, Jasmine Li, Riya Kadakia, Zackory Erickson, and Aviral
 602 Kumar. Rac: Robot learning for long-horizon tasks by scaling recovery and correction, 2025b.
 603 URL <https://arxiv.org/abs/2509.07953>.

604 Kang il Lee, Minbeom Kim, Seunghyun Yoon, Minsung Kim, Dongryeol Lee, Hyukhun Koh, and
 605 Kyomin Jung. Vlind-bench: Measuring language priors in large vision-language models, 2025.
 606 URL <https://arxiv.org/abs/2406.08702>.

607

608 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
 609 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh,
 610 Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
 611 LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
 612 Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
 613 Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. $\pi_{0.5}$: a
 614 vision-language-action model with open-world generalization, 2025. URL <https://arxiv.org/abs/2504.16054>.

615

616 Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
 617 Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
 618 Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree
 619 Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Young-
 620 woon Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin
 621 Black, Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman,
 622 Pannag R Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke, Blake
 623 Wulfe, Ted Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, Ro-
 624 han Baijal, Mateo Guaman Castro, Daphne Chen, Qiyu Chen, Trinity Chung, Jaimyn Drake,
 625 Ethan Paul Foster, Jensen Gao, Vitor Guizilini, David Antonio Herrera, Minho Heo, Kyle
 626 Hsu, Jiaheng Hu, Muhammad Zubair Irshad, Donovon Jackson, Charlotte Le, Yunshuang Li,
 627 Kevin Lin, Roy Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchandani, Daniel Morton, Tony
 628 Nguyen, Abigail O'Neill, Rosario Scalise, Derick Seale, Victor Son, Stephen Tian, Emi Tran, An-
 629 drew E. Wang, Yilin Wu, Annie Xie, Jingyun Yang, Patrick Yin, Yunchu Zhang, Osbert Bastani,
 630 Glen Berseth, Jeannette Bohg, Ken Goldberg, Abhinav Gupta, Abhishek Gupta, Dinesh Jayara-
 631 man, Joseph J Lim, Jitendra Malik, Roberto Martín-Martín, Subramanian Ramamoorthy, Dorsa
 632 Sadigh, Shuran Song, Jiajun Wu, Michael C. Yip, Yuke Zhu, Thomas Kollar, Sergey Levine,
 633 and Chelsea Finn. Droid: A large-scale in-the-wild robot manipulation dataset, 2025. URL
 634 <https://arxiv.org/abs/2403.12945>.

635

636 Ji Woong Kim, Juo-Tung Chen, Pascal Hansen, Lucy X. Shi, Antony Goldenberg, Samuel
 637 Schmidgall, Paul Maria Scheikl, Anton Deguet, Brandon M. White, De Ru Tsai, Richard Cha,
 638 Jeffrey Jopling, Chelsea Finn, and Axel Krieger. Srt-h: A hierarchical framework for autonomous
 639 surgery via language conditioned imitation learning, 2025. URL <https://arxiv.org/abs/2505.10251>.

640

641 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 642 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Ben-
 643 jamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
 644 Openvla: An open-source vision-language-action model, 2024. URL <https://arxiv.org/abs/2406.09246>.

645

646 Haoxuan Li, Sixu Yan, Yuhang Li, and Xinggang Wang. Towards fast, memory-based and data-
 647 efficient vision-language policy, 2025a. URL <https://arxiv.org/abs/2503.10322>.

648

649 Yi Li, Yuquan Deng, Jesse Zhang, Joel Jang, Marius Memmel, Raymond Yu, Caelan Reed Garrett,
 650 Fabio Ramos, Dieter Fox, Anqi Li, Abhishek Gupta, and Ankit Goyal. Hamster: Hierarchical

648 action models for open-world robot manipulation, 2025b. URL <https://arxiv.org/abs/2502.05485>.

649

650

651 Zaira Manigrasso, Matteo Dunnhofer, Antonino Furnari, Moritz Nottebaum, Antonio Finocchiaro,
 652 Davide Marana, Rosario Forte, Giovanni Maria Farinella, and Christian Micheloni. Online
 653 episodic memory visual query localization with egocentric streaming object memory, 2025. URL
 654 <https://arxiv.org/abs/2411.16934>.

655 NVIDIA, :, Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding,
 656 Linxi "Jim" Fan, Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, Joel Jang, Zhenyu Jiang,
 657 Jan Kautz, Kaushil Kundalia, Lawrence Lao, Zhiqi Li, Zongyu Lin, Kevin Lin, Guilin Liu,
 658 Edith Llontop, Loic Magne, Ajay Mandlekar, Avnish Narayan, Soroush Nasiriany, Scott Reed,
 659 You Liang Tan, Guanzhi Wang, Zu Wang, Jing Wang, Qi Wang, Jiannan Xiang, Yuqi Xie, Yinzhen
 660 Xu, Zhenjia Xu, Seonghyeon Ye, Zhiding Yu, Ao Zhang, Hao Zhang, Yizhou Zhao, Ruijie Zheng,
 661 and Yuke Zhu. Gr00t n1: An open foundation model for generalist humanoid robots, 2025. URL
 662 <https://arxiv.org/abs/2503.14734>.

663 Kanchana Ranasinghe, Xiang Li, Kumara Kahatapitiya, and Michael S. Ryoo. Understanding long
 664 videos with multimodal language models, 2025. URL <https://arxiv.org/abs/2403.16998>.

