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Abstract

To establish the trustworthiness of systems that
automatically generate text captions for au-
dio, images and video, existing reference-free
metrics rely on large pretrained models which
are impractical to accommodate in resource-
constrained settings. To address this, we pro-
pose some metrics to elicit the model’s confi-
dence in its own generation. To assess how
well these metrics replace correctness mea-
sures that leverage reference captions, we test
their calibration with correctness measures. We
discuss why some of these confidence met-
rics align better with certain correctness mea-
sures. Further, we provide insight into why
temperature scaling of confidence metrics is
effective. Our main contribution is a suite
of well-calibrated lightweight confidence met-
rics for reference-free evaluation of captions in
resource-constrained settings.

1 Introduction

Automated context awareness through sensors such
as microphones and cameras is being relied on for
applications as diverse as home security, military
surveillance and machine condition monitoring.
When such a system generates unreliable content,
the stakes can be high. For example, if a surveil-
lance system mistakenly captions a woodpecker’s
pecks as gunshots, that could trigger a security
threat warning.

The traditional way of judging the quality of
generated text is to measure its overlap or simi-
larity with one or more reference texts. This is
infeasible when the model is deployed, since refer-
ence captions are unavailable. Existing reference-
free metrics to evaluate generated text depend on
large pretrained models, which occupy too much
storage and compute for deployment in resource-
constrained settings. Hence, we investigate low-
compute methods to evaluate caption quality in the
absence of references. Specifically, we contribute
the following:

* We propose reference-free evaluation metrics
for audio captions that alleviate the need to
store and run large pretrained models.

* We validate these metrics by treating them as
confidence metrics, and assess their calibra-
tion with widely accepted correctness mea-
sures.

* We illustrate why temperature scaling of con-
fidences is effective.

2 Related Work

2.1 Evaluating quality of generated text
2.1.1 In the presence of reference text

There are several ways to evaluate the quality of
generated text when reference text is available.
BLEU (Papineni et al., 2002), METEOR (Banerjee
and Lavie, 2005) and ROUGE (Lin, 2004) measure
n-gram overlap, while CIDER (Vedantam et al.,
2015) measures the cosine similarities between
vectors consisting of TF-IDFs (Jones, 1972) of n-
grams. SPICE (Anderson et al., 2016) measures
the overlap between scene graphs of reference and
generated texts. BERTScore (Zhang et al., 2019),
BLEURT (Sellam et al., 2020) and FENSE (Zhou
et al., 2022) leverage pretrained language models
in an attempt to capture semantic similarities.

2.1.2 In the absence of reference text

In the absence of reference text, evaluating the qual-
ity of generated text is more challenging. Often,
large pretrained models are used (Fu et al., 2024;
Saha et al., 2024; Huang et al., 2024; Jiang et al.,
2024; Xu et al., 2023; Qin et al., 2023; Mehri and
Shwartz, 2023; Liu et al., 2023; Tian et al., 2023;
Zhong et al., 2022; Yuan et al., 2021; Liu et al.,
2021; Mehri and Eskenazi, 2020; Pang et al., 2020).
The effort to transfer these evaluation capabilities
to smaller models (Liu et al., 2024a,b) is nascent.
Moreover, these pretrained models have an inherent
bias to favor generations from models like them-
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Figure 1: Our framework of obtaining confidence metrics (green) and correctness measures (blue).
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Figure 2: Our framework of measuring calibration of
confidence metrics with correctness measures.

selves (Liu et al., 2024¢, 2023), and can be biased
against higher-quality outputs, including those writ-
ten by humans (Deutsch et al., 2022). Further, these
metrics may rely on spurious correlations with mea-
sures such as word overlap, perplexity, and length
(Durmus et al., 2022), may be confused by trun-
cation errors, and errors in certain locations in the
generation (He et al., 2023). Also, verbalized con-
fidences are not well-calibrated for difficult queries
and object counting (Groot and Valdenegro Toro,
2024).

