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Abstract

Recent advancements in bionic prosthetic technology offer transformative opportu-
nities to restore mobility and functionality for individuals with missing limbs. Users
of bionic limbs, or bionic humans, learn to seamlessly integrate prosthetic exten-
sions into their motor repertoire, regaining critical motor abilities. The remarkable
movement generalization and environmental adaptability demonstrated by these
individuals highlight motor intelligence capabilities unmatched by current artificial
intelligence systems. Addressing these limitations, MyoChallenge’24 at NeurIPS
2024 established a benchmark for human-robot coordination with an emphasis on
joint control of both biological and mechanical limbs. The competition featured
two distinct tracks: a manipulation task utilizing the myoMPL model, integrating a
virtual biological arm and the Modular Prosthetic Limb (MPL) for a passover task;
and a locomotion task using the novel myoOSL model, combining a bilateral virtual
biological leg with a trans-femoral amputation and the Open Source Leg (OSL) to
navigate varied terrains. Marking the third iteration of the MyoChallenge, the event
attracted over 50 teams with more than 290 submissions all around the globe, with
diverse participants ranging from independent researchers to high school students.
The competition facilitated the development of several state-of-the-art control algo-
rithms for bionic musculoskeletal systems, leveraging techniques such as imitation
learning, muscle synergy, and model-based reinforcement learning that significantly
surpassed our proposed baseline performance by a factor of 10. By providing the
open-source simulation framework of MyoSuite, standardized tasks, and physi-
ologically realistic models, MyoChallenge serves as a reproducible testbed and
benchmark for bridging ML and biomechanics. The competition website is featured
here: https://sites.google.com/view/myosuite/myochallenge/myochallenge-2024.
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1 Introduction

One hallmark of human motor intelligence is the remarkable capacity to interact dynamically and
adaptively with the environment. This capability becomes even more extraordinary when trauma
or disease compromises our motor system, and we successfully recover or augment motor func-
tions through artificial bionic systems. The resilience, dynamics and adaptability demonstrated by
the human motor system under these conditions highlight the critical need for accurate modeling
approaches that include not only typical motor functions but also the complexities of adaptation
and recovery [1]. Incorporating these adaptive aspects into biomechanical modeling frameworks
promises significant advancements in rehabilitation strategies, prosthetics, and assistive technologies,
ultimately improving the quality of life for individuals facing motor impairments [2, 3].

While numerous simulation platforms and models have been proposed, existing systems often lack
the scalability and realism required, leaving the control of integrated musculoskeletal and bionic
systems an open challenge [4, 5, 6]. A key limitation is the inability of current neuromechanical
models, despite their utility in testing control theories and simulating biologically realistic motion,
to adapt coherently across tasks such as manipulation and locomotion. Hence, a comprehensive
musculoskeletal bionic simulation environment would provide a robust testbed, enabling cross-
disciplinary collaboration in robotics, motor control, physiology, and machine learning to develop
and validate control strategies with substantial real-world implications [7, 8, 9].

Recent years have witnessed remarkable progress in biomechanics, machine learning [10, 11, 12],
neuroscience, assistive devices [13, 14, 15], and physics-based simulation platforms [16, 17, 18, 19].
In computational biomechanics, several benchmarks have emerged over the past decade. The osim-rl
NIPS 2018 Challenge: AI for Prosthetics [20] focused exclusively on lower-limb prostheses for
walking, while other competitions [21, 22, 23, 24] benchmarked human motor control but neglected
the integration of prosthetics with human biomechanics. Currently, no public benchmark exists that
combines high-fidelity digital assistive models, advanced control algorithms, and modern learning
architectures. Developing such a benchmark would provide critical insights into human-prosthesis
coordination.

To address this critical gap, we introduce MyoChallenge’24, a competition designed to establish
novel benchmarks for dexterous manipulation using upper-limb prosthetics and agile locomotion with
simulated lower-limb amputations. The competition platform advances the development of realistic
biomechanical digital twins of human amputees and seeks to answer: Can we achieve human-level
coordination between physiological digital twins and bionic prosthetic limbs? The competition
features two independent tracks focused explicitly on musculoskeletal simulations integrated with
prosthetic limb co-control. This initiative aims to establish a realistic and transferable benchmark for
bionic limb control strategies, advancing the state of rehabilitation and assistive technologies.

2 The MyoChallenge’24 Competition

In MyoChallenge’24, we present two tracks. The first track requires bi-manual coordination of
the myoMPL model – a combination of a virtual biological arm and a Modular Prosthetic Limb
(MPL) [25]. A second track features a new myoOSL model made from the combination of a virtual
bilateral biological leg with a trans-femoral amputation together with an Open Source Leg (OSL)
[13]. The competition was divided into two phases, a preparation phase and a submission phase.
During the first stage, two main environments were open-sourced for participants to develop and
test out early solutions. The second phase introduces variation into the environment parameters and
opens up submission to the EvalAI platform. To promote diversity in science, a special DEI award
for participants from an underrepresented population and a Student Award to promote participation
among undergraduate students/High School.

The tasks and environment are available by cloning the MyoChallenge24 GitHub template (https:
//github.com/MyoHub/myochallenge_2024eval). The EvalAI platform (https://eval.ai)
was used for hosting the challenge and to run the evaluation. Participants were asked to upload
their behavior policies to Eval AI, which automatically evaluated them and updated results on a
scoreboard. Final scores were averaged over 100 trials of multiple seeds and unseen task variations.
The competition environment would be continuously available within the myosuite repository to
encourage further usage and development in bionic limb research. In the following sections, we
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present the simulator and musculoskeletal models (Sec. 2.1), and the proposed tasks and evaluation
metrics (Sec. 2.2).

