
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RECURSIVE REASONING FOR SAMPLE-EFFICIENT
MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Policy gradient algorithms for deep multi-agent reinforcement learning (MARL)
typically employ an update that responds to the current strategies of other agents.
While being straightforward, this approach does not account for the updates of
other agents within the same update step, resulting in miscoordination and reduced
sample efficiency. In this paper, we introduce methods that recursively refine the
policy gradient by updating each agent against the updated policies of other agents
within the same update step, speeding up the discovery of effective coordinated
policies. We provide principled implementations of recursive reasoning in MARL
by applying it to competitive multi-agent algorithms in both on and off-policy
regimes. Empirically, we demonstrate superior performance and sample efficiency
over existing deep MARL algorithms in StarCraft II and multi-agent MuJoCo. We
theoretically prove that higher recursive reasoning in gradient-based methods with
finite iterates achieves monotonic convergence to a local Nash equilibrium under
certain conditions.

1 INTRODUCTION

Deep multi-agent reinforcement learning (MARL) research has made strides towards solving practical
problems such as cooperative robotics (Ismail et al., 2018), transportation management (Haydari
& Yılmaz, 2020) and network traffic optimization (Pi et al., 2024). While deep RL algorithms
have garnered impressive results in complex single-agent control problems (Mnih et al., 2015; Tang
et al., 2024), multi-agent systems present unique challenges. Roadblocks in MARL research include
exploding joint state-action spaces and non-stationarity due to concurrent learning (Li et al., 2009;
Barfuss & Mann, 2021). Another significant challenge caused by simultaneous learning in MARL is
that each agent’s update does not account for the updates of other agents in the same update step,
resulting in reduced sample efficiency (Zhang et al., 2021).

In this paper, we propose applying recursive reasoning to refine the policy gradient up-
date, allowing each agent to reason about the change in behavior of other agents. Ide-
alistic multi-agent frameworks assume mutual consistency: the assumption that each
agent’s beliefs about other agents’ behavior and updates are accurate (Robertson, 1936).

Vanilla policy
gradient update

Update with
recursive reasoning

Agent 1

Agent 2

Figure 1: Illustration of recursive reasoning
with policy gradients for two agents.

Due to limited computation, practical multi-agent
systems update each agent as if the policy of every
other agent is fixed - an assumption known as ficti-
tious play (Foster & Young, 1998). The notion of
mutual consistency in the deep MARL setting can be
achieved by using the updated policies of other agents
in order to recursively refine the policy gradient.

Research in both on-policy and off-policy MARL
algorithms have produced impressive results from
the extension of single-agent RL methods to incor-
porate joint state and action information available in
the multi-agent setting. In this work, we demonstrate
the effectiveness of recursive reasoning in on and
off-policy settings in three challenging multi-agent
coordination environments. We first introduce a recur-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

sive on-policy algorithm we term ReMAPPO (Recursive Multi-Agent Proximal Policy Optimization)
(based on MAPPO (Yu et al., 2022)) which extends the performance difference lemma (Kakade &
Langford, 2002) to model policy distribution updates. We also apply recursive reasoning to off-policy
algorithms which utilize the deterministic policy gradient theorem (Silver et al., 2014); we term
these implementations ReFACMAC (Recursive FACtored Multi-Agent Centralized policy gradients)
and ReMADDPG (Recursive Multi-Agent Deep Deterministic Policy Gradients), based on FAC-
MAC (Peng et al., 2021) and MADDPG (Lowe et al., 2017) respectively. Finally, we motivate our
method further by conducting a theoretical study of higher recursive reasoning with policy gradients
and show that it results in bounded convergence to an ϵ-Nash equilibrium under certain conditions
with finite iterates.

