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ABSTRACT

We present CODA, an interactive software tool, implemented on
top of Autodesk Fusion 360, that helps novice modelers with de-
signing well-constrained parametric 2D and 3D CAD models. We
do this by extracting relations that are present in the design but are
not yet enforced by constraints. CODA presents these relations as
suggestions for constraints and clearly communicates the implica-
tions of every constraint by rendering animated visualizations in the
CAD model. CODA also suggests dynamic alternatives for static
constraints present in the model. These suggestions assist novices
in CAD to work towards well-constrained models that are easy to
adapt. Such well-constrained models are convenient to modify and
simplify the process to make design alternatives to accommodate
changing needs or specific requirements of machinery for fabricating
the design.

Keywords: CAD modeling, constraints, novices, end-user model-
ing, fabrication.

Index Terms: Human-centered computing—Interactive systems
and tools Human-centered computing—Visualization—Visualiza-
tion techniques;

1 INTRODUCTION

The maker movement is largely driven by a community of DIY
enthusiasts building on each other’s work by sharing digital ver-
sions of artefacts through online platforms, such as Thingiverse1or
Youmagine2 [8, 34]. Makers frequently do this by making rough
edits to mesh files or by starting from scratch while using concepts
from existing designs [9]. A more convenient way to adapt an exist-
ing model is to adjust parameters in a well-constrained parametric
model. Well-constrained parametric models allow for dimensional
adjustments and personal and aesthetic refinements. Additionally,
such changes can also make models compatible with machines and
materials available in other labs, for example by compensating for
shrinkage of ABS 3D printing filament or the kerf of a laser cutter.
González-Lluch and Plumed [10] show however, that even for engi-
neering students it is challenging to verify whether 3D models are
fully constrained and thus behave as desired when changes are made.
Especially under time pressure, trained CAD modelers produce 3D
models that are hard to modify because of errors or missing con-
straints [36]. For makers this can become even more challenging as
many do not have a formal training in CAD modeling [23].

To empower and encourage makers to design and share paramet-
ric models, Thingiverse launched a Customizer platform [30] that
allows for making adjustments to parametric 3D models using sim-
ple GUI controls, such as sliders and drop-down menus. However,
Thingiverse Customizer requires making the entire 3D model in a
CSG scripting language [35], which is significantly different from
the feature-based modeling approach supported by popular 3D CAD
environments [15], such as Autodesk Fusion and SolidWorks. An

Figure 1: Using CODA to correctly specify parametric behavior in
a 3D CAD model of a laptop stand. (a) A 2D sketch of the cross-
sectional profile for the laptop stand designed by the user. (b) CODA
lists relations that are present in the design but not yet enforced
by constraints. (c) Accepting CODA’s suggestions allows novice
modelers to quickly transition to a well-constrained model ready for
fabrication.

analysis of Thingiverse in 2015 shows that only a small fraction of
designs (1.0%) are compatible with the Customizer [1].

To help users in specifying parametric models, recent versions
of 3D CAD environments automatically add basic constraints to
2D sketches. AutoCAD’s auto-constraint feature [20] and Bric-
sCAD’s Auto Parameterize functionality [12] go even further and
automatically inject constraints in models. As there are multiple
valid alternatives to constrain models, fully-automatically introduc-
ing constraints does not always lead to the desired behavior of the

1https://www.thingiverse.com/
2https://www.youmagine.com/



Figure 2: CODA’s animations show the implications of suggested constraints. (a) A suggestion for constraining the two tabs to have the same
height. (b) A suggestion for overwriting a constraint that ensures the slot at the bottom is always centered. (c) A suggestion for making the front
edges collinear. (All three figures are edited to visualize the animation)

model. For example, the hole for the charging cable of a phone
holder (Figure 3) is positioned in the center of the design. It is up to
the designers preferences whether to constrain this hole at a fixed
distance or a ratio from the top or the bottom of the phone holder.
Therefore, the system presented in this paper takes a different ap-
proach and suggests constraints and explains their differences and
implications on the model.

In this paper, we present CODA, a Constrained Design Assistant.
CODA is an interactive software tool that helps novice CAD model-
ers with designing well-constrained 2D and 3D CAD models. Such
well-constrained models are convenient to modify which simplifies
the process to make design alternatives or when making adjustments
for fabricating models with different machinery. First, our system
makes users aware of relations that are present in the current design
but are not yet enforced by constraints, such as edges being parallel
without a parallel constraint. Second, CODA reconsiders static con-
straints added by the user and suggests more dynamic alternatives to
make the design flexible to changes. CODA also helps in communi-
cating the meaning and implications of all suggested constraints by
animating the model and demonstrating its implications (Figure 2).