665

666 Satvik Sharma, Huang Huang, Kaushik Shivakumar, Lawrence Yunliang Chen, Ryan Hoque, Brian
 667 Ichter, and Ken Goldberg. Semantic mechanical search with large vision and language models,
 668 2023. URL <https://arxiv.org/abs/2302.12915>.

669 Yide Shentu, Philipp Wu, Aravind Rajeswaran, and Pieter Abbeel. From llms to actions: Latent
 670 codes as bridges in hierarchical robot control, 2025. URL <https://arxiv.org/abs/2405.04798>.

671

672 Lucy Xiaoyang Shi, Zheyuan Hu, Tony Z. Zhao, Archit Sharma, Karl Pertsch, Jianlan Luo, Sergey
 673 Levine, and Chelsea Finn. Yell at your robot: Improving on-the-fly from language corrections,
 674 2024. URL <https://arxiv.org/abs/2403.12910>.

675

676 Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming Ke, Karl Pertsch, Quan Vuong, James
 677 Tanner, Anna Walling, Haohuan Wang, Niccolò Fusai, Adrian Li-Bell, Danny Driess, Lachy
 678 Groom, Sergey Levine, and Chelsea Finn. Hi robot: Open-ended instruction following with
 679 hierarchical vision-language-action models, 2025. URL <https://arxiv.org/abs/2502.19417>.

680 Gemini Robotics Team, Abbas Abdolmaleki, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste
 681 Alayrac, Montserrat Gonzalez Arenas, Ashwin Balakrishna, Nathan Batchelor, Alex Bewley,
 682 Jeff Bingham, Michael Bloesch, Konstantinos Bousmalis, Philemon Brakel, Anthony Brohan,
 683 Thomas Buschmann, Arunkumar Byravan, Serkan Cabi, Ken Caluwaerts, Federico Casarini,
 684 Christine Chan, Oscar Chang, London Chappellet-Volpini, Jose Enrique Chen, Xi Chen, Hao-
 685 Tien Lewis Chiang, Krzysztof Choromanski, Adrian Collister, David B. D'Ambrosio, Sudeep
 686 Dasari, Todor Davchev, Meet Kirankumar Dave, Coline Devin, Norman Di Palo, Tianli Ding,
 687 Carl Doersch, Adil Dostmohamed, Yilun Du, Debidatta Dwibedi, Sathish Thoppay Egambaram,
 688 Michael Elabd, Tom Erez, Xiaolin Fang, Claudio Fantacci, Cody Fong, Erik Frey, Chuyuan Fu,
 689 Ruiqi Gao, Marissa Giustina, Keerthana Gopalakrishnan, Laura Graesser, Oliver Groth, Agrim
 690 Gupta, Roland Hafner, Steven Hansen, Leonard Hasenclever, Sam Haves, Nicolas Heess, Bran-
 691 don Hernaez, Alex Hofer, Jasmine Hsu, Lu Huang, Sandy H. Huang, Atil Iscen, Mithun George
 692 Jacob, Deepali Jain, Sally Jesmonth, Abhishek Jindal, Ryan Julian, Dmitry Kalashnikov, M. Emre
 693 Karagozler, Stefani Karp, Matija Kecman, J. Chase Kew, Donnie Kim, Frank Kim, Junkyung
 694 Kim, Thomas Kipf, Sean Kirmani, Ksenia Konyushkova, Li Yang Ku, Yuheng Kuang, Thomas
 695 Lampe, Antoine Laurens, Tuan Anh Le, Isabel Leal, Alex X. Lee, Tsang-Wei Edward Lee, Guy
 696 Lever, Jacky Liang, Li-Heng Lin, Fangchen Liu, Shangbang Long, Caden Lu, Sharath Maddi-
 697 neni, Anirudha Majumdar, Kevis-Kokitsi Maninis, Andrew Marmon, Sergio Martinez, Assaf Hur-
 698 witz Michaely, Niko Milonopoulos, Joss Moore, Robert Moreno, Michael Neunert, Francesco
 699 Nori, Joy Ortiz, Kenneth Oslund, Carolina Parada, Emilio Parisotto, Amaris Paryag, Acorn Poo-
 700 ley, Thomas Power, Alessio Quaglino, Haroon Qureshi, Rajkumar Vasudeva Raju, Helen Ran,
 701 Dushyant Rao, Kanishka Rao, Isaac Reid, David Rendleman, Krista Reymann, Miguel Rivas,
 Francesco Romano, Yulia Rubanova, Peter Pastor Sampedro, Pannag R Sanketi, Dhruv Shah, Mo-
 hit Sharma, Kathryn Shea, Mohit Shridhar, Charles Shu, Vikas Sindhwani, Sumeet Singh, Radu

702 Soricut, Rachel Sterneck, Ian Storz, Razvan Surdulescu, Jie Tan, Jonathan Tompson, Saran Tun-
 703 yasuvunakool, Jake Varley, Grace Vesom, Giulia Vezzani, Maria Bauza Villalonga, Oriol Vinyals,
 704 René Wagner, Ayzaan Wahid, Stefan Welker, Paul Wohlhart, Chengda Wu, Markus Wulfmeier,
 705 Fei Xia, Ted Xiao, Annie Xie, Jinyu Xie, Peng Xu, Sichun Xu, Ying Xu, Zhuo Xu, Jimmy Yan,
 706 Sherry Yang, Skye Yang, Yuxiang Yang, Hiu Hong Yu, Wenhao Yu, Wentao Yuan, Yuan Yuan,
 707 Jingwei Zhang, Tingnan Zhang, Zhiyuan Zhang, Allan Zhou, Guangyao Zhou, and Yuxiang Zhou.
 708 Gemini robotics 1.5: Pushing the frontier of generalist robots with advanced embodied reasoning,
 709 thinking, and motion transfer, 2025. URL <https://arxiv.org/abs/2510.03342>.

