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Abstract

Deep networks have shown remarkable results in the task of object detection.
However, their performance suffers critical drops when they are subsequently
trained on novel classes without any sample from the base classes originally
used to train the model. This phenomenon is known as catastrophic forgetting.
Recently, several incremental learning methods are proposed to mitigate catas-
trophic forgetting for object detection. Despite the effectiveness, these methods
require co-occurrence of the unlabeled base classes in the training data of the
novel classes. This requirement is impractical in many real-world settings since
the base classes do not necessarily co-occur with the novel classes. In view of
this limitation, we consider a more practical setting of complete absence of co-
occurrence of the base and novel classes for the object detection task. We propose
the use of unlabeled in-the-wild data to bridge the non co-occurrence caused by
the missing base classes during the training of additional novel classes. To this
end, we introduce a blind sampling strategy based on the responses of the base-
class model and pre-trained novel-class model to select a smaller relevant dataset
from the large in-the-wild dataset for incremental learning. We then design a
dual-teacher distillation framework to transfer the knowledge distilled from the
base- and novel-class teacher models to the student model using the sampled in-
the-wild data. Experimental results on the PASCAL VOC and MS COCO datasets
show that our proposed method significantly outperforms other state-of-the-art
class-incremental object detection methods when there is no co-occurrence be-
tween the base and novel classes during training. Our source code is available at
https://github.com/dongnana777/Bridging-Non-Co-occurrence.

1 Introduction

Deep learning have shown remarkable performance in a wide variety of tasks, and even surpass
human experts in numerous tasks. However, humans are still better than machines in continually
acquiring, fine-tuning and transferring knowledge throughout their lifetime. This is because deep
networks suffer from catastrophic forgetting [18, 21], i.e. a phenomenon that causes a deep network to
forget previously acquired knowledge on the old base classes when trained on new novel classes. As
a result, this causes the performance of the deep networks to drop significantly on the base classes. In
the task of image-based object detection, object detectors are trained on large-scale datasets and then
deployed on real-world applications [9, 11, 8, 24, 5, 15, 23, 17, 16, 1, 2, 39, 33, 34, 38, 36, 37, 35, 32].
As these applications are often carried out in dynamic environments where novel object classes are
continually presented, the ability for the deep networks to learn novel object classes without forgetting
the base object classes becomes an imperative requirement. A naive approach to achieve this endeavor
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Table 1: Co-occurrence statistics of the base classes in the novel datasets from PASCAL VOC under
various splits of “base + novel" classes.

setting
number of objects

aero bicycle
bird boat

bottle bus car cat chair cow diningtable

dog horse motorbike

person
pottedplant

sheep
sofa train tv

19+1 base classes 2 14 0 0 108 0 8 28 440 0 38 28 0 0 344 116 0 148 0 -
novel classes - - - - - - - - - - - - - - - - - - - 734

15+5 base classes 4 24 8 6 260 2 140 112 1094 4 164 156 20 8 1594 - - - - -
novel classes - - - - - - - - - - - - - - - 1250 706 850 656 734

10+10 base classes 74 666 158 188 890 256 1398 180 2492 246 - - - - - - - - - -
novel classes - - - - - - - - - - 620 1076 812 780 10894 1250 706 850 656 734

is to retain all training data for the base classes and train the deep network concurrently with the
base and novel training data from scratch. However, pragmatic issues such as privacy can limit the
accessibility to the base class dataset previously used to train the base model.

Recently, several incremental learning methods [40, 27, 4, 10, 20, 31] are proposed to overcome
catastrophic forgetting in the object detection task. Despite the impressive performance, these
methods rely on the co-occurrence of unlabeled base classes in the training data of the novel classes.
Due to the fact that the base and novel class datasets are obtained from the same dataset to simulate
incremental learning, the base classes inevitably co-occur in the background of the novel class
training data. Table 1 shows the co-occurrence statistics of the base classes in the novel datasets from
PASCAL VOC under several commonly used experiment settings in the existing works. For example,
class 1-19 are chosen as the base classes and class 20 (“tv") as the novel class. We can see from
the table that the “areo", “bicycle", “bottle", etc. , objects in the base classes co-occur in the sample
images of the novel “tv" object class. Despite the absence of ground truth labels of the base classes
on the novel training data, knowledge of base classes can be replayed and distilled into the novel
model. However, this reliance on the co-occurrence of unlabeled base classes in the training data of
novel classes severely limits the practicality of most incremental learning approaches. This is due to
the inherent non co-occurrence of the base and novel classes in most real-world data.