The core contribution of this paper is CODA, an interactive soft-
ware assistant to aid novice modelers in making well-constrained
CAD models that are robust to changes. More specifically, we
contribute:

1. A computational approach for extracting relations in a model
which are not yet enforced by constraints.

2. A set of novel interactive animations to clearly communicate
the impact of constraints to novice users.

2 RELATED WORK

This work draws from, and builds upon prior work on facilitating
CAD modeling and work related to sharing models for fabrication.

2.1 Facilitating CAD Modeling
3D CAD modeling environments offer hundreds of features. How
these features are used and combined determine the flexibility, adapt-
ability, and ultimately the reusability of 3D models [5,11]. Research
shows, however, that even models designed by students with a formal
3D modeling training are often hard to reuse and adapt, especially
when designed under time pressure [36]. In line with these obser-
vations, González-Lluch and Plumed [10] show that engineering
students have a hard time reasoning whether profiles are over- or
under-constrained. When considering modeling within the maker

community, an emerging group of people learn 3D modeling prac-
tices by themselves through online resources [23]. However, these
novice modelers could significantly benefit from high-quality mod-
els that are easy to adapt as they frequently make new artefacts by
starting from existing designs [9].

To lower the barrier to get started with 2D and 3D modeling,
various tools have been developed that specifically target novices,
such as Autodesk Tinkercad3 and BlocksCAD4. However, several
studies with casual makers [17, 31], children [18], and students
in special education schools [4] show that 3D modeling is still
challenging. To facilitate further, the Chateau [19] system helps
with CAD modeling by suggesting modeling operations based on
simple sketch gestures by the user. Rod et al. [38] presents various
novel interaction techniques to further facilitate 3D modeling on
touch-screen devices.

Instead of adapting CAD environments and making custom mod-
eling operations for novices, researchers also explored how to fa-
cilitate the process for novices to learn a new CAD environment.
GamiCAD [28] and CADament [29] gradually introduce sketching
and modeling operations using gamification techniques to lower the
barrier and keep novices motivated to continue learning new aspects.
Alternatively, Blocks-to-CAD [25] shows how to gradually introduce
3D modeling operations in sandbox games, such as Minecraft, to get
newcomers introduced to the basics of CAD modeling. Additionally,
recent research results show how modeling strategies from experts
can be modeled, analyzed, and compared to provide guidance for
other users during modeling sessions [6].

Instead of embedding expert knowledge in software systems, soft-
ware systems can help in bringing novices in contact with experts
while facing issues with 3D modeling. MicroMentor [21], for ex-
ample, makes it possible for novices to request one-on-one help for
specific issues. In contrast, the Maestro [7] system makes educators
in workshops aware of student’s progress and common challenges
as they occur. Although experts typically provide more nuanced
answers to the various challenges novices face, experts often need
an incentive to help other users and first need to get familiar with
the specific problem the user is facing [21].

Several techniques have been developed that specifically aim to
improve the adaptability and re-usability of models by facilitating
specifying parametric behaviour. PARTs [16] allows users to em-
bed additional geometry into the design to specify how a model is

3https://www.tinkercad.com/
4https://www.blockscad3d.com/



supposed to be used. The dimensions of the additional geometry
dictate the dimensions of the PART (e.g. by specifying x amount
of material needs to surround the geometry). In contrast, CODA
takes a more generic approach that is also applicable on models
that are not driven by real world objects and allows for general-
purpose parametric specifications. On the other hand, commercial
feature-based CAD modeling tools support, for example, snapping
interaction techniques to ease and improve precision in 2D sketches,
such as centering a point in the middle of a line or sketching two
perpendicular lines. Leveraging this snapping functionality often-
times automatically fixes the relation by injecting the associated
constraints in the 2D sketch. AutoConstraint [20] takes a different
approach and adds constraints to a completed sketch until it is fully
constrained. Closest to our work is the Auto Parameterize [12]
feature of BricsCAD5 which automatically converts all static di-
mensions of a 3D model to algebraic equations to facilitate scaling
and adapting the model. However, there are always multiple valid
alternatives to constrain models and fully-automatically introduc-
ing constraints does not always lead to the desired behavior of the
model. We therefore take a different approach and present various
geometry constraints and algebraic relations that could be applied to
the model. CODA communicates the implications of all suggestions
using in-context animations to allow novice users to make informed
decisions.