710 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 711 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, Jianlan Luo, You Liang Tan, Lawrence Yun-
 712 liang Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey
 713 Levine. Octo: An open-source generalist robot policy, 2024. URL <https://arxiv.org/abs/2405.12213>.

714 Marcel Torne, Andy Tang, Yuejiang Liu, and Chelsea Finn. Learning long-context diffusion policies
 715 via past-token prediction, 2025. URL <https://arxiv.org/abs/2505.09561>.

716 Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla: Vision-
 717 language model with plug-in diffusion expert for general robot control, 2025. URL <https://arxiv.org/abs/2502.05855>.

718 Kun Wu, Yichen Zhu, Jinming Li, Junjie Wen, Ning Liu, Zhiyuan Xu, Qinru Qiu, and Jian Tang.
 719 Discrete policy: Learning disentangled action space for multi-task robotic manipulation. *arXiv*
 720 preprint [arXiv:2409.18707](https://arxiv.org/abs/2409.18707), 2024.

721 Haoming Ye, Yunxiao Xiao, Cewu Lu, and Panpan Cai. Pretraining a unified pdl domain from
 722 real-world demonstrations for generalizable robot task planning, 2025. URL <https://arxiv.org/abs/2507.21545>.

723 Justin Yu, Kush Hari, Kishore Srinivas, Karim El-Refai, Adam Rashid, Chung Min Kim, Justin
 724 Kerr, Richard Cheng, Muhammad Zubair Irshad, Ashwin Balakrishna, Thomas Kollar, and Ken
 725 Goldberg. Language-embedded gaussian splats (legs): Incrementally building room-scale repre-
 726 sentations with a mobile robot. In *2024 IEEE/RSJ International Conference on Intelligent Robots
 727 and Systems (IROS)*, pp. 13326–13332, 2024. doi: 10.1109/IROS58592.2024.10802196.

728 Shoubin Yu, Jaemin Cho, Prateek Yadav, and Mohit Bansal. Self-chained image-language model for
 729 video localization and question answering, 2023. URL <https://arxiv.org/abs/2305.06988>.

730 Zichen Zhang, Yunshuang Li, Osbert Bastani, Abhishek Gupta, Dinesh Jayaraman, Yecheng Jason
 731 Ma, and Luca Weihs. Universal visual decomposer: Long-horizon manipulation made easy, 2023.
 732 URL <https://arxiv.org/abs/2310.08581>.

733 Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
 734 manipulation with low-cost hardware, 2023. URL <https://arxiv.org/abs/2304.13705>.

735 Xu Zheng, Chenfei Liao, Yuqian Fu, Kaiyu Lei, Yuanhuiyi Lyu, Lutao Jiang, Bin Ren, Jialei Chen,
 736 Jiawen Wang, Chengxin Li, Linfeng Zhang, Danda Pani Paudel, Xuanjing Huang, Yu-Gang Jiang,
 737 Nicu Sebe, Dacheng Tao, Luc Van Gool, and Xuming Hu. Mllms are deeply affected by modality
 738 bias, 2025. URL <https://arxiv.org/abs/2505.18657>.

739 Zihan Zhou, Animesh Garg, Dieter Fox, Caelan Garrett, and Ajay Mandlekar. Spire: Synergistic
 740 planning, imitation, and reinforcement learning for long-horizon manipulation, 2024. URL
 741 <https://arxiv.org/abs/2410.18065>.

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A MODEL INITIALIZATION AND HYPERPARAMETERS
757758 **Training the High-Level Policy** The hyperparameters for fine-tuning the Qwen2.5-VL-7B-Instruct
759 high-level policy are detailed in Table 4.
760761 Table 4: Hyperparameters for High-Level Policy (Qwen2.5-VL-7B-Instruct) fine-tuning.
762

763 Hyperparameter	764 Value
765 Learning Rate	766 6e-5
767 Optimizer	768 AdamW
769 β_1	770 0.9
771 β_2	772 0.999
773 Weight Decay	774 0
775 Gradient Clip Norm	776 1.0
777 LR Schedule	778 Cosine
779 Warmup Ratio	780 0.05
781 Batch Size	782 256
783 Training	784 4500 gradient steps
785 Compute	786 96 H200 GPU hours
787 Frozen Layers	788 Vision Encoder, Projection Layer
789 Trainable Layers	790 LLM Backbone

777 **Training the Low-Level Policy** The hyperparameters for fine-tuning the $\pi_{0.5}$ low-level policy are
778 detailed in Table 5. The model is fine-tuned from the public $\pi_{0.5}$ checkpoint trained on the DROID
779 dataset (Khazatsky et al., 2025).
780781 Table 5: Hyperparameters for Low-Level Policy ($\pi_{0.5}$) fine-tuning.
782