Figure 1: Two tracks of MyoChallenge 2024. A. the manipulation track where an object needs to be
relocated via a handover, necessitating the coordination of a musculoskeletal and a robotic prosthetic
arm. B. the locomotion track, where a locomotion agent must traverse diverse terrain while walking
with one musculoskeletal and one prosthetic leg.

2.1 Simulation Framework and Musculoskeletal Models

Simulation Framework The competition and the full set of available musculoskeletal models are
embedded within MyoSuite, an open-source collection of environments and tasks that runs in the
MuJoCo physics engine [26]. MyoSuite provides physiologically realistic, musculoskeletal full-hand
models [27] within a simulation framework that significantly surpasses the speed of state-of-the-art
musculoskeletal simulators [28, 29] used in earlier competitions—achieving speed-ups of up to 4000
times (see Figure 7 in [19]). Additionally, MyoSuite supports comprehensive contact dynamics, a
crucial feature absent in most competing platforms, enabling the simulation of complex, contact-rich
manipulation behaviors. Specifically in MuJoCo, the muscles are modelled as actuators attached to
tendons that are assumed to be infinitely stiff.

MyoArm and MPL Musculoskeletal Model The right arm of the myoArm model, comprising
27 degrees of freedom (DOFs) and 63 muscle-tendon units, is adopted from the OpenSim MoBL
arm model [30, 31], converted via MyoConverter [28, 27]. This model has been utilized in prior
MyoChallenges for manipulation tasks [23, 32]. The entire left arm is replaced by the MPL. Detailed
information about the myoArm model is provided in Appendix A.2 and [33].

MyoLeg and OSL Musculoskeletal Model The myoLeg model is adapted to represent an individual
with a right-leg transfemoral amputation at approximately 50% of femoral length. Initially comprising
28 DOFs and 80 muscle-tendon units, the original myoLeg model was derived from the OpenSim
full-body model [34] using MyoConverter [27], and was previously featured in the MyoChallenge
[32]. Adjustments to reflect the transfemoral amputation include removal of muscles controlling the
knee and ankle joints on the amputated side [35], and recalibration of femoral inertial properties to
account for altered geometry and mass distribution of the residual limb. Detailed information about
the MyoLeg model can be found in Appendix A.2 and [33].

2.2 Tasks and Evaluations

2.2.1 Manipulation Track

Task The manipulation track (Fig.1-A) features a bimanual object relocation task, where the control
of a musculoskeletal arm must be coordinated with that of a robotic prosthesis. A key source of
complexity in this task is the handover that needs to take place between the two arms. The object is
always cuboid in shape, but its exact dimensions are sampled from a distribution shown in Appendix
A.3. The torso and lower limbs of the agent are fixed at the center of a circular stage, with two
pillars positioned such that each arm can only access the pillar closest to it. The start and goal
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positions are specified at the centers of the top surfaces of the left and right pillars. At the beginning
of each simulation trial, both the object’s initial and target positions are randomly initialized. The
environmental variations are detailed in Appendix A.3 - Table 2.

Observation The controller receives a detailed, 222-dimensional observation vector describing the
states of the body, object, and environment at every simulation timestep (Appendix A.3 - Table 3). This
observation includes joint positions and velocities of the myoArm and the MPL, the 6-DOF position
and velocity of the manipulated object, and muscle stimulation levels of the arm. Additionally, contact
status is indicated by five binary labels specifying whether the object is in contact with the biological
hand, MPL, start pillar, goal pillar, or any other environmental component. A comprehensive
description of the observation space can be found in the MyoChallenge’24 documentation [36].

Action The action space is an 80-dimensional continuous vector, ranging from [-1, 1], which includes
63 muscle actions and 17 MPL position actions. These position actions correspond to the joint range
of motion and are used for target angle-based control.

Termination A simulation trial is completed when the object is placed on the center of the goal
pillar’s face within 0.1 m along each axis. Each trial lasts up to 10 seconds and terminates early if the
object falls below 0.3m. To ensure bimanual manipulation, each limb must maintain contact with the
object for at least 1s.

Evaluation Metric The participants were first ranked based on the number of successful passes over
to the goal pillar based on the previous termination condition. Teams that achieved at least a 90%
success rate in a manipulation task qualified for further ranking in the time of completion. For teams
whose scores are within 10% of each other, the third criterion of muscle activation effort determines
their ranking, with less effort leading to a better ranking. Additionally, any solutions involving a
peak contact force exceeding 1500N, indicative of ’throwing’ rather than handover, are automatically
labelled unsuccessful.

Baseline Controller We provided a benchmarking baseline policy that combined a simple position
control for the MPL with a deep neural network, trained through reinforcement learning, to manage
the grasping behavior of the myoArm. The baseline demonstrated a success rate of approximately
3% when the full object and environment variations were introduced.

2.2.2 Locomotion Track

Figure 2: Terrains in myoOSL. (a) A side view illustrating
an example of mixed terrain. (b) Various terrain types
arranged with gradually increasing difficulty along the
travel path.

Task The objective is to develop a con-
troller for the amputee musculoskeletal
model and to optimize OSL control se-
lections to maximize walking distance
across varied terrains, as illustrated in
Fig.1-B. The environment consists of
five 3 m wide and 100 m long terrains: 1)
flat ground, 2) rough terrain, 3) hills, 4)
stairs featuring three ascending and de-
scending steps each, and 5) a composite
of all terrain types (Fig. 2). The complex-
ity of the terrain escalates with distance;
at 100 m, roughness peaks at 60 cm, hills
steepen to about 50 degrees with a height
of 1.5 m, and each stair step measures 50
cm in height.

Observation The controller/policy has access to proprioceptive data such as joint angles, velocities,
muscle states, and a 10 x 10 height map of the 2 x 2 m area surrounding the amputee, updated at each
time step (Appendix A.3 - Table 4).

