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Abstract001

To establish the trustworthiness of systems that002
automatically generate text captions for au-003
dio, images and video, existing reference-free004
metrics rely on large pretrained models which005
are impractical to accommodate in resource-006
constrained settings. To address this, we pro-007
pose some metrics to elicit the model’s confi-008
dence in its own generation. To assess how009
well these metrics replace correctness mea-010
sures that leverage reference captions, we test011
their calibration with correctness measures. We012
discuss why some of these confidence met-013
rics align better with certain correctness mea-014
sures. Further, we provide insight into why015
temperature scaling of confidence metrics is016
effective. Our main contribution is a suite017
of well-calibrated lightweight confidence met-018
rics for reference-free evaluation of captions in019
resource-constrained settings.020

1 Introduction021

Automated context awareness through sensors such022

as microphones and cameras is being relied on for023

applications as diverse as home security, military024

surveillance and machine condition monitoring.025

When such a system generates unreliable content,026

the stakes can be high. For example, if a surveil-027

lance system mistakenly captions a woodpecker’s028

pecks as gunshots, that could trigger a security029

threat warning.030

The traditional way of judging the quality of031

generated text is to measure its overlap or simi-032

larity with one or more reference texts. This is033

infeasible when the model is deployed, since refer-034

ence captions are unavailable. Existing reference-035

free metrics to evaluate generated text depend on036

large pretrained models, which occupy too much037

storage and compute for deployment in resource-038

constrained settings. Hence, we investigate low-039

compute methods to evaluate caption quality in the040

absence of references. Specifically, we contribute041

the following:042

• We propose reference-free evaluation metrics 043

for audio captions that alleviate the need to 044

store and run large pretrained models. 045

• We validate these metrics by treating them as 046

confidence metrics, and assess their calibra- 047

tion with widely accepted correctness mea- 048

sures. 049

• We illustrate why temperature scaling of con- 050

fidences is effective. 051

2 Related Work 052

2.1 Evaluating quality of generated text 053

2.1.1 In the presence of reference text 054

There are several ways to evaluate the quality of 055

generated text when reference text is available. 056

BLEU (Papineni et al., 2002), METEOR (Banerjee 057

and Lavie, 2005) and ROUGE (Lin, 2004) measure 058

n-gram overlap, while CIDER (Vedantam et al., 059

2015) measures the cosine similarities between 060

vectors consisting of TF-IDFs (Jones, 1972) of n- 061

grams. SPICE (Anderson et al., 2016) measures 062

the overlap between scene graphs of reference and 063

generated texts. BERTScore (Zhang et al., 2019), 064

BLEURT (Sellam et al., 2020) and FENSE (Zhou 065

et al., 2022) leverage pretrained language models 066

in an attempt to capture semantic similarities. 067

2.1.2 In the absence of reference text 068

In the absence of reference text, evaluating the qual- 069

ity of generated text is more challenging. Often, 070

large pretrained models are used (Fu et al., 2024; 071

Saha et al., 2024; Huang et al., 2024; Jiang et al., 072

2024; Xu et al., 2023; Qin et al., 2023; Mehri and 073

Shwartz, 2023; Liu et al., 2023; Tian et al., 2023; 074

Zhong et al., 2022; Yuan et al., 2021; Liu et al., 075

2021; Mehri and Eskenazi, 2020; Pang et al., 2020). 076

The effort to transfer these evaluation capabilities 077

to smaller models (Liu et al., 2024a,b) is nascent. 078

Moreover, these pretrained models have an inherent 079

bias to favor generations from models like them- 080
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Figure 1: Our framework of obtaining confidence metrics (green) and correctness measures (blue).

