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ABSTRACT

Humans rely on memory to perform tasks; our goal is to endow robot policies
with the same ability. Naively conditioning on long observation histories is com-
putationally expensive and brittle under covariate shift, while indiscriminate sub-
sampling of history leads to irrelevant or redundant information. We propose a
hierarchical policy framework, where the high-level policy is trained to select and
track previous task-relevant keyframes from its experience. The high-level policy
uses selected keyframes and the most recent frames when generating text instruc-
tions for a low-level policy to execute. This design is compatible with existing
vision-language-action (VLA) models and enables the system to efficiently reason
over long-horizon dependencies. In our experiments, we fine-tune Qwen2.5-VL-
7B-Instruct and π0.5 as the high-level and low-level policies respectively, using
demonstrations supplemented with minimal language annotations. Our approach,
MemER, outperforms prior methods on three real-world long-horizon robotic ma-
nipulation tasks that require minutes of memory. Videos and code can be found at
https://memer-policy.github.io.

1 INTRODUCTION

In recent times, we have seen significant strides in the language-following and generalization capa-
bilities of robotic manipulation policies (Brohan et al. (2023); Intelligence et al. (2025); Kim et al.
(2024); NVIDIA et al. (2025)). While these policies are getting better for real-world deployment, a
critical limitation remains: the absence of long-term memory. Memory allows humans to handle the
inherent partial observability found in their environment. For instance, if a person wanted to make a
sandwich, they would have to recall where they saw the jar of peanut butter or the knife, especially if
these items were not recently viewed. The ability to form and retrieve long-term visual memories is
a crucial step towards robots solving complex, multi-step tasks. The goal of this paper is to provide
an effective way to enable existing generalist policies to solve tasks that require long-term visual
memory.

Because conditioning on long sequences of high-dimensional image and video sequences is compu-
tationally expensive, many existing generalist end-to-end policies are trained with little to no visual
history. The high memory cost makes training prohibitively expensive and model deployment un-
usably slow. Furthermore, long observation histories can often introduce a form of overfitting —
shortcut reliance on spurious correlations between inputs and demonstrator actions (Torne et al.,
2025). The policy misgeneralizes under its own state distribution, leading to performance degrada-
tion during deployment due to compounding covariate shift between states visited by the demon-
strator policy and the learned policy. The suboptimal policy will generate histories that differ from
those seen by the expert, which is only made worse as observation history lengthens.

Some past works have shown it is possible to expand the observation context of their policy via
auxiliary losses (Torne et al., 2025), or by finetuning pretrained foundation models for action pre-
diction with native memory capabilities (Fang et al., 2025). Although these methods significantly
increase the types of tasks a robot can execute, they are challenging to naively scale to long histo-
ries. To overcome this, policies must learn to filter out the task-relevant information from the full
historical context to prevent the memory footprint from exploding on tasks that require long-range
dependencies.
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To this end, we propose approaching long-term memory for robotic policies with a hierarchical
framework. The high-level policy is a fine-tuned video-understanding VLM trained to output action
subtasks and, most importantly, to select keyframes from its fixed recent context that represent
important information it will need to remember to solve the task. The low-level policy is a generalist
robot policy fine-tuned to execute the subtasks specified by the high-level policy. Together, the low-
level policy handles the robot-specific challenges of the task that require high-frequency inference
such as kinematic control, and the high-level policy manages planning and memory-specific aspects
of the task such as deciding what object or tool to manipulate next based on the high-level task
and its memory. We take advantage of the fact that these open-source VLMs are finetuned on large
amounts of video understanding data. With this strong prior, we find that we only need a relatively
small number of teleoperated robot demonstrations with additional annotations to adapt these VLMs
to accomplish robot-specific memory-based tasks (Bai et al., 2025).

Our contribution is MemER, a framework for scaling up Memory in robotic control via Experience
Retrieval. We demonstrate MemER’s ability to utilize task-relevant past information effectively on
three complex long-horizon tasks that require up to a couple of minutes of memory. To the best
of our knowledge, our real-world robotic tasks necessitate reasoning over more image observations
than prior work.

2 RELATED WORK

Memory in Robotics and Long-Context Policies. Memory is essential for generalist robots to
complete complex tasks. Prior work primarily studies memory in the context of comparatively
short-horizon tasks. For example, Torne et al. (2025) and Fang et al. (2025) use different approaches
to extend the context of imitation policies from a few frames to at most two dozen. Our work in-
vestigate tasks that require building memory from hundreds of frames. Unlike previous approaches,
our method can choose to include task-relevant frames in the context spanning the entire episode.
Another body of work investigates the compression of images in the policy’s context. Li et al.
(2025a) compresses similar observations in pixel space, which is effective for stationary camera se-
tups but struggles with wrist-mounted cameras that are necessary for most dexterous manipulation
tasks. Memory has also played a major role in robotic navigation research. Some navigation works
represent memory with an explicit geometric and/or semantic map of the environment Henry et al.
(2012); Yu et al. (2024). However, spatial maps of the environment are hard to apply in manipulation
tasks since the robot often modifies the environment. Other works directly prompt API-based VLMs
with video context to decide where the robot should navigate (Chiang et al., 2024; Sharma et al.,
2023; Chen et al., 2024). We found that existing API-based VLMs are not sufficient to reason about
robot affordances for our long-horizon, memory-aware tasks (Table 2), so we resort to finetuning
open-weight models.

Foundation Models and Long-Horizon Tasks in Robotics. Recent progress in vision-language-
action models (VLAs) have allowed for impressive generality in robotics. VLAs combine web-scale
pretraining with expressive action decoding mechanisms to execute real-world tasks. Conceptually,
two paradigms have emerged. The first is a single end-to-end model that directly maps images and a
language task to actions (Intelligence et al., 2025; Brohan et al., 2023; Fan et al., 2025). The second
is a hierarchical approach that uses a high-level policy to output an intermediate representation to
guide a low-level policy. Possible intermediate representations include latent embeddings (Shentu
et al., 2025; Wen et al., 2025; Wu et al., 2024), language subtasks (Shi et al., 2025; 2024), and way-
points (Li et al., 2025b). Prior work has shown that hierarchical approaches improve performance
on long-horizon tasks (Shi et al., 2025; Wu et al., 2024; Wen et al., 2025) by introducing a tempo-
ral abstraction: a high-level policy operates at a lower frequency and decomposes a complex task
into simpler subgoals (Zhang et al., 2023). The low-level policy can then focus on high-frequency,
reactive motor control to achieve the current subgoal. Other methods that integrate LLM-based
high-level planning with task and motion planning, imitation learning, and RL (Dalal et al., 2024;
Zhou et al., 2024) similarly tackle long-horizon manipulation via task decompositions, but rely on
a well-specified planning stack and do not provide an explicit long-term memory mechanism over
raw visual histories.