To evaluate the quality of generated text condi-
tioned on other media such as images in the absence
of reference text, large pretrained models are again
commonly used. To detect hallucinations in image
captions,(Petryk et al., 2024) used a Large Lan-
guage Model (LLM) to extract groundable objects
from the captions and measured their semantic sim-
ilarities with objects detected in the image. Another
method is to repeatedly generate an image from the
generated caption using a large model followed by
captioning the generated image to find a semantic
drift indicating lack of coherence (Cao et al., 2024).
These large models occupy a huge amount of space
and compute, which makes it difficult to deploy
them in resource-constrained settings, such as on
edge devices. This points to the need to develop
a low-compute evaluation metric for captions in

the absence of reference text. We explore some
options for such a metric, and, by treating them
as confidence metrics, assess their alignment with
correctness measures that use reference text, in the
framework of calibrating confidence metrics with
correctness measures.

2.2 Calibration

When a model is subjected to unseen data, a con-
fidence metric is useful to indicate the reliability
of the model’s output. It is common to measure
calibration of the confidence metric with correct-
ness measures that rely on the ground truth. One
calibration statistic is the Expected Calibration Er-
ror (ECE) (Guo et al., 2017), which partitions the
n confidences corresponding to n samples into
M equally spaced bins B1, Ba, ..., By, and then
computes a weighted average of the absolute dif-
ferences between the confidences and the correct-
nesses in each bin, where the weight is determined
by the number of confidences in that bin.

o~ |Bul
ECE = Z Tm\corr(Bm)—conf(Bm)] (1)

m=1

corr(Byy,) refers to the average correctness of all
samples whose confidences belong to B,,, and
con f(B,,) refers to the average confidence of all
samples whose confidences belong to B,,,. Another
calibration statistic Brier Score (BS) (Brier, 1950)
is the Mean Squared Error between confidence and
correctness across all n samples [z1, T2, ..., Tp).

n

BS = %Z(corr(mi) —conf(z;))?  (2)

i=1

A lower value is better for both calibration statis-
tics.



3 Procedure

We consider an audio captioning model AC' which,
conditioned on an audio clip a, generates text
t = [t1,ta, ..., t,], where t; is the i*" token. Let
p = [p1,p2, ..., pn] be the list of respective token
probabilities. In this section, we will describe the
confidence metrics we developed for audio cap-
tions. All of these metrics are deployed during in-
ference and do not require any interference during
training. An overall framework diagram is shown
in Figure 1.

3.1 Pooling-based metrics

To calculate the confidence of the generated text,
we pool probabilities of the generated tokens. We
define the arithmetic mean of the token probabili-
ties, henceforth referred to as AM (t) or simply as
AM as

1 n
AM(t) =~ pi (3)
iz
We define the geometric mean of the token proba-

bilities, henceforth referred to as G M (t) or simply
as GM as

3=

n
GM(t) = ([]») )
i=1

The GM can also be viewed as the reciprocal of
the perplexity, which is a common measure of the
uncertainty of generated text. We refer to the AM
and the GM as naive pooling-based confidence met-
rics. We found that probabilities of non-stopword
tokens carry more information, where stopwords re-
fer to frequently occurring words which contribute
little semantic value such as a, and, ¢s and the.
Hence we also tried pooling using only probabil-
ities of tokens which are among the noun, verb
and adjective parts of speech, as judged by NLTK
(Bird et al., 2009). Formally, let M be the set
of all indices identifying tokens from ¢ which are
among the noun, verb or adjective parts of the
speech. We define the selective arithmetic mean
of the token probabilities, henceforth referred to as
SAM/(t) or simply as SAM as

1
SAM(t) = — > pi 5
M|
We define the selective geometric mean of the token
probabilities, henceforth referred to as SGM (t) or
simply as SGM as

SGM(t) = (][] pi) P (6)
€M

We refer to the SAM and the SGM as selective
pooling-based confidence metrics. The collection
of naive pooling-based confidence metrics and se-
lective pooling-based confidence metrics is referred
to as pooling-based metrics.