2 RELATED WORKS

Policy gradient methods in multi-agent reinforcement learning Policy gradient methods often
estimate action-values of joint actions taken during training. MADDPG utilizes a multi-agent
extension of the deterministic policy gradient (Silver et al., 2014) and exhibits more robust behavior
than independent DDPG (Lillicrap et al., 2015). Foerster et al. (2018) propose COMA, which uses
a baseline term to reduce centralized gradient noise, improving credit assignment. Similarly, Du
et al. (2019) implement a framework that learns a proxy reward in order to discriminatingly credit
agents in multi-agent actor-critic methods. Yu et al. (2022) conduct a comprehensive study on
MAPPO, a variant of Proximal Policy Optimization (PPO) (Schulman et al., 2017) which conditions
its advantage estimation on global state information. While the policy gradient methods mentioned
display impressive results, they suffer from instability caused by a lack of mutual consistency,
since they don’t account for the updates of other agents. To counter this, LOLA (Foerster et al.,
2017) utilizes higher-order gradient terms to mutually shape the learning updates of agents in two-
player reciprocity-based games. POLA (Zhao et al., 2022) builds on LOLA, reinterpreting it as a
proximal operator by penalizing divergence over policy behavior, mitigating LOLA’s sensitivity to
parameterizations. POLA’s viability in complex multi-agent cooperative environments has not yet
been sufficiently examined; we show in this work that our implementations of recursive reasoning
achieve greater performance and sample efficiency. Unlike POLA, our implementations focus on
recursive reasoning via informative policy losses as opposed to computationally expensive higher-
order gradient terms or rollouts. M-FOS (Khan et al., 2023) also uses opponent shaping with a
recursive paradigm; we do not benchmark it as its meta-game formulation is out of the scope of this
paper.
Recursive reasoning in reinforcement learning Recursive reasoning has proven useful in several
multi-agent opponent modeling scenarios. Notably, the cognitive hierarchies framework (Camerer
et al., 2004) has been combined extensively with deep RL techniques for the training of self-driving
vehicles which must cooperate within a heterogeneous population of peer vehicles (Wang et al., 2022;
Karimi et al., 2023; Dai et al., 2023). The notion of recursive reasoning in MARL is linked to intuition
behind successful human collaboration: social research suggests that humans collaboratively solve
complex problems better when they model the decision-making process of other humans (Gurney
et al., 2021; Schaafsma et al., 2015).

3 PRELIMINARIES

We consider a multi-agent extension of a Markov decision process (Puterman, 2014) known as a
Markov game (Littman, 1994), defined by a tuple G = ⟨I,S,A,P,R, γ,N, ι⟩. I ≡ {1, . . . , N} is
the set of agents, S is the state space, A ≡ ×i∈IAi is the joint action space of the agents. At each
timestep t, agent i (the ‘self’ agent) samples an action ai ∈ Ai from policy πi (ai|s) parameterized
by θi ∈ Rdi , where di is the dimensionality of the parameterization. At each timestep, the ‘non-
self’ agents sample a joint action a−i ∈ ×j∈I\iAj from joint policy π−i(.|s) parameterized by
joint non-self parameters θ−i ∈ R

∑
j∈I\i dj . The joint action of all agents a from the joint policy

π(.|s) determines the next state according to the joint state transition function P (s′|s,a). In the
case of deterministic policies, we denote the self, non-self, and joint policies as µi, µ−i, and µ
respectively. R ≡ {R1, . . . , RN} are the set of agent reward functions. Each agent i has a learning
rate ηi and receives a reward ri,t at time t according to its reward function Ri (s,a, s

′). γ is the
discount factor and ι is the initial state distribution. We define the joint value function for agent

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

i as V π
i (s) = Eπ,P

[∑∞
k=0 γ

kri,k|s
]

as the sum of discounted rewards for agent i following the
joint policy π from state s. Similarly, we define the joint action-value function for agent i as
Qπ

i (s,a) = Eπ,P

[∑∞
k=0 γ

kri,k|s,a
]

as the sum of discounted rewards for agent i after taking joint
action a in state s and following the joint policy π thereafter. We define the advantage function
for agent i as Aπ

i (s,a) = Qπ
i (s,a) − V π

i (s). Each agent aims to maximize its own multi-agent
objective, Ji (θi,θ−i) = E

s∼ ι
[V π

i (s)]. Note that we condition objectives and loss functions on
parameters θ to emphasize that gradient updates are made in weight space, while value functions are
denoted with policies π to emphasize that actions depend on both weights and the form of the policy
distribution.