In this paper, we propose the use of the abundance in-the-wild data to bridge the non co-occurrence of
base classes in the training data of the novel classes. To this end, we first introduce a blind sampling
strategy to select relevant data from the in-the-wild data that contains large amounts of irrelevant
images with neither the base nor novel class information. Specifically, images with high probability
response from the given base model and the novel model trained with the novel class training data are
selected in the blind sampling step. We further design a dual-teacher distillation framework where
the images selected from the blind sampling strategy are used to distill knowledge from the base
and novel teacher models to the student model. Particularly, our dual-teacher distillation framework
consists of: 1) A class remodeling step that remodels the irrelevant classes as background class in the
base and novel model, respectively. This ensures the class probabilities of the disjoint set of classes
in the base and novel models can be compared appropriately to the student model. 2) Image-level
distillation with region of interest (RoI) masks from the pseudo ground truth of the bounding boxes
obtained in the blind sampling step. These RoI masks are used to mask out the irrelevant regions of
the feature maps in the distillation loss. 3) Instance-level distillation with the response heatmaps of
the object detectors. This response heatmaps is essential in transferring both positive (high response
regions) and negative (low response regions) information from the base and novel teacher models to
the student model.

Our main contributions are as follows:

1. We tackle a more challenging and realistic scenario of incremental learning for object detection,
where there is no co-occurrence of the base classes in the training data of the novel classes. This
contrasts with previous approaches whose success depend largely on such co-occurrences.

2. We propose a blind sampling strategy to effectively select useful data from large amounts of
unlabeled in-the-wild data. We also design a dual-teacher distillation framework which utilizes the
sampled data to distill knowledge from the base and novel teacher models to the student model.

3. Extensive experiments conducted on two standard object detection datasets (i.e. MS COCO and
PASCAL VOC) demonstrate the significant performance improvement of our approach over
existing state-of-the-art.
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2 Related Works

2.1 Object Detection

Existing deep object detection models fall generally into two categories: 1) One-stage detectors
and 2) Two-stage detectors. One-stage detectors such as YOLO [23] directly performed object
classification and bounding box regression on the feature maps. SSD [17] uses feature pyramid with
different anchor sizes to cover the possible object scales. RetinaNet [16] proposes the focal loss to
mitigate the imbalanced positive and negative examples. Two-stage detectors such as R-CNN [9]
apply a deep neural network to extract features from proposals generated by selective search [28].
Fast R-CNN [8] improves the speed and performance utilizing a differentiable RoI Pooling. Faster
R-CNN [24] introduces Region Proposal Network(RPN) to generate proposals. FPN [15] builds a
top-down architecture with lateral connections to extract features across multiple layers. Typically,
both one-stage and two-stage object detectors require large amounts of training images per class
and need to train the detectors over many training epochs. Unfortunately, it is unlikely that large
amounts of data for the old classes are present in the new training data. Therefore, the extension of the
capability of detectors to novel categories with no access to the original training data is imperative.

2.2 Class-incremental Learning

Most works on class-incremental learning focus on the image classification problems, and can be
roughly divided into two major families: 1) regularization approaches and 2) rehearsal approaches.
In the regularization approaches, learning capacity is assumed to be fixed and incremental learning is
performed so that the change in parameters is controlled or reduced. Kirkpatrick et. al [13] propose
the elastic weight consolidation (EWC) method in which Ωi is calculated as diagonal approximation
of the empirical Fisher Information Matrix. The second type of regularization-based approaches is
based on knowledge distillation [14, 6]. Li et. al [14] propose to use Learning without Forgetting
(LwF) to keep the representations of base data from drifting too much while learning the novel tasks.
In the rehearsal approaches, the models strengthen memories learned in the past through replaying
the past information periodically. They usually keep a small number of exemplars [22, 29, 3], or
generate synthetic images [26, 19] or features [12, 30] to achieve this purpose. The rehearsal method
for class-incremental learning is first proposed in iCaRL [22], and has been applied in majority of the
class-incremental learning works.