Also related to our work are computational approaches to reverse
engineering CAD models from mesh models by extracting modeling
features [37, 42]. Several systems also present algorithms to detect
and extract geometry constraints in mesh models using numerical
methods for constrained fitting [2] and techniques for detecting
repeating patterns [26] and symmetries [27]. Willis et al. [43] use
machine learning techniques to reverse-engineer CAD operations
from a CAD model. While these approaches convert mesh models to
CAD files, they do not analyze the model to add parametric features
or constraints as offered by CODA.

2.2 Sharing Models for Fabrication

Over the past decade, digital fabrication has become accessible
mainly via public maker labs and affordable digital fabrication
equipment [33]. Shewbridge et al. [40] report that households are
interested in replacing, modifying, customizing, repairing, or repli-
cating household objects using digital fabrication machinery. How-
ever, starters frequently need help from more experienced users to
translate ideas into 3D models. This is often done via drawings,
photographs, and spoken language [40]. While platforms, such as
Upwork6 and Cad Crowd7 are available to outsource 3D modeling
work, they require additional expenses.

Instead of designing CAD models from scratch, makers often
adapt or combine existing 3D models, found on public repositories,
such as Thingiverse [4, 9, 17]. This process can be challenging as
many users only share triangular mesh file-formats (STL) [1]. While
users can request changes for models through the comments sec-
tion, studies show that only 32% of such requests are granted [1].
To empower novice CAD modelers to adapt models themselves,
Thingiverse introduced the Customizer feature [30], a plugin that
exposes GUI controls to adjust the parameters of models designed
with the OpenSCAD [35] scripting language. While the Thingiverse
Customizer is highly popular [8, 34], only a small portion (3.7%) of
3D models available on the platform are modeled in OpenSCAD,
and only 1% are compatible with the Customizer [1]. Hudson et
al. [17] observe that modeling in OpenSCAD is challenging and
significantly different from feature-based parametric modeling envi-
ronments traditionally used by CAD modelers.

5https://www.bricsys.com/
6https://www.upwork.com/
7https://www.cadcrowd.com/

In contrast to these efforts, CODA guides and stimulates novice
modelers in making well-constrained models in popular feature-
based CAD modeling environments. Well-constrained parametric
models are convenient to adapt as they represent a family of alterna-
tive models [3].

3 SYSTEM OVERVIEW

This section gives an overview of CODA’s core features. We start
with a short walkthrough demonstrating how our system can be
used in a real modeling workflow. Afterwards, we discuss CODA’s
features in more detail.

3.1 Walkthrough
This walkthrough demonstrates the design process Emily, a novice
modeler in Autodesk Fusion 360, follows to design a laptop stand
that can be laser cut (Figure 1c). During this process, CODA offers
support to make a laptop stand that is well-constrained, and easy to
adapt and scale to other laptops or devices (Figure 1b).

As shown in Figure 1a, Emily starts with sketching the 2D cross-
sectional profile for the laptop stand. She adds dimensions to the
sketch to fit the size of her laptop. While sketching, CODA informs
Emily that the slot and tabs are 5mm in size and asks whether these
features should always have the same dimension. When hovering
this suggestion, CODA animates the model by resizing these features
at the same time to demonstrate the effect of the suggested constraint
(Figure 2a). Emily accepts the suggested constraint and CODA
replaces the static dimension constraint with dimensions that share
the same value (variable).

CODA also notices that the slot at the bottom is currently po-
sitioned in the center but not constrained as such. Therefore the
system suggests to replace the dimension that offsets the slot from
the left edge with a constraint that ensures that the bottom edges on
both sides of the slot are always equal. Again, Emily accepts the sug-
gestion after inspecting the animation to understand the implications
of the constraint (Figure 2b).

Next, Emily notices a suggestion for making the two vertical
edges at the right of the profile collinear. When hovering the sug-
gestion, the animation informs her that when the size of the slanted
edge of the stand would change, the bottom of the laptop stand does
not yet adjust accordingly (Figure 2c). Emily accepts the suggestion
to make the two edges collinear as she prefers a laptop stand that is
well aligned. CODA offers more relevant suggestions to improve the
constraints in this cross-sectional profile which Emily can accept as
desired. Examples include, making all three sides equally wide (uni-
form thickness), relating the width of the two tabs, and suggestions
related to the positioning of the two tabs.