Figure 2: Our framework of measuring calibration of
confidence metrics with correctness measures.

selves (Liu et al., 2024c, 2023), and can be biased081

against higher-quality outputs, including those writ-082

ten by humans (Deutsch et al., 2022). Further, these083

metrics may rely on spurious correlations with mea-084

sures such as word overlap, perplexity, and length085

(Durmus et al., 2022), may be confused by trun-086

cation errors, and errors in certain locations in the087

generation (He et al., 2023). Also, verbalized con-088

fidences are not well-calibrated for difficult queries089

and object counting (Groot and Valdenegro Toro,090

2024).091

To evaluate the quality of generated text condi-092

tioned on other media such as images in the absence093

of reference text, large pretrained models are again094

commonly used. To detect hallucinations in image095

captions,(Petryk et al., 2024) used a Large Lan-096

guage Model (LLM) to extract groundable objects097

from the captions and measured their semantic sim-098

ilarities with objects detected in the image. Another099

method is to repeatedly generate an image from the100

generated caption using a large model followed by101

captioning the generated image to find a semantic102

drift indicating lack of coherence (Cao et al., 2024).103

These large models occupy a huge amount of space104

and compute, which makes it difficult to deploy105

them in resource-constrained settings, such as on106

edge devices. This points to the need to develop107

a low-compute evaluation metric for captions in108

the absence of reference text. We explore some 109

options for such a metric, and, by treating them 110

as confidence metrics, assess their alignment with 111

correctness measures that use reference text, in the 112

framework of calibrating confidence metrics with 113

correctness measures. 114

2.2 Calibration 115

When a model is subjected to unseen data, a con- 116

fidence metric is useful to indicate the reliability 117

of the model’s output. It is common to measure 118

calibration of the confidence metric with correct- 119

ness measures that rely on the ground truth. One 120

calibration statistic is the Expected Calibration Er- 121

ror (ECE) (Guo et al., 2017), which partitions the 122

n confidences corresponding to n samples into 123

M equally spaced bins B1, B2, ..., BM , and then 124

computes a weighted average of the absolute dif- 125

ferences between the confidences and the correct- 126

nesses in each bin, where the weight is determined 127

by the number of confidences in that bin. 128

ECE =
M∑

m=1

|Bm|
n

|corr(Bm)−conf(Bm)| (1) 129

corr(Bm) refers to the average correctness of all 130

samples whose confidences belong to Bm, and 131

conf(Bm) refers to the average confidence of all 132

samples whose confidences belong to Bm. Another 133

calibration statistic Brier Score (BS) (Brier, 1950) 134

is the Mean Squared Error between confidence and 135

correctness across all n samples [x1, x2, ..., xn]. 136

BS =
1

n

n∑
i=1

(corr(xi)− conf(xi))
2 (2) 137

A lower value is better for both calibration statis- 138

tics. 139
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3 Procedure140

We consider an audio captioning model AC which,141

conditioned on an audio clip a, generates text142

t = [t1, t2, ..., tn], where ti is the ith token. Let143

p = [p1, p2, ..., pn] be the list of respective token144

probabilities. In this section, we will describe the145

confidence metrics we developed for audio cap-146

tions. All of these metrics are deployed during in-147

ference and do not require any interference during148

training. An overall framework diagram is shown149

in Figure 1.150