3.1.1 Temperature Scaling

We optionally apply temperature scaling to the
list of logits ¢ = [¢1, g2, -..., gn] corresponding to
token probabilities before the softmax layer. To
clarify, the relationship between p and ¢q is p =
softmax(q). Using a scalar temperature temp,
the temperature-scaled probabilities p’(temp) =
[p) (temp), ph(temp), ..., pl,(temp)] are obtained
from q as follows:
t =
pitemp) = ———— )
Zq]'Eq e temp

3.2 CLAPScore

To measure how similar the generated text ¢ is to the
audio a, we measure the cosine similarity between
them in the multimodal space enabled by the CLAP
(Elizalde et al., 2023) training mechanism. The
CLAPScoreg or CScy; is defined as

ad_emb(a).tx_emb(t)
|lad_emb(a)||[tz_emb(t)|

CScat(a,t) = , (8)
where ad_emb and tx_emb are both unary func-
tions that project their audio and text inputs respec-
tively into a shared multimodal space.

3.3 Semantic Entropy

To measure how consistent the model’s responses
are across generations for the same input, we
adapted the concept of semantic entropy (Far-
quhar et al., 2024) for audio captions. For an
audio clip a, we sample a set of p generations
T = tW @ .+ For two text generations
q and r, let us define the C' L AP Scorey;, abbrevi-
ated as C'Scy; as
tz_emb(q).tx_emb(r)

CSet(:7) = (e cmblq)ta_emb(r)]]

Using C'S¢y; as the distance metric, we perform ag-
glomerative clustering within T which stops when
the minimum distance between clusters exceeds a
certain threshold h € [—1, 1]. In our experiments,
h = 0.7. Next, for the I*" cluster ¢;, we calculate
its probability P(c;) as the average of probabili-
ties of all its generations, where the probability



of a generation is simply the average of all token
probabilities.

\t(j)\

1 ()
= > W;tf, (10)
cy 1=

where |¢;| is the number of generations in ¢;, and
t)] is the number of tokens in t(). To obtain a
valid probability distribution P’ that sums to one,
we normalize P using the L'-norm. For every
c; € T,

P(c;)

Ple) ==
) = S P

1D

Finally, we calculate the semantic entropy
SE(T), also referred to as SE as

SE(T) = — Z P'(c))log(P'(ci))

ceT

(12)

In our experiments, p = 7. To stay consistent
with the property among confidence metrics of be-
ing constrained between 0 and 1, with higher be-
ing better, we define the Inverse Semantic Entropy
ISE(T), also referred to as ISE as
ISE(T)=1—-—min(SE(T),1). (13)
The inverse refers to an additive inverse. It
seemed reasonable to clip the SE to 1 because em-
pirically, the SE being higher than 1 is rare (only
happens for less than 2% captions in the validation
set), and the semantic instability of such captions
is well-highlighted by the ISE even after clipping.

4 Experiments

In this section, we describe the experiments to mea-
sure how well the confidence metrics we described
in Section 3 calibrate with correctness measures,
also shown in Figure 2.

Correctness Measures: Apart from the tradi-
tional correctness measures CIDER and SPICE and
the pretrained model-based correctness measure
FENSE, all of which were introduced in Subsubsec-
tion 2.1.1, we use two other correctness measures
to judge the correctness of the generated text with
respect to a reference text. The first new correct-
ness measure is the the CLAPScore; or CScy
defined in Equation 9, which calculates the cosine
similarity between the generated text and the refer-
ence text in the audio-text multimodal space. The
second is GPT-4’s judgment regarding how well

the generated text describes the audio which is de-
scribed by the reference text. To study the relation-
ships of correctness measures with each other, we
calculated the Pearson correlations between them.

Model architecture: Following (Mei et al.,
2021), our audio captioning model consists of a
CNN10 PANN encoder (Kong et al., 2020) fol-
lowed by four layers of a transformer decoder with
two heads each, with a hidden size of 256 and a
feedforward dimension of 2048. It uses text embed-
dings from the bert-L12-H256 model(Turc et al.,
2019). This model has about 15 million parameters,
and took about 120 GPU hours to train. To test the
applicability of our results to other models, we also
used an alternate model with a hidden size of 128
instead of 256, which uses text embeddings from
the bert-LL12-H128 model(Turc et al., 2019). This
model had about 8 million parameters.

Datasets: We trained this model with our own
audio captioning dataset (details in Appendix A).
For evaluation, we used the evaluation splits of the
AudioCaps (Kim et al., 2019) and Clotho (Drossos
et al., 2020) datasets, which have 957 and 1045
samples respectively. To find the optimum temper-
ature for calibration, we used the validation splits
of these datasets, which have 495 and 1045 samples
respectively.