Our work builds on the second paradigm, using language subtasks as the intermediate representation.
What distinguishes MemER from prior hierarchical approaches is the addition of a stable, persistent
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Figure 1: Architecture of MemER. The high-level policy processes task instructions, selected
keyframes (if any), and recent images from base and wrist-mounted cameras to generate low-level
language subtasks and candidate keyframes (if any). The low-level policy uses the subtask, current
image, and robot joint states to produce actions. The candidate keyframe(s) are processed by the
keyframe filter to obtain the selected keyframes for input during the next step of inference.

memory mechanism that preserves salient long-range dependencies while keeping inference fast
enough for real-world deployment. We show that this memory system is essential for complex,
long-horizon tasks that span multiple minutes, on which standard hierarchical methods with little or
no memory reliably fail.

Video Keyframe Selection. Outside of robotics, previous work in computer vision has also studied
incorporating longer contexts for VLMs (Goletto et al. (2024); Manigrasso et al. (2025)). Similar to
our work, other works have used keyframe selection to improve video understanding and question
answering (Yu et al., 2023; Ranasinghe et al., 2025). Many such methods incur a high per-frame
cost because they estimate frame importance via separate multimodal-LLM calls. These methods
are not directly applicable for robotic tasks because with increasing video context lengths they would
not meet the task’s latency constraint during inference. Hu et al. (2025a) uses lightweight models
to score all frames in a single pass, which reduces per-frame cost but lacks the ability to continu-
ously stream image observations. Departing from existing VLM work for VQA, Hu et al. (2025a)
uses non-uniform frame sampling through a lightweight scoring model; in contrast, we achieve
non-uniform sampling without additional models. Designed for real-world robotics, our method
emphasizes low-cost inference and streaming support.

3 MEMER

3.1 PRELIMINARIES

Language-Conditioned Control Policies. Language-conditioned robot policies are typically
trained to model the conditional distribution p(At|ot), where At = [at, at+1, . . . at+H−1] is a
chunk of actions modeled from the current timestep t to H timesteps in the future (Zhao et al.,
2023) and ot is the robot’s current sensor observation. The current observation is usually formulated
ot = [It, lt , qt], where It = [I1t , I

2
t , . . . , I

n
t ] are images from multiple cameras, lt is the language

instruction, and qt are the proprioceptive inputs from the robot (i.e. joint angles and gripper state)
(Black et al., 2024; Team et al., 2024).

Memory-Based Tasks. We consider a set of tasks such that robot policy must leverage past in-
formation to successfully complete them due to partial observability in the environment. In other
words, a robot policy trained to model π(At|ot) could not complete the task, but a policy trained to
model π(At|o0:t) could.

Hierarchical Policies. In order to execute complex, long-horizon tasks, we follow Shi et al. (2025)
and hierarchically decompose the robot policy into a low-level control policy (πl) and a high-level
policy (πh) that generates instructions.

π(At|ot) = πl(At|[It, l ′t , qt])πh(l
′
t|It, lt) (1)

3
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The high-level policy models the conditional distribution πh(l
′
t|It, lt), where l′t is the current lan-

guage subtask, which we also refer to as subtasks, that the low-level policy conditions on to complete
the overall instruction lt. The high-level policy could be represented as a separate VLM Shi et al.
(2025) or share the same weights as the low-level control policy (Intelligence et al., 2025). In our
method, the high-level policy will be responsible for reasoning about memory.

Data Collection Similar to prior work, we use language subtasks l ′t to label each observation in a
trajectory (Shi et al., 2024; 2025; Intelligence et al., 2025). We end up with a dataset of trajectories
of the following tuple (It, qt, l

′
t , at) to train our high-level and low-level policies. For example,

we can take the task "search for ketchup" and break it down into the following subtasks: "look in
left bin", "look in right bin", and "take out ketchup from right bin." Examples of the subtasks and
ground-truth frames for each task are shown in the Figure 3. In our expert data-collection setup,
the operator executes a prescribed primitive and presses a key upon completion to advance to the
next primitive. Consistent with previous work, we supplement the low-level policy training set with
10–15 intervention demonstrations to improve robustness at deployment Hu et al. (2025b); Kim et al.
(2025). To collect the intervention data, we first initialize the trajectories in common failure states
we have seen the low-level policy reach, then we teleoperate the robot back into an in-distribution
state. Since the low-level policy only uses the current frame, we can have the robot start from bad
states then demonstrate the correct behavior from those states.

3.2 HIGH-LEVEL POLICY

Our method builds on the common hierarchical VLA paradigm, as in Shi et al. (2025), and extends
it with the ability to tackle long-horizon tasks that require memory. We choose to adopt a hier-
archical apporach because open source VLMs like Qwen2.5-VL-7B-Instruct have a strong video
understanding prior from the video datasets they have been trained on, and thus can be adapted
for memory-based planning (Bai et al., 2025). We use a finetuned VLM as the high-level policy
to both nominate candidate keyframes and predict subtasks for the low-level policy during closed-
loop control, as shown in Figure 1. The candidate keyframes are then filtered for redundancy and
added to a group of selected keyframes that the high-level policy conditions on continuously when
predicting the next subtask and candidate keyframes. Concretely, at each timestep, we feed our
high-level memory policy 1) the last N frames per camera Rt = It−N+1:t, where N is the integer
context-window shared across cameras, 2) the high-level task instruction lt , and 3) previously se-
lected keyframes Kt ⊆ I0:t−N+1, where practically |Kt| ≤ 8. The high-level policy then predicts
two things: (i) the current subtask to execute l ′t and (ii) the candidate keyframes Jt ⊆ Rt, a subset
of frames from the recent context. All together, our high-level policy models πh(l

′
t,Jt|Rt,Kt).