3.1 Pooling-based metrics151

To calculate the confidence of the generated text,152

we pool probabilities of the generated tokens. We153

define the arithmetic mean of the token probabili-154

ties, henceforth referred to as AM(t) or simply as155

AM as156

AM(t) =
1

n

n∑
i=1

pi (3)157

We define the geometric mean of the token proba-158

bilities, henceforth referred to as GM(t) or simply159

as GM as160

GM(t) = (
n∏

i=1

pi)
1
n (4)161

The GM can also be viewed as the reciprocal of162

the perplexity, which is a common measure of the163

uncertainty of generated text. We refer to the AM164

and the GM as naive pooling-based confidence met-165

rics. We found that probabilities of non-stopword166

tokens carry more information, where stopwords re-167

fer to frequently occurring words which contribute168

little semantic value such as a, and, is and the.169

Hence we also tried pooling using only probabil-170

ities of tokens which are among the noun, verb171

and adjective parts of speech, as judged by NLTK172

(Bird et al., 2009). Formally, let M be the set173

of all indices identifying tokens from t which are174

among the noun, verb or adjective parts of the175

speech. We define the selective arithmetic mean176

of the token probabilities, henceforth referred to as177

SAM(t) or simply as SAM as178

SAM(t) =
1

|M |
∑
i∈M

pi (5)179

We define the selective geometric mean of the token180

probabilities, henceforth referred to as SGM(t) or181

simply as SGM as182

SGM(t) = (
∏
i∈M

pi)
1

|M| (6)183

We refer to the SAM and the SGM as selective 184

pooling-based confidence metrics. The collection 185

of naive pooling-based confidence metrics and se- 186

lective pooling-based confidence metrics is referred 187

to as pooling-based metrics. 188

3.1.1 Temperature Scaling 189

We optionally apply temperature scaling to the 190

list of logits q = [q1, q2, ...., qn] corresponding to 191

token probabilities before the softmax layer. To 192

clarify, the relationship between p and q is p = 193

softmax(q). Using a scalar temperature temp, 194

the temperature-scaled probabilities p′(temp) = 195

[p′1(temp), p′2(temp), ..., p′n(temp)] are obtained 196

from q as follows: 197

p′i(temp) =
e

qi
temp∑

qj∈q e
qj

temp

(7) 198

3.2 CLAPScore 199

To measure how similar the generated text t is to the 200

audio a, we measure the cosine similarity between 201

them in the multimodal space enabled by the CLAP 202

(Elizalde et al., 2023) training mechanism. The 203

CLAPScoreat or CScat is defined as 204

CScat(a, t) =
ad_emb(a).tx_emb(t)

||ad_emb(a)||||tx_emb(t)||
, (8) 205

where ad_emb and tx_emb are both unary func- 206

tions that project their audio and text inputs respec- 207

tively into a shared multimodal space. 208

3.3 Semantic Entropy 209

To measure how consistent the model’s responses 210

are across generations for the same input, we 211

adapted the concept of semantic entropy (Far- 212

quhar et al., 2024) for audio captions. For an 213

audio clip a, we sample a set of p generations 214

T = t(1), t(2), ..., t(p). For two text generations 215

q and r, let us define the CLAPScorett, abbrevi- 216

ated as CSctt as 217

CSctt(q, r) =
tx_emb(q).tx_emb(r)

||tx_emb(q)||||tx_emb(r)||
(9) 218

Using CSctt as the distance metric, we perform ag- 219

glomerative clustering within T which stops when 220

the minimum distance between clusters exceeds a 221

certain threshold h ∈ [−1, 1]. In our experiments, 222

h = 0.7. Next, for the lth cluster cl, we calculate 223

its probability P (cl) as the average of probabili- 224

ties of all its generations, where the probability 225
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of a generation is simply the average of all token226