Further in the design process, when extruding the profiles 5mm,
CODA also notices this extrusion depth equals the size of the tabs
and slots and suggests creating a constraint. When the final laptop
stand is finished, Emily can easily adjust the stand to fit other laptops
or adjust the material thickness to fabricate it with different material.
She also decides to make the model available on Thingiverse as it is
versatile and robust to changes.

3.2 Extracting Relations
In order to suggest constraints, CODA continuously extracts the
following four types of relations in CAD models [39]:

1. Ground relations: relations with respect to the reference coor-
dinate system, such as a line being horizontal or vertical in a
2D sketch (Figure 3a).

2. Geometric relations: relations that define known geometric
alignments, such as tangency, collinearity, parallelism, perpen-
dicularity, and coincidence of points (Figure 3b).

3. Dimensional relations: relations between sizes or offsets be-
tween elements, such as edges with an equal length or a point
in the middle of an edge (Figure 3c).



Figure 3: Cross section profile of a phone holder with four types of
relations annotated: (a) Ground relations. (b) Geometric relations. (c)
Dimensional relations. (d) Algebraic relations.

4. Algebraic relations: restrictions on the model in the form of
mathematical expressions. For example, a edge being twice as
long as another edge (Figure 3d).

While extracting relations, CODA considers parameters of mod-
eling operations as well as attributes of all entities in a sketch (i.e.
sketch entities). Sketch entities in Autodesk Fusion 360 include
points, lines, circles, ellipses and arcs. Rectangles, for example, are
not sketch entities but profiles as they consist of multiple lines. While
CODA always extracts relations between exactly two attributes,
atributes of various types can be related by CODA. Here we can
distinguish the following combinations:

• Relations between sketch entities within a single sketch.
Within a sketch, all four types of relations are applicable. For
example, a line being tangent to a circle or a rectangle having
twice the width of the diameter of a circle.

• Relations between sketch entities across different sketches.
For these relations, dimensional and algebraic relations are
applicable, such as a slot in two different sketches being equal
in size.

• Relations between parameters of modeling operations. For
these relations, dimensional and algebraic relations are appli-
cable, such as two fillet operations with the same radius or the
depth of an extrusion being equal or half the size of the radius
of a fillet operation.

• Relations between a parameter of a modeling operation and a
sketch entity. For these relations, dimensional and algebraic
relations are applicable, such as the width of a slot in a sketch
being equal to the depth of an extrusion.

To not overwhelm users with suggestions and to offer suggestions
in context, we present relations within a single sketch only when the
user is editing the respective sketch. All other relations are presented
outside the 2D sketching mode in 3D modeling mode.

As the number of algebraic relations is possibly very large, espe-
cially when considering all pairs of sketch entities and parameters of
modeling features, CODA first extracts algebraic relationships that
are frequently present in CAD models. Studies of Mills et al. [32]
and Langbein et al. [26] show that the most common relations in

Figure 4: (a) This wrench requires custom constraints to ensure it
scales appropriately with respect to the nut diameter. (b) CODA assist
users in making such custom relations.

CAD models include equal radii and lengths of edges, congruent
faces, and radii and edges being half, one third, and one fourth in
length. CODA thus presents algebraic relations between all pairs
of sketch entities and parameters of modeling operations and vice
versa that are equal, half, one third, and one fourth in value. To help
users create well-constrained models with less common relations,
the next section covers CODA’s features to facilitate specifying
custom algebraic relations between specific pairs of entities.

3.3 Custom Algebraic Constraints
To help users identify and specify custom algebraic constraints
(Figure 4a), CODA supports an in-depth search between two entities.
When starting this feature, the user selects two entities. These can be
sketch entities (e.g. points, lines, circles, ellipses, arcs), dimensions,
or modeling features (e.g. extrusion, fillet operations). CODA now
calculates mathematical expressions between all pairs of attributes
of the two entities, independent of whether the relation is a common
ratio. As shown in Figure 4b, CODA suggests a relation for every
pair of attributes both as ratios (y = x∗ cte) and sums (y = x+ cte).