Action The action space comprises 55 action inputs, where 54 are muscle actions, transformed into
muscle stimulations, along with an additional output [0, 1, 2, 3, 4], which allows for the selection
among five predefined control parameter sets.
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Termination A simulation trial is deemed complete when the amputee model successfully navigates
the entire 100 m path without falling. Trials are terminated prematurely if the model falls (head
height falls below 1.5 m) or strays outside the 3 m wide designated path.

Evaluation Metrics. Performance is first measured by the distance D traveled in each episode, with
higher distances receiving higher rankings. Teams must walk at least 20 meters to qualify for ranking
with the time taken to complete the episode or until a fall occurs.

Physiological Metrics An additional physiological metric is used to encourage more naturalistic and
realistic solutions. The participating teams must walk at least 20 meters to qualify for physiological
ranking. The first criterion, pain, is assessed based on the average overextension torque at each joint
in the MyoLeg. The second criterion, total muscle activation, is measured to estimate metabolic
power with less effort leading to higher ranking.

Baseline Controller We do not currently provide a baseline controller for the myoOSL environment.
However, baseline controllers for the intact myoLeg model that produce walking are available in
MyoSuite [19]. These include the DEP-RL controller [12] and a reflex-based controller [37].

3 Results and Participation

Table 1: Submission results of MyoChallenge 2024

Manipulation Track Locomotion Track

1st Place 0.26 0.72
2nd Place 0.18 0.19
3rd Place 0.10 N/A

This year’s MyoChallenge had a to-
tal participation of 53 teams from
over 15 countries. Across the three-
month submission period, we had a
total of 292 submissions and over
14,000 total downloads of MyoSuite.
Among the teams that filled out the
post-competition survey, 38% of the
participating teams are composed of
students only, with one team of high school students. Two of the top three winning teams for the ma-
nipulation track feature women researchers, a significant leap from the previous years’ participation.
However, no participants came from South America or Africa, highlighting a need to promote within
these underrepresented communities.

Due to the complexity of each track’s task and the need for familiarity with both biomechanics and
robotics, only three teams in the manipulation track and two teams in the locomotion track were able
to surpass the provided baselines (Table 1). The winning team in the manipulation track achieved
the highest score of 0.26—a 44% increase on the next best score. In addition, each episode was
completed in the least amount of time (5.9 seconds), using the least amount of muscular effort (0.034,
muscle activation units), and applying the least peak contact force on the object (481 N). The winning
team’s model in the locomotion track was capable of walking on rough terrain up to 9 cm high, stairs
with step heights up to 7 cm, and all hill terrains, including the highest hill at 24 cm with a maximum
distance of 71.6 meters.

3.1 Manipulation Track

3.1.1 First Place - Muscle Heads

Architecture Overview The Muscle Heads team used a combination of deep reinforcement learning
and inverse kinematics in their winning solution to the manipulation track. To simplify learning, the
task was broken down into a curriculum of subtasks. In stage 1 of the curriculum, the myoArm was
trained to reach the object and grasp it. The grasped object was then moved to the robot hand, which
was positioned in front of the agent using simple position control. In stage 2, the robot hand was
trained to grasp the object as the myoHand released it. In stage 3, the robot hand was moved to the
goal location (along with the grasped object) using inverse kinematics. The object was then released
on the goal pillar by opening the fingers.

Key Solution Insight - Muscle Synergies To deal with the large number of muscles in the myoArm,
rather than control each of the myoArm muscles individually, muscles were recruited in a coordinated
manner using muscle synergies. The muscle synergies were learned by optimizing an objective that
measures how much influence the agent can have over a task-relevant feature of the state known as a
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Figure 3: Grasping variables controlled using muscle synergies. By controlling the distance between
the tips of the thumb and index finger (left), a precision grip can be achieved and used to grasp the
object. By controlling the average distance of the middle, ring, and pinky fingers from the palm
(right), these fingers can be moved out of the way of the object, preventing them from interfering
with the ability to grasp the object.

controlled variable. The controlled variable was defined as the concatenation of multiple variables
that are key to reaching and grasping: the seven degrees of freedom of the shoulder, elbow and wrist
joints (to control hand position and orientation); the distance between the tips of the thumb and index
digits (to perform a precision grip, Figure - 3 left); and the average distance between the palm and the
tips of the middle, ring and pinky fingers (to move these non-grasping fingers out of the way of the
object, Figure - 3 right). In total, 9 synergies were used to coordinate the 63 muscles of the myoArm,
as the controlled variable is 9-dimensional.

Reward Design In stage 1 of the training curriculum, the agent was rewarded for (i) bringing the
myoHand thumb and index finger close to the object (with the condition that the thumb is behind
the object and the index finger is in front of the object), (ii) bringing the object close to the midpoint
of the robot thumb and index finger positions, and (iii) keeping the orientation of the object close
to its initial orientation on the start pillar. In stage 2, the agent was rewarded for (i) bringing the
robot thumb and index finger close to the object, and (ii) touching the object with the robot (with the
condition that the robot thumb and index finger are on opposite sides of the object).

3.1.2 Second Place - LNS Group

(a) (b)

Figure 4: Muscle groups. (a) The middle and inferior fascicles
of the pectoralis major and the coracobrachialis muscle are
grouped together. (b) Infraspinatus and teres minor muscles
are grouped together.

Architecture Overview The LNS
Group uses a combination of dy-
namical synergistic representation
for myoArm and a trajectory in-
terpolation for the MPL. The core
idea is to reduce the control di-
mensionality by grouping function-
ally similar actuators into synergis-
tic representations, while allowing
state-dependent fine-tuning for in-
dividual actuators [38]. Their Dyn-
Syn method is designed to address
the challenges of controlling high-
dimensional and overactuated sys-
tems, such as the myoMPL.