Measuring Calibration: The ECE and the Brier
Score are used to measure the calibration of our
confidence metrics with correctness measures. For
pooling-based metrics, we also test the effective-
ness of temperature scaling in improving calibra-
tion by selecting from temp € 0.1,0.2, ..., 2.0 us-
ing the validation split.

5 Results

5.1 Identifying clusters in correctness
measures

Pearson correlations among correctness measures
are shown in Figure 4 for the evaluation split of the
AudioCaps dataset. We observe that the traditional
correctness measures CIDER and SPICE correlate
with each other, while the model-based correctness
measures FENSE, CLAPScore;; and GPT-4 corre-
late with each other. The same trend is observed
for the Clotho dataset.

5.2 Evaluating Confidence Metrics

Table 1 shows calibration scores for both datasets
using the Brier Score and ECE, when no tempera-
ture scaling is used. We observe that pooling-based
confidence metrics align well with all correctness



Brier Score (|)

| Expected Calibration Error (|)

AudioCaps
CIDER SPICE FENSE CSc;; | GPT-4 | CIDER| SPICE FENSE CSc; | GPT-4
AM 0.24 0.2 0.04 0.11 0.08 0.21 042 | 0.09 0.31 0.08
SAM 0.22 0.15 | 0.05 0.16 0.09 0.16 0.36 | 0.11 0.37 0.11
GM 0.22 0.16 | 0.04 0.14 0.08 0.16 0.37 | 0.08 0.36 0.09
SGM 0.2 0.12 | 0.05 0.19 0.1 0.11 0.32 | 0.12 0.41 0.14
CScyy 0.3 0.31 | 0.06 0.04 0.08 0.34 0.55 |0.15 0.18 0.12
ISE 0.6 0.71 0.25 0.05 0.25 0.62 0.82 | 044 0.18 0.41
lotho

AM 0.2 0.21 | 0.05 0.1 0.08 0.35 045 |0.12 0.29 0.11
SAM 0.15 0.16 | 0.05 0.15 0.08 0.28 0.38 | 0.11 0.35 0.1

GM 0.16 0.16 | 0.04 0.14 0.07 0.28 0.38 | 0.09 0.35 0.07
SGM 0.12 0.12 | 0.05 0.19 0.08 0.22 032 | 0.11 0.41 0.11
CScyy 0.31 0.36 | 0.1 0.03 0.12 0.49 0.59 |0.25 0.14 0.23
ISE 0.65 0.74 1032 0.06 0.33 0.73 0.83 |05 0.21 0.49

Table 1: Calibration scores on the evaluation splits of AudioCaps and Clotho with no temperature scaling.

CID| SPI| FEN CScy GPTh Avg | Avg
ER | CE | SE 4 wlo | w/
TS | TS
AudioCaps
AM | 2 .014 .041| .008 | .075|| .132| .068
SAM| .202| .012 .048| .013 | .083 | .131| .072
GM | .193| .016 .041| .009 | .075]| .127| .067
SGM .191| .013| .049| .014 | .084|| .131| .07
Clotho
AM | .08 | .007 .044] .01 | .069| .128| .042
SAM| .079| .007 .049| .017 | .077] .118| .046
GM | .076| .007 .042| .012| .069| .113| .041
SGM .073| .007, .05 | .02 | .076| .11 | .045
Table 2: Brier scores (J) on the evaluation splits of

AudioCaps and Clotho when using Temperature Scaling

(TS).

Arithmetic

Selective

(b)

(c) Geometric Mean

(d) Selective Geometric Mean

Figure 3: Brier scores over temperatures for the Au-
dioCaps dataset. Each plot shows the variation of all
correctness measures over temperatures for a single con-

fidence metric.