783 Hyperparameter	784 Value
785 Learning Rate	786 2.5e-5
787 Optimizer	788 AdamW
789 β_1	790 0.9
791 β_2	792 0.95
793 Weight Decay	794 0
795 Gradient Clip Norm	796 1.0
797 LR Schedule	798 Cosine
799 Warmup Steps	800 1000
801 Batch Size	802 128
803 Training Steps	804 18000
805 Compute	806 48 H200 GPU hours

797 B DATA COLLECTION AND LABELING THE SUBTASKS.
798799 For collecting the robot trajectory data we follow the data collection procedure with the Oculus
800 teloperation set in Khazatsky et al. (2025). To make the primitive labeling process for data collection
801 as easy as possible, we generate the subtasks associated with the task before collection data. For
802 instance, for the counting task, if we wanted to scoop 3 scoops of peanuts in the blue bowl and 2
803 scoop of jelly beans in the blue bowl, we would generated a list of subtasks for the whole trajectory.
804 This includes a pick up scooper primitive, a primitive for each individual scoop, a reset scooper
805 primitive between the scoops, and a drop scooper primitive. While collecting the data, we just need
806 to follow what the current primitive is asking, and we only need to indicate when a primitive ends
807 with a simple keyboard input. We also automate the randomization of the high-level task to avoid
808 human biases when collecting data.
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825 Object Search

826 Counting

827 Dust & Replace

828
829
830

831 Figure 6: Images of the three tasks.

832
833

C PROMPTS FOR GPT-5 / GEMINI ROBOTICS-ER 1.5 EVALUATION

834
835
836
837
838
839
840
841
842

Object Search System Prompt

835 You are an AI assistant controlling a single-arm robot to search for specific objects amongst
836 3 bins. When exploring the bins for objects, look in the order of left bin, center bin, then
837 right bin. You will receive images from two cameras: one for a global view and one on
838 the robot's wrist for a detailed view. You will be provided with recent images that show the
839 most recent actions the robot has executed. You will also be provided with selected keyframe
840 images which are frames of particular importance from all the actions the robot has executed
841 so far. Based on these, choose an action from the provided list for the robot to execute to
842 best achieve the user's task instruction. Provide the exact action from the list without any
843 explanation.

844 You will select your action from the following list:

- 845 • look inside the <LOCATION> bin
- 846 • take the <OBJECT> from the <LOCATION> bin and place it in the white bin

847 <LOCATION> is one of "left", "center", or "right".

848 <OBJECT> is one of "green tape", "red block", "corn", "baguette", "blue block", "fried
849 chicken", "milk carton", "ketchup", "eraser", "grapes", "strawberry", "tomato", "pear",
850 "wooden block", or "olive oil".

851 You will also return a list of values from 1-8 to index which of the frames from the most
852 recent actions seem to be of particular importance for the robot to remember. For this task,
853 recalling what objects are in each bin is critical, so you should return a list of indices, if any,
854 from the most recent frames that provides a good view of a bin.

855 Return a JSON with:

- 856 • current_subtask: the action that should be executed at the current timestep, selected
857 from the above list using the stated <OBJECT> and <LOCATION> values
- 858 • keyframe_positions: list of frame positions from 1-8, if any, from the recent frames to
859 keep track of which objects are in each bin

860
861
862
863

864
865**Counting System Prompt**866
867
868
869
870
871
872
873
874

You are an AI assistant guiding a single-arm robot to obtain a specific amount of scoops of two different ingredients. You will reset the scooper between each scoop, and drop the scooper when all scoops across both ingredients have been obtained. You will receive images from two cameras: one for a global view and one on the robot's wrist for a detailed view. You will be provided with recent images that show the most recent actions the robot has executed. You will also be provided with selected keyframe images which are frames of particular importance from all the actions the robot has executed so far. Based on these, choose an action from the provided list for the robot to execute to best achieve the user's task instruction. Provide the exact action from the list without any explanation.

875
876
877
878
879

You will select your action from the following list:

- pick up the scooper
- place a scoop of <OBJECT> in the <COLOR> bowl
- reset scooper position
- drop the scooper

880

<OBJECT> is one of "peanuts" or "jelly beans".

881

<COLOR> is one of "green" or "blue".

882
883
884
885
886

You will also return a list of values from 1-8 to index which of the frames from the most recent actions seem to be of particular importance for the robot to remember. For this task, recalling how many scoops of each ingredient have been obtained is critical, so you should return a list of indices, if any, from the most recent frames that provides a good view of a completed scoop.

887
888
889
890
891
892

Return a JSON with:

- current_subtask: the action that should be executed at the current timestep, selected from the above list using the stated <OBJECT> and <COLOR> values
- keyframe_positions: list of frame positions from 1-8, if any, from the recent frames to keep track of scoops

893
894**Dusting System Prompt**895
896
897
898
899
900
901
902
903
904

You are an AI assistant guiding a single-arm robot to take an object off each shelf (bottom shelf then top shelf), pick up the duster, dust the bottom shelf, reset the duster, dust the top shelf, put down the duster, and replace the objects back to their original places (bottom shelf then top shelf). You will receive images from two cameras: one for a global view and one on the robot's wrist for a detailed view. You will be provided with recent images that show the most recent actions the robot has executed. You will also be provided with selected keyframe images which are frames of particular importance from all the actions the robot has executed so far. Based on these, choose an action from the provided list for the robot to execute to best achieve the user's task instruction. Provide the exact action from the list without any explanation.

