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ABSTRACT

We propose a self-supervised physics-informed neural network (PINN) frame-
work that adaptively balances physics-based and data-driven supervision for sci-
entific machine learning under data scarcity. Unlike prior PINNs that rely on fixed
or heuristic weighting of physics residuals and data loss, our approach introduces
a learnable blending neuron that dynamically adjusts the relative contribution of
each term based on their uncertainties. This mechanism enables stable training and
improved generalization without manual tuning. To further enhance efficiency, we
integrate a transfer learning strategy that reuses representations from related do-
mains and adapts them to new physical systems with limited data. We validate the
framework for the prediction of heat transfer in liquid-metal miniature heat sinks
using only 87 CFD datapoints, where the adaptive PINN achieves an error < 8%,
outperforming shallow neural networks, kernel methods, and physics-only base-
lines. Our framework provides a general recipe for embedding physics adaptively
into neural networks, offering a robust and reproducible approach for data-scarce
problems across various scientific domains, including fluid dynamics and material
modeling.

1 INTRODUCTION

Scientific machine learning is increasingly solving problems where only limited data is available,
such as turbulence modeling, climate forecasting, and thermal transport in novel energy systems.
Traditional data-driven neural networks excel when large datasets are present, but their accuracy
and stability degrade when observations are scarce or noisy. In such cases, the incorporation of
governing physics into the learning pipeline has shown a promising approach Sharma et al. (2023);
Guastoni et al. (2021). Physics-informed neural networks (PINNs) and related frameworks integrate
physical residuals directly into the loss function, constraining models to respect conservation laws
and differential equations.

A key challenge in PINNs is balancing the contributions of data-driven and physics-based losses.
Fixed or manually tuned weights can lead to poor convergence or biased predictions. Prior stud-
ies have investigated adaptive strategies, including self-adaptive PINNs McClenny & Braga-Neto
(2020), gradient-normalization methods Wang et al. (2021), and uncertainty-driven weighting in
Bayesian PINNs Yang et al. (2021). Despite these advances, most approaches require either heuris-
tic rules, Bayesian overhead, or remain sensitive to hyperparameter choices. This motivates the
need for a lightweight, self-supervised mechanism that dynamically adjusts the physics–data trade-
off during training.

In parallel, transfer learning has gained prominence in both general ML Zhuang et al. (2020); Liu
et al. (2019) and scientific domains Jeon et al. (2022a;b), enabling knowledge reuse across related
tasks. For thermal-fluid applications, transfer learning has been used to accelerate CFD surrogates
Baghban et al. (2019); Pourghasemi & Fathi (2023), but its integration with PINNs remains under-
explored. Combining adaptive physics–data weighting with transfer learning offers the potential for
robust learning even in data-scarce regimes.

In this work, we propose a self-supervised PINN framework with a learnable blending neuron that
dynamically balances physics residuals and data losses based on their uncertainties. We further
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incorporate a transfer learning scheme that reuses hidden-layer representations from related domains
to accelerate training in new physical systems. To evaluate the method, we consider the prediction
of convective heat transfer in sodium-cooled miniature heat sinks using only 87 CFD datapoints, a
regime where high-fidelity simulation is prohibitively costly. Our contributions are threefold:

• We introduce a simple yet effective self-supervised mechanism for adaptive loss balancing
in PINNs, removing the need for manual tuning or Bayesian complexity.

• We use transfer learning, demonstrating its effectiveness in scientific ML tasks with scarce
data.

• We validate the framework on a challenging liquid-metal heat transfer problem and bench-
mark against shallow neural networks, kernel methods, and physics-only baselines.

This framework provides a general recipe for embedding physics adaptively into neural networks,
with implications for a wide range of domains including heat transfer, materials science, and
aerospace engineering.

2 RELATED WORK

Machine learning for thermal–fluid systems. Data-driven models have been widely applied
in fluid mechanics and thermal sciences, particularly for predicting heat transfer coefficients and
fluid properties when experimental or CFD data are limited. Examples include neural-network and
kernel-based surrogates for nanofluid flows Baghban et al. (2019); Tafarroj et al. (2017); Kurt &
Kayfeci (2009); Yousefi et al. (2012), convective heat transfer prediction in coils and microchannels
Baghban et al. (2016); Bhattacharya et al. (2022), and convolutional-network approaches for wall-
bounded turbulence Guastoni et al. (2021). More recent work has combined ML with high-fidelity
CFD solvers to accelerate simulations Jeon et al. (2022b); Pourghasemi & Fathi (2023). Compre-
hensive reviews of physics-informed ML in fluid mechanics emphasize the potential of integrating
physics into learning pipelines Sharma et al. (2023).