The low-level policy conditions on l′t to predict the direct joint velocities for the robot as described
in Section 3.3. In parallel, Kt+1, the selected keyframes for the next timestep of high-level infer-
ence, are calculated from the sequence of all candidate keyframes predicted since the start of the
trajectory J ′

0:t = (J0,J1, . . . ,Jt) using a simple 1D single-linkage clustering algorithm described
in the following paragraphs.

Building Visual Memory. To build visual memory, our keyframe filter consolidates observations
that have just exited our recent context, Rt, into our selected keyframes Kt. The filtering process
operates on the temporal indices of these keyframes. The approach is task-agnostic and allows us
to have coverage of all frames in the stream. By timestep t, the high-level policy has given us
J ′
0:t = (Ji)

t
i=0, the sequence of candidate sets nominated up to timestep t. We begin by extracting

the temporal index of every frame nominated in this sequence and pooling them into a single tem-
porally ordered list G0:t. Importantly, we preserve duplicate indices, as this allows the subsequent
median selection to aggregate repeated nominations and yield the most representative frame from
each cluster.

We then create clusters, Ci, for all candidate indices in G0:t by grouping keyframe indices that
are at most d apart from each other. For example, if G0:t has temporal indices {1, 3, 3, 4, 10} and
d = 5, then we would have two clusters C1 = {1, 3, 3, 4} and C2 = {10}. After constructing the
sequence of clusters, (C1,C2, . . .), we select the median index from each Ci to be that cluster’s
representative keyframe. The keyframes corresponding to these final median indices represent Kt,
the selected keyframes for timestep t. For efficiency, clusters that have indices less than t−N+1−d
do not need to be recalculated. Figure 2 is a visualization of the clustering and keyframe selection
during deployment.
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Figure 2: 1D single-linkage over nominated frames. At each timestep, the high-level policy nom-
inates candidate keyframe(s), as highlighted in orange. All candidate keyframes are aggregated
across time with 1D single-linkage using a merge distance of d = 5 frames, yielding disjoint clus-
ters. For each cluster, the colored bars indicate nominations for the observation at that timestamp,
with bar height proportional to the number of nominations received. We select one representative
frame per cluster by taking the median keyframe of all the candidates, and add that frame to memory.

3.3 PRACTICAL IMPLEMENTATION OF MEMER

Training the Low-Level Policy. For our low-level robot policy, we finetune a version of π0.5

Intelligence et al. (2025) trained on the DROID dataset Khazatsky et al. (2025). Given we have
trajectories of the tuple (It, qt, l

′
t , at), we can train our low-level policy to model the conditional

distribution πl(At|It, qt, l ′t). We choose to finetune the π0.5 checkpoint trained on the DROID
dataset due to its strong out-of-the-box behavior on the DROID setup we use to conduct all of our
experiments. Consequently, we find that we need only 50 demos of long-horizon trajectories to
finetune a strong low-level policy. We finetune a single low-level policy across all three tasks. Refer
to Appendix A for the specific training parameters.

Training the High-Level Policy. For our high-level policy, we finetune Qwen2.5-VL-7B-Instruct to
predict two things: 1) the current subtask to execute and 2) any task-relevant keyframes to remember
from the most recent frames (as described in Section 3.2). We finetune a single high-level policy
on all three tasks, and we observe this gives the added benefit of stronger object generalization (see
Appendix F for comparisons with the single-task variant of MemER). We freeze the weights of
the vision encoder and projection layer during finetuning for training efficiency and to preserve the
visual prior.

Annotating Keyframes for the High-Level Policy. To label keyframes for each task, we employ
a semi-automatic annotation procedure. First, we extract the boundary frames between consecutive
subtasks, which are simply the last frame of each subtask segment. Next, we review a small number
of demonstrations (~3) to determine a simple annotation rule per subtask—deciding whether or not
to keep the last frame of that subtask segment as a ground-truth keyframe, since these transition
points usually contain a visually informative state. For example, the rule may indicate selecting the
last frame in "look inside the center bin," or no frame for "reset scooper position." Once established,
these rules are fixed per subtask and automatically applied to all demonstrations of each task; this
process is not a manual, per-frame effort, but a quick, one-time setup that makes keyframe labeling
practically free. The resulting set of keyframes forms the ground-truth targets used to train the
high-level policy. See Appendix E for the specific keyframe annotation rules for all of the subtasks.

Closed-Loop Deployment. Our policy decomposition is the following:

π(At|o0:t) = πl(At|It, qt, l ′t)πh(l
′
t,Jt|It−N+1:t,Kt) (2)

The interaction between the low-level and high-level policy for closed loop deployment is shown in
Figure 1. The low-level policy predicts πl actions chunks at ∼2Hz, while the the high-level policy

5
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Figure 3: Task used in our evaluation. Across three domains, we evaluate complex instructions,
intermediate subtasks, and keyframe predictions. We report performance across 20 trials per task
per method.

πh predicts keyframes and subtasks at roughly ∼1Hz. We run both policies on their own server.
Like Shi et al. (2025), we choose to run the policies asynchronously, as we find it to improve perfor-
mance. While the high-level policy is predicting the next primitive, the low-level policy conditions
on the latest predicted primitive. We add the image observations sampled at 2Hz to a queue, and
then send this queue to the high-level policy to query the next primitive prediction after the current
high-level policy prediction is complete. Following Anonymous (2025), we found that linearly inter-
polating the weights of the finetuned high-level policy with its base model Qwen2.5-VL-Instruct-7B
improves performance of the hierarchical policy on most tasks (more details in Appendix H).

4 EXPERIMENTS

In this section, we aim to evaluate the extent to which our method and alternative approaches can
tackle long-horizon manipulation tasks that require some form of memory. We first describe our
tasks and evaluation protocols, then we discuss the following questions:

1. To what extent can our approach tackle tasks that require memory, in comparison to a
memory-less policy (i.e. current robot foundation models), a human high-level (Human
HL) policy, and other naive approaches?