CIDER  SPICE
CIDER 1 0.56
SPICE 0.56 1
FENSE 0 -0.06
CLAPScore, 0.02 -0.07
GPT-4 0 -0.07

FENSE CLAPScore,, GPT-4
0 0.02 0
-0.06 -0.07 -0.07
1 0.69 0.64
0.69 1 0.77
0.64 0.77 1

Figure 4: Pearson correlation between correctness mea-
sures for the AudioCaps dataset.
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Figure 5: Variation of distribution over temperatures of
the Arithmetic Mean confidence metric for the Audio-
Caps dataset.
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Figure 6: Distributions of correctness measures for the
AudioCaps dataset.

measures. For traditional correctness measures
CIDER and SPICE, selective pooling achieves a
clear improvement over conventional pooling. This
may be because CIDER gives less weight to more
frequently occurring tokens, which are also the
ones ignored by selective pooling, and the SPICE
metric also ignores stopwords, except when needed
to determine relations. For model-based correct-
ness measures FENSE, CLAPScore;; and GPT-
4, pooling-based confidences continue to perform
well. However, using selective pooling does not
have an advantage here because model-based met-
rics look at the entire sentence, part of which we
are discarding when using selective pooling.

For the CScy correctness measure, we can
achieve even better calibration using the CSc,; and
ISE confidence metrics. This may be because just
like the CScy correctness measure is lenient in
allowing acoustically similar but semantically dis-
tant cross-triggers (examples: machine whirring
and helicopter flying, typing and object clattering),
the CSc; also forgives such cross-triggers because
the cosine similarity is measured in the audio-text
multimodal space. The ISE also overlooks such
cross-triggers because the CScy, is used to judge
consistency between the model’s responses, while
forming clusters to calculate the entropy.

To demonstrate the generalizability of these re-
sults to other models, Table 5 in Appendix B shows
the same results when using the alternate model.

5.3 Effect of Temperature Scaling

The curves of calibration quality over temperatures
are shown in Figure 3 for the validation split of
the AudioCaps dataset. The optimal temperature to
calibrate a particular confidence metric with a cor-
rectness measure stays the same for both datasets,
indicating its generalizability to unseen data.
Table 2 shows calibration results at these opti-
mal temperatures, on the evaluation splits of both
datasets. The effectiveness of applying temperature
scaling is quite pronounced, as evident from the
last two columns of the table which show the cali-
bration scores averaged over correctness measures
before and after temperature scaling respectively.
The average Brier score for each confidence metric
almost halves after using temperature scaling. It is
however important to remember that for such a dra-
matic improvement in calibration to be achieved, a
validation set is needed to carefully select the opti-
mal temperature. In cases where such a validation
set is not available, selective pooling-based confi-



dence metrics are still the best choice to calibrate
well with traditional correctness measures. No one
pooling-based metric stands out in performance if
temperature scaling is applied, an explanation for
which is provided in the next Subsubsection.

5.3.1 Why does temperature scaling work?

Figure 6 shows the distributions of correctness mea-
sures, while Figure 5 shows how the distribution of
a representative pooling-based confidence metric
AM changes over temperature. A low tempera-
ture causes the AM to shift to the right, which
matches most closely with CScy, explaining why
a low temperature is needed to calibrate well with
CScy;. Similarly, a high temperature causes the
AM to shift to the left, resulting in a distribution
similar to those of CIDER and SPICE, explaining
why a high temperature is needed to calibrate well
with theses two correctness measures. Finally, a
moderate temperature allows the confidence met-
rics’s distribution to be centered around 0.5, which
matches the distributions of FENSE and GPT-4, ex-
plaining why a temperature close to 1 is reasonable
for calibrating with these correctness measures.

This ability of pooling-based metrics to adjust
their distributions to match with those of correct-
ness measures somewhat compensates for the dif-
ferences in their computations, resulting in all of
them being comparably effective.

6 Conclusion

We propose some resource-efficient reference-free
evaluation metrics for audio captions, and validate
their effectiveness by measuring their calibration
with correctness measures that use references. Fi-
nally, we demonstrate the effectiveness of temper-
ature scaling and explain why it is effective. Our
work enables the reliable deployment of audio cap-
tioning systems in resource-constrained settings.

7 Discussion

Feasibility of deploying our metrics in a
resource-constrained setting: The CSc,; confi-
dence metric uses GPT-2 (126.38M) as the text en-
coder and HTSAT (159.45M) as the audio encoder,
which results in the need to store and forward-
propagate through 159.45M parameters. The ISE
needs only the GPT-4 text encoder. This is much
lesser than sizes of models from comparable past
work that have billions of parameters (Saha et al.,
2024; Huang et al., 2024; Liu et al., 2023; Tian

et al., 2023; Pang et al., 2020; Xu et al., 2023;
Jiang et al., 2024).