4 RECURSIVE REASONING IN MULTI-AGENT POLICY GRADIENT ALGORITHMS

Multi-agent policy gradient algorithms are primarily concerned with estimating the gradient of the
objective in Section 3. Typical estimations of∇θi

Ji (θi,θ−i) respond to the action distribution of
other agents before they have made an update, under the assumption of fictitious play. We use θ′

i to
denote agent i’s parameters after a naive update:

θ′
i ← θi + ηi∇θiJi (θi,θ−i) , ∀i ∈ I. (1)

Once θ′
i has been obtained for all agents, the update step can be taken once again from the initial

parameters of each agent while considering the updated policies of the other agents. We use θRe
i to

denote agent i’s parameters after this recursive procedure:

θRe
i ← θi + ηi∇θi

, Ji
(
θi,θ

′
−i

)
, ∀i ∈ I. (2)

Successfully estimating Equation 2 in deep MARL settings is the primary aim of this work. Note that
the recursive update of each agent is still only one gradient step away from the initial parameters;
the recursive updates are not moving further in weight space, but rather finding a gradient
direction that is refined by the updated policies of the other agents.

4.1 REMAPPO

Recall the surrogate loss of Multi-Agent Proximal Policy Optimization (MAPPO):

LMAPPO
i (θi) = E(s,a)∼π [min (ri(s, ai), clip(ri(s, ai), 1− ϵ, 1 + ϵ)) ·Aπ

i (s,a)] , (3)

where ri(s, ai) =
π′
i(ai|s)

πi(ai|s) is the sampling ratio of the updated policy for actions taken in the
environment, ϵ is a clipping boundary, and Aπi

i (s,a) is the state-conditioned advantage function for
policy πi. By extending the performance difference lemma (PDL) over updated actions of non-self
agents, we derive a new surrogate loss for the algorithm we call ReMAPPO:

LReMAPPO
i (θi,θ

′
−i) = E(s,a)∼πi,π′

−i
[min (r′i(s,a), clip(r′i(s,a), 1− ϵ, 1 + ϵ)) ·Aπ

i (s,a)] , (4)

where θ′
−i and π′

−i are the updated parameters and policies of non-self agents respectively. Note that
in both surrogate losses, Aπ

i (s,a) is typically estimated using (solely state-dependent) generalized
advantage estimation (Schulman et al., 2015). Crucially, we define a new importance sampling ratio
r′i(s,a) =

π′
i(ai|s)

πi(ai|s) ·
π′

−i(a−i|s)
π−i(a−i|s) , which modifies ri(s, ai) with the updated joint probability of the

non-self policies. Intuitively, this additional joint probability ratio can be seen as a weighting of the
original surrogate loss in Equation 3 which places more or less weight on each sample depending on
the updates of other agents. If the advantage is positive and other other agents increase their action
probabilities, the self-agent is incentivized to increase its probability even more in response. If the
advantage is positive but the other agents decrease their respective action probabilities, the degree to
which the self-agent will increase its action probability is reduced accordingly. The effect is similarly
intuitive in the negative advantage case. A comprehensive derivation of the ReMAPPO surrogate
objective is available in Appendix C.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4.2 REFACMAC AND REMADDPG

Off-policy gradient algorithms in MARL typically estimate the Deterministic Policy Gradient (DPG)
over joint actions. The actor losses for MADDPG and FACMAC take the following respective forms:

LMADDPG
i (θi,θ−i) = Es∼dβ [Qµi

i (s,µ(s))] , (5)

LFACMAC
i (θi,θ−i) = Es∼dβ [F (Qµ1

1 (s,µ(s)) , ..., Qµi

i (s,µ(s)) , ..., QµN

N (s,µ(s)))] , (6)

where β is an arbitrary behavior policy, Qµi

i (s,µ(s)) is the action-value function for agent i over
joint actions, and F is a learned mixing function which factorizes a joint action-value function. By
incorporating the updates of non-self agents, we reformulate these losses to define the recursive
algorithms ReMADDPG and ReFACMAC:

LReMADDPG
i (θi,θ

′
−i) = Es∼dβ

[
Qµi

i

(
s, µi(s),µ

′
−i(s)

)]
, (7)

LReFACMAC
i (θi,θ

′
−i) = Es∼dβ

[
F
(
..., Qµi

i

(
s, µi(s),µ

′
−i(s)

)
, ...,

)]
. (8)

Note that while correctly estimating the DPG requires an unbiased action-value estimate, off-policy
algorithms such as DDPG Lillicrap et al. (2015) introduce bias in practice via stabilization tricks
such as bootstrapping with target networks. Centralized multi-agent algorithms introduce further bias
by estimating joint action value functions with off-policy target bootstrapping of non-self agents (Liu
et al., 2022; Lowe et al., 2017). In other words, the centralized and factored critics used in MADDPG
and FACMAC are trained on actions taken by the behavior policies of the agents, but are used to
estimate the joint action-value function given arbitrary actions from the non-self agents during the
actor update. By using recursive non-self actions for each agent’s joint action-value function, we
also estimate the value of joint actions that are arbitrarily distinct from those present during data
collection (with the added benefit of mutual consistency with the updates of other agents). Thus, we
maintain that ReMADDPG and ReFACMAC introduce no additional bias over their non-recursive
counterparts.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