2. How does our high-level policy, fine-tuned from an open-source VLM, compare to propri-
etary off-the-shelf vision-language models?

3. How does representing memory via images compare to other modalities?

6
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Figure 4: Main Results. Our method clearly outperforms the no history, short history (8 frames of
context), and long history (32 frames of context) baselines on the three long-horizon memory-based
tasks. It is on par with the human high level policy.

Figure 5: Modality Results. Using only images to represent the memory performs better than the
baselines that use only text or text and images. We hypothesize that the high-level policy over-
indexes on the text tokens in the memory, causing it to miss important details in the visual input.

We design three complex, real-robot tasks that entail using memory in multiple distinct ways, in-
cluding remembering object locations, keeping track of previously completed actions, and counting
repeated task steps, as illustrated in Fig. 3. Since all of the tasks are long-horizon, we record
different metrics for each task to provide a granular view of task completion.

Object Search. In the task, we randomly place three to five objects across three opaque bins. Then,
the robot is sequentially given three objects to find; each new instruction is issued only after the
robot has attempted to retrieve the previous object. Our goal is an optimized search: the robot
remembers which bins it has already examined (and what it saw), skips re-searching them, and
explores additional bins only as needed; it should proceed directly to the target bin if it has already
been searched. This task requires cross-episodic memory as finding each object is its own lt, thus
requiring recall of information gathered while executing prior instructions. We train and test with
the same set of 15 objects, which are various small toys. Evaluation metric. We measure task
completion by two criteria for each of the three objects: successful retrieval and adherence to the
optimal path without unnecessary exploration, for a maximum score of 6 (2 points per object).

Counting Scoops. In this task, the robot is asked to fill two separate bowls with scoops of food.
Specifically, the robot is asked to place an exact number of scoops of two different ingredients into
different bowls. The robot needs to keep track of how many scoops have already been obtained
per ingredient. This counting task has appeared in prior work (Torne et al., 2025), we modify it to
require much longer-horizon reasoning by increasing the potential number of scoops and ingredients
to scoop from. This task is challenging because the keyframes corresponding to each ingredient are
nearly indistinguishable—piles look almost identical after each scoop—so missing or duplicating a
keyframe can cause the high-level policy to misjudge its progress. We train and test with peanuts and
jelly beans. Evaluation metric. Task completion is measured by the absolute value of the difference
between the number of scoops requested and obtained, for each ingredient. Here, a lower metric is
better. We also report the 0-1 success rate for satisfying the instruction.

7
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Method Object Search Counting Dust & Replace

# times
object

retrieved (↑)

# times used
optimal
path (↑)

# wrong
scoops

(↓)

Dust
bottom
shelf (↑)

Dust
top

shelf (↑)

Replace
bottom

object (↑)

Replace
top

object (↑)

MemER (Ours) 59 57 1 20 19 18 20
No history 32 25 61 5 4 5 7
Short History 38 31 26 14 14 11 12
Long History 47 41 12 11 11 12 12

Human HL 58 58 0 19 19 18 17

Table 1: Detailed Main Results. Online evaluation of our method and the baselines for Q1. We
provide task-specific evaluation metrics and the raw counts across 20 trials for each component of
the task. Bold marks the best non-oracle method in each row. ↑ and ↓ indicate higher and lower is
better, respectively.

Dust & Replace. In this task, the robot is asked to remove objects from a two-tiered shelf, pick up
a duster, dust each shelf, and replace the objects to their original positions. Between dusting the two
shelves, we return the duster to its reset position, making it unclear from recent context which shelf
has already been dusted. This task is challenging because the robot must simultaneously remember
two types of information: the original locations of the objects and which shelf, if any, has already
been dusted. We train and test with a set of 9 objects, which are various plushies. Evaluation metric.
Task completion is measured by the binary success of each object being replaced correctly on the
shelf and each shelf being dusted, for a max score of 4.

Evaluation Setup: Our robot setup resembles that within DROID (Khazatsky et al., 2025) having a
Franka arm, parallel jaw gripper and two cameras: a third-person ZED camera and a wrist-mounted
miniZED camera. For all tasks the πh operates at ∼1Hz and the πl operates at ∼2Hz. πl outputs an
action chunk At of 15 actions, and we execute 8 open loop before replanning. The cameras stream
320× 180 resolution images at 15Hz, but we subsample to 2Hz to input to hierarchical policy.

4.1 MAIN RESULTS

Q1: To what extent can our approach tackle tasks that require memory compared to other
methods? All evaluated methods incorporate a πh and πl, and the baselines change the input context
of the high-level policy πh while using the same πl. We compare to the following baselines: 1)
No history: a memory-less high-level policy that only views the current frame (i.e. current robot
foundation models), similar to (Shi et al., 2025) 2) Short History: a policy that views only the recent
N frames (N = 8 for our setup) 3) Long History: a policy that naively receives a longer context (4×
that of Short History or N = 32 recent frames), and 4) Human HL: a human provides the correct
subtasks. The Human HL policy establishes a rough estimate of the upper bound performance for
all tasks, with failures stemming from the low-level policy. From Figure 4, we see that No History
and Short History baselines perform poorly as all of the tasks simply require more context than what
was provided. The Long History baseline shows that increasing the context can slightly help, but 32
frames (∼16 seconds of memory) incurs an inference cost of 1 second, which approaches the limit
of what can be tolerated in closed-loop settings. The Long History policy still performs on average
34% worse than MemER, necessitating strategies such as our method that consolidate keyframes
rather than naively extending the context. Lastly, our method has > 95% on all tasks with the
most common failure case being failures in the low-level policy executing the subtask, which can be
rectified with better low-level correction data.