2.3 Class-incremental Object Detection

Class-incremental object detection are relatively less explored than its image classification counterpart.
All the proposed methods follow the regularization-based approach, in which knowledge distillation
is used to address the catastrophic forgetting issue. Shmelkov et. al [27] proposes a Fast R-CNN-
based class-incremental object detection model to address the catastrophic forgetting problem, where
EdgeBoxes [41] is used to produce bounding box proposals. However, the proposals generation stage
introduces an immense computational cost. Sub-optimal performance for the base and novel classes
are obtained since a sub-optimal two-stage object detection model is used. Zhou et. al [40] proposes
an incremental version of Faster R-CNN that distills selected anchors and proposals with the Pseudo-
Positive-Aware Sampling strategy. However, it fails to improve the benchmark [27] on the standard
evaluation criteria. The class-incremental object detection methods mentioned above are impractical
in the real-world since the key success factor is the utilization of co-occurred unlabeled base objects
with novel objects in the novel training data. Zhang et. al [31] presents a class-incremental learning
paradigm called Deep Model Consolidation (DMC) for single-shot object detection architectures,
which combines the base model and the novel model leveraging external unlabeled auxiliary data. In
this work, we develop a novel mechanism for the task of class-incremental object detection based
on the Faster R-CNN framework. Our framework is a dual-teacher that distill knowledge from the
teacher base and novel models to the student model using sampled unlabeled in-the-wild data, without
requiring the co-occurrence of base and novel object classes.
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Figure 1: Overview of our proposed blind sampling strategy. Refer to the text for more details.

3 Our Approach

3.1 Preliminaries

Let (x , y) ∈ D denotes a dataset D which contains images x and their corresponding object bounding
box labels y . We further denote the training dataset of the base classes and the novel classes as
Dbase and Dnovel, respectively. Following the definition of class-incremental learning, we only have
access to the novel class data Dnovel, where ynovel ∈ {Cb+1, . . . ,Cb+n,Cbgn}. The base class data
Dbase, where ybase ∈ {C1 , . . . ,Cb ,Cbgb} are no longer accessible. Cbgn and Cbgb are the background
class of the novel and base data, respectively. Unlike other existing incremental learning methods
for object detection where the base classes can still occur as unlabeled background classes in the
novel training data, we enforce the more realistic strict non co-occurrence {Cb+1, . . . ,Cb+n,Cbgn}∪
{C1 , . . . ,Cb ,Cbgb} = ∅ in our training data. We further assume that a large quantity of unlabeled
in-the-wild data is accessible, from which we sample Dunlabel using our blind sampling strategy.
The base model Mbase(Dbase; θbase) is an object detector trained on the base class data, where θbase
denotes the learnable parameters. Our goal is to train an object detection model Mstud(Dunlabel; θstud)
to detect the novel classes {Cb+1, . . . ,Cb+n,Cbgn} without catastrophic forgetting the base classes
{C1 , . . . ,Cb ,Cbgb}. We use Faster R-CNN [24] as our object detector.

3.2 Blind Sampling Strategy

Although large amounts of unlabeled in-the-wild data are easily obtainable, most of them are not
useful for alleviating the catastrophic forgetting problem. Naive training on these unlabeled in-the-
wild data increases training time and can be detrimental to the network performance. We propose to
circumvent this problem by sampling useful data from the large amounts of unlabeled in-the-wild
data to build the sampled unlabeled dataset Dunlabel. Furthermore, it is important to note that it is not
necessary for the in-the-wild data to contain any object in the base and novel classes. We postulate
that false positives from the in-the-wild data with non-overlapping object classes from the base and
novel classes can also serve as useful training data in our dual-teacher framework. This is based on
the intuition that the features maps and response heatmaps of false positives closely resemble the
positive samples.

As shown in Fig. 1, we use do the blind sampling with the base Mbase(Dbase; θbase) and novel
Mnovel(Dnovel; θnovel) models that are pre-trained on the base Dbase and novel Dnovel training data,
respectively. Specifically, we first feed the input image into both Mbase and Mnovel. The image is
selected if the object class probability qc, ∀ c ∈ {C1 , . . . ,Cb ,Cbgb} in the base model Mbase or ∀
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Figure 2: Overview of our dual-teacher distillation framework for object detection incremental
learning. Blue, orange and black branches denote the dual-teacher base and novel models, and the
student model, respectively. Dash pink lines denote the knowledge distillation process with our
proposed loss functions LRCNN

dist ,LIM
dist and LIN

dist. Best viewed in color.

c ∈ {Cb+1, . . . ,Cb+n,Cbgn} in the novel model Mnovel is greater than a pre-defined threshold. We
use two different thresholds: 1) αbase for Mbase, and 2) αnovel for Mnovel. We further enhance the
accuracy and precision of the blind sampling strategy by a random transformation consistency check.
To this end, we augment the input image by applying random scaling Tscale and horizontal flipping
Tflip. The original image, the randomly scaled and the randomly flipped images are then fed into
the object detection network. We then apply the inverse scaling T−1

scale and horizontal flipping T−1
flip

on the respective outputs. The input image is selected into Dunlabel only if the predicted outputs are
consistent over the random transformations. We improve the precision of the estimated bounding
boxes by bounding box voting [7], where the ensemble results of the regression bounding boxes from
the augmented images are used as the pseudo ground truths in our subsequent dual-teacher distillation
framework.