probabilities.227

P (cl) =
1

|cl|
∑

t(j)∈cl

1

|t(j)|

|t(j)|∑
i=1

t
(j)
i , (10)228

where |cl| is the number of generations in cl, and229

|t(j)| is the number of tokens in t(j). To obtain a230

valid probability distribution P ′ that sums to one,231

we normalize P using the L1-norm. For every232

ci ∈ T ,233

P ′(ci) =
P (ci)∑

cj∈T |P (cj)|
. (11)234

Finally, we calculate the semantic entropy235

SE(T ), also referred to as SE as236

SE(T ) = −
∑
ci∈T

P ′(ci)log(P
′(ci)) (12)237

In our experiments, p = 7. To stay consistent238

with the property among confidence metrics of be-239

ing constrained between 0 and 1, with higher be-240

ing better, we define the Inverse Semantic Entropy241

ISE(T ), also referred to as ISE as242

ISE(T ) = 1−min(SE(T ), 1). (13)243

The inverse refers to an additive inverse. It244

seemed reasonable to clip the SE to 1 because em-245

pirically, the SE being higher than 1 is rare (only246

happens for less than 2% captions in the validation247

set), and the semantic instability of such captions248

is well-highlighted by the ISE even after clipping.249

4 Experiments250

In this section, we describe the experiments to mea-251

sure how well the confidence metrics we described252

in Section 3 calibrate with correctness measures,253

also shown in Figure 2.254

Correctness Measures: Apart from the tradi-255

tional correctness measures CIDER and SPICE and256

the pretrained model-based correctness measure257

FENSE, all of which were introduced in Subsubsec-258

tion 2.1.1, we use two other correctness measures259

to judge the correctness of the generated text with260

respect to a reference text. The first new correct-261

ness measure is the the CLAPScorett or CSctt262

defined in Equation 9, which calculates the cosine263

similarity between the generated text and the refer-264

ence text in the audio-text multimodal space. The265

second is GPT-4’s judgment regarding how well266

the generated text describes the audio which is de- 267

scribed by the reference text. To study the relation- 268

ships of correctness measures with each other, we 269

calculated the Pearson correlations between them. 270

Model architecture: Following (Mei et al., 271

2021), our audio captioning model consists of a 272

CNN10 PANN encoder (Kong et al., 2020) fol- 273

lowed by four layers of a transformer decoder with 274

two heads each, with a hidden size of 256 and a 275

feedforward dimension of 2048. It uses text embed- 276

dings from the bert-L12-H256 model(Turc et al., 277

2019). This model has about 15 million parameters, 278

and took about 120 GPU hours to train. To test the 279

applicability of our results to other models, we also 280

used an alternate model with a hidden size of 128 281

instead of 256, which uses text embeddings from 282

the bert-L12-H128 model(Turc et al., 2019). This 283

model had about 8 million parameters. 284

Datasets: We trained this model with our own 285

audio captioning dataset (details in Appendix A). 286

For evaluation, we used the evaluation splits of the 287

AudioCaps (Kim et al., 2019) and Clotho (Drossos 288

et al., 2020) datasets, which have 957 and 1045 289

samples respectively. To find the optimum temper- 290

ature for calibration, we used the validation splits 291

of these datasets, which have 495 and 1045 samples 292

respectively. 293

Measuring Calibration: The ECE and the Brier 294

Score are used to measure the calibration of our 295

confidence metrics with correctness measures. For 296

pooling-based metrics, we also test the effective- 297

ness of temperature scaling in improving calibra- 298

tion by selecting from temp ∈ 0.1, 0.2, ..., 2.0 us- 299

ing the validation split. 300

5 Results 301

5.1 Identifying clusters in correctness 302

measures 303

Pearson correlations among correctness measures 304

are shown in Figure 4 for the evaluation split of the 305

AudioCaps dataset. We observe that the traditional 306

correctness measures CIDER and SPICE correlate 307

with each other, while the model-based correctness 308

measures FENSE, CLAPScorett and GPT-4 corre- 309

late with each other. The same trend is observed 310

for the Clotho dataset. 311

5.2 Evaluating Confidence Metrics 312

Table 1 shows calibration scores for both datasets 313

using the Brier Score and ECE, when no tempera- 314

ture scaling is used. We observe that pooling-based 315

confidence metrics align well with all correctness 316
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Brier Score (↓) Expected Calibration Error (↓)
AudioCaps

CIDER SPICE FENSE CSctt GPT-4 CIDER SPICE FENSE CSctt GPT-4
AM 0.24 0.2 0.04 0.11 0.08 0.21 0.42 0.09 0.31 0.08
SAM 0.22 0.15 0.05 0.16 0.09 0.16 0.36 0.11 0.37 0.11
GM 0.22 0.16 0.04 0.14 0.08 0.16 0.37 0.08 0.36 0.09
SGM 0.2 0.12 0.05 0.19 0.1 0.11 0.32 0.12 0.41 0.14
CScat 0.3 0.31 0.06 0.04 0.08 0.34 0.55 0.15 0.18 0.12
ISE 0.6 0.71 0.25 0.05 0.25 0.62 0.82 0.44 0.18 0.41