Generalizability of our methods to other
modalities: The applicability of our proposed
reference-free evaluation metrics may extend to
captioning systems of other modalities as well. The
idea of using as a confidence metric the cosine sim-
ilarity between embeddings of the conditioning and
generated modalities may be extended to the image
captioning and video captioning areas. The cosine
similarities between CLIP (Radford et al., 2021)
embeddings of pairs of images and generated text
may be a good indicator of the confidence of the
generated image captions. The ISE calculated by
using cosine similarities between CLIP text em-
beddings as the clustering criterion may also be a
valuable confidence metric for image captioning
models.

Cross-triggers: Expecting an audio captioning
model to distinguish between acoustically similar
sounds may be unfair, in which case, the CScy; is
the appropriate correctness measure, and the CSc,;
and the ISE are the recommended confidence met-
rics. However, if end users of captioning models
are unwilling to tolerate cross-triggers, pooling-
based confidence metrics are more suitable. To
reduce cross-triggers, integrating information from
other sensors like cameras and motion sensors can
help enhance the system’s awareness. However,
due to the trade-off between using more sensors
and preserving privacy, there is still value in sys-
tems that use less sensors.

8 Limitations

* Given that our reference-free evaluation met-
rics were validated with respect to the existing
evaluation metrics that leverage references,
our validation is limited by the quality of the
existing evaluation metrics and by the qual-
ity of the human-written captions that these
evaluation metrics depend on. Studying the
alignment of these proposed reference-free
evaluation metrics with human preferences is
beyond the scope of this work.

* The Expected Calibration Error and Brier
Score are well-suited to measure the quality
of calibration of confidences for classification
tasks. Its suitability to measure calibration of
natural language is yet to be evaluated inde-
pendently.



* The potential risk of this work is that our pro-
posed reference-free evaluation metrics, if not
providing a true measurement of the confi-
dence of the caption because of the two lim-
iting factors mentioned above, may provide a
false sense of reliability.

* Since the objective of the study was not to
evaluate the quality of the captioning model,
we performed experiments with only a subset
of all possible models for the audio captioning
task. It is possible, though unlikely, that these
results may be less applicable to other model
architectures for the same task.
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A Experimental Details

A.1 Dataset

Our audio captioning dataset was collected using
the same crowdsourcing method as (Kim et al.,
2019) by asking people to listen to an audio clip
and to write one full English sentence describing
its contents. Annotators were instructed to not
include names or any personally identifiable infor-
mation, and were also instructed to avoid offensive
language. The dataset has 80,000 audio clips of
length 10 seconds, and three captions correspond-
ing to each clip, which were written by three differ-
ent people. Some examples of captions from our
dataset are shown in Table 3.

A.2 Confidence and Correctness Measures

To calculate parts of speech for selective pool-
ing metrics, the tag.pos_tag function from NLTK
version 3.8.1 (Apache License, Version 2.0) was
used. The CIDER and SPICE implementations
from the pycocoevalcap library (Chen et al., b)
were used. To calculate FENSE, we used the
‘paraphrase-TinyBERT-L6-v2’ model (Reimers and
Gurevych, 2019) which is default in the aac-metrics
toolkit (Labbé, 2024) (MIT License). To calcu-
late the CLAPScore,; and CLAPScore;;, we used
the ‘2023 configuration of the CLAP model from
the msclap library (Elizalde et al.) (MIT License),
which uses GPT-2 (Radford et al., 2019) as the
text encoder and HTS-AT (Chen et al., a) as the
audio encoder. The prompt to GPT-4 for judging
the correctness of a caption with respect to a refer-
ence is shown in Table 4. The example scores were
calculated using cosine similarities between the
‘all-MiniLM-L6-v2’ SentenceBERT embeddings.

B Results with Alternate Model

Table 5 shows calibration scores for the evaluation
splits of both datasets using the Brier Score and
ECE, when no temperature scaling is used, when
the alternate model is used.
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Captions

A series of beeps from multiple different alarms.
A continuous sharp blares of a siren followed by a
loud honks and horns.