905

You will select your action from the following list:

- remove the object on the bottom shelf
- remove the object on the top shelf
- pick up duster
- dust bottom shelf
- reset duster
- dust top shelf
- put down duster
- place the <OBJECT> on the bottom shelf
- place the <OBJECT> on the top shelf

906
907
908
909
910
911
912
913
914
915
916
917

<OBJECT> is one of "panda plushie", "purple plushie", "zebra plushie", "elephant plushie", "lion plushie", "smily face ball", "hello kitty plushie", "baby shoe", "milk carton".

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

You will also return a list of values from 1-8 to index which of the frames from the most recent actions seem to be of particular importance for the robot to remember. For this task, recalling where the items were originally placed on the shelves and which shelves have been dusted is critical, so you should return a list of indices, if any, from the most recent frames that provides a good indication of either.

Return a JSON with:

- `current_subtask`: the action that should be executed at the current timestep, selected from the above list using the stated `<OBJECT>` values
- `keyframe_positions`: list of frame positions from 1-8, if any, from the recent frames to keep track of where the objects were originally placed on the shelves and which shelves have been dusted

D INFERENCE SPEED AND MEMORY COST

An important aspect of using keyframes as a sparse memory representation is the ability to maintain fast inference and low memory usage for solving tasks that require reasoning over hundreds of frames. We run all of our experiments on an NVIDIA GeForce RTX 4090 GPU with our finetuned Qwen2.5-VL-Instruct-7B model. In Figure 7, we show how the latency for the high-level policy changes as we increase the number of keyframes in its context $|K_t|$ from 0 to 8 (we also keep the recent context at $|R_t| = 8$). We see that the inference speed always stays below 0.8s per prediction. Empirically, we found any high-level policy that can predict at 1Hz or faster to perform the best on real-world deployments, so we are well within this limit. Additionally, our VRAM usage is within the 24GB limit for a 4090, so we can run our high-level policy on a single card.

However, if we were to use a naive method of retaining long-range dependencies by simply keeping track of more recent frames, we see in Figure 8 that the inference cost quickly blows up. Specifically, after increasing the number of recent frames beyond 32, the inference cost exceeds 1.0s (the 1Hz threshold), so it would not coordinate well with the low-level controller in a real-world setting.

In Table 6, we show the inference speed for the low-level policy, $\pi_{0.5}$. $\pi_{0.5}$ can also run on a 4090 GPU well above the desired speed of 2Hz. We only need **two 4090s** to run our hierarchical policy.

949
950
951
952
953
954
955

Model Configuration	Inference Time (s)	VRAM (GB)
$\pi_{0.5}$	0.088 ± 0.001	6.25
MemER (8 recent + 8 keyframes)	0.787 ± 0.066	15.93
No History (1 recent frame)	0.532 ± 0.065	15.55
Short History (8 recent frames)	0.591 ± 0.064	15.64
Long History (32 recent frames)	0.874 ± 0.065	16.01

Table 6: Comparison of inference speed and VRAM usage across models for the high-level (Qwen2.5-VL-Instruct-7B) and low-level ($\pi_{0.5}$) policy on a 4090 GPU. We run 20 trials per value.

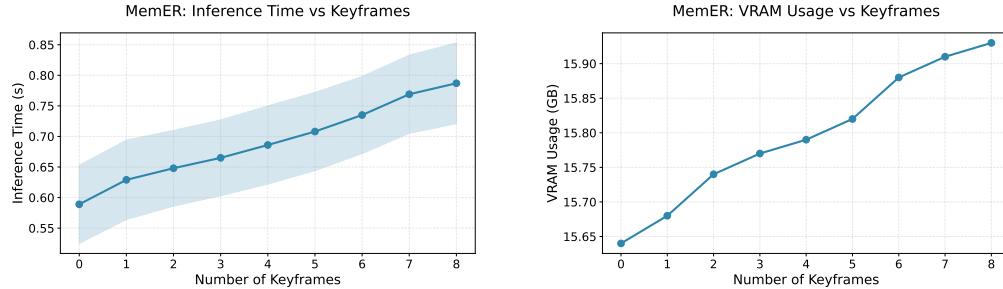
958
959
960
961
962
963
964
965
966
967

Figure 7: Plot of the average inference speed (Left) and VRAM usage (Right) for the MemER high-level policy. We evaluate Qwen2.5-VL-7B-Instruct for the high-level policy. All configurations include 8 recent frames ($|R_t| = 8$); the x-axis shows the number of *additional* keyframes added to context. We run 20 trials for each data point.