Clotho
AM 0.2 0.21 0.05 0.1 0.08 0.35 0.45 0.12 0.29 0.11
SAM 0.15 0.16 0.05 0.15 0.08 0.28 0.38 0.11 0.35 0.1
GM 0.16 0.16 0.04 0.14 0.07 0.28 0.38 0.09 0.35 0.07
SGM 0.12 0.12 0.05 0.19 0.08 0.22 0.32 0.11 0.41 0.11
CScat 0.31 0.36 0.1 0.03 0.12 0.49 0.59 0.25 0.14 0.23
ISE 0.65 0.74 0.32 0.06 0.33 0.73 0.83 0.5 0.21 0.49

Table 1: Calibration scores on the evaluation splits of AudioCaps and Clotho with no temperature scaling.

CID
ER

SPI
CE

FEN
SE

CSctt GPT-
4

Avg
w/o
TS

Avg
w/
TS

AudioCaps
AM .2 .014 .041 .008 .075 .132 .068
SAM .202 .012 .048 .013 .083 .131 .072
GM .193 .016 .041 .009 .075 .127 .067
SGM .191 .013 .049 .014 .084 .131 .07

Clotho
AM .08 .007 .044 .01 .069 .128 .042
SAM .079 .007 .049 .017 .077 .118 .046
GM .076 .007 .042 .012 .069 .113 .041
SGM .073 .007 .05 .02 .076 .11 .045

Table 2: Brier scores (↓) on the evaluation splits of
AudioCaps and Clotho when using Temperature Scaling
(TS).

(a) Arithmetic Mean
(b) Selective Arithmetic
Mean

(c) Geometric Mean (d) Selective Geometric Mean

Figure 3: Brier scores over temperatures for the Au-
dioCaps dataset. Each plot shows the variation of all
correctness measures over temperatures for a single con-
fidence metric.

Figure 4: Pearson correlation between correctness mea-
sures for the AudioCaps dataset.
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Figure 5: Variation of distribution over temperatures of
the Arithmetic Mean confidence metric for the Audio-
Caps dataset.

Figure 6: Distributions of correctness measures for the
AudioCaps dataset.