3.3 Dual-Teacher Distillation

As illustrated in Fig. 2, we use the base Mbase and novel Mnovel models as the dual teachers in
our dual-teacher knowledge distillation framework. The objective is to train a student model Mstud
that inherits the ability to detect all the foreground object classes in the base and novel classes,
i.e. {C1 , . . . ,Cb ,Cb+1, . . . ,Cb+n,Cbgstud

}. We denote the background class of the student model as
Cbgstud

. All Mbase, Mnovel and Mstud are the same Faster R-CNN object detection network.

Remodeling prediction outputs. For knowledge distillation on the object detection head of Faster
R-CNN, we first select the informative foreground region of interests (RoIs) proposals from the 256
candidates generated by the region proposal network (RPN) of the two teacher models, respectively.
Subsequently, the combination of the selected RoIs from the base Mbase and novel Mnovel models are
shared to the student model Mstud. These selected foreground RoIs are passed through the R-CNN
module of the student model to compute the prediction outputs (q stud

c , r stud
c ), where q is predicted

probability and r is coordinates of the predicted bounding box. The output foreground RoIs of the
two teacher models (qbase

c , r base
c ) and (qnovel

c , r novel
c ) serve as the targets. However, the student model

is a b + n-class object detector, while the base model and the novel model are a b-class and a n-class
object detector, respectively. This means that the output object class probabilities and the bounding
boxes between the teacher and student models cannot be compared directly.

To alleviate this problem, we propose the remodel the prediction outputs of the student model in
accordance to the targeted teacher model. For the distillation of the base model, we remodel the
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non-overlapping classes from the student model with the base model into the background class of
the base model: q̃ stud,base

c = {(q stud
bg + q stud

cb+1
+ · · ·+ q stud

cb+n
), q stud

c1 , q stud
c2 , . . . , q stud

cb
}. Similarly for the

distillation of the novel model, we remodel the non-overlapping classes from the student model with
the novel model into the background class of the novel model, i.e. q̃ stud, novel

c = {(q stud
bg +q stud

c1 +q stud
c2 +

· · · + q stud
cb

), q stud
cb+1

, . . . , q stud
cb+n

}. We do the same remodeling on the regression head of the object
detectors. The regression outputs r stud

c of the student model are remodeled into two parts r̃ stud,base
c and

r̃ stud,novel
c according to the number of shared RoIs with the base and novel models, respectively.

Finally, the output class probabilities and bounding boxes of the student and teacher models are be
directly compared in the R-CNN distillation loss function given by:

LRCNN
dist = Lkl_div(log(q̃

stud,base
c ), qbase

c ) + λLsmoothL1
(r̃ stud,base

c , r base
c )

+ Lkl_div(log(q̃
stud,novel
c ), qnovel

c ) + λLsmoothL1
(r̃ stud,novel

c , r novel
c ),

(1)

where Lkl_div is the KL-divergence loss between the class probabilities of the student and teacher
models. Following [8], LsmoothL1

is a robust L1 loss between the bounding box parameters of the
student and teacher models. λ is a hyperparameter to balance the KL-divergence and Smooth-L1
losses. Intuitively, LRCNN

dist supervises the student model Mstud to produce outputs that are close to the
base Mbase and novel Mnovel teacher models.

Image-level distillation with RoI masks. [25] shows that intermediate-level supervisions from
the hidden layers of the teacher model can guide the student model towards better generalization
than supervision on only the output predictions. However, the approach cannot be naively applied
to our incremental learning setting. A direct knowledge distillation on the full feature maps of the
dual teachers causes conflicts and thus hurts the overall performance. Specifically, the base model
teacher would wrongly instruct the student model to suppress the novel classes as the background
class, and vice versa. To mitigate these conflicts, we use the pseudo ground truth bounding boxes of
the foreground classes from the blinding sampling step as RoI masks Mask base and Mask novel. These
RoI masks are applied to the feature map distillation loss to focus the attention on the regions of
interest. Concurrently, these masks prevent the confusion of the background classes from the two
teacher models. We write the image-level distillation loss with the RoI masks on the feature maps as:

LIM
dist =

1

2Nbase

W∑
i=1

H∑
j=1

C∑
k=1

Maskbase
ij

∥∥∥F stud
ijk −F base

ijk

∥∥∥2

+
1

2Nnovel

W∑
i=1

H∑
j=1

C∑
k=1

Masknovel
ij

∥∥∥F stud
ijk −F novel

ijk

∥∥∥2

,

(2)
where N base =

∑W
i=1

∑H
j=1 Mask base

ij , N novel =
∑W

i=1

∑H
j=1 Mask novel

ij . F base, F novel and F stud

denote the feature of the teacher base and novel models, and the student model, respectively. W , H
and C are the width, height and channels of the feature map.

Instance-level distillation with heatmaps. Since the image-level distillation can lead to domination
at instance-level, we introduce an instance-level distillation to balanced attentions on all instances.
We define the instance-level distillation loss with the response heatmaps of the object detection
models. Each location on the heatmap and its response represent the degree of influence on the
model prediction outputs from a pixel on the input image. Let us denote the features of the object
proposals generated by the base, novel and student models as f base, f novel and f stud, respectively. The
heatmaps of the base, novel and student models are then given by channel-wise average pooling and
element-wise Sigmoid activation S(.), i.e. Hbase

ij = S( 1
C

∑C
k=1 f

base
ijk ),Hnovel

ij = S( 1
C

∑C
k=1 f

novel
ijk ),

and Hstud
ij = S( 1

C

∑C
k=1 f

stud
ijk ) over the spatial locations i = 1, . . . ,W and j = 1, . . . ,H . To enforce

consistency between the student model and the two teacher models at instance level, we design the
instance-level distillation loss LIN

dist as the mean squared error (MSE) between the student heatmap
Hstud and the union of the heatmaps Hbase ∪Hnovel from the two teacher models, i.e.

LIN
dist = Lmse(Hbase ∪Hnovel,Hstud). (3)

Overall loss. The overall loss Ltotal to train the student model incrementally on the sampled
unlabeled in-the-wild dataset Dunlabel given by:

Ltotal = LRCNN + LRPN + α1LRCNN
dist + α2LIM

dist + α3LIN
dist, (4)
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where LRCNN and LRPN are the loss terms for the R-CNN and RPN module of the two-stage detector
Faster R-CNN, supervised by the pseudo ground truths from the blind sampling step. α1, α2, and α3

are the hyperparameters to weigh the loss terms.

4 Experiments

4.1 Experimental Setup

Datasets and metrics. Following [27], we evaluate our proposed method for class-incremental
object detection on the PASCAL VOC 2007 and MS COCO 2014 datasets. PASCAL VOC 2007
consists of about 5K training and validation images and 5K test images over 20 object categories.
Models are trained on the trainval set and tested on the test set. MS COCO 2014 contains objects
from 80 different categories with 83K images in the training set and 41K images in the validation
set. We train models on the training set and evaluate models on the first 5K images of the validation
set. In the test stage, the mean average precision (mAP) is used as the evaluation metrics. We report
the COCO style (mAP [0.5 : 0.95]) detection accuracy for MS COCO dataset, and PASCAL style
(mAP [0.5]) accuracy for PASCAL VOC dataset. Additional average precision and recall across
scales are also reported, which is in line with standard evaluation protocol of MS COCO. To evaluate
the compared methods under the setting with a large amount of in-the-wild unlabeled data for the
PASCAL VOC and MS COCO target datasets, we take the MS COCO and Open Images datasets
as the unlabeled data. We also run the experiments under a more strict setting that excludes all MS
COCO images that contain any object instance of 20 PASCAL VOC categories to avoid any potential
advantage from the classes of PASCAL VOC appearing in MS COCO. We denote this setting as
"w/o category".

Implementation details. We use ResNet-50 with frozen batch normalization layers as the backbone
network. The training methodology is the same as standard Faster R-CNN. We use stochastic gradient
descent with Nesterov momentum to train the models in all experiments. The initial learning rate
is set to 1e-3 and subsequently reduced by 0.1 after every 5 epochs for the previous model and the
current model. Each model is trained for 20 epochs for both PASCAL VOC and MS COCO datasets.
The training is carried out on 1 RTX 2080Ti GPU, and the batch size is set to 1.