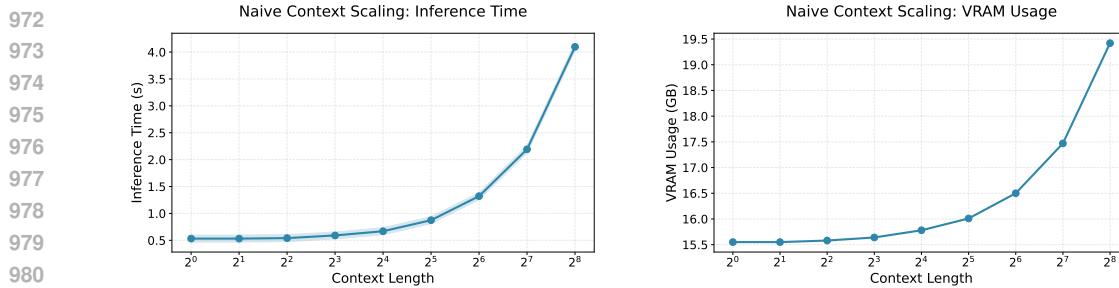


Figure 8: Plot of the average inference speed (Left) and VRAM usage (Right) for naively scaling context in the high-level policy. We evaluate Qwen2.5-VL-7B-Instruct for the high-level policy. This baseline uses only recent frames (no additional keyframes); the x-axis shows the total context length $|R_t|$ from 1 (2^0) to 256 (2^8). We run 20 trials for each data point.

E ANNOTATION RULES FOR KEYFRAMES

As described in Section 3.3, we use a simple annotation rule for each subtask to build the set of keyframes that constitute the ground-truth targets. We take the last frame of the following subtasks:

- **Object Search**
 - "look inside the <LOCATION> bin"
- **Counting**
 - "place a scoop of <OBJECT> in the <COLOR> bowl"
- **Dust & Replace**
 - "remove the object on the bottom shelf"
 - "remove the object on the top shelf"
 - "dust bottom shelf"
 - "dust top shelf"
 - "place the <OBJECT> on the bottom shelf"
 - "place the <OBJECT> on the top shelf"

The last frames of these subtasks represent what the policy needs to remember.

F CROSS-TASK OBJECT GENERALIZATION

To evaluate the benefits of multi-task training, we compare a single-task version of MemER (separate policy trained for each task) with our multi-task version. For these experiments, we finetune Qwen2.5-VL-Instruct-7B for the single- and multi-task versions of the high-level policies. We evaluate on our object-centric tasks: the Object Search and Dust & Replace tasks, using objects from Figure 10. First, we establish a baseline by evaluating both versions of MemER on their original task setups. As shown in Figure 9 (left), their performance is roughly similar.

The primary benefit of multi-task training is revealed when evaluating cross-task object generalization. For this evaluation, we swap all of the objects between the tasks (e.g., using Object Search objects for the Dust & Replace task, and vice-versa). This creates new object-task combinations that the models have not seen during training. The results in Figure 9 (right) demonstrate the clear advantage of using the multi-task model (82% success), generalizing much more effectively to out-of-domain combinations than the single-task version (59% success). This demonstrates that our method learns a generalizable skill of "what to remember" that transfers to new scenarios, rather than just overfitting to the original training demonstrations.

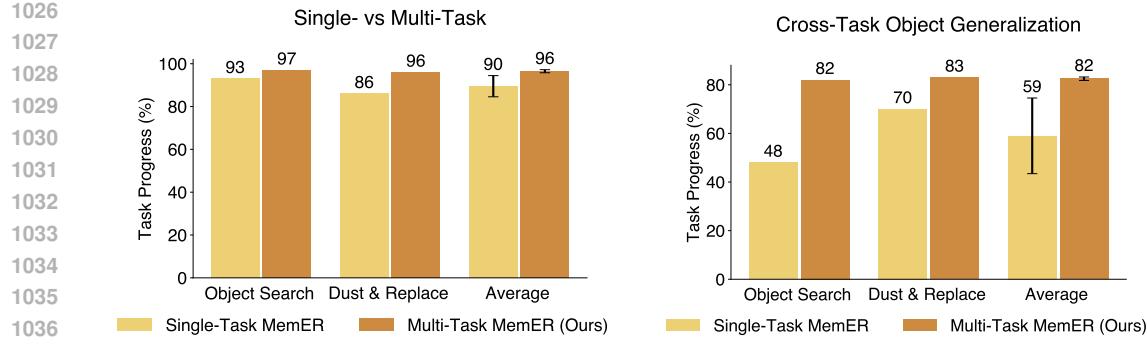


Figure 9: **(Left) Single- vs Multi-Task Results.** The performance of the single- and multi-task versions of MemER on the Object Search and Dust & Replace task are similar. **(Right) Cross-Task Object Generalization Results.** We swap objects between the Object Search and Dust & Replace (see Figure 10) tasks during evaluation. The multi-task policy can generalize to the new object-task combinations during evaluation despite never seeing them in training.

Figure 10: **(Left)** Objects for the Object Search task. **(Center)** Objects for the Counting task. **(Right)** Objects for the Dust & Replace task.

