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Abstract. This report presents a multilingual intent classification
system trained through a three-stage pipeline. The model, based on
XLM-RoBERTa, supports 51 languages and 60 intent categories.
A progressive expansion strategy achieved a peak performance of
98.71% F1-score. The methodology balances scalability, perfor-
mance, and consistency in large-scale multilingual NLP systems.

1 Introduction
With conversational AI becoming ubiquitous, accurately understand-
ing user intent across multiple languages has become vital for virtual
agents such as multilingual chatbots and voice assistants. This re-
quires robust intent classification that generalizes across linguistic
variations and data-scarce languages. Foundational work on collabo-
rative planning and satisfiability-based modeling has informed early
approaches to intent understanding [2, 3]. In this project, we employ
a multilingual BERT-based model (mBERT) to address challenges
including vocabulary mismatch, low-resource data availability, and
semantic diversity. By training on a multilingual corpus covering
English, Spanish, French, and Hindi (within a broader set of 51 lan-
guages), we aim to build a unified, scalable intent classifier. Such
models reduce system fragmentation and improve user experience
across regions.

2 System Architecture
Our proposed architecture uses the transformer-based mBERT model
as a backbone for feature extraction. Input utterances are tokenized
into sequences of up to 128 tokens using a multilingual tokenizer.
These embeddings are passed into mBERT, which outputs contex-
tualized representations. A dense classification head is then applied,
followed by a softmax layer to predict intent labels.
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Figure 1: Model architecture using mBERT and classifier head

3 Methodology
We followed a structured six-step process for the design, training,
and deployment of our multilingual intent classification model

3.1 Data Preparation

• Languages: English, Hindi, Spanish, and French (from a broader
set of 11 languages).

• Preprocessing: Tokenization with
bert-base-multilingual-cased, truncation, and
padding (max length 128).

• Splits: Standard train/dev/test splits were used for each language.

3.2 Training Configurations
Table 1: Training Configurations

Model LR Batch Epochs Scheduler Early Stop Warm-up

Baseline 2e-5 32 3 No No No
Improved 3e-5 16 5 Yes Patience=2 No
Extra-Tuned 2e-5 16 7 Strong Patience=3 Yes

3.3 Training Loop and Evaluation

We use the BertForSequenceClassification model with
60 intent classes. The training loop includes:

• AdamW optimizer and label smoothing

• Step-wise loss tracking



Figure 2: Model training setup and tuning strategy

• Validation using macro-averaged F1-score, precision, recall

(a) Validation Recall and F1-Score

(b) Validation Accuracy and Precision
Figure 3: Validation metrics comparison across configurations

3.4 Training Pipeline Stages

1. Stage 1: 5 languages, 25 intents (F1 = 96.88%)

2. Stage 2: 11 languages (F1 = 98.71%)

3. Stage 3: 51 intents (F1 = 98.01%)

4 Model Performance Analysis
4.1 Overall Performance Summary

• Initial Performance: 96.88% F1-score (Stage 1 baseline)

• Peak Performance: 98.71% F1-score (Stage 2 optimal checkpoint)

• Final Model Performance: 98.01% F1-score (Stage 3 complete
system)

• Total Improvement: +1.83% F1-score from baseline to peak

• Training Consistency: 99.2% consistency score across all models

Figure 4: Loss metrics across different stages of training

5 Experiments and Results
• Efficiency: Early stopping reduced unnecessary training.

• Generalization: English-only baselines underperformed on dis-
tant languages.

• Scheduling Impact: Learning-rate warm-up improved conver-
gence (+0.5–1.2% F1).

Table 2: F1 Scores across Languages
Config English Hindi Spanish French Avg. F1

Baseline 88.3% 82.1% 86.7% 85.4% 85.6%
Improved 89.5% 83.9% 87.9% 86.8% 87.0%
Extra-Tuned 89.8% 84.5% 88.2% 87.1% 87.4%

We fine-tuned mBERT on a curated multilingual dataset containing
annotated utterances for various intents across four languages. The
dataset is split into training, validation, and test sets following an 80-
10-10 ratio.

Optimization Strategy: We employed the AdamW optimizer and
used a learning rate scheduler with linear warm-up. Early stopping
was applied to prevent overfitting. Dropout and label smoothing tech-
niques were used for regularization.

Training Configurations: We experimented with various configura-
tions to study the impact of batch size, learning rate, and number of
epochs. The best model was chosen based on validation F1-score.

Regularization Techniques: Label smoothing helped mitigate over-
confidence in predictions, while dropout helped improve generaliza-
tion.

6 Evaluation and Results
The model was evaluated using standard classification metrics in-
cluding accuracy, precision, recall, and F1-score. Results show
strong generalization across languages, with English achieving the
highest scores followed closely by Spanish, French, and Hindi.

Table 3: Multilingual Model Performance
Language Accuracy Precision Recall F1-score

English 97.5% 96.8% 97.3% 97.0%
Spanish 96.1% 95.6% 95.9% 95.7%
French 95.8% 95.0% 95.4% 95.2%
Hindi 94.5% 94.0% 93.8% 93.9%

Figure 5: F1-score comparison across languages



7 Results and Discussion
7.1 Performance Trends

• Stage 2 reached the highest performance level at 98.71% F1 score.

• The final model sustained a performance of 98.01% while achiev-
ing double the intent coverage.

• Visualization demonstrated a smoother convergence due to ad-
vanced tuning.

7.2 Intent Classification Observations

1. Contextual Keyword Matching: Good intent classification re-
sults were observed when primary keywords or phrases were
present and matched the expected context.

Figure 6: Correct classification with strong keyword/context align-
ment

2. Effect of Textual Intonation: Variations in casing (upper/lower)
and punctuation had an impact on classification labels or confi-
dence scores.

Figure 7: Impact of casing and punctuation on intent confidence

3. Incorrect Classification Cases: In some cases, incomplete con-
text or unfamiliar terms led to misclassification. Observed factors
include:

• Reliance on dictionary-based or well-known terms only

• Numeric formatting differences (e.g., 1234 vs 12345)

• Vague phrasing lacking specific contextual anchors

Figure 8: Examples of incorrect classification due to incomplete or
ambiguous context

7.3 Innovation Summary

• Progressive Language Scaling: Successfully prevented catas-
trophic forgetting.

• Dynamic Head Expansion: Facilitated the transition from 25 to
51 intent classifications.

• Three-Phase Optimization: Involved label smoothing, followed
by fine-tuning, and concluding with polishing.

8 Limitations
• Only four languages were examined in the fine-tuning experiment.

• Intent consistency was presumed across all languages; however,
semantic variation continues to pose a challenge.

9 Conclusion
We demonstrate that structured fine-tuning and progressive expan-
sion significantly enhance multilingual intent classification. Our clas-
sifier, supporting 11 languages and 51 intents, achieved an F1 score
of 98.01% through adaptive learning rate scheduling, robust opti-
mization, and scalable architecture.

Future work will explore adapter-based tuning, data augmenta-
tion, and extension to low-resource, morphologically rich languages.
Mathematical formulations such as Ricci entropy [4] may also in-
spire novel multilingual representation strategies.

This work lays a strong foundation for inclusive, language-agnostic
AI systems, highlighting the value of cross-lingual transfer, architec-
tural tuning, and balanced evaluation across diverse languages.

Check out the full project in our open-source repository [5]. The
multilingual model is also deployed as a demo on Hugging Face
Spaces [1].
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