Q2: How does our high-level policy, fine-tuned from an open-source VLM, compare to pro-
prietary off-the-shelf VLMs? Since our approach outperforms other selections of πh and performs
similar to the Human HL policy, we investigate if our method is necessary given existing state-of-
the-art VLMs may already have this capability. We test both GPT-5 and Gemini Robotics–ER 1.5
(Team et al., 2025) given the former’s strong multimodal reasoning performance and the latter’s
robotics-specific agentic capabilities. Because the API latency for both ranged from 10-15 sec-
onds, these API-based high-level policies led to complete failures when we deployed it in the same

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Method Object Search Counting Dust & Replace
Trajectory

acc. (↑)
Boundary

acc. (↑)
Trajectory

acc. (↑)
Boundary

acc. (↑)
Trajectory

acc. (↑)
Boundary

acc. (↑)

MemER (Ours) 0.80 0.76 0.67 0.65 0.87 0.86
GPT–5 0.15 0.16 0.43 0.47 0.67 0.63
Gemini Robotics–ER 1.5 0.21 0.23 0.13 0.14 0.19 0.22

Table 2: Comparison with API-Based VLMs. Offline evaluations of the per-task trajectory and
boundary accuracy of subtask predictions between MemER, GPT-5, and Gemini Robotics-ER 1.5
(Team et al., 2025), to compare our finetuned high-level policy from an open-source VLM against
proprietary VLMs.

Method Input Components Object Search Counting Dust & Replace

Short
History

Image
Keyframes

Text
Subtasks

# times
object

retrieved (↑)

# times used
optimal
path (↑)

# wrong
scoops

(↓)

Dust
bottom
shelf (↑)

Dust
top

shelf (↑)

Replace
bottom

object (↑)

Replace
top

object (↑)
MemER (Ours) ✓ ✓ × 59 57 1 20 19 18 20
Short History + Text ✓ × ✓ 40 28 10 16 16 7 10
MemER + Text ✓ ✓ ✓ 59 49 13 20 18 17 20

Table 3: Detailed Modality Results. Online evaluation across methods ablating the textual modal-
ity. Bold marks the best method. ↑ and ↓ indicate higher and lower is better, respectively.

closed-loop evaluation as the other baselines, which require latencies of less than 1 second to react
accordingly to the environment.

To still offer a means of comparison between πh and the API-based high-level policies, we de-
signed an offline experiment using a held-out set of trajectories generated by the low-level policy
commanded by ground-truth subtasks l′t. This simulates closed-loop execution under realistic be-
haviors (i.e. retries after missed grasps, pauses, and jerky motions), while allowing the model to
build its visual memory in the same way. We carefully craft the prompt to include specific task-
relevant instructions and an explicit list of all possible actions that the low-level policy can follow,
and ask the model to choose among them (Appendix C). Just like our setup, the model takes in
the N = 8 most recent frames of context and selected keyframes Kt at every timestep, and out-
puts the subtask l′t for the low-level policy to execute and candidate keyframes Jt. We measure
trajectory accuracy, which is how often the correct subtask is predicted at each timestep in the tra-
jectory, since we know the ground-truth subtask command that the low-level policy is executing
at that moment. We also measure boundary accuracy, computed as the trajectory accuracy within
a fixed window centered on transition points between subtasks. These are critical moments that
expose the high-level policy’s grasp of task progress by knowing when to move on to the next sub-
task; correct timing in transitioning between subtasks plays a major role in proper coordination with
the low-level policy during deployment. From Table 2, we observe that both zero-shot API-based
models perform poorly compared to our finetuned Qwen2.5-VL model, primarily failing by predict-
ing too many non-informative candidate keyframes, reflecting its limited ability to identify which
frames are truly useful. Consequently, even with a significantly stronger base VLM such as GPT-5
or Gemini Robotics–ER 1.5, the model lacks the capacity to interpret robot-specific perceptual cues
and identify meaningful keyframes, resulting in less accurate subtask predictions and necessitating
additional fine-tuning.

Q3: How does representing memory via images compare to other modalities?

We now discuss which modalities are best suited for building memory—visual, textual, or both.
Storing memory in text offers natural benefits as it’s interpretable and much more condensed. We
test two additional methods that use text memory, in the form of the predicted subtask l′t that is
associated with each of the selected keyframes in Kt: 1) Short History + Text uses the most recent
N = 8 frames and predicted subtasks and 2) MemER + Text interleaves the predicted subtasks and
visual keyframes in memory. Table 3 shows the input for each baseline.

We see from Figure 5 (left) that relying on textual memory underperforms compared to our vision-
only approach. Specifically, replacing the visual memory with text (Short History + Text) leads to
the most significant performance drop. Furthermore, adding text to our visual memory (MemER +
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Text) provides no benefits, consistently under-performing across all tasks, especially the Counting
task. We find that both the baselines’ subtask predictions are brittle, largely due to overreliance on
the most recently predicted subtask stored in memory. This leads to failures when policy retries
or freezes shift the recent context out of distribution. In such cases, the model tends to overfit to
the canonical ordering of subtasks observed in expert demonstrations and misidentifies the subtask
being executed given the current environmental state. In contrast, directly grounding predictions in
the current observation combined with the robust visual memory proves more reliable.

For the Short History + Text baseline, the language-based subtasks do not capture all of the in-
formation required to successfully complete the task. For example, in the Object Search task, the
predicted language subtasks only specify the objects the robot has previously been asked to locate or
is currently searching for, but have no reference to objects it has seen that may need to be retrieved
in subsequent episodes. For the MemER + Text baseline, the model disproportionately attends to
the text stored in memory, which can be incorrect for the reasons stated above, and subsequently
ignores important information stored in visual memory. Such behavior has been noted before in
(Zheng et al., 2025; il Lee et al., 2025). Thus, from our tasks, we find that visual memory alone pro-
vides the most robust representation, though exploring multimodal memory remains an interesting
future direction.

5 DISCUSSION AND FUTURE WORK

We introduced MemER, a hierarchical vision–language–action framework that scales memory via
experience retrieval. A high-level memory policy processes streamed observations, nominates
keyframes to retain, and emits language subtasks that a low-level controller executes. A simple on-
line consolidation strategy converts per-timestep candidate keyframes into a compact, stable episodic
memory that is fed back into the high-level policy. Across three real-world, long-horizon manip-
ulation domains, MemER significantly improves performance on tasks requiring minutes of recall
while retaining low-latency inference and strong compatibility with existing VLA backbones.