measures. For traditional correctness measures 317

CIDER and SPICE, selective pooling achieves a 318

clear improvement over conventional pooling. This 319

may be because CIDER gives less weight to more 320

frequently occurring tokens, which are also the 321

ones ignored by selective pooling, and the SPICE 322

metric also ignores stopwords, except when needed 323

to determine relations. For model-based correct- 324

ness measures FENSE, CLAPScorett and GPT- 325

4, pooling-based confidences continue to perform 326

well. However, using selective pooling does not 327

have an advantage here because model-based met- 328

rics look at the entire sentence, part of which we 329

are discarding when using selective pooling. 330

For the CSctt correctness measure, we can 331

achieve even better calibration using the CScat and 332

ISE confidence metrics. This may be because just 333

like the CSctt correctness measure is lenient in 334

allowing acoustically similar but semantically dis- 335

tant cross-triggers (examples: machine whirring 336

and helicopter flying, typing and object clattering), 337

the CScat also forgives such cross-triggers because 338

the cosine similarity is measured in the audio-text 339

multimodal space. The ISE also overlooks such 340

cross-triggers because the CSctt is used to judge 341

consistency between the model’s responses, while 342

forming clusters to calculate the entropy. 343

To demonstrate the generalizability of these re- 344

sults to other models, Table 5 in Appendix B shows 345

the same results when using the alternate model. 346

5.3 Effect of Temperature Scaling 347

The curves of calibration quality over temperatures 348

are shown in Figure 3 for the validation split of 349

the AudioCaps dataset. The optimal temperature to 350

calibrate a particular confidence metric with a cor- 351

rectness measure stays the same for both datasets, 352

indicating its generalizability to unseen data. 353

Table 2 shows calibration results at these opti- 354

mal temperatures, on the evaluation splits of both 355

datasets. The effectiveness of applying temperature 356

scaling is quite pronounced, as evident from the 357

last two columns of the table which show the cali- 358

bration scores averaged over correctness measures 359

before and after temperature scaling respectively. 360

The average Brier score for each confidence metric 361

almost halves after using temperature scaling. It is 362

however important to remember that for such a dra- 363

matic improvement in calibration to be achieved, a 364

validation set is needed to carefully select the opti- 365

mal temperature. In cases where such a validation 366

set is not available, selective pooling-based confi- 367
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dence metrics are still the best choice to calibrate368