A vehicle with a siren is honking.

Some rustling and a person’s grunting and shout-
ing.

Someone is coughing loudly and a person suddenly
shouts.

A woman blows sneezes and shouts.

Metals are continuously screeching.
Screeching of an operating machine.
Buzzing of an electric device.

A dog howls and barks as a wind instrument is
playing.

Dog weeping and barking while instrumental music
is playing.

Musical instrument playing and a dog barking and
wailing.

A loud rumble of thunder as the rain falls down.
Thunder and heavy rain.

A heavy rainfall accompanied by a loud bang of
the thunder.

A sound of an mechanical equipment tools.
A machine buzzing deeply.
Screeching of an operating machine.

A loud screaming shouting and cheering of people.
People are shouting and clapping.
The people are cheering at full blast.

A baby crying and continuous buzzing of an elec-
tronic device.

A baby crying constantly and some crackling.

A baby is incessantly crying.

A man snores loudly as water rushes.
The water is running and the person is snoring.
A person snores loudly and water starts to flow.

A loud honking of a train that is passing by.

The honking horn of a series of railroad cars mov-
ing as a unit by a locomotive or by integral motors.
Many cars are making loud horn noises.

Birds are tweeting and chirping simultaneously.
Birds singing and whistling wonderfully.

A bird is chirping and a whistle can be heard while
an equipment is creating a humming sound.

Chime of a musical instrument.
The bells are ringing simultaneously.
A series of loud chimes and clanks of bells.

Table 3: Example captions from our audio captioning
dataset.



You will be given five reference sentences to describe an audio scene, and a new sentence. Using that,
please evaluate how well a new sentence describes the audio scene, and provide a score between 0 and 1.
Please provide only the score, and no other text. Here are some examples:

Example 1:

Reference sentences:

people are singing and laughing

a person is singing in melodic music while surrounded by a passing vehicle

a person is singing while a man is laughing a splashing of water the wind is blowing and vehicles are
passing by

people are singing while cars pass by and a man in laughing

people are laughing and singing while vehicles are passing by

New sentence: a person is singing while the children are playing

Score: 0.548

Example 2:

Reference sentences:

music is playing

a musical effect is playing

there is instrumental music playing

someone is playing a musical instrument
instrumental music is playing

New sentence: a musical instrument is playing
Score: 0.801

Now it’s your turn.

Table 4: Prompt provided to GPT-4 to judge the correctness of a caption with respect to a reference.

Brier Score (|) | Expected Calibration Error (|)
AudioCaps
CIDER SPICE FENSE CSc;; | GPT-4 | CIDER SPICE FENSE CSc; | GPT-4
AM 0.20 0.12 | 0.06 0.16 0.08 0.18 0.32 | 0.06 0.39 0.12
SAM 0.20 0.10 | 0.06 0.19 0.10 0.13 0.29 | 0.09 0.42 0.15
GM 0.19 0.09 | 0.06 0.20 0.10 0.14 0.28 | 0.06 0.43 0.16
SGM 0.18 0.08 | 0.07 0.23 0.11 0.09 0.25 | 0.10 0.46 0.19
CScyt 0.32 0.30 | 0.11 0.04 0.08 0.37 0.54 | 0.23 0.18 0.11
ISE 0.46 046 | 0.27 0.16 0.23 0.44 0.58 | 0.38 0.24 0.30
Clotho
AM 0.13 0.14 | 0.05 0.15 0.07 0.26 0.35 | 0.08 0.37 0.06
SAM 0.12 0.12 | 0.05 0.18 0.07 0.23 0.32 | 0.09 0.40 0.10
GM 0.10 0.10 | 0.04 0.19 0.07 0.21 0.30 | 0.07 0.42 0.07
SGM 0.09 0.09 | 0.05 0.23 0.08 0.17 0.26 | 0.10 0.46 0.12
CScyt 0.30 0.35 | 0.12 0.03 0.12 0.49 0.58 | 0.27 0.14 0.23
ISE 0.40 0.48 | 0.25 0.17 0.25 0.50 0.59 | 0.37 0.25 0.34

Table 5: Calibration scores on the evaluation splits of AudioCaps and Clotho with no temperature scaling with the
alternate model.
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