In this section, we demonstrate the effectiveness of recursive reasoning algorithms across three
challenging benchmarks: StarCraft II in JaxMARL (SMAX) (Rutherford et al., 2023), the StarCraft
II Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019), and Multi-Agent Multi-Joint dynamics
with Contact (MAMuJoCo) (Peng et al., 2021). Note that SMAX and SMAC have different dynamics
and are considered separate benchmarks. We benchmark 11 SMAX maps (8 SMACv1-based and 3
SMACv2-based), 8 SMAC maps, and 4 MAMuJoCo maps. These environments present a diverse set
of cooperative tasks on which we can compare the sample efficiency and performance of our methods
against competitive MARL algorithms.

On SMAX, we compare ReMAPPO against Independent Proximal Policy Optimization (IPPO) (Schul-
man et al., 2017) and Multi-Agent Proximal Policy Optimization (MAPPO) as on-policy gradient-
based methods. We also benchmark Independent Q-Learning (Watkins & Dayan, 1992) (IQL),
Value Decomposition Networks (VDN) (Sunehag et al., 2017), and QMIX (Rashid et al., 2020b).
Finally, we benchmark POLA (Zhao et al., 2022) as it is the most well-known MARL algorithm
which incorporates higher-order opponent updates (in particular, we implement Outer POLA with
advantage estimation). We do not benchmark FACMAC and MADDPG in SMAX due to a lack of
existing well-tuned implementations in JAX-based environments. A lack of satisfactory results across
hyperparameter sweeps (both nominal and those of similar algorithms tuned on SMAX) leads us to
believe a comparison in CPU-based environments is more fair.

In SMAC and MAMuJoCo, we compare ReFACMAC against FACMAC, QMIX/COMIX, MAPPO,
MADDPG, and POLA. We choose FACMAC as the algorithm upon which to demonstrate the
benefits of recursion as FACMAC achieves SOTA performance in these environments. We choose
not to benchmark ReMAPPO in these environments, as the low parallelizability and low-data regime
of CPU-based environments is not as conducive to on-policy algorithms (as seen by MAPPO’s

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

performance in these benchmarks). We therefore consider it more fair to benchmark ReMAPPO in
SMAX as a fair comparison of sample efficiency. Results for ReMADDPG are present in Section 6.3.
Note that our results may appear different to previous works (Rashid et al., 2020b;a) since they report
median instead of mean win rates, which reduces the impact of failing seeds, especially on difficult
maps like Corridor.

5.2 EXPERIMENTAL RESULTS

0 2 4 6 8 10
Samples (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

(a) 2s3z

0 2 4 6 8 10
Samples (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

(b) 3s_vs_5z

0 2 4 6 8 10
Samples (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

(c) 3s5z

0 2 4 6 8 10
Samples (1e6)

0.0

0.2

0.4

0.6

W
in

 R
at

e

ReMAPPO
MAPPO
IPPO
POLA
QMIX
VDN
IQL

(d) 3s5z_vs_3s6z

0 2 4 6 8 10
Samples (1e6)

0.0

0.2

0.4

0.6

W
in

 R
at

e

(e) 10m_vs_11m

0 2 4 6 8 10
Samples (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

(f) 6h_vs_8z

0 2 4 6 8 10
Samples (1e6)

0.0

0.1

0.2

0.3

0.4

W
in

 R
at

e

(g) 5m_vs_6m

0 2 4 6 8 10
Samples (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

(h) 27m_vs_30m

0 2 4 6 8 10
Samples (1e6)

0.0

0.2

0.4

0.6

W
in

 R
at

e

(i) smacv2_5_units

0 2 4 6 8 10
Samples (1e6)

0.0

0.2

0.4

0.6

W
in

 R
at

e

(j) smacv2_10_units

0 2 4 6 8 10
Samples (1e6)

0.0

0.2

0.4

0.6

W
in

 R
at

e

(k) smacv2_20_units

Figure 2: Mean win rate and standard error of ReMAPPO and baselines on SMAX maps across 10
seeds. Note that 27m_vs_30m is very large and could only be benchmarked with PPO-based methods
due to computational constraints.