Despite its benefits, our approach has several limitations. We continuously accumulate informative
keyframes but currently lack a mechanism to discard them when they become too numerous—an
issue that may arise for tasks requiring hours of memory. Enabling the high-level policy to reason
about which keyframes to not only add but also delete for modifiable long-term memory is an excit-
ing direction for future work. Aghajohari et al. (2025) proposes an approach that uses reinforcement
learning to train an LLM to maintain a fixed-size memory state throughout its chain-of-thought
reasoning. Adapting this idea could provide a promising way to endow MemER with a learned
memory management system that includes an explicit forgetting mechanism. In addition, our mem-
ory is limited to visual observations; incorporating other sensory modalities such as tactile or audio
is a promising extension. Finally, we study a single robot embodiment, and extending to mobile
manipulation and multi-room tasks, where memory must interleave spatial mapping with episodic
recall, would bring the system closer to human-like memory. We view MemER as a step toward
robot policies that decide what to remember and leverage those memories when needed for effective
long-horizon control.

6 REPRODUCIBILITY STATEMENT

We link the code for creating the training data and practical real-world deployment on our website.

7 ETHICS STATEMENT

We are not presently aware of significant ethical issues arising from this work.

8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We only used LLMs to rephrase and polish the text for clarity and readability.
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A MODEL INITIALIZATION AND HYPERPARAMETERS

Training the High-Level Policy The hyperparameters for fine-tuning the Qwen2.5-VL-7B-Instruct
high-level policy are detailed in Table 4.

Table 4: Hyperparameters for High-Level Policy (Qwen2.5-VL-7B-Instruct) fine-tuning.

Hyperparameter Value

Learning Rate 6e-5
Optimizer AdamW
β1 0.9
β2 0.999
Weight Decay 0
Gradient Clip Norm 1.0
LR Schedule Cosine
Warmup Ratio 0.05
Batch Size 256
Training 4500 gradient steps
Compute 96 H200 GPU hours
Frozen Layers Vision Encoder, Projection Layer
Trainable Layers LLM Backbone

Training the Low-Level Policy The hyperparameters for fine-tuning the π0.5 low-level policy are
detailed in Table 5. The model is fine-tuned from the public π0.5 checkpoint trained on the DROID
dataset (Khazatsky et al., 2025).

Table 5: Hyperparameters for Low-Level Policy (π0.5) fine-tuning.

Hyperparameter Value

Learning Rate 2.5e-5
Optimizer AdamW
β1 0.9
β2 0.95
Weight Decay 0
Gradient Clip Norm 1.0
LR Schedule Cosine
Warmup Steps 1000
Batch Size 128
Training Steps 18000
Compute 48 H200 GPU hours

B DATA COLLECTION AND LABELING THE SUBTASKS.

For collecting the robot trajectory data we follow the data collection procedure with the Oculus
teloperation set in Khazatsky et al. (2025). To make the primitive labeling process for data collection
as easy as possible, we generate the subtasks associated with the task before collection data. For
instance, for the counting task, if we wanted to scoop 3 scoops of peanuts in the blue bowl and 2
scoop of jelly beans in the blue bowl, we would generated a list of subtasks for the whole trajectory.
This includes a pick up scooper primitive, a primitive for each individual scoop, a reset scooper
primitive between the scoops, and a drop scooper primitive. While collecting the data, we just need
to follow what the current primitive is asking, and we only need to indicate when a primitive ends
with a simple keyboard input. We also automate the randomization of the high-level task to avoid
human biases when collecting data.
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Figure 6: Images of the three tasks.

C PROMPTS FOR GPT-5 / GEMINI ROBOTICS–ER 1.5 EVALUATION

Object Search System Prompt

You are an AI assistant controlling a single-arm robot to search for specific objects amongst
3 bins. When exploring the bins for objects, look in the order of left bin, center bin, then
right bin. You will receive images from two cameras: one for a global view and one on
the robot’s wrist for a detailed view. You will be provided with recent images that show the
most recent actions the robot has executed. You will also be provided with selected keyframe
images which are frames of particular importance from all the actions the robot has executed
so far. Based on these, choose an action from the provided list for the robot to execute to
best achieve the user’s task instruction. Provide the exact action from the list without any
explanation.

You will select your action from the following list:
• look inside the <LOCATION> bin
• take the <OBJECT> from the <LOCATION> bin and place it in the white bin

<LOCATION> is one of "left", "center", or "right".
<OBJECT> is one of "green tape", "red block", "corn", "baguette", "blue block", "fried
chicken", "milk carton", "ketchup", "eraser", "grapes", "strawberry", "tomato", "pear",
"wooden block", or "olive oil".

You will also return a list of values from 1-8 to index which of the frames from the most
recent actions seem to be of particular importance for the robot to remember. For this task,
recalling what objects are in each bin is critical, so you should return a list of indices, if any,
from the most recent frames that provides a good view of a bin.

Return a JSON with:
• current_subtask: the action that should be executed at the current timestep, selected

from the above list using the stated <OBJECT> and <LOCATION> values
• keyframe_positions: list of frame positions from 1-8, if any, from the recent frames to

keep track of which objects are in each bin
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Counting System Prompt

You are an AI assistant guiding a single-arm robot to obtain a specific amount of scoops
of two different ingredients. You will reset the scooper between each scoop, and drop the
scooper when all scoops across both ingredients have been obtained. You will receive images
from two cameras: one for a global view and one on the robot’s wrist for a detailed view.
You will be provided with recent images that show the most recent actions the robot has
executed. You will also be provided with selected keyframe images which are frames of
particular importance from all the actions the robot has executed so far. Based on these,
choose an action from the provided list for the robot to execute to best achieve the user’s
task instruction. Provide the exact action from the list without any explanation.

You will select your action from the following list:
• pick up the scooper
• place a scoop of <OBJECT> in the <COLOR> bowl
• reset scooper position
• drop the scooper

<OBJECT> is one of "peanuts" or "jelly beans".
<COLOR> is one of "green" or "blue".

You will also return a list of values from 1-8 to index which of the frames from the most
recent actions seem to be of particular importance for the robot to remember. For this task,
recalling how many scoops of each ingredient have been obtained is critical, so you should
return a list of indices, if any, from the most recent frames that provides a good view of a
completed scoop.