Physics-informed neural networks. PINNs incorporate governing equations as soft constraints,
improving generalization under data scarcity. However, balancing the relative contributions of
physics and data remains challenging. Several adaptive schemes have been proposed: self-adaptive
PINNs using gradient information McClenny & Braga-Neto (2020), NTK-based analyses of PINN
training pathologies Wang et al. (2021), and Bayesian approaches that weight losses according to
uncertainty Yang et al. (2021). These methods improve training stability but often require heuris-
tic tuning, additional complexity, or Bayesian overhead. Our approach differs by introducing a
simple learnable blending neuron that dynamically adjusts physics–data weighting in a fully self-
supervised manner.

Transfer learning in scientific ML. Transfer learning has achieved success across domains from
computer vision to geoscience Zhuang et al. (2020); Liu et al. (2019). In thermal–fluid contexts,
transfer strategies have been applied to accelerate unsteady CFD simulations Jeon et al. (2022a)
and other flow-physics surrogates. Nevertheless, integration of transfer learning into PINNs re-
mains underexplored. Our framework bridges this gap by combining transfer learning with adaptive
physics–data balancing, enabling PINNs to efficiently adapt knowledge across related physical sys-
tems.

Positioning of this work. In summary, while prior work has investigated adaptive weighting
in PINNs McClenny & Braga-Neto (2020); Wang et al. (2021); Yang et al. (2021) and physics-
informed transfer learning for fluid simulations Jeon et al. (2022a), our contribution unifies these
directions. We present a self-supervised adaptive PINN with transfer learning, validated on a chal-
lenging small-data case of sodium-cooled miniature heat sinks. This combination yields a robust
and lightweight framework for scientific ML under data scarcity, complementing and extending
prior approaches.
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3 METHODOLOGY

3.1 CFD SIMULATIONS

Computational Fluid Dynamics (CFD) simulations were conducted to generate a dataset of 87 data
points. These simulations follow the numerical framework described in Pourghasemi & Fathi (2023)
and were executed using ANSYS FLUENT. The objective was to obtain precise Nusselt numbers for
both laminar and turbulent flow of liquid sodium in stainless steel (SS-316) rectangular miniature
heat sinks under varying physical conditions.

The input parameters spanned a wide range, including heat sink width, aspect ratio, hydraulic diam-
eter, and Peclet number of the sodium coolant. The governing equations included the fundamental
equations of incompressible, steady-state flow: the continuity equation, the Navier–Stokes momen-
tum equations, and the energy conservation equation. Additionally, heat conduction within the solid
substrate was modeled with a temperature-dependent conductivity. These equations are summarized
as follows:

Continuity equation (incompressible flow):
∇ · (ρu) = 0, (1)

where ρ is the fluid density and u is the velocity vector.

Navier–Stokes momentum equation:
∇ · (ρuu) = −∇P +∇ ·

(
µ(∇u+∇Tu)

)
+ ρg, (2)

where P is pressure, µ is dynamic viscosity, and g is the gravitational acceleration.

Energy equation (fluid):
∇ · (ρcpuT ) = ∇ · (kf∇T ), (3)

where cp is the specific heat capacity, T is the temperature field, and kf is the thermal conductivity
of the fluid.

Heat conduction equation (solid substrate):
∇ · (ks∇T ) = 0, (4)

where ks is the thermal conductivity of the solid material.

The study employed steady-state numerical simulations with a no-slip boundary condition at the
solid–fluid interfaces of the miniature heat sinks. The coolant was introduced at uniform velocity
and constant inlet temperature.

3.2 SELF-SUPERVISED ADAPTIVE PINN FRAMEWORK

The machine learning framework is based on physics-informed neural networks (PINNs), where the
governing partial differential equations (PDEs) of fluid flow and heat transfer are embedded as soft
constraints in the training objective. Let θ denote the network parameters. The standard PINN loss
is a weighted sum of data-driven and physics-driven terms:

L(θ) = λd Ldata(θ) + λp Lphysics(θ), (5)
where Ldata represents the discrepancy between network predictions and available CFD data, and
Lphysics measures PDE residuals from Equations 1–4. The coefficients λd and λp balance the contri-
butions of the two terms.