1080 G KEYFRAME SELECTION ALGORITHM
10811082

1083 **Algorithm 1** Selecting Keyframes from Candidates

1084

1084 **Input:** A sequence of candidate keyframe sets $J'_{0:t} = (J_0, J_1, \dots, J_t)$
1085 The merge distance d

1086 **Output:** A list of the selected keyframes K_t

1087 1: **function** BUILDVISUALMEMORY($J'_{0:t}, d$)
1088 2: $G_{0:t} \leftarrow \text{Sort}(\text{GetIndicesFromFrames}(J'_{0:t}))$ ▷ Extract the temporal indices.
1089 3: **if** $G_{0:t}$ is empty **then** ▷ Handle case with no candidates.
1090 4: **return** \emptyset
1091 5: **end if**
1092 6: $Clusters \leftarrow []$
1093 7: $C_{current} \leftarrow [G_{0:t}[0]]$
1094 8: **for** $i = 1$ to $|G_{0:t}| - 1$ **do** ▷ Build the clusters.
1095 9: **if** $G_{0:t}[i] - G_{0:t}[i - 1] \leq d$ **then**
1096 10: Append $G_{0:t}[i]$ to $C_{current}$
1097 11: **else**
1098 12: Append $C_{current}$ to $Clusters$ ▷ Start a new cluster.
1099 13: $C_{current} \leftarrow [G_{0:t}[i]]$
1100 14: **end if**
1101 15: **end for**
1102 16: Append $C_{current}$ to $Clusters$
1103 17: $T_{selected} \leftarrow []$
1104 18: **for** each cluster C in $Clusters$ **do** ▷ Select the median index of each cluster.
1105 19: $i_{median} \leftarrow \text{Median}(C)$
1106 20: Append i_{median} to $T_{selected}$
1107 21: **end for**
1108 22: $K_t \leftarrow \text{GetFramesFromIndices}(T_{selected})$
1109 23: **return** K_t
1110 24: **end function**

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

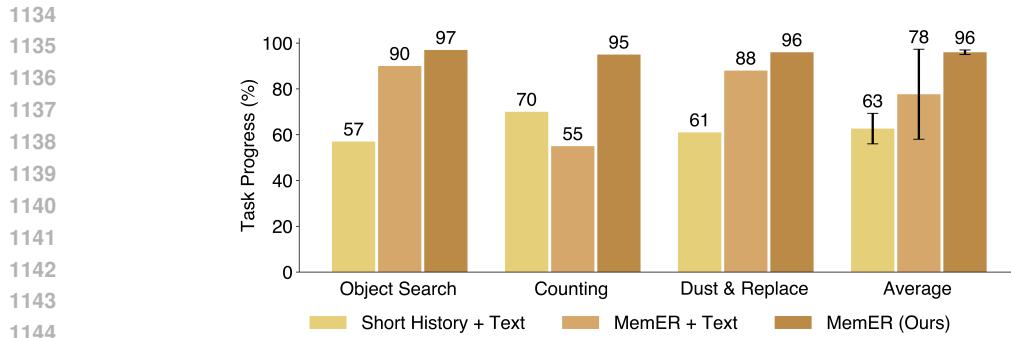


Figure 11: Merging our finetuned high-level policy’s weights with its base model’s weights improves or maintains performance with all tasks.

H HIGH-LEVEL POLICY PARAMETER MERGING

An important factor contributing to the success of our policy is the strong video understanding prior in Qwen2.5-VL-7B-Instruct (Bai et al., 2025). However, training the high-level policy to accurately predict the language subtasks used by the low-level policy requires roughly 5,000 gradient steps. After this amount of finetuning, the high-level policy tends to lose some robustness to low-level policy freezes and retry behaviors, due to its training data consisting solely of optimal expert demonstrations. Concurrent work suggests that linearly interpolating the weights of a generalist pretrained model with those of the same model finetuned on narrow, task-specific data can help preserve the pretrained model’s robustness and generalization, while still allowing adaptation to the new task (Anonymous, 2025). We find this also applies to the high-level policy. Specifically, we set the weights of our high-level policy as:

$$\theta = (1 - \alpha) \cdot \theta_{\text{pre}} + \alpha \cdot \theta_{\text{ft}} \quad (3)$$

where θ_{pre} is the weights of Qwen2.5-VL-7B-Instruct and θ_{ft} is the weights of this model finetuned on all three memory-based tasks. We follow Anonymous (2025) and set $\alpha = 0.8$ for all baselines we test. Figure 11 shows that model merging improves or maintains performance across all tasks.

I FREQUENCY DOMAIN-BASED CLUSTERING EXPERIMENTS

We originally explored more heuristic-based methods for selecting keyframes, but found them to be much less reliable than semantically selected keyframes. MemER’s keyframes come from a trained high-level VLM that nominates task-relevant frames, and the clustering step consolidates these into a compact memory. On the other hand, frequency-domain methods operate on low-level intensity/spectral changes, so they mostly detect visual motion rather than subtask boundaries that correspond to meaningful visual states. Because the VLM sees language and multi-view context, it can learn to ignore viewpoint noise and only nominate genuinely informative frames. Frequency-domain changes spike on any large camera motion or background shift, so they over-trigger on irrelevant movement in egocentric manipulation.

To illustrate this, we ran UniDomain’s (Ye et al., 2025) clustering method using energy-based extrema in a sliding window, and observed that the selected keyframes are much less informative. We take a random Counting Task demonstration as an example and include the results below. To construct a memory buffer that is the same size as our method, the window size needed to be >350 , which means that a lot of salient information will be lost if it occurs within 350 frames of a local minimum/maximum (Figure 12). If we allow the window to be smaller but still sparse enough such that the high-level policy runs at 1Hz (32 frames of memory, window size of 35), we get incredibly noisy and uninformative keyframes (Figure 13).