4.2 Comparison of Methods

Table 2: Results of "19+1" on VOC test set. "1-19"
and "20" ("tv") are base and novel classes. "base |
novel | all" is mAPs for base, novel and all classes.
Row 1-3 are baselines without incremental learning.

Class Method mAP(%)
(base | novel | all)

1-20 (w/o co-occur) Ren [24] 73.1 | 55.4 | 72.3
1-19 (w/o co-occur) Ren [24] 73.4 | − | −
20 (w/o co-occur) Ren [24] − | 47.4 | −

(1-19) + (20)
(w/o co-occur)

Shmelkov [27] 62.6 | 39.2 | 61.4
Ours (w category) 73.3 | 50.7 | 72.2

Ours (w/o category) 71.5 | 46.1 | 70.2

(1-19) + (20)
(w co-occur)

Shmelkov [27] 68.5 | 62.7 | 68.3
Zhou [40] 70.5 | 53.0 | 69.6

Ours (w category) 73.5 | 65.8 | 73.1

Addition of one class. Table 2 shows the re-
sults of one addition class incremental learning.
We take the first 19 classes in alphabetical order
from PASCAL VOC as the base classes C1, ..., Cb

and the remaining class is used as the novel
class Cb+1. In addition to the disjoint base and
novel classes following the definition of class-
incremental learning, we also exclude images that
have co-occurrence of any base and novel ob-
jects. We report the mean average precision (mAP)
of the base, novel and all classes, which we de-
note as base | novel | all. The first three rows
show the evaluation results of the "1-20", "1-19",
"20" baselines without using incremental learn-
ing. Furthermore, we compare to the state-of-the-
art incremental object detection method [27] on
training data with ("w co− occur") and without

("w/o co− occur") co-occurrence of the base and novel classes. In the absence of co-occurrence,
we can see that [27] suffers a drop in the performance of the novel class from 62.7% to 39.2%
mAP, and base class from 68.5% to 62.6% mAP. It should also be noted that the mAPs of [27] are
significantly lower than the baselines without incremental learning. In contrast, our approach without
co-occurrence and with class overlap in the in-the-wild data ("w category") achieves mAPs of
73.3% | 50.7% | 72.2% (base | novel | all). Our result is almost on par with the results of the baseline
training with all classes "1-20" without incremental learning at 73.1% | 55.4% | 72.3%. Additionally,
we can also see that our method still achieves high mAP of 71.5% | 46.1% | 70.2% even when
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there is no class overlap in the in-the-wild data ("w/o category"). This supports our postulation
that false positives sampled from the in-the-wild data can also benefit our dual-teacher incremental
learning framework. Interestingly, we can also run our dual-teacher distillation framework on the
"w co− occur" data. It can be seen that we significantly outperform [27] and [40].

Table 3: Results of "15+5" on VOC test set. "1-15"
and "16-20" are the base and novel classes.

Class Method mAP(%)
(base | novel | all)

1-20 (w/o co-occur) Ren [24] 74.4 | 62.7 | 71.7
1-15 (w/o co-occur) Ren [24] 72.0 | − | −
16-20 (w/o co-occur) Ren [24] − | 48.6 | −

(1-15) + (16-20)
(w/o co-occur)

Shmelkov [27] 67.2 | 46.1 | 62.0
Ours (w category) 70.5 | 49.4 | 65.3

Ours (w/o category) 70.7 | 48.5 | 65.1
Class (1-15) + (16-20)

(w co-occur)
Shmelkov [27] 68.4 | 58.4 | 65.9

Ours (w category) 72.7 | 58.4 | 69.1

Table 4: Results of "10+10" on VOC test set. "1-10"
and "11-20" are the base and novel classes.

Class Method mAP(%)
(base | novel | all)

1-20 (w/o co-occur) Ren [24] 66.5 | 69.0 | 67.7
1-10 (w/o co-occur) Ren [24] 57.8 | − | −

11-20 (w/o co-occur) Ren [24] − | 63.2 | −

(1-10) + (11-20)
(w/o co-occur)

Shmelkov [27] 58.5 | 49.1 | 53.8
Ours (w category) 57.6 | 62.2 | 59.9

Ours (w/o category) 58.5 | 62.3 | 60.4

(1-10) + (11-20)
(w co-occur)