Adaptive blending neuron. Instead of fixing λd and λp manually, we introduce a learnable blend-
ing neuron that adaptively adjusts their relative contributions during training. Specifically,

λd = σ(α), λp = 1− σ(α), (6)
where σ(·) is the sigmoid function and α is a trainable scalar parameter. This formulation ensures
0 < λd, λp < 1 and allows the model to automatically discover the optimal balance between physics
and data supervision. During training, α is updated by backpropagation along with θ, making the
weighting self-supervised.
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Table 1: Performance comparison of GP and SVR models using RBF kernel.
Method Kernel MAPE
GP RBF 0.0756
SVR–RS RBF 0.0272
SVR–Bayesian RBF 0.0125

Data-driven loss. The data loss is defined as the mean squared error (MSE) between predicted
and CFD-computed Nusselt numbers:

Ldata(θ) =
1

Nd

Nd∑
i=1

(
ŷi(θ)− yi

)2
, (7)

where yi are ground-truth CFD values and ŷi(θ) are PINN predictions at the same inputs.

Physics residual loss. The physics loss is constructed from PDE residuals evaluated at collocation
points {xj}

Np

j=1:

Lphysics(θ) =
1

Np

Np∑
j=1

(R(xj ; θ))
2
, (8)

where R denotes the residual of the governing equations (Equations 1–4) computed with PINN-
predicted velocity, pressure, and temperature fields.

3.3 TRANSFER LEARNING FOR DATA-SCARCE REGIMES

To further enhance learning efficiency, we incorporate a transfer learning (TL) strategy. A base
PINN is first trained on a source dataset (e.g., water-cooled microchannels), where larger training
data are available. The network parameters θ∗ from the source task are then used to initialize the
target PINN for sodium-cooled miniature heat sinks. Specifically,

θ
(0)
target ← θ∗source. (9)

During fine-tuning, only the last few layers and the blending neuron parameter α are updated, while
early layers retain transferable low-level representations. This approach reduces training time and
improves convergence stability under extremely small target datasets (87 CFD points).

3.4 TRAINING PROCEDURE

The overall training process alternates between minimizing Ldata and Lphysics, with weights governed
by the adaptive blending neuron. A schematic of the framework is shown in Figure 1. The Adam
optimizer was employed with learning rate scheduling, and early stopping was used to prevent over-
fitting. Monte Carlo cross-validation Shan (2022); Elmessiry et al. (2017) was applied to quantify
generalization performance and statistical robustness.

4 RESULTS

4.1 GAUSSIAN PROCESS AND SUPPORT VECTOR REGRESSION

Table 1 compares Gaussian Process (GP) and Support Vector Regression (SVR) models using a
radial basis function (RBF) kernel. SVR consistently outperforms GP due to its ability to exploit
data distribution more effectively and tune additional hyperparameters for extrapolation. Among
SVR models, randomized search (RS) optimization achieves a minimum mean absolute percentage
error (MAPE) of 2.72% after four iterations, while Bayesian optimization converges faster, reaching
a lower MAPE of 1.25% within 17 iterations.

The corresponding SVR hyperparameters are reported in Table 2, where Bayesian optimization se-
lects a higher regularization parameter (C = 27.23) compared to RS (C = 10), further contributing
to its superior generalization.
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Figure 1: Schematic of the proposed self-supervised adaptive PINN with transfer learning. The
blending neuron learns to weight physics residuals and data loss.

Table 2: Optimal hyperparameters for SVR under RS and Bayesian optimization.
Method Kernel C γ ϵ MAPE
SVR–RS RBF 10 0.0001 0.0010 0.0272
SVR–Bayesian RBF 27.23 0.0007 0.0031 0.0125

4.2 TRANSFER LEARNING FOR NEURAL NETWORKS

Transfer learning (TL) further improves neural network performance. Table 3 shows that transfer-
ring the first hidden layer from a water-trained network reduces MAPE from 0.0028 (no transfer)
to 0.0020. Genetic Algorithm (GA)-based optimization selected an optimal architecture of two hid-
den layers, with three neurons transferred from the source network and eight randomly initialized
neurons in the second layer. Figure 2 confirms that transferring earlier layers captures generalizable
features, while transferring layers closer to the output degrades accuracy due to domain-specific
representations.

The statistical difference between water and sodium datasets is illustrated in Figure 3.

Kernel Density Estimates (Figure 3) confirm a broader variance for sodium data. A Mann–Whitney
U test rejects the null hypothesis (p≪ 0.05), supporting the suitability of TL from water to sodium.

4.3 SELF-SUPERVISED PINN PERFORMANCE

Bayesian optimization determined the optimal architecture of the self-supervised PINN to be two
hidden layers of 20 neurons and one hidden layer of 12 neurons, with Adam optimizer at learning
rate 0.34. The 10-fold cross-validated MAPE was 0.0185 after 100 optimization iterations. Figure 4
shows the distribution of the physics coefficient neuron λp, centered around 0.5, confirming balanced
contributions of physics and data.
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Table 3: Impact of transfer learning on neural network performance.
Method MAPE
No Transfer 0.0028
Transfer (1st hidden layer) 0.0020

Figure 2: Effect of transfer learning from different layers. The first-layer transfer achieves the lowest
error, while transferring deeper layers closer to the output increases error.