3.4 Explaining Suggested Constraints
To clearly communicate the meaning and implications of suggested
constraints, CODA creates animated visualizations for all sugges-
tions. Hovering a suggested constraint animates the model and
communicates the meaning of the constraint in the context of the
model. Explaining a constraint using animations on top of the model,
in contrast to generic visualizations, textual explanations, or sym-
bols, makes it convenient for users to understand its implications in
the model. We developed two classes of animations to visualize the
behavior of the four supported types of relations:

• For ground and geometric relations, we animate the variability
currently present in the model when the suggested ground or
geometric constraint would not be added. For example, hover-
ing the suggested collinear constraint in Figure 2c, repeatedly
moves the two edges that are collinear but not yet constrained
as such. The animation makes the user aware that these two
edges can still move with respect to each other. Using the “yes”
and “no” buttons, the user specifies whether the demonstrated
movement of these lines is allowed. “no” adds the collinear
constraint while “yes” discards the suggestion without further
action. Figure 5a gives an overview of how CODA animates
all geometric and ground relations.

• For dimensional and algebraic relations, we animate how two
entities would behave when their position or sizes would be



Figure 5: CODA animates the meaning and implications of suggested constraints. (a) shows an abstraction of animations for demonstrating
ground and geometric relations. (b) shows an abstraction of animations for demonstrating dimensional and algebraic relations.

constrained to each other. For example, hovering the sug-
gested dimensional constraint in Figure 2a and Figure 2b shows
how two lines would scale when they are constrained to have
equal dimensions. For these relations CODA asks whether
the suggested relations fit the design. “yes” adds the respec-
tive dimensional or algebraic constraint, while “no” discards
the suggestion. Figure 5b gives an overview of how CODA
animates all dimensional and algebraic relations.

3.5 Invalidated Relations
It is important to note that CODA only suggests constraints to en-
force relations that are present in the current version of the model.
Oftentimes while testing the robustness of a model, the model breaks
because of constraints that are still missing. Figure 6a shows how
the symmetry in the laptop stand breaks when changing the width
because of a missing constraint. These missing constraints will not
be suggested by CODA as the relations are not present anymore
in the broken model. To solve this inconvenience, CODA continu-
ously presents a message communicating how many relations are
invalidated by the last modeling operation (Figure 6b). As shown in
Figure 6c, the user then gets the option to revert the last action that
broke the model and is presented with the list of invalidated relations
that could be enforced to further constrain the model. This is an
iterative and powerful workflow that allows users to break relations
in a model and see which constraints can be added to enforce these
relations.

3.6 Navigating through Suggestions for Constraints
As CODA checks pair-wise for unconstrained relations between all
entities within a sketch (in sketch-mode) and between entities across
sketches and modeling features (in 3D modeling mode), the number
of suggestions can grow rapidly. For example, six edges that are
equal in length result in 30 suggestions to relate the lengths of all
possible pairs of edges. Instead of presenting all these suggestions
individually, CODA groups related suggestions into higher-level
suggestions for constraints. As shown in Figure 7a, CODA suggests
one constraint that links the lengths of all six edges. Accepting
this suggestion adds all relevant individual constraints to the design.
Such a higher-level suggestion can be expanded to see more details
on what the suggestion entails (Figure 7b). In this detailed view,
individual edges of equal length that CODA associated, can be
excluded from the suggested constraint.

To further facilitate navigating through all suggested constraints,
CODA presents suggestions per profile (Figure 1b). Selecting a
profile shows all suggestions for constraints related to entities within
this profile as well as constraints between entities in this profile

Figure 6: CODA only offers suggestions to enforce relations that are
currently present in the model. (a) Changing parameters can break
relations because of missing constraints. (b-c) CODA resolves this by
showing a list of constraints that were invalidated by the last modeling
operation.

and another profile. To filter the suggestions, users can also select
multiple individual entities directly in the design after which CODA
only shows the suggestions related to those entities.

4 IMPLEMENTATION

CODA is implemented as a Python plugin for Autodesk Fusion
3608. The concepts and features presented in CODA, however, are
not specific to the Fusion 360 environment and could be imple-

8https://www.autodesk.com/products/fusion-360/overview



Figure 7: (a) CODA groups related suggestions into a higher-level
suggestion. (b) By expanding, individual entities can be excluded from
the grouped suggestion.

mented in other feature-based parametric CAD environments, such
as SOLIDWORKS, Rhinoceros 3D, or Autodesk Inventor.

4.1 Extracting unconstrained relations

To suggest constraints, CODA continuously checks for the presence
of unconstrained relations between all pairs of sketch entities within
a single sketch and across different sketches. These calculations
are done in a separate thread to ensure the interface always remains
interactive. As long as the user is making edits, CODA re-initiates
these calculations once the previous thread is finished. Figure 8
gives an overview of how CODA checks if a geometric relation is
present between two sketch entities.