well with traditional correctness measures. No one369

pooling-based metric stands out in performance if370

temperature scaling is applied, an explanation for371

which is provided in the next Subsubsection.372

5.3.1 Why does temperature scaling work?373

Figure 6 shows the distributions of correctness mea-374

sures, while Figure 5 shows how the distribution of375

a representative pooling-based confidence metric376

AM changes over temperature. A low tempera-377

ture causes the AM to shift to the right, which378

matches most closely with CSctt, explaining why379

a low temperature is needed to calibrate well with380

CSctt. Similarly, a high temperature causes the381

AM to shift to the left, resulting in a distribution382

similar to those of CIDER and SPICE, explaining383

why a high temperature is needed to calibrate well384

with theses two correctness measures. Finally, a385

moderate temperature allows the confidence met-386

rics’s distribution to be centered around 0.5, which387

matches the distributions of FENSE and GPT-4, ex-388

plaining why a temperature close to 1 is reasonable389

for calibrating with these correctness measures.390

This ability of pooling-based metrics to adjust391

their distributions to match with those of correct-392

ness measures somewhat compensates for the dif-393

ferences in their computations, resulting in all of394

them being comparably effective.395

6 Conclusion396

We propose some resource-efficient reference-free397

evaluation metrics for audio captions, and validate398

their effectiveness by measuring their calibration399

with correctness measures that use references. Fi-400

nally, we demonstrate the effectiveness of temper-401

ature scaling and explain why it is effective. Our402

work enables the reliable deployment of audio cap-403

tioning systems in resource-constrained settings.404

7 Discussion405

Feasibility of deploying our metrics in a406

resource-constrained setting: The CScat confi-407

dence metric uses GPT-2 (126.38M) as the text en-408

coder and HTSAT (159.45M) as the audio encoder,409

which results in the need to store and forward-410

propagate through 159.45M parameters. The ISE411

needs only the GPT-4 text encoder. This is much412

lesser than sizes of models from comparable past413

work that have billions of parameters (Saha et al.,414

2024; Huang et al., 2024; Liu et al., 2023; Tian415

et al., 2023; Pang et al., 2020; Xu et al., 2023; 416

Jiang et al., 2024). 417

Generalizability of our methods to other 418

modalities: The applicability of our proposed 419

reference-free evaluation metrics may extend to 420

captioning systems of other modalities as well. The 421

idea of using as a confidence metric the cosine sim- 422

ilarity between embeddings of the conditioning and 423

generated modalities may be extended to the image 424

captioning and video captioning areas. The cosine 425

similarities between CLIP (Radford et al., 2021) 426

embeddings of pairs of images and generated text 427

may be a good indicator of the confidence of the 428

generated image captions. The ISE calculated by 429

using cosine similarities between CLIP text em- 430

beddings as the clustering criterion may also be a 431

valuable confidence metric for image captioning 432

models. 433

Cross-triggers: Expecting an audio captioning 434

model to distinguish between acoustically similar 435

sounds may be unfair, in which case, the CSctt is 436

the appropriate correctness measure, and the CScat 437

and the ISE are the recommended confidence met- 438

rics. However, if end users of captioning models 439

are unwilling to tolerate cross-triggers, pooling- 440

based confidence metrics are more suitable. To 441

reduce cross-triggers, integrating information from 442

other sensors like cameras and motion sensors can 443

help enhance the system’s awareness. However, 444

due to the trade-off between using more sensors 445

and preserving privacy, there is still value in sys- 446

tems that use less sensors. 447

8 Limitations 448

• Given that our reference-free evaluation met- 449

rics were validated with respect to the existing 450

evaluation metrics that leverage references, 451

our validation is limited by the quality of the 452

existing evaluation metrics and by the qual- 453

ity of the human-written captions that these 454

evaluation metrics depend on. Studying the 455

alignment of these proposed reference-free 456

evaluation metrics with human preferences is 457

beyond the scope of this work. 458

• The Expected Calibration Error and Brier 459

Score are well-suited to measure the quality 460

of calibration of confidences for classification 461

tasks. Its suitability to measure calibration of 462

natural language is yet to be evaluated inde- 463

pendently. 464
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• The potential risk of this work is that our pro-465

posed reference-free evaluation metrics, if not466

providing a true measurement of the confi-467

dence of the caption because of the two lim-468

iting factors mentioned above, may provide a469

false sense of reliability.470

• Since the objective of the study was not to471

evaluate the quality of the captioning model,472

we performed experiments with only a subset473

of all possible models for the audio captioning474

task. It is possible, though unlikely, that these475

results may be less applicable to other model476

architectures for the same task.477
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A Experimental Details755