ReMAPPO outperforms baselines in SMAX Figure 2 compares the test win rate of ReMAPPO
against baselines on SMAX. Notably, ReMAPPO performs equal or better than other baselines on
9 out of 11 maps, and is the only algorithm to achieve a 100% win rate in 3s5z and 27m_vs_30m.
ReMAPPO also maintains a consistent advantage over MAPPO, demonstrating the viability of
recursive reasoning. The effects of recursive reasoning are seen in higher overall performance as well
as faster convergence, as ReMAPPO often reaches its maximum performance with fewer samples
than other methods. Despite utilizing opponent shaping, POLA fails to match the performance of
ReMAPPO in every map except 3s5z_vs_3s6z. This suggests that POLA’s formulation for 2-player
reciprocity-based games likely does not generalize well to more complex environments with many
agents.

ReFACMAC outperforms baselines in SMAC and MAMuJoCo Figure 3 compares the test
win rate of ReFACMAC and related baselines in SMAC with a focus on Hard and Super Hard
maps. ReFACMAC achieves higher or equal final success rates compared to baselines and typically
converges to its maximum win rate with fewer samples. ReFACMAC particularly stands out in
Corridor and 3s5z_vs_3s6z, two notoriously difficult maps in which it is the only algorithm to surpass
a 50% success rate. Note that MAPPO performs much worse on SMAC maps due to SMAC being
CPU-based and less parallelizable, resulting in far less sample availability (it was only possible to
obtain 2e6 samples for each map rather than 1e7 in SMAX).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

(a) MMM

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

0.0

0.2

0.4

0.6

0.8

W
in

 R
at

e

(b) 2c_vs_64zg

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

0.0
0.1
0.2
0.3
0.4
0.5

W
in

 R
at

e

(c) 5m_vs_6m

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

0.0

0.2

0.4

0.6

W
in

 R
at

e

(d) 3s_vs_5z

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

0.0

0.2

0.4

0.6

W
in

 R
at

e

(e) MMM2

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

0.0

0.2

0.4

0.6

0.8

W
in

 R
at

e

(f) Corridor

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

0.0

0.1

0.2

0.3

0.4

W
in

 R
at

e

(g) 6h_vs_8z

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

0.0

0.2

0.4

0.6

W
in

 R
at

e

ReFACMAC
FACMAC
MADDPG
MAPPO
POLA
QMIX

(h) 3s5z_vs_3s6z

Figure 3: Mean win rate and standard error of ReFACMAC and baselines on SMAC maps across 10
seeds.

Figure 4 compares the performance of ReFACMAC against baselines on four selected MAMuJoCo
environments. In all four environments, ReFACMAC achieves superior performance by the end of
training and tends to reach its peak performance earlier. In Ant 2x4 (Figure 4c), learning a solution
is difficult due to the asymmetric positioning of the agents which control opposing diagonal halves
of a 4-legged agent. ReFACMAC and FACMAC both achieve the same maximum performance
during training, but only ReFACMAC maintains an advantage despite the instability of the problem.
ReFACMAC also achieves the only policy in Walker 2x3 (Figure 4d) which solves the task, obtaining
SOTA performance on this very difficult control benchmark.

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

0

2000

4000

6000

8000

M
ea

n
Te

st
 R

et
ur

n

(a) HalfCheetah-2x3

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

600

400

200

0

200

400

M
ea

n
Te

st
 R

et
ur

n

(b) HalfCheetah-1p1

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

0

200

400

600

800

M
ea

n
Te

st
 R

et
ur

n

(c) Ant-2x4

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

0

500

1000

1500

2000

M
ea

n
Te

st
 R

et
ur

n

ReFACMAC
FACMAC
MADDPG
MAPPO
COMIX
POLA

(d) Walker-2x3

Figure 4: Mean performance and standard error of ReFACMAC and baselines on four Multi-Agent
MuJoCo environments across 10 seeds.

6 HIGHER RECURSIVE REASONING

Thus far, we have considered practical implementations of recursive reasoning with policy gradient
algorithms. While the results for ReMAPPO and ReFACMAC generally exhibit competitive sample-
efficiency with just one level of recursive reasoning, our framework allows for further levels of
recursion.