When extracting dimensional and algebraic relations, CODA
finds pairs of attributes in a 3D CAD model that are equal, half, one
third, and one fourth in value [26, 32]. Note that for these relations,
parameter values of modeling operations, such as extrusions and
fillets, as well as the position and sizes of sketch entities are consid-
ered. Table 1 gives an overview of the attributes CODA considers
for extracting dimensional and algebraic relations per sketch entity.

For CODA to only suggest relations that are not yet enforced
by constraints, our algorithm needs to take into account constraints
already present in CAD models. The Fusion 360 API, however,
only exposes constraints that are explicitly present in the CAD
model. Sketch entities, however, can also be implicitly constrained
by other constraints. The next subsection discusses how we extract
those implicit constraints to ensure CODA does not offer these
suggestions.

4.2 Extracting implicit constraints present in the model

Fusion 360’s API does not provide access to the constraint graph
and only exposes constraints that are explicitly added by the user or
through the API. Besides these constraints, however, other implicit
constraints can be present in a sketch. For example, two lines with
a parallel constraint to a third line are always parallel to each other
without that parallel constraint being present. CODA needs to be
aware of these implicit constraints to avoid suggesting constraints
that are already present in the model (Section 4.1) as well as to
prevent over-constraining models (Section 4.3).

Figure 8: CODA uses basic linear algebra methods to check for
geometric relations between entities in a sketch.

Table 1: Attributes of sketch entities considered by CODA to extract
dimensional and algebraic relations.

Sketch entity Attributes
Points (x,y) position
Lines (x,y) position of start, mid, and end point,

length of line
Circles (x,y) position of center, diameter of circle
Ellipses (x,y) position of center, size along minor and

major axis
Arcs (x,y) position of start, mid, and end point, ra-

dius of arc

To extract these implicit constraints, we re-implemented and
extended the technique of Juan-Arinyo and Soto [22]. This technique
requires all constraints to be expressed as either constrained distance
(CD) sets, constrained angle (CA) sets, or constrained perpendicular
distance (CH) sets. While CD sets includes points between which all
distances are constrained, CA sets consist of line segments between
which all angles are constrained, and CH sets consist of a point for
which the perpendicular distance to a line segment is constrained.
We convert all length/size constraints in Fusion 360 to constrained
distance (CD) sets, angle constraints to constrained angles (CA) sets,
and offset constraints to constrained perpendicular distance (CH)
sets. For ground and geometry constraints in Fusion 360 we use the
following conversion:

• Horizontal/vertical: We add a constrained angle (CA) set rep-



resenting an angle of 0◦ between the line segment and the x-
or y-axis.

• Perpendicular: We add a constrained angle (CA) set represent-
ing an angle of 90◦ between the two line segments.

• Parallel: We add a constrained angle (CA) set representing an
angle of 0◦ between the two line segments.

• Collinear: For all pairs of end-points of the two line segments,
we add a constrained perpendicular distance (CH) set with a
distance of 0.

• Concentric: We add a constrained distance (CD) set, repre-
senting a distance of 0 between the mid-points of the two
concentric circles.

• Coincident (point-point): We add a constrained distance (CD)
set, representing a distance of 0 between the coincident points.

• Coincident (point-line): We add a constrained perpendicular
distance (CH) set, representing a distance of 0 between the
point and the line.

• Tangent (circle/ellipse-line): We add a constrained angle (CA)
set, representing an angle of 90◦ between the line segment and
the radius of the circle at the tangency point.

• Tangent (circle/ellipse-circle/ellipse): We add a constrained
angle (CA) set, representing an angle of 0◦ between the radii
of the two circles at the tangency point.

Once all Fusion constraints are converted to CD, CA, and CH sets,
we compute the transitive closure of the constrained angles (CA)
sets and use the 20 rules presented by Juan-Arinyo and Soto [22] to
merge constraints. Now we get CD, CA, and CH sets that reflect the
implicit constraints. When two sketch entities have a relation that
is not yet enforced by a explicit constraint, CODA can now check
whether these entities are implicitly constraint using the following
rules:

• Horizontal/vertical: Implicitly constrained if a constrained
angle (CA) set exists between the line segment and a line
segment representing the x- or y-axis.