Key Solution Insight - Dynamical
Synergistic Representation The DynSyn method begins by generating muscle length data through
random joint velocity controls applied to the musculoskeletal model. These trajectories are segmented
into shorter time intervals, and the correlation between length changes of each pair of muscles
is calculated using cosine similarity. Based on the correlation matrix, the K-Medoids clustering
algorithm is employed to group functionally similar actuators into synergistic bins. This process
results in a reduced action space where each group of actuators shares a unified action. As shown
in Fig. 4, the DynSyn algorithm successfully identified representative muscle-tendon groups in
the myoArm model, reducing the control dimensionality while preserving functional synergy. The
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middle/inferior pectoralis major and coracobrachialis were clustered. These muscles synergistically
control shoulder adduction and rotation. Infraspinatus and teres minor form a group responsible for
humeral external rotation. To simplify the control of the MPL and reduce the dimensionality of the
action space, the LNS Group team designed four key postures that guide the prosthetic hand through
the object transfer process. To ensure a natural and continuous movement, they interpolate between
these postures over time, generating a smooth trajectory that facilitates stable object handling.

Reward Design The reward function is designed to guide the agent toward achieving the manipulation
task while adhering to environmental constraints. As demonstrated in Appendix A.6 - Fig. 7, the
reward function incorporates multiple components, each weighted to balance task objectives and
stability. Each reward component serves a specific purpose: pre-grasp posture and lift bonus
encourage the agent to achieve a stable initial grasp, while position distance and solved bonus drive
goal-directed movement. Meanwhile, palm distance and shoulder elevation ensure smooth and stable
interactions with the environment.

3.2 Locomotion Track

3.2.1 First Place - MSKBioDyn

Architecture Overview Team MSKBioDyn developed a multilayer perceptron controller trained
using proximal policy optimization [39]. Curriculum learning was applied to facilitate task mastery by
incrementally increasing difficulty. Initially, the policy learned to walk under low gravity, fixed initial
conditions, flat terrain, and a high weight on style rewards. As proficiency improved, stronger gravity,
variable initial conditions, steeper terrains, and increased weight on task rewards were progressively
applied.

Figure 5: Training method of team MSKBioDyn. The policy network predicts optimal actions based
on environment states, where the 10-by-10 heightmap is compressed into a 3-dimensional vector
using the terrain encoder. The policy is trained using a style reward from AMP and a task reward
from the environment.

Key Solution Insight - Imitation Learning The winning key of MSKBioDyn was to implement the
adversarial motion prior (AMP) for imitation learning, which trains the policy with a discriminator
[40]. As reference motions for AMP, the team used a comprehensive motion capture dataset previously
collected by their group. This dataset contains full-body kinematics from 120 individuals walking on
flat ground, stairs, and slopes, representing various walking styles and terrain conditions. Additionally,
the observation dimensionality was reduced by excluding muscle lengths, velocities, and forces, and
by compressing the heightmap into a three-dimensional terrain vector using a variational autoencoder.
This autoencoder was pretrained on approximately 60,000 randomly sampled terrain observations
from the track environment. The resulting terrain vector encoded orientation, scale, and positions of
stairs and hills relative to the body.
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Reward Design The policy was trained using a style reward from AMP (similarity to motions in the
dataset) and a task reward Fig. 5. The task reward was maximized when the human model walked
forward (y-axis) at 1 m/s without lateral (x-axis) displacement. Additionally, a squared excitation
minimization term was included in the task reward to satisfy the physiological effort criteria.

3.2.2 Second Place - Loco UCSD

Architecture Overview The Loco UCSD team model the MyoChallenge locomotion problem as a
reinforcement learning (RL) problem governed by a (non-terminal) Markov Decision Process. The
aim is to learn a policy π : S 7→ A parameterized by a neural network that maximizes the discounted
sum of rewards Eπ

[∑T
t=0 γ

trt

]
, rt = R(st, π(st)) for an episode of length T , in expectation.

While the policy π can in principle be learned via any reinforcement learning algorithm, they base
their approach upon the model-based reinforcement learning (MBRL) algorithm TD-MPC2 [41, 42]
due to its strong empirical performance on high-dimensional control problems, including humanoid
locomotion, as demonstrated in prior work [42, 43, 44].

Figure 6: The TD-MPC2 architecture.
Observations s are encoded into their la-
tent representation z. The model then re-
currently predicts actions â, rewards r̂, and
terminal values q̂, without decoding future
observations.

Key Solution Insight - MBRL TD-MPC2 learns a (la-
tent) world model from environment interactions and
selects actions by planning with the learned model. All
components of the world model are learned end-to-end
using a combination of latent state prediction, reward
prediction, and temporal difference losses, without ever
decoding raw observations. TD-MPC2 is thus a decoder-
free world model. During inference, TD-MPC2 plans
actions via local trajectory optimization using (sampling-
based) Model Predictive Path Integral (MPPI) [45]. To
accelerate planning, TD-MPC2 additionally learns a
policy prior using a maximum entropy RL objective in
the latent space of the model; this policy prior is used
to warm-start the sampling procedure. The TD-MPC2
world model architecture consists of the following five
components, as detailed in Appendix A.8. They use
TD-MPC2 as their choice of RL algorithm without mod-
ification nor hyperparameter-tuning, and instead focus
on designing a reward function that is effective for RL.

Reward Design Team Loco UCSD designs a reward
function that has a total of 5 components:

R(s,a) = Rforward_vel(s) · Rtorso_height(s) · Rupright(s) · Rstraight(s) · Rcontrol(a) (1)

where Rforward_vel(s) encourages high forward velocity along the generated track, Rtorso_height(s)
encourages the torso to maintain a height equivalent to an at-rest standing pose, Rupright(s) encourages
the torso to maintain an upright pose, Rstraight(s) encourages the agent to walk in the center of the
track, and Rcontrol(a) penalizes large actions (energy minimization). They find that optimizing a
product of these five rewards is more effective than optimizing e.g. a sum of rewards.