In the framework of higher recursive reasoning, we consider the application of Equation 2 an arbitrary
number of times within one update step; that is, we repeatedly refine the policy gradient using the
updates of the non-self agents at the previous recursion level. Note that at each recursion level, no new
environment data is being collected - the policy gradient is being refined using the action distributions
alone. We represent the parameters of agent i after k repeated recursions by θ

(k)
i . We define the

pre-update parameters to be recursion level 0. Thus, the vanilla update parameters denoted θ′
i in

Equation 1 would be represented by θ
(1)
i , and the recursive reasoning parameters θRe

i in Equation 2
would be represented by θ

(2)
i . Figure 5 further illustrates our higher recursion framework.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Vanilla multi-agent PG update

Agent 1

Agent 2

Agent N

... ...

...

Updates with recursive reasoning

...
.
.

Figure 5: Higher recursive reasoning policy gradient updates for N agents. The non-self parameters
used for recursive updates of Agent 1 are red and the final parameters of all agents after k steps of
recursion are blue.

6.1 THEORETICAL STUDY

In this section, we present a theoretical study which shows that repeated recursive reasoning with
policy gradients converges monotonically to a local Nash equilibrium under certain conditions with
finite iterates. Firstly, we demonstrate how an unbiased, infinite application of recursive reasoning
leads to perfect anticipation of other agents’ future strategies.

Assumption 6.1. The gradient∇θi
Ji (θi,θ−i) is Li-Lipschitz with respect to θ−i, i.e.

∥∇θi
Ji (θi,,θ−i,1)−∇θi

Ji (θi,,θ−i,2) ∥ ≤ Li∥θ−i,1 − θ−i,2∥,∀θi,θ−i, (9)

where θ−i,1 and θ−i,2 are two arbitrary points in the joint parameter space of the non-self agents.
We define the maximum objective function Lipschitzness L := max

i
{Li} and the maximum agent

learning rate η := max
i
{ηi}. We define the maximum objective function gradient across all agent

parameters and objective functions∇max := max
i,θi,θ−i

∥∇θi
Ji(θi,θ−i)∥.

Theorem 6.2. Suppose Assumption 6.1 holds. Then, the update step at the k’th level of reasoning is
bounded:

∥θ(k) − θ(k−1)∥ ≤ η(ηL)k−1N(N − 1)k−1∇max. (10)

Assume the maximum learning rate η satisfies η < 1
L(N−1) . Then, the sequence {θ(k)}∞k=0 is a

convergent sequence. Since θ exists in a complete subspace of R
∑

i di, the convergent sequence
{θ(k)}∞k=0 is Cauchy, i.e.,

∃C ∈ N : ∀ϵ > 0, (a > b > C =⇒ ∥θ(a) − θ(b)∥ < ϵ). (11)

Since every Cauchy sequence has a limit, we denote the limit of {θ(k)}∞k=0 as lim
k→∞

θ(k) = θ(∞).

According to Theorem 6.2, applying the recursive update with k=∞ defines the following implicit
algorithm:

θ
(∞)
i ← θi + ηi∇θi

Ji

(
θi,θ

(∞)
−i

)
,∀i ∈ I, (12)

which we denote the Generalized Semi-Proximal Point Method (GSPPM). The implication of the
GSPPM is that the update of each agent responds exactly to the updated strategies of the other agents,
maintaining mutual consistency.

Following from Theorem 6.2, we show that the convergence of GSPPM iterates in a non-convex
non-concave strategy space can be analyzed via the game Jacobian around a local stationary point:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Theorem 6.3. Let θ∗ be a stationary point in an N-player general sum game. This stationary point is
a local Nash equilibrium, i.e. a point at which no agent’s objective function has a non-zero gradient
under a unilateral change in policy. Let η be a block matrix of the agent learning rates ηi. Let the
components of the Hessian of each objective function at θ∗ be denoted(

∇2
θiθi

Ji(θ
∗
i θ

∗
−i) ∇2

θiθ−i
Ji(θ

∗
i θ

∗
−i)

∇2
θ−iθi

Ji(θ
∗
i θ

∗
−i) ∇2

θ−iθ−i
Ji(θ

∗
i θ

∗
−i)

)
=

(
Ai Bi

B⊤
i Ci

)
.