• Perpendicular/parallel: Implicitly constrained if a constrained
angle (CA) set exists representing both line segments or if
a constrained distance (CD) set exists representing the four
points of the two line segments.

• Collinear: Implicitly constrained if a constrained perpendicular
distance (CH) set exists representing both line segments or if
a constrained distance (CD) set exists representing the four
points of the two line segments.

• Concentric: Implicitly constrained if a constrained distance
(CD) set exists representing the center points of the two circles.

• Coincident point-point: Implicitly constrained if a constrained
distance (CD) set exists representing the two points.

• Coincident point-line: Implicitly constrained if a constrained
perpendicular distance (CH) set exists representing the point
and the line or if a constrained distance (CD) set exists repre-
senting the point and both points of the line segment.

• Tangent circle/ellipse-line: Implicitly constrained if a con-
strained angle (CA) set exists representing the line segment
and the radius (line segment) passing through the tangency
point. Alternatively, if a constrained distance (CD) set exists
including the two points of the line segments and the two points
of the radius passing through the tangency point.

• Tangent circle/ellipse-circle/ellipse: Implicitly constrained if a
constrained angle (CA) set exists representing the radii of both
circles passing through the tangency point. Alternatively, if a
constrained distance (CD) set exists including the four points
of the two line segments passing through the tangency point.

4.3 Removing dimensions to avoid over-constraining
models

Accepting suggested constraints oftentimes requires removing exist-
ing constraints present in the model. In the sketch in Figure 9a-left,

Figure 9: When accepting suggested constraints CODA oftentimes
(a) overwrites existing constraints or (b) removes existing constraints.

for example, CODA suggests to constrain the length of the lines so
that they are always half the length of each other. To accept this
constraint, CODA replaces the static dimensional constraint with the
dynamic constraint shown in Figure 9a-right. However, when both
dimensions are implicitly constrained as shown in Figure 9b-left,
CODA needs to remove one of the other constraints before adding
the suggested constraint shown in Figure 9b-right. For CODA to
know the explicit constraints that are responsible for every implicit
constraint, we keep track of all explicit constraints while merging
CD, CA, and CH sets in the algorithm explained in Section 4.2.
When multiple explicit constraints are responsible for an implicit
constraint (Figure 9b), CODA shows multiple suggestions and com-
municates their differences through the animated visualizations.

4.4 Rendering animations in CAD models

When hovering suggested constraints, CODA previews the impli-
cations of a constraint by animating features in the CAD model
(Figure 5). When the animation requires lines to tilt, we continu-
ously rotate the line between -5◦ and +5◦. When changes in size
are required, we apply a scaling that transitions between half and
double the size of the entity. Finally, when animating a parameter
of a modeling operation, such as an extrusion, we alternate between
half and double of the original value. Animations are updated every
100ms and are repeated as long as the user hovers the suggested
constraint.

As CODA directly manipulates parameters in the original design,
we make a copy of all the attributes to be able to restore them after-
wards. For some sketch entities, additional temporary construction
lines are required to realize the animation. For example, to vary
the angle between two parallel lines, Fusion 360 does not allow
to temporarily add an angular constraint between the two lines as
they are exactly parallel. CODA therefore first adds a temporary
construction line perpendicular to both lines and varies the angle
between the perpendicular line and both parallel lines during the
animation (Figure 5a).

5 BENCHMARKING THE NUMBER OF SUGGESTIONS

The number of suggestions offered by CODA depends on the num-
ber of relations present in the model that are not yet constrained.
Furthermore, while designing, this number changes continuously as
new relations are established or broken and constraints are added.
To give the reader insights in how many suggestions CODA offers,
we report the number of suggestions for the CNC milling plans of a



Table 2: The number of unique high-level suggestions provided by CODA on three real-world CNC-millable furniture models from opendesk.