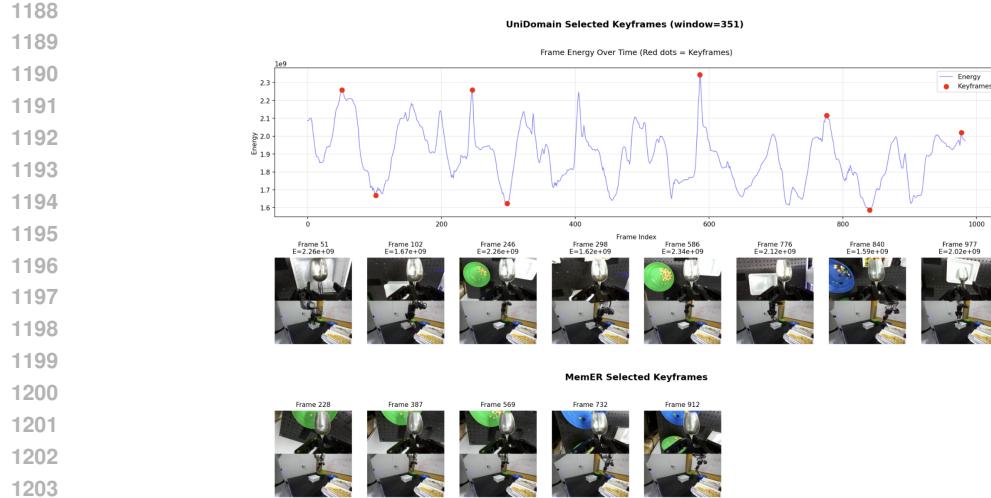


Figure 12: **(Top)** UniDomain’s clustering method with a window size of 351. **(Bottom)** MemER’s selected keyframes.

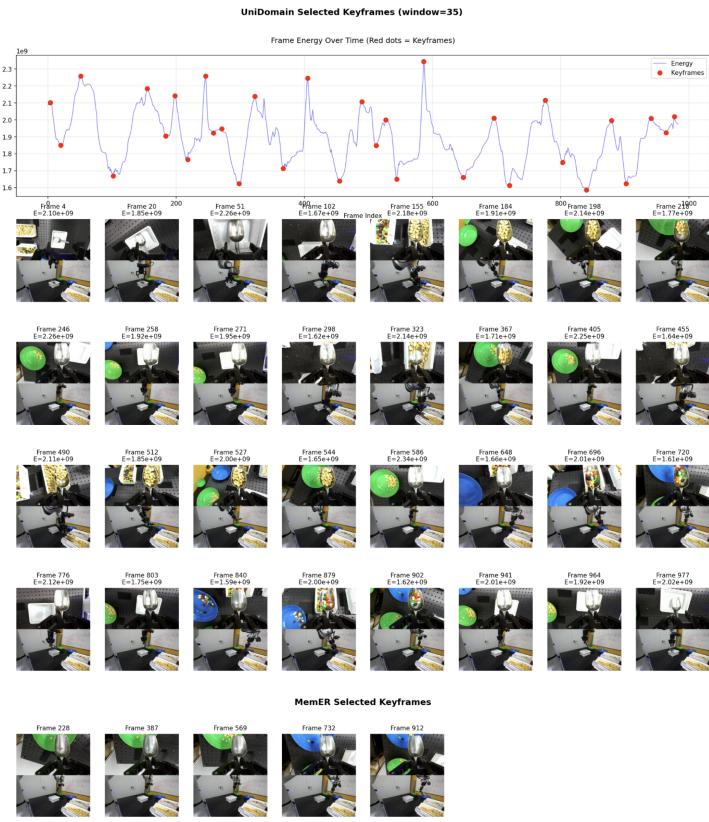


Figure 13: **(Top)** UniDomain’s clustering method with a window size of 35. **(Bottom)** MemER’s selected keyframes.

1242 **J ATTEMPTS AT A UNIFIED HIERARCHICAL MODEL**
12431244 We found that existing pre-trained models are quite specialized: $\pi_{0.5}$ has strong action priors but
1245 very poor video-understanding priors, while Qwen2.5-VL has the reverse behavior. A unified model
1246 struggled to effectively learn both memory-aware subtask prediction and action prediction from our
1247 limited data (50 demos/task). We attempted two unified variants:1248 **Finetuning $\pi_{0.5}$ (VLA) for high-level memory reasoning:** We tried finetuning $\pi_{0.5}$ to predict
1249 subtasks and keyframes from 8 frames of context (the setup for the high-level policy in MemER) in
1250 addition to action predictions. This failed, as the model lacked the necessary video-understanding
1251 pre-training to reason about long-horizon context.1252 **Finetuning Qwen-VL (VLM) for low-level actions:** We tried finetuning Qwen2.5-VL to predict
1253 low-level actions using the FAST tokenizer, in addition to subtasks and keyframes. We found it
1254 extremely unstable to train with both the action-generation and video-planning losses.1255 Our hierarchical design is a pragmatic solution that leverages the distinct strengths of both pre-
1256 trained models, and this modularity is what enables MemER to succeed in complex, multi-minute
1257 tasks from only 50 demonstrations. Moreover, our method is compatible with existing VLA models
1258 to allow the system to efficiently reason over long-horizon dependencies.1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295