Return a JSON with:
• current_subtask: the action that should be executed at the current timestep, selected

from the above list using the stated <OBJECT> and <COLOR> values
• keyframe_positions: list of frame positions from 1-8, if any, from the recent frames to

keep track of scoops

Dusting System Prompt

You are an AI assistant guiding a single-arm robot to take an object off each shelf (bottom
shelf then top shelf), pick up the duster, dust the bottom shelf, reset the duster, dust the
top shelf, put down the duster, and replace the objects back to their original places (bottom
shelf then top shelf). You will receive images from two cameras: one for a global view and
one on the robot’s wrist for a detailed view. You will be provided with recent images that
show the most recent actions the robot has executed. You will also be provided with selected
keyframe images which are frames of particular importance from all the actions the robot
has executed so far. Based on these, choose an action from the provided list for the robot
to execute to best achieve the user’s task instruction. Provide the exact action from the list
without any explanation.

You will select your action from the following list:
• remove the object on the bottom shelf
• remove the object on the top shelf
• pick up duster
• dust bottom shelf
• reset duster
• dust top shelf
• put down duster
• place the <OBJECT> on the bottom shelf
• place the <OBJECT> on the top shelf

<OBJECT> is one of "panda plushie", "purple plushie", "zebra plushie", "elephant plushie",
"lion plushie", "smily face ball", "hello kitty plushie", "baby shoe", "milk carton".

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

You will also return a list of values from 1-8 to index which of the frames from the most
recent actions seem to be of particular importance for the robot to remember. For this task,
recalling where the items were originally placed on the shelves and which shelves have been
dusted is critical, so you should return a list of indices, if any, from the most recent frames
that provides a good indication of either.

Return a JSON with:
• current_subtask: the action that should be executed at the current timestep, selected

from the above list using the stated <OBJECT> values
• keyframe_positions: list of frame positions from 1-8, if any, from the recent frames to

keep track of where the objects were originally placed on the shelves and which shelves
have been dusted

D INFERENCE SPEED AND MEMORY COST

An important aspect of using keyframes as a sparse memory representation is the ability to maintain
fast inference and low memory usage for solving tasks that require reasoning over hundreds of
frames. We run all of our experiments on an NVIDIA GeForce RTX 4090 GPU with our finetuned
Qwen2.5-VL-Instruct-7B model. In Figure 7, we show how the latency for the high-level policy
changes as we increase the number of keyframes in its context |Kt| from 0 to 8 (we also keep the
recent context at |Rt| = 8). We see that the inference speed always stays below 0.8s per prediction.
Empirically, we found any high-level policy that can predict at 1Hz or faster to perform the best on
real-world deployments, so we are well within this limit. Additionally, our VRAM usage is within
the 24GB limit for a 4090, so we can run our high-level policy on a single card.

However, if we were to use a naive method of retaining long-range dependencies by simply keeping
track of more recent frames, we see in Figure 8 that the inference cost quickly blows up. Specifically,
after increasing the number of recent frames beyond 32, the inference cost exceeds 1.0s (the 1Hz
threshold), so it would not coordinate well with the low-level controller in a real-world setting.

In Table 6, we show the inference speed for the low-level policy, π0.5. π0.5 can also run on a 4090
GPU well above the desired speed of 2Hz. We only need two 4090s to run our hierarchical policy.

Model Configuration Inference Time (s) VRAM (GB)

π0.5 0.088± 0.001 6.25
MemER (8 recent + 8 keyframes) 0.787± 0.066 15.93
No History (1 recent frame) 0.532± 0.065 15.55
Short History (8 recent frames) 0.591± 0.064 15.64
Long History (32 recent frames) 0.874± 0.065 16.01

Table 6: Comparison of inference speed and VRAM usage across models for the high-level
(Qwen2.5-VL-Instruct-7B) and low-level (π0.5) policy on a 4090 GPU. We run 20 trials per value.
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Figure 7: Plot of the average inference inference speed (Left) and VRAM usage (Right) for the
MemER high-level policy. We evaluate Qwen2.5-VL-7B-Instruct for the high-level policy. All con-
figurations include 8 recent frames (|Rt| = 8); the x-axis shows the number of additional keyframes
added to context. We run 20 trials for each data point.
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Figure 8: Plot of the average inference speed (Left) and VRAM usage (Right) for naively scaling
context in the high-level policy. We evaluate Qwen2.5-VL-7B-Instruct for the high-level policy.
This baseline uses only recent frames (no additional keyframes); the x-axis shows the total context
length |Rt| from 1 (20) to 256 (28). We run 20 trials for each data point.

E ANNOTATION RULES FOR KEYFRAMES

As described in Section 3.3, we use a simple annotation rule for each subtask to build the set of
keyframes that constitute the ground-truth targets. We take the last frame of the following subtasks:

• Object Search
– "look inside the <LOCATION> bin"

• Counting
– "place a scoop of <OBJECT> in the <COLOR> bowl"

• Dust & Replace
– "remove the object on the bottom shelf"

– "remove the object on the top shelf"

– "dust bottom shelf"

– "dust top shelf"

– "place the <OBJECT> on the bottom shelf"

– "place the <OBJECT> on the top shelf"

The last frames of these subtasks represent what the policy needs to remember.

F CROSS-TASK OBJECT GENERALIZATION

To evaluate the benefits of multi-task training, we compare a single-task version of MemER (sep-
arate policy trained for each task) with our multi-task version. For these experiments, we finetune
Qwen2.5-VL-Instruct-7B for the single- and multi-task versions of the high-level policies. We eval-
uate on our object-centric tasks: the Object Search and Dust & Replace tasks, using objects from
Figure 10. First, we establish a baseline by evaluating both versions of MemER on their original
task setups. As shown in Figure 9 (left), their performance is roughly similar.