4 Discussions

In this section, we briefly discuss the top two solutions presented in both tracks and provide insights on
how their groundbreaking research informs human dexterity and agility movement and compensation
for the loss of limbs.

The manipulation track with myoMPL poses several challenges for developing a control policy.
First, the myoArm is high-dimensional and overactuated. Second, the start and goal conditions
are randomized. Third, the handover process and hand-object interactions introduce additional
constraints that must be managed for stable manipulation. Additionally, the environment provided
by MyoChallenge 24’ still poses several challenges to transitioning to real-world implications.
Specifically, the environment assumes both the MPL and the myoArm have oracle information on
each other’s state, while in reality, that information is mainly communicated through vision to the
user and through a myographic interface to the device.
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Both of the top two teams chose to use muscle synergies to reduce the dimensionality of the action
space and achieve more efficient and refined control of the finger movements. Those strategies, in
comparison to the baseline solution trained based on curriculum learning, exhibit smoother motions
during the reach and grasp of the myoArm. Muscle Heads utilized controlled variables to mimic the
way precise pinches are performed, and the LNS Group leverages the DynSyn to accelerate training
while maintaining interpretability. Moreover, both teams decided to separate the control of the MPL
from the myoArm, using either inverse dynamics or trajectory interpolation. Although effective, this
independent control poses a challenge to the handover component of the task as the two controllers
are not communicating effectively when the object is released and grasped. As observed from the
Muscle Heads team, the success rate of the final placement significantly decreases due to unsuccessful
passovers. The final winning solution achieves only a score of 26%, highlighting the potential gap
between existing models and true dexterous manipulation skills.

The locomotion track is also significantly more challenging than previous iterations of MyoChal-
lenge. First, the terrain was highly varied, ranging from flat ground to stairs with step heights up to
24 cm. This diversity required a wide range of motor skills and introduced significant uncertainty as
the agent sparsely observed the terrain with a heightmap. Second, the agent had no direct control over
the prosthetic leg, which has an independent controller as a finite state machine. Lastly, the prosthetic
leg’s internal state was unobservable, with only the socket interaction force on the femur available.
Additionally, although the environment and observables of myoOSL intend to be as realistic as
possible, the socket interaction force might not accurately reflect real-world readings as MuJoCo
simulates all components (e.g., human femur, prosthetic leg, and ground) as rigid bodies [46].

The winning team of the locomotion track uses imitation learning based on a large and diverse motion
capture dataset to generate human-like movements, with most joint motions within physiological
joint limits (Appendix A.7 - Fig. 8 A). This allows the myoOSL to match the biological joints of
reference motion kinematically. However, the prosthetic leg’s stance phase was notably shorter,
visually deviating from typical human walking patterns (Appendix A.7 - Fig. 8 B). This observation
indicates the need for further investigation into how prosthetic limbs influence walking style, effort,
and stability. Future policies could be improved by leveraging internal prosthetic leg information (e.g.,
training a teacher network that observes the internal state and provides reference actions for the policy
[47]). Additionally, both top-ranking teams utilize curriculum learning to improve generalization
across varied terrains, highlighting the role of progressive training in mastering complex motion.

Emphasis on physiological accuracy While advances in machine learning have enabled greater
agility and dexterity in bionic limbs, equal emphasis should be placed on ensuring physiological ac-
curacy relative to experimental human data. This year’s MyoChallenge openly encourages designing
controllers that produce physiologically accurate motions. The manipulation track produced novel
solutions inspired by muscle synergy principles [48], which did not rely solely on machine learning.
In locomotion tasks, team MSKBioDyn’s solution leverages imitation learning from real-world data to
generate movements that significantly reduce overextension torque, without explicit torque penalties,
effectively addressing physiological pain criteria. Although modeling pain as joint overextension
within the locomotion track is a simplified proxy, it serves as a useful first-order approximation to
stimulate discussion and development of physiologically plausible control strategies. More detailed
metrics, such as stress distribution, swelling, or tissue damage [49, 50, 51], remain difficult to sim-
ulate, but the benchmark has already inspired follow-up studies on prosthesis interaction [52, 53].
For future developments, integrating more biologically realistic sensory feedback, such as muscle
spindle models [54, 55], could further bridge the gap between human motor control and bionic limb
performance.

5 Conclusion and Future Challenges

Digital twins of humans are indispensable tools for understanding neuromotor control, enabling cost-
effective prototyping and controller design for bionic limbs. In this paper, we present MyoChallenge
2024: Physiological Dexterity and Agility in Bionic Humans—a competition aiming to benchmark
dexterous manipulation and agile locomotion in prosthesis users. This iteration of myochallenge
has successfully inspired several state-of-the-art controlling algorithms for both upper and lower
limb control with external bionic limbs. The winning solutions show a variety of algorithms ranging
from curriculum learning, imitation learning, model-based control, and biologically inspired muscle
synergy. Nevertheless, these solutions still face challenges in generalizing to unseen environments
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and achieving physiological fidelity for real-world limb loss users. In the upcoming myochallenge,
we aim to target higher-order aspects of human motor control, including athletic intelligence. We also
aim to broaden participation by lowering barriers for researchers from underrepresented groups and
underdeveloped regions. We invite the global research community to join us in advancing neuromotor
control and human-machine interaction by participating in future editions of this competition.
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[20] Łukasz Kidziński, Carmichael Ong, Sharada Prasanna Mohanty, Jennifer Hicks, Sean F. Carroll, Bo Zhou,
Hongsheng Zeng, Fan Wang, Rongzhong Lian, Hao Tian, Wojciech Jaśkowski, Garrett Andersen, Odd Rune
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction rigorously align with the paper’s contribu-
tions: (1) a novel competition framework for human-bionic limb co-control, (2) detailed
methodological analysis of competition results, and (3) quantitative improvements over prior
iterations (e.g., task complexity, participant performance).