4.4 BENCHMARKING AND VALIDATION

Table 4 reports benchmarking results across all methods. SVR–Bayesian achieves the lowest er-
ror among classical ML methods (MAPE = 0.0125), while the adaptive NN with transfer learning
achieves the overall lowest error (MAPE = 0.0020). The self-supervised PINN achieves competitive
performance (MAPE = 0.0185) but demonstrates superior robustness.

Monte Carlo simulations (500 trials) were further used to analyze robustness (Table 5). While the
PINN exhibited higher variance in MAPE during training, its prediction variance on the holdout
dataset was lower than both baseline NN (no transfer) and kernel methods. This indicates improved
robustness to hyperparameter and initialization randomness.

Figures 5–6 visualize predictions on holdout sets. Kernel-based methods achieve reasonable accu-
racy but tend to underfit, whereas NN-based methods capture more variance. The self-supervised
PINN remains consistently within the ±8% error margin, validating its robustness for Nusselt num-
ber prediction in sodium heat sinks.

5 DISCUSSION

The results demonstrate that classical kernel-based methods such as GP and SVR provide com-
petitive baselines, with SVR–Bayesian achieving a MAPE of 0.0125. However, their performance
is limited by sensitivity to kernel choice and hyperparameter tuning. In contrast, neural-network
approaches, particularly those incorporating transfer learning, achieve substantially lower errors
(0.0020) by reusing generalizable representations from water-cooled datasets. This highlights the
potential of cross-domain transfer in scientific ML, where related physical systems often share un-
derlying structural features.

The self-supervised PINN achieves a higher MAPE (0.0185) compared to the best NN and SVR
models, yet exhibits superior robustness during Monte Carlo validation. Specifically, it maintains
lower prediction variance on holdout datasets despite larger variance during training. This robustness
arises from the adaptive blending neuron, which balances physics-based and data-driven supervision

6
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Figure 3: KDE comparison of water and sodium Nusselt numbers. Sodium exhibits higher variance
than water, supporting transfer learning across domains.

Figure 4: Distribution of the learned physics coefficient neuron in the self-supervised PINN, cen-
tered near 0.5.

without requiring manual tuning. The learned coefficient distribution (centered around 0.5) confirms
that the network adaptively exploits both sources of information.

An important insight is that the adaptive PINN, although not the lowest in raw error, provides a
more reliable and interpretable framework for deployment in data-scarce regimes. When CFD data
availability is limited, the physics component stabilizes learning, reducing overfitting and improving
generalization. The trade-off between raw accuracy and robustness is particularly relevant in safety-
critical applications such as thermal management of liquid-metal systems, aerospace vehicles, and
biomedical devices.

6 CONCLUSION

We introduced a self-supervised PINN framework that adaptively balances physics residuals and
data-driven errors through a learnable blending neuron, and we combined this with transfer learning
to enhance performance under extreme data scarcity. Our main findings are:

• SVR with Bayesian optimization provides strong baselines but requires extensive hyperpa-
rameter tuning.

• Neural networks benefit significantly from transfer learning, with first-layer transfer achiev-
ing the lowest MAPE (0.0020).
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Table 4: MAPE comparison across ML methods for Nusselt number prediction.
Model MAPE
NN with Transfer Learning 0.0020
NN (no transfer) 0.0028
Self-supervised PINN 0.0185
Gaussian Process (GP) 0.0756
SVR–RS 0.0272
SVR–Bayesian 0.0125

Table 5: Monte Carlo validation metrics across ML methods. TR NN = transfer learning NN.
Model Max var(pred) Max var(MAPE) Avg. Epochs
TR NN 0.2183 0.0002 14.30
NN (no transfer) 0.2323 0.0002 14.20
Self-supervised PINN 0.1146 0.0008 35.00

• The self-supervised PINN achieves competitive accuracy (0.0185 MAPE) while demon-
strating superior robustness to hyperparameter and initialization randomness.

• Statistical analysis of Nusselt number distributions confirms the validity of transferring
representations from water to sodium domains.

Overall, our framework provides a robust approach toward small-data scientific ML, offering both
accuracy and reliability. While demonstrated on sodium-cooled miniature heat sinks, the approach
generalizes to other domains where governing equations are available but data are limited. Future
work includes extending the blending mechanism to multi-physics scenarios, incorporating uncer-
tainty quantification, and scaling the framework to large-scale 3D CFD simulations.
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