Shmelkov [27] 63.2 | 63.1 | 63.1
Zhou [40] 63.5 | 60.0 | 61.8

Ours (w category) 69.2 | 68.3 | 68.7

Addition of a group of classes. Table 3 shows the results on 5 novel classes. We can see that our
proposed approach "w/o co− occur" and "w & w/o category" achieves mAPs that are close to the
baseline (without incremental learning) on the base (Ours "w & w/o category": 70.7% & 70.5%
vs. "1-15": 72%) and novel (Ours "w & w/o category": 48.5% & 49.4% vs. "16-20": 48.6%)
classes. Furthermore, we achieve higher performances compared to [27] (Ours: 70.7 | 48.5 | 65.1
vs. [27]: 67.2 | 46.1 | 62.0) when trained without co-occurrence of the base and novel classes.
Table 4 shows the results on 10 novel classes. We can see that our methods "w/o co − occur"
and "w & w/o category" achieve performances that are almost on par with the baselines without
incremental learning on the base (Ours "w & w/o category": 57.6% & 58.5% vs "1-10": 57.8%)
and novel (Ours "w & w/o category": 62.2% & 62.3% vs. "11-20": 63.2%) classes. Moreover, our
method significantly outperforms [27] on the novel classes when trained without co-occurrence (Ours
"w category": 62.2%; Ours "w/o category": 62.3% vs. [27]: 49.1%). In Tables 3 and 4, we also
show that our method outperforms [27] and [40] under the "w co − occur" setting. These results
show the effectiveness of our proposed approach when a group of novel classes are added.

Table 5: Results of "10+5+5" on VOC test set. "1-10" are the base
classes, and "11-15" and "16-20" are the two groups of sequentially
added novel classes.

Class Method mAP(%)
(base | novel | all)

1-20 (w/o co-occur) Ren [24] 66.6 | 67.3 | 66.7
1-10 (w/o co-occur) Ren [24] 57.8 | − | −

11-15 (w/o co-occur) Ren [24] − | 62.4 | −
16-20 (w/o co-occur) Ren [24] − | 48.6 | −

(1-10)+ (11-15)
(w/o co-occur)

Shmelkov [27] 59.8 | 52.4 | 57.3
Ours (w category) 57.0| 62.7 | 58.9

Ours (w/o category) 57.3 | 61.7 | 58.8

(1-10)+ (11-15)+ (16-20)
(w/o co-occur)

Shmelkov [27] 59.0| 47.3 | 53.1
Ours (w category) 56.7 | 55.1 | 55.8

Ours (w/o category) 56.9 | 53.9 | 55.4
(1-10)+ (11-15)+ (16-20)

(w co-occur)
Zhou [40] 60.3 | 53.1 | 56.7

Ours (w category) 68.1 | 64.8 | 66.5

Addition of classes sequentially. To
prove that our method is also efficient
for sequential incremental learning,
we train the model by sequentially
adding new groups of novel classes.
In our experiments, we use "1-10" as
the base classes, and "11-15" and "16-
20" are two groups of novel classes to
be sequentially added. Tables 5 shows
the results of sequential incremental
learning. We can see that our method
shows on par performance with [27]
under "w/o co − occur" on the base
classes when the novel class group of
"11-15" (Ours "w & w/o category":
57.0% & 57.3% vs. [27]: 59.8%)
and "11-15"+"16-20" (Ours w & w/o
category: 56.7% & 56.9% vs. [27]:
59.0%) are added. Under the same set-
tings, our method significantly outper-
forms [27] on the sequential addition

of the two groups of novel classes "11-15" (Ours "w & w/o category": 62.7% & 61.7% vs. [27]:
52.4%) and "11-15"+"16-20" (Ours "w & w/o category": 55.1% & 53.9% vs. [27]: 47.3%). We
also outperform [40] significantly under the "w co− occur" setting.

To demonstrate the generality of our method, we conduct an experiment using the validation set
of Open Images as the unlabeled data. Specifically, we sample 1.5 × 104 images for Dunlabel
from the validation set of Open Images with our blind sampling strategy in the "19+1" setting.
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Table 7: Results of "40+40" on COCO minival set. First 40 classes are the old classes, and the next 40 are the
added classes.

Class Method AP AP50 AP75 APS APM APL
1-80 (w/o co-occur) Ren [24] 27.7 45.8 29.4 10.8 30.9 42.5

(1-40) + (40-80)
(w/o co-occur) Ours 22.5 40.9 23.0 8.3 25.9 34.6

(1-40) + (40-80)
(w co-occur)

Shmelkov [27] 21.3 37.4 - - - -
Zhou [40] 22.7 36.8 - - - -

Ours 23.7 42.5 24.3 8.6 26.6 37.5

Table 6: Results of "19+1" on VOC test set. "1-19"
and "20" are the base and added novel classe(s).