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 4, we analyze (1) the methodological limitations of each team’s
approach and (2) the gaps between our simulated environment and real-world prosthetic use.
We identify key challenges and propose actionable steps to bridge these gaps in future work.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we have included the methodology, performance, and setup of the baseline
and solutions in section 2, section 3, and Appendix A.9.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we have included the URL for code, instructions, baseline in the abstract,
section 2 and Appendix A.9. The solutions of the participants are provided base on their
discretion, as some prefer to publish their own separate paper.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the necessary training setup and details in Section 2.2 as well as
the Appendix A.3 - A.8 if available.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: While this challenge doesn’t report the statistical significance due to limited
sample size, we use success rate as the metric as detailed in Section 3.
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources of the baseline and solutions are outlined within each
corresponding Appendix section if available.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The author confirmed that the paper follows the NeurIPS Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, our paper discusses how the benchmarking environment that we have
provided can positively impact the society and people with lost limb in detail within the
introduction, discussion, and conclusion. We also discussed the potential gap between our
platform and real-world prosthetic users, in which the designed algorithm might not transfer
directly.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The paper poses no risk of data misuse.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The MyoSuite is cited as the simulator embedded within MuJoCo with a URL.
The participants’ solutions are cited and referenced accordingly. The license is available on
the MyoSuite GitHub repository. Only publicly available data are used.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All assets are available from the MyoSuite GitHub repository including license,
model and code.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects were involved.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were involved.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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A Appendix

A.1 Competition Details

The competition ran from July 15th to November 21st, with a final workshop in the NeurIPS
2024 conference competition: MyoSymposium (https://sites.google.com/view/myosuite/
myosymposium/neurips24). The workshop allowed winners from both tracks to present their
solutions and bring together researchers and scholars in the field of biomechanics, ML, neuroscience,
and health care.

A.2 Musculoskeletal Models Details

The MPL system features 17 independent actuators controlling 26 degrees of freedom (DOFs) [25].
Each finger contains three coupled DOFs for flexion, with additional abduction DOFs in the index,
ring, and little fingers (the latter two being mechanically coupled) [25]. The thumb’s four DOFs
comprise three flexion axes and one abduction axis, while the wrist provides three rotational DOFs
[25]. The system includes single-DOF joints at both the elbow and humeral rotator, along with a
two-joint shoulder complex enabling flexion-extension and abduction-adduction through serial hinge
joints [25]. This configuration achieves near-human strength, speed, and kinematic fidelity [25].

The myoOSL model integrates a myoelectric residual limb with an OpenSim Leg (OSL) prosthesis
[56, 57]. The OSL component precisely replicates its physical counterpart’s 5.377 kg mass, peak
joint torques (142.2 Nm knee, 168.2 Nm ankle), and functional ranges (0-120° knee flexion, ±30°
ankle rotation) [56, 57]. The combined system’s 23 DOFs include: 19 actively controlled DOFs
(driven by 54 muscle actuators and two OSL torque actuators) and 4 passively constrained DOFs
governing socket-residuum interaction [58].

A.3 Environment Details

Table 2: Variations in Object Physical Properties for Manipulation Track. Default values follow that
of the YCB object set [59]

Property Default Value Variation

Dimensions (mm)
Width 72 ±0–5%
Depth 88 ±0–10%
Height 28 ±0–5%

Mass 97 ±50 grams

Friction Coefficients
Sliding 1.0 ±0.1

Torsional 0.005 ±0.001

Rolling 0.0001 ±0.00002

Manipulation Track Baseline The baseline model is trained using Proximal Policy Optimization
(PPO) [39] implemented in the stable-baselines3 framework [60]. Training is performed on
a single Intel i7 CPU core for 12 hours, employing a three-stage curriculum learning strategy
to progressively increase task difficulty. We use the following hyperparameters: learning rate
η = 3× 10−4, update horizon T = 2048 steps, mini-batch size B = 64, discount factor γ = 0.99,
PPO clip range ϵ = 0.2, entropy coefficient of 0.03 with Adam optimizer.

Locomotion Track Baseline No baseline is provided.
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Table 3: Observation Space Dimensions for the myoMPL Manipulation Task

Observation Dimension

Elapsed time 1
Joint positions of myoArm 38
Joint velocities of myoArm 38
Joint positions of MPL 26
Joint velocities of MPL 26
Position and orientation of object 7
Velocities of object 6
Start position 3
Goal position 3
Object contact information 5
Muscle activations 63
Hand reaching error 3
Hand passing error 3

Total 222

Table 4: Observation Space Dimensions for the myoOSL Locomotion Task

Observation Dimension

Elapsed time 1
Terrain type 1
Joint positions of myoLeg 17
Joint velocities of myoLeg 17
Ground Reaction forces of myoLeg 2
Socket forces 3
Pelvis angle (in world frame) 4
Muscle activations 54
Muscle lengths 54
Muscle velocities 54
Muscle forces 54
Planar Pelvis position (in world frame) 2
Planar Pelvis velocity (in world frame) 2
Terrain height map 100

Total 365

A.4 Computation Resources

Evaluation platform and support for the deployment of MyoChallenge are provided by eval.ai ([61]).
Compute infrastructure to run the MyoChallenge are from Amazon Web Services (AWS), given in
the list below.