Model Sketch Condition # sketch entities # constraints Suggestions
Tabletop No constraints 52 0 46

Default constraints 52 37 14
Support beam 1 No constraints 74 0 52

Default constraints 74 25 26
Support beam 2 No constraints 38 0 32

Default constraints 38 16 20
Main beam No constraints 208 0 239

Default constraints 208 65 204
Outer leg No constraints 169 0 71

Default constraints 169 46 68
Inner leg No constraints 159 0 87

Default constraints 159 30 73
Cable rail support No constraints 44 0 22

Default constraints 44 15 11

Shelf No constraints 106 0 109
Default constraints 106 31 88

Back No constraints 581 0 490
Default constraints 581 173 401

Divider No constraints 106 0 120
Default constraints 106 33 84

Side No constraints 152 0 139
Default constraints 152 42 116

Top No constraints 161 0 140
Default constraints 161 46 89

Bottom No constraints 315 0 241
Default constraints 315 78 160

Foot part 1 No constraints 44 0 59
Default constraints 44 12 56

Foot part 2 No constraints 44 0 61
Default constraints 44 13 46

Leg No constraints 48 0 24
Default constraints 48 17 12

Leg join No constraints 32 0 12
Default constraints 32 12 9

Backrest No constraints 42 0 45
Default constraints 42 16 29

Backrest join No constraints 54 0 30
Default constraints 54 22 22

Seat No constraints 34 0 29
Default constraints 34 14 17

lean desk, a fin bookshelf, and a slim chair available on Opendesk9

(Table 2). We ran CODA on all sketches present in the three mod-
els. As the plans are available in the DXF file format, the original
sketches do not have any constraints. The “No constraints” condi-
tion in Table 2 thus reports on the number of suggestions one gets
while transferring a completely unconstrained sketch to a parametric
sketch. However, when using recent versions of CAD modeling en-
vironments, such as Fusion 360, a sketch without any constraints is
very uncommon as CAD environments automatically add basic con-
straints while sketching. To get an idea of the number of suggestions
in a realistic modeling scenario, we also re-designed all sketches in
Fusion 360. The “Default constraints” condition in Table 2 reports
on the number of suggestions offered by CODA once these sketches
were finished. The number of suggestions reported in this table use
the grouping strategy presented in Section 3.6. It is also important to
mention that the numbers reported here are for completed sketches,
some of which are complex. We hope, however, that users will not
use CODA only at the end of a design workflow but also consider,

9https://www.opendesk.cc/

accept, and discard suggestions during the modeling workflow. As
such, suggestions are gradually introduced and will not accumu-
late. When users are overwhelmed with suggestions, filtering and
selection features can be used as discussed in Section 3.6.

6 LIMITATIONS AND FUTURE WORK

Although CODA offers many novel opportunities to facilitate mak-
ing well-constrained CAD models, our work also has several limita-
tions which reveal many exciting directions for future research.

First, future research could study how novices in CAD modeling
use CODA during their design workflow. While CODA offers sug-
gestions in real-time while modeling, our tool could also be used
after a CAD model is finished or at a later time to make an existing
model more flexible and adaptable. We believe this could be a major
asset as it allows novices to further improve CAD models shared
via platforms, such as Thingiverse, and thus distribute the workload
across the community. Furthermore, it would be interesting to inves-
tigate whether CODA also provides value to expert modelers and
for students that learn CAD modeling. For example, the suggested
constraints can make students aware of available CAD features and



how they are composed.
Second, while CODA offers suggestions for the most common

constraints in CAD, more advanced suggestions can be supported in
the future. For geometry relations this includes identifying patterns,
such as symmetry or repetition in models and offering suggestions
to convert these patterns into more adaptable features. For algebraic
constraints, the current version of CODA supports frequently used
ratios in CAD models according to Mills et al. [32] and Langbein et
al. [26]. Other common ratios used in design could be supported in
the future, such as the Golden ratio or the Lichtenberg ratio. Future
versions could also offer suggestions for relations that are nearly
present in the model, such as lines that are almost perpendicular or
are almost equal in length. Similar approaches have been explored
for beautifying mesh models [24].

Third, to further facilitate adapting models, future versions of
CODA could offer suggestions for other types of constraints, such as
limiting the range in which parameters and dimensions can change
without breaking the model. While computing valid ranges of fea-
tures has been investigated for 2D sketches [13, 14, 41], more re-
search is needed to compute valid ranges for all features in 3D to
ensure the integrity of the model when changing parameters.

7 CONCLUSION

In this paper we presented CODA, an interactive software tool that
helps novice modelers to design well-constrained parametric 2D and
3D CAD models. In order to do so, CODA contributes a computa-
tional approach for extracting and suggesting relations in a model
that are not yet enforced by constraints. CODA also clearly com-
municates the meaning and implications of suggested constraints
using novel animated visualizations rendered in the CAD model. By
facilitating the creation of well-constrained parametric designs we
hope to further democratize CAD and encourage users to upload
high quality parametric models to public sharing repositories, such
as Thingiverse.
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