Furthermore, let A be the diagonal block matrix of all Ai matrices and B be the diagonal block ma-
trix of all Bi matrices: A = diag(A1, . . . ,An),B = diag(B1, . . . ,Bn). Let D be a complement-
selection matrix for each set of agent parameters θi such that Dθ = [θ−1, ...,θ−n]

⊤

Suppose η < 1
L(N−1) such that the GSPPM iterates {θ(k)

t }∞k=0 form a Cauchy sequence. Let λ
max

(Z)

and λ
min

(Z) refer to the maximum and minimum eigenvalues of a matrix Z respectively. Then, there

exists a neighborhood U ∈ R
∑

i di around θ∗ such that if GSPPM starts in U , the iterates {θ(k)
t }∞k=0

satisfy:

∥θ(∞) − θ∗∥ ≤
λ

max
(I + ηA)2

λ
min

(I − ηBD)2
∥θ − θ∗∥. (13)

Moreover, for any η satisfying
λ

max
(I+ηA)2

λ
min

(I−ηBD)2 < 1, the iterates converge asymptotically to θ∗. Hence,

GSPPM iterates reach an ϵ-Nash equilibrium.

Theorem 6.4. Suppose the conditions of Theorem 6.3 apply. Then, the finite iterates {θ(k)
t } satisfy:

∥θ(k) − θ∗∥2 ≤
(

λ
max

(I + ηA)2 + 2 λ
max

(I + ηA) λ
max

(ηBD)
)
∥θ − θ∗∥2 (14)

+ 2 λ
max

(I + ηA) λ
max

(ηBD) (∥θ − θ∗∥∇max) (15)

+ λ
max

(ηBD)2∥θ(k−1) − θ∗∥2. (16)

Moreover, for any η satisfying λ
max

(ηBD)2 < 1, the finite iterates converge asymptotically to θ∗.

6.2 ILLUSTRATIVE EXAMPLE

We further examine higher recursive reasoning using a didactic example of a simple cooperative
game with two point agents taking continuous actions in a 2D space. The agents have one parameter
each and produce a one-dimensional action (the angle of their next move). The highest reward is
achieved when the chosen direction of each agent points towards the future location of the other agent.
Assuming the agents move kinematically, the optimal solution is for the agents to move towards each
other in a straight line (see Appendix B for details). However, the naive policy update for this game
under fictitious play is for each agent to choose its next action to intercept with the previous action of
the other agent. The top two figures of Figure 6a illustrate this problem: each agent’s new action (red
arrows) points towards the destination of the other agent under the other agent’s old policy (yellow
arrows). Hence, the naive update leads to a lack of mutual consistency.

0 2 4 6 8 10
K

0.00

0.05

0.10

0.15

0.20

0.25

Di
st

an
ce

 fr
om

 N
as

h
Eq

ui
lib

riu
m

GSPPM

Before update

Naive update

Figure 7: Convergence to
GSPPM with higher recursive
reasoning.

Figure 6a bottom left shows the policy update after 2 levels of
recursion: now the agents update to intercept the other agent after
the other agent’s naive policy update, resulting in better coordination.
As the number of recursions increases, the policies converge on an
ϵ-bound of the optimal solution. Figure 6b shows the progression
of the agent parameters with gradient ascent and momentum; we
use the true gradient and objective function J (θ1,θ2). The benefits
of recursive reasoning are evinced by the fact that increasing k-
levels (darker points) exhibit monotonic convergence to the optimal
parameters θ∗

1 ,θ
∗
2 at each update step, as supported by Theorem 6.4.

Figure 7 shows the distance from the Nash equilibrium for one
update step near the stationary point in Figure 6b.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

K = 0 (Before update) K = 1 (Naive update)

K = 2 K

(a) Agents taking continuous actions with increasing
recursive reasoning levels (darkening arrows) converg-
ing on the optimal actions (dashed line).

20 0 20 40 60 80 100 120
1

175

200

225

250

275

300

325

350

2

0.0

0.2

0.4

0.6

0.8

1.0

J(
1 ,

2)

(b) Gradient ascent to the optimal parameters (green
star) with recursion (darker colors for higher recursive
reasoning levels).

Figure 6: An illustrative continuous cooperative game with two point agents using recursive reasoning.