A.1 Dataset756

Our audio captioning dataset was collected using757

the same crowdsourcing method as (Kim et al.,758

2019) by asking people to listen to an audio clip759

and to write one full English sentence describing760

its contents. Annotators were instructed to not761

include names or any personally identifiable infor-762

mation, and were also instructed to avoid offensive763

language. The dataset has 80,000 audio clips of764

length 10 seconds, and three captions correspond-765

ing to each clip, which were written by three differ-766

ent people. Some examples of captions from our767

dataset are shown in Table 3.768

A.2 Confidence and Correctness Measures769

To calculate parts of speech for selective pool-770

ing metrics, the tag.pos_tag function from NLTK771

version 3.8.1 (Apache License, Version 2.0) was772

used. The CIDER and SPICE implementations773

from the pycocoevalcap library (Chen et al., b)774

were used. To calculate FENSE, we used the775

‘paraphrase-TinyBERT-L6-v2’ model (Reimers and776

Gurevych, 2019) which is default in the aac-metrics777

toolkit (Labbé, 2024) (MIT License). To calcu-778

late the CLAPScoreat and CLAPScorett, we used779

the ‘2023’ configuration of the CLAP model from780

the msclap library (Elizalde et al.) (MIT License),781

which uses GPT-2 (Radford et al., 2019) as the782

text encoder and HTS-AT (Chen et al., a) as the783

audio encoder. The prompt to GPT-4 for judging784

the correctness of a caption with respect to a refer-785

ence is shown in Table 4. The example scores were786

calculated using cosine similarities between the787

‘all-MiniLM-L6-v2’ SentenceBERT embeddings.788

B Results with Alternate Model789

Table 5 shows calibration scores for the evaluation790

splits of both datasets using the Brier Score and791

ECE, when no temperature scaling is used, when792

the alternate model is used.793

Captions
A series of beeps from multiple different alarms.
A continuous sharp blares of a siren followed by a
loud honks and horns.
A vehicle with a siren is honking.
Some rustling and a person’s grunting and shout-
ing.
Someone is coughing loudly and a person suddenly
shouts.
A woman blows sneezes and shouts.
Metals are continuously screeching.
Screeching of an operating machine.
Buzzing of an electric device.
A dog howls and barks as a wind instrument is
playing.
Dog weeping and barking while instrumental music
is playing.
Musical instrument playing and a dog barking and
wailing.
A loud rumble of thunder as the rain falls down.
Thunder and heavy rain.
A heavy rainfall accompanied by a loud bang of
the thunder.
A sound of an mechanical equipment tools.
A machine buzzing deeply.
Screeching of an operating machine.
A loud screaming shouting and cheering of people.
People are shouting and clapping.
The people are cheering at full blast.
A baby crying and continuous buzzing of an elec-
tronic device.
A baby crying constantly and some crackling.
A baby is incessantly crying.
A man snores loudly as water rushes.
The water is running and the person is snoring.
A person snores loudly and water starts to flow.
A loud honking of a train that is passing by.
The honking horn of a series of railroad cars mov-
ing as a unit by a locomotive or by integral motors.
Many cars are making loud horn noises.
Birds are tweeting and chirping simultaneously.
Birds singing and whistling wonderfully.
A bird is chirping and a whistle can be heard while
an equipment is creating a humming sound.
Chime of a musical instrument.
The bells are ringing simultaneously.
A series of loud chimes and clanks of bells.

Table 3: Example captions from our audio captioning
dataset.
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You will be given five reference sentences to describe an audio scene, and a new sentence. Using that,
please evaluate how well a new sentence describes the audio scene, and provide a score between 0 and 1.
Please provide only the score, and no other text. Here are some examples:

Example 1:
Reference sentences:
people are singing and laughing
a person is singing in melodic music while surrounded by a passing vehicle
a person is singing while a man is laughing a splashing of water the wind is blowing and vehicles are
passing by
people are singing while cars pass by and a man in laughing
people are laughing and singing while vehicles are passing by
New sentence: a person is singing while the children are playing
Score: 0.548

Example 2:
Reference sentences:
music is playing
a musical effect is playing
there is instrumental music playing
someone is playing a musical instrument
instrumental music is playing
New sentence: a musical instrument is playing
Score: 0.801
.
.
.
Now it’s your turn.

Table 4: Prompt provided to GPT-4 to judge the correctness of a caption with respect to a reference.

Brier Score (↓) Expected Calibration Error (↓)
AudioCaps

CIDER SPICE FENSE CSctt GPT-4 CIDER SPICE FENSE CSctt GPT-4
AM 0.20 0.12 0.06 0.16 0.08 0.18 0.32 0.06 0.39 0.12
SAM 0.20 0.10 0.06 0.19 0.10 0.13 0.29 0.09 0.42 0.15
GM 0.19 0.09 0.06 0.20 0.10 0.14 0.28 0.06 0.43 0.16
SGM 0.18 0.08 0.07 0.23 0.11 0.09 0.25 0.10 0.46 0.19
CScat 0.32 0.30 0.11 0.04 0.08 0.37 0.54 0.23 0.18 0.11
ISE 0.46 0.46 0.27 0.16 0.23 0.44 0.58 0.38 0.24 0.30

Clotho
AM 0.13 0.14 0.05 0.15 0.07 0.26 0.35 0.08 0.37 0.06
SAM 0.12 0.12 0.05 0.18 0.07 0.23 0.32 0.09 0.40 0.10
GM 0.10 0.10 0.04 0.19 0.07 0.21 0.30 0.07 0.42 0.07
SGM 0.09 0.09 0.05 0.23 0.08 0.17 0.26 0.10 0.46 0.12
CScat 0.30 0.35 0.12 0.03 0.12 0.49 0.58 0.27 0.14 0.23
ISE 0.40 0.48 0.25 0.17 0.25 0.50 0.59 0.37 0.25 0.34

Table 5: Calibration scores on the evaluation splits of AudioCaps and Clotho with no temperature scaling with the
alternate model.
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