• AWS EC2 - c5.4xlarge (16 CPU, 32 GB RAM)
• AWS EBS - gp2 (17 GB)
• AWS ECS for Kubernetes
• AWS ECR
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A.5 Manipulation First Place Detailed Solution

Detailed Reward Design The myo and robot hands were encouraged to grasp the object at different
points on the object (top left and bottom right, respectively) to prevent their fingers from becoming
entangled during handover. To release the object from the myoHand, rather than define a dedicated
reward component, the muscle inputs were simply set to 0 after the robot hand had grasped the object.

More formally, in each stage i = {1, 2} of the training curriculum, the total reward r(i) =
∑

j r
(i)
j

was a sum of individual reward components r(i)j (Table 5). The reward components were functions of
the Euclidean distance between vectors x and x′ (Table 6):

f(x,x′, l) = exp{−l∥x− x′∥2}, g(x,x′) = 1(∥x− x′∥2 < 0.005),

h(x,x′, l) = f(x,x′, l) + g(x,x′),

where 1(condition) is the indicator function that returns 1 if condition is true and 0 otherwise.

Table 5: Reward function components (Muscle Heads)

r
(1)
1 h

(
xthumb (myo)
t ,xobject (top)

t , 5
)
× 1(myoArm thumb behind object)

r
(1)
2 h

(
xindex finger (myo)
t ,xobject (top)

t , 5
)
× 1(myoArm index finger in front of object)

r
(1)
3 10× h

(
[xthumb (robot)

t + xindex finger (robot)
t ]/2,xobject (bottom)

t , 5
)
× 1(object touching myoArm or robot)

r
(1)
4 0.25× f

(
θobject
t ,θobject

0 , 0.5
)

r
(2)
1 h

(
xthumb (robot)
t ,xobject (bottom)

t , 5
)
+ h

(
xindex finger (robot)
t ,xobject (bottom)

t , 5
)

r
(2)
2 10× 1(object touching robot)× 1(robot thumb & index finger on opposite sides of object)

Table 6: Reward function variables (Muscle Heads)

xthumb (myo)
t position of the myoHand thumb tip

xindex finger (myo)
t position of the myoHand index finger tip

xthumb (robot)
t position of the robot thumb tip

xindex finger (robot)
t position of the robot index finger tip

xobject (top)
t position of top left corner of object

xobject (bottom)
t position of bottom right corner of object

θobject
t orientation of object (Euler angles)

Computation Resources Training was performed on a single GPU with 20GB RAM. 20 CPU cores
were used to simulate environments in parallel. Training took approximately 14 hours to perform 7M
steps.

Training and Test Details The policy used to control the myoArm and robot hand was trained
using the SBX (Stable Baselines Jax) implementation of Soft Actor Critic (SAC)[62] with the Adam
optimizer. The following hyperparameters were used: learning rate 1 × 10−4, number of hidden
units in both the policy and the value feedforward networks [256, 256], discount factor 0.99, soft
update coefficient 0.02, buffer size 2.5× 105, batch size 256, train frequency 25 and gradient steps
-1. In total, the policy was trained for 7M steps (agent-environment interactions). Stage 1 of learning
lasted for 3.5M steps, and stage 2 of learning lasted for another 3.5M steps. In stage 3, the robot hand
was moved to the goal location using inverse kinematics. This was achieved by performing gradient
descent on the distance between the desired and actual position of the robot hand with respect to the
joint angles of the robot arm. To avoid pillar collisions, the hand was moved to the goal location via a
waypoint located above the pillar.
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A.6 Manipulation Second Place Detailed Solution

Figure 7: The demonstration of reward terms.

Detailed Weight Design While the actuators within a group perform shared actions, state-dependent
correction weights are introduced to allow fine-tuned adjustments for individual actuators. Specifically,
a unified action is generated for each group, along with state-dependent correction weights for
each actuator. The final action is computed by combining the unified action with the correction
weights, ensuring both efficient exploration and precise control. Additionally, the state-dependent
adaptation allows the agent to perform task-specific adjustments, improving motor control in complex
environments.

Detailed Reward Design

• Position distance: This reward term measures the Euclidean distance between the object and
the target position. We encourage the agent to minimize this distance.

• Palm distance: This term penalizes the distance between the palm and the object to promote
stable grasping.

• Pre-grasp posture: Encourage the hand to achieve a pre-grasp posture, defined as the
alignment of the palm and fingers relative to the object.

• Lift bonus: Binary reward is granted when the object is lifted above a predefined threshold.
• Shoulder elevation: Penalizes deviation from initial shoulder elevation angle, maintaining

stable arm posture.
• Solved bonus: A sparse reward granted upon task completion (object reaches the goal

position).

The structured reward function effectively guided the agent in balancing task objectives and stability
constraints. The agent successfully completed the object transfer task within 10 million training steps,
achieving fast convergence without the need for curriculum learning. The reduced training time also
facilitated rapid tuning of reward weights, allowing for quick adaptation to different task conditions.

Computation Resources The training was conducted on an NVIDIA A100 GPU paired with an
Intel(R) Xeon(R) Gold 6348 CPU, utilizing 64 parallel environments. A total of 10 million training
steps were completed in approximately 3.5 hours.

Training and Test Details The code and configuration for training and evaluation can be found at
https://github.com/zchJo/MyoChallenge-2024-DynSyn.
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A.7 Locomotion First Place Detailed Solution

Figure 8: Motion generated by team MSKBioDyn. (A) Kinematics of four biological joints (right hip
flexion, left hip flexion, left knee flexion, and left ankle flexion) compared to the reference training
data. Joint limits (red areas) are omitted if the joint angles maintain a sufficient margin (> 0.2 rad)
from the limits. (B) Visual comparison of the walking motion with the reference. The left heel strike
phase (highlighted by a red box) notably deviates from the reference, resulting in lower style rewards.