The primary benefit of multi-task training is revealed when evaluating cross-task object generaliza-
tion. For this evaluation, we swap all of the objects between the tasks (e.g., using Object Search
objects for the Dust & Replace task, and vice-versa). This creates new object-task combinations
that the models have not seen during training. The results in Figure 9 (right) demonstrate the clear
advantage of using the multi-task model (82% success), generalizing much more effectively to out-
of-domain combinations than the single-task version (59% success). This demonstrates that our
method learns a generalizable skill of "what to remember" that transfers to new scenarios, rather
than just overfitting to the original training demonstrations.
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Figure 9: (Left) Single- vs Multi-Task Results. The performance of the single- and multi-task
versions of MemER on the Object Search and Dust & Replace task are similar. (Right) Cross-Task
Object Generalization Results. We swap objects between the Object Search and Dust & Replace
(see Figure 10) tasks during evaluation. The multi-task policy can generalize to the new object-task
combinations during evaluation despite never seeing them in training.

Figure 10: (Left) Objects for the Object Search task. (Center) Objects for the Counting task.
(Right) Objects for the Dust & Replace task.
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G KEYFRAME SELECTION ALGORITHM

Algorithm 1 Selecting Keyframes from Candidates

Input: A sequence of candidate keyframe sets J ′
0:t = (J0,J1, . . . ,Jt)

The merge distance d
Output: A list of the selected keyframes Kt

1: function BUILDVISUALMEMORY(J ′
0:t, d)

2: G0:t ← Sort(GetIndicesFromFrames(J ′
0:t)) ▷ Extract the temporal indices.

3: if G0:t is empty then ▷ Handle case with no candidates.
4: return ∅
5: end if
6: Clusters← []
7: Ccurrent ← [G0:t[0]]
8: for i = 1 to |G0:t| − 1 do ▷ Build the clusters.
9: if G0:t[i]−G0:t[i− 1] ≤ d then

10: Append G0:t[i] to Ccurrent

11: else
12: Append Ccurrent to Clusters
13: Ccurrent ← [G0:t[i]] ▷ Start a new cluster.
14: end if
15: end for
16: Append Ccurrent to Clusters
17: Tselected ← []
18: for each cluster C in Clusters do ▷ Select the median index of each cluster.
19: imedian ← Median(C)
20: Append imedian to Tselected

21: end for
22: Kt ← GetFramesFromIndices(Tselected)
23: return Kt

24: end function
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Figure 11: Merging our finetuned high-level policy’s weights with its base model’s weights improves
or maintains performance with all tasks.

H HIGH-LEVEL POLICY PARAMETER MERGING

An important factor contributing to the success of our policy is the strong video understanding
prior in Qwen2.5-VL-7B-Instruct (Bai et al., 2025). However, training the high-level policy to
accurately predict the language subtasks used by the low-level policy requires roughly 5,000 gradient
steps. After this amount of finetuning, the high-level policy tends to lose some robustness to low-
level policy freezes and retry behaviors, due to its training data consisting solely of optimal expert
demonstrations. Concurrent work suggests that linearly interpolating the weights of a generalist
pretrained model with those of the same model finetuned on narrow, task-specific data can help
preserve the pretrained model’s robustness and generalization, while still allowing adaptation to the
new task (Anonymous, 2025). We find this also applies to the high-level policy. Specifically, we set
the weights of our high-level policy as:

θ = (1− α) · θpre + α · θft (3)

where θpre is the weights of Qwen2.5-VL-7B-Instruct and θft is the weights of this model finetuned
on all three memory-based tasks. We follow Anonymous (2025) and set α = 0.8 for all baselines
we test. Figure 11 shows that model merging improves or maintains performance across all tasks.

I FREQUENCY DOMAIN-BASED CLUSTERING EXPERIMENTS

We originally explored more heuristic-based methods for selecting keyframes, but found them to
be much less reliable than semantically selected keyframes. MemER’s keyframes come from a
trained high-level VLM that nominates task-relevant frames, and the clustering step consolidates
these into a compact memory. On the other hand, frequency-domain methods operate on low-level
intensity/spectral changes, so they mostly detect visual motion rather than subtask boundaries that
correspond to meaningful visual states. Because the VLM sees language and multi-view context, it
can learn to ignore viewpoint noise and only nominate genuinely informative frames. Frequency-
domain changes spike on any large camera motion or background shift, so they over-trigger on
irrelevant movement in egocentric manipulation.

To illustrate this, we ran UniDomain’s (Ye et al., 2025) clustering method using energy-based ex-
trema in a sliding window, and observed that the selected keyframes are much less informative. We
take a random Counting Task demonstration as an example and include the results below. To con-
struct a memory buffer that is the same size as our method, the window size needed to be >350,
which means that a lot of salient information will be lost if it occurs within 350 frames of a local
mininmum/maximum (Figure 12). If we allow the window to be smaller but still sparse enough such
that the high-level policy runs at 1Hz (32 frames of memory, window size of 35), we get incredibly
noisy and uninformative keyframes (Figure 13).
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Figure 12: (Top) UniDomain’s clustering method with a window size of 351. (Bottom) MemER’s
selected keyframes.

Figure 13: (Top) UniDomain’s clustering method with a window size of 35. (Bottom) MemER’s
selected keyframes.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

J ATTEMPTS AT A UNIFIED HIERARCHICAL MODEL

We found that existing pre-trained models are quite specialized: π0.5 has strong action priors but
very poor video-understanding priors, while Qwen2.5-VL has the reverse behavior. A unified model
struggled to effectively learn both memory-aware subtask prediction and action prediction from our
limited data (50 demos/task). We attempted two unified variants:

Finetuning π0.5 (VLA) for high-level memory reasoning: We tried finetuning π0.5 to predict
subtasks and keyframes from 8 frames of context (the setup for the high-level policy in MemER) in
addition to action predictions. This failed, as the model lacked the necessary video-understanding
pre-training to reason about long-horizon context.

Finetuning Qwen-VL (VLM) for low-level actions: We tried finetuning Qwen2.5-VL to predict
low-level actions using the FAST tokenizer, in addition to subtasks and keyframes. We found it
extremely unstable to train with both the action-generation and video-planning losses.

Our hierarchical design is a pragmatic solution that leverages the distinct strengths of both pre-
trained models, and this modularity is what enables MemER to succeed in complex, multi-minute
tasks from only 50 demonstrations. Moreover, our method is compatible with existing VLA models
to allow the system to efficiently reason over long-horizon dependencies.
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