Class Method mAP(%)
(base | novel | all)

1-20 (w/o co-occur) Ren [24] 73.1 | 55.4 | 72.3
1-19 (w/o co-occur) Ren [24] 73.4 | − | −
16-20 (w/o co-occur) Ren [24] − | 47.4 | −

(1-19) + (20)
(w/o co-occur)

Shmelkov [27] 62.6 | 39.2 | 61.4
Ours 71.3 | 48.6 | 70.1

(1-19) + (20)
(w co-occur)

Shmelkov [27] 68.5 | 62.7 | 68.3
Zhou [40] 70.5 | 53.0 | 69.6

The results are shown in Table 6. We can see
that a remarkable performance improvement of
8.7% and 9.4% mAP is achieved by our method
compared to [27] for the base and novel classes,
respectively. In addition, we significantly out-
perform [27] by a large margin of 8.7% mAP
on all classes. These results demonstrate the su-
perior ability of our proposed method for class-
incremental object detection.

Table 7 shows the results of further experiments
on COCO with the test set of Open Images as
the unlabeled data. In particular, we split the
80 classes into a "40+40" setup. For fair com-
parison, we report results on the minival dataset

following [27]. Our method achieves a better performance of 22.5% mAP without co-occurrence of
base objects and novel objects compared to [27] with the unfair advantage of co-occurrence. Further-
more, we can see that our method significantly outperforms [27] and [40] under the "w co− occur"
setting.

4.3 Ablation Studies

Figure 3: Results of "19+1" on VOC test set with varying amount
of unlabeled data.

Effect of the amount of unlabeled
data. Fig. 3 illustrates the effect of
the amount of unlabeled data used
for training. For "19+1", we sam-
ple 103, 5 × 103, 104, 1.5 × 104, 2 ×
104 images using our blind sam-
pling strategy for the "w category"
setting. We sample 103, 5 ×
103, 104, 1.5 × 104 images for the
"w/o category" due to the limited
amount of "w/o category" data in un-
labeled MS COCO dataset. We re-
port the mean average precision over
all steps. Overall, our method can
even outperform the previous state-of-
the-art by only using 103 unlabeled
"w/o category" images.

Effect of the main configurations.
Table 8 shows the ablation studies to

understand the effectiveness of each component in our framework. The ablated components include:
1) R-CNN distillation; 2) Image-level distillation; 3) Instance-level distillation. The first row is the
result of only the standard Faster R-CNN loss, trained with pseudo ground-truth data generated
by the two teacher models on the unlabeled in-the-wild dataset. We can see that this setting gives
the lowest performance, which is evident on the importance of our three distillation losses. The
subsequent inclusions of the three respective distillation losses in Row 2-5 show improvements
over the standard Faster-RCNN baseline. These results further demonstrate the effectiveness of
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Table 8: Ablation studies for the setting of "19+1" on VOC 2007 test set.

Blind sampling strategy LRCNN + LRPN LRCNN
dist LIM

dist LIN
dist

mAP(%)
(base | novel | all)

✓ ✓ 64.4 | 35.3 | 62.9
✓ ✓ ✓ 68.0 | 44.9 | 66.9
✓ ✓ ✓ 68.5 | 39.6 | 67.1
✓ ✓ ✓ 67.6 | 39.2 | 66.2

✓ ✓ ✓ ✓ 70.0 | 44.3 | 68.7
✓ ✓ ✓ ✓ ✓ 71.5 | 46.1 | 70.2

the remodeling prediction outputs (LRCNN
dist ), RoI masks (LIM

dist) and heatmaps (LIN
dist) on our method.

Finally, the last row shows the best performance with our proposed blind sampling strategy and
distillation losses.

5 Conclusion

In this paper, we present a novel class-incremental object detection for a more challenging and
realistic scenario when there is no co-occurrence of base and novel object classes in images of the
novel training dataset. This contrasts with other existing methods whose key success factor is the
co-occurrence. We propose the use of unlabeled in-the-wild data to bridge the non co-occurrence
caused by the missing base classes during the training of additional novel classes. A blind sampling
strategy is proposed to select a smaller set of relevant data for incremental learning. We then design
a dual-teacher knowledge distillation framework with three levels of distillation losses to transfer
knowledge from the base- and novel-class teacher models to the student model using the sampled
in-the-wild data. Extensive experimental results on benchmark datasets show the effectiveness of our
proposed method.
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