Computational Resources Team MSKBioDyn trained their solution on a single Ubuntu server
equipped with two AMD EPYC 9654 CPUs (96 cores each), a GeForce RTX 4090 GPU with 24GB
of memory, and 384GB of DDR5 RAM. The dynamics computations, performed using MyoSuite and
MuJoCo, were executed on the CPU, and all neural network components, including the PPO algorithm,
were implemented in PyTorch with CUDA acceleration on the GPU. Although the machine had
384GB of system memory, the training script utilized less than 50GB, making the results reproducible
on systems with smaller memory capacity.

Training and Test Details The policy was trained using a simulation environment built on the
MuJoCo C++ library (version 3.2.2), incorporating the human musculoskeletal model provided by
MyoSuite. A custom Python script handled both environment parallelization and neural network
training. The training was performed using 500 parallel environments, with episode durations ranging
from 2.0 to 8.0 seconds depending on the stage of the curriculum. The curriculum was manually
scheduled based on task performance, such as survival time and average rewards. All neural networks
were trained using the Adam optimizer, and adaptive learning rate scheduling was applied for the
actor and critic networks. Further hyperparameter settings for PPO and AMP are summarized in
Table 7.

Dataset and Github Link The solution, including trained policy and terrain encoder networks,
is available at the following link https://github.com/gparc/myochallenge_2024eval_msk.
The motion capture dataset used in imitation learning is also publicly available [63]. The training
environment, which comprises the implementation of the PPO and the imitation learning framework,
remains confidential.
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Table 7: Hyperparameter Settings for AMP and PPO

Parameter Value

AMP Task reward weight 0.1-0.4
AMP Style reward weight 0.6-0.9
AMP Gradient penalty 10.0
PPO Samples per update 200k-800k
PPO Batch size 4096
AMP Discriminator batch size 2048
PPO Learning rate 1e-5 to 1e-4
AMP Discriminator learning rate 1e-5
PPO Discount factor 0.998
PPO Clipping range 0.2
PPO Value loss coefficient 1.0
PPO Entropy coefficient 0.0
PPO Maximum gradient norm 0.5

A.8 Locomotion Second Place Detailed Solution

TD-MPC2 World Model The world model consists of five components:

Encoder z = h(s) ▷ Encodes state into a latent embedding
Latent dynamics z′ = d(z,a) ▷ Predicts next latent state
Reward r̂ = R(z,a) ▷ Predicts reward r of a state transition
Terminal value q̂ = Q(z,a) ▷ Predicts discounted sum of rewards
Policy prior â = p(z) ▷ Predicts an action a∗ that maximizes Q

(2)

where z is a latent state. Components of the world model are trained end-to-end using interaction
data collected in an online RL manner. The official and publicly available implementation at
https://www.tdmpc2.com/ is used.

Training Curriculum Team Loco UCSD uses a simple training curriculum by first learning to
walk on flat terrain, and then subsequently starting to randomize the terrain by varying the slope of
consecutive segments. They empirically find that this leads to faster convergence and thus lower
training wall-time.

Computational Resources Training the locomotion policy takes approximately 2 days on a single
NVIDIA RTX 3090 GPU using 4 parallel environments. CPU and RAM usage is neglible. Terrain
randomization was enabled after 1 day of training, i.e., half-way through. They did not find it
necessary to experiment with other infrastructure, configurations, nor hyper-parameters.

Hyperparameters Team Loco UCSD uses default hyperparameters wherever applicable. However,
key hyperparameters are listed in Table 8 for completeness.
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Table 8: Hyperparameters for Team Loco UCSD’s solution using TD-MPC2.

Parameter Value

Parameters 5M
Architecture MLPs
Activation LayerNorm+Mish
Latent space SimNorm
Batch size 256
Learning rate 3e-4
Discount factor 0.99
Parallel envs 4
Environment steps 10M
Buffer size 1M

A.9 Tutorials and Baseline

Throughout the competition, we provided several colab tutorials, video instructions, baseline as well
as workshops, as summarized below.

Colab Tutorials:

• MyoChallenge Tutorial1 - Getting Started with MyoSuite: https://colab.research.
google.com/drive/1AqC1Y7NkRnb2R1MgjT3n4u02EmSPem88?usp=sharing

• MyoChallenge Tutorial2 - Getting Started with Baselines: https://colab.research.
google.com/drive/1YJqhKWKNJ6MFUKqTQYLilc9M6BdBfA3g?usp=sharing

• MyoChallenge Tutorial3 - Submission Instructions: https://colab.research.google.
com/drive/11vRvWMWykNrd_5ViJVGdLXz2pnbc5QEs?usp=sharing

• MyoChallenge Tutorial4 - Loading Latest Baseline: https://colab.research.google.
com/drive/1vHp7aK8vkhWOwknf-VHeENquHfb86qOP?usp=sharing

Manipulation Baselines:

• Baseline Download URL: https://drive.google.com/drive/folders/
1c1pTdH10LfGdz9Wrb-P3o4iHWqGXtpZZ?usp=sharing

• Baseline rendering: https://youtu.be/332TcmMUABA?si=Zeag_wrnrqRFxxmZ

MyoChallenge 24’ Workshop and Q&A:

• MyoChallenge 24’ Workshop and Q&A: https://youtu.be/bjZomRsV5Ac?si=
Uwjzu3Cj8C4ug4BJ

• MyoSuite/MyoChallenge: Towards Human Embodied Intelligence: https://youtu.be/
uQ2QZznae8M?si=0hBdfroqnKwDVfCa

• MyoChallenge Q&A and Announcement Thread: https://github.com/MyoHub/
myosuite/discussions/206

Documentation:

• Official MyoChallenge ’24 Documentation: https://myosuite.readthedocs.io/en/
latest/challenge-doc.html

• An all-in-one comprehensive guide by Tatsuki Tsujimoto: https://ttktjmt.com/blog/
comprehensive-guide-to-myochallenge-2024/
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