6.3 HIGHER RECURSIVE REASONING IN DEEP MULTI-AGENT REINFORCEMENT LEARNING

Consolidating with the theoretical study in Section 6.1, we compare the sample efficiency of higher
recursive reasoning in ReFACMAC and ReMADDPG up to k=5 in HalfCheetah-2x3 (MAMuJoCo)
and MMM (SMAC) in Figure 8. While higher recursion exhibits stable performance increases, most
of the benefits appear to materialize by k=2 in both the ablation and didactic example in Section 6.2.
Similar lookahead methods in optimizers (Suh & Ma, 2025) and GANs (Liu & Pavel, 2022) exhibit
polynomial convergence rates, achieving the majority of benefits within the first few iterates. We
leave an analysis of the convergence rates of higher recursive reasoning with finite data to future
investigations. Interestingly, Figure 8c demonstrates a situation where recursions above k=2 find a
better policy mode.

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
 (1

e4
)

(a) ReFACMAC
(HalfCheetah-2x3)

0.0 0.5 1.0 1.5 2.0
Samples (Mil.)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

K5 ReFACMAC
K4 ReFACMAC
K3 ReFACMAC
K2 ReFACMAC
FACMAC

(b) ReFACMAC (MMM)

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

-.2
0
.2
.4
.6
.8
1

Re
tu

rn
 (1

e3
)

(c) ReMADDPG
(HalfCheetah-2x3)

0.0 0.5 1.0 1.5 2.0
Samples (1e6)

0.0

0.2

0.4

0.6

0.8

W
in

 R
at

e

k5 ReMADDPG
k4 ReMADDPG
k3 ReMADDPG
k2 ReMADDPG
MADDPG

(d) ReMADDPG (MMM)

Figure 8: Ablations for higher recursive reasoning with ReFACMAC and ReMADDPG on SMAC
(MMM) and MAMuJoCo (HalfCheetah-2x3).

7 CONCLUSION

We present a framework for recursive reasoning for multi-agent policy gradient algorithms. We
introduce our general recursive formulation and practically realize it in both on and off-policy regimes,
achieving SOTA performance and sample efficiency against competitive baselines in challenging
MARL benchmarks. We show that the recursive reasoning paradigm can be extended, and prove
theoretical convergence properties of finite and infinite recursive iterates with respect to local equilib-
ria. We leave it to future work to understand the convergence rates of recursive iterates in the finite
data setting. We also hope to address the assumption of access to non-self agent policy distributions,
which could be modeled to similar effect.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our findings, we provide details of benchmark configurations, algorithm
hyperparameters, architectures, and other training techniques and procedures in the Appendix. Our
theoretically contributions can be verified by proofs provided in the Appendix. We provide JAX and
PyTorch implementations of our algorithms as supplementary material.

REFERENCES

W. Barfuss and R. Mann. Modeling the effects of environmental and perceptual uncertainty using
deterministic reinforcement learning dynamics with partial observability. Physical review. E, 105
3-1:034409, 2021. doi: 10.1103/PhysRevE.105.034409.

Colin F Camerer, Teck-Hua Ho, and Juin-Kuan Chong. A cognitive hierarchy model of games. The
Quarterly Journal of Economics, 119(3):861–898, 2004.

Siyu Dai, Sangjae Bae, and David Isele. Game theoretic decision making by actively learning human
intentions applied on autonomous driving. arXiv preprint arXiv:2301.09178, 2023.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134:19–67, 2005.

Yali Du, Lei Han, Meng Fang, Ji Liu, Tianhong Dai, and Dacheng Tao. Liir: Learning individual
intrinsic reward in multi-agent reinforcement learning. Advances in Neural Information Processing
Systems, 32, 2019.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Jakob N Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch. Learning with opponent-learning awareness. arXiv preprint arXiv:1709.04326, 2017.

Dean P Foster and H Peyton Young. On the nonconvergence of fictitious play in coordination games.
Games and Economic Behavior, 25(1):79–96, 1998.

Nikolos Gurney, Stacy Marsella, Volkan Ustun, and David V Pynadath. Operationalizing theories of
theory of mind: a survey. In AAAI Fall Symposium, pp. 3–20. Springer, 2021.

Ammar Haydari and Yasin Yılmaz. Deep reinforcement learning for intelligent transportation systems:
A survey. IEEE Transactions on Intelligent Transportation Systems, 23(1):11–32, 2020.

Zool Hilmi Ismail, Nohaidda Sariff, and E Gorrostieta Hurtado. A survey and analysis of cooperative
multi-agent robot systems: challenges and directions. Applications of Mobile Robots, 5:8–14,
2018.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the nineteenth international conference on machine learning, pp. 267–274, 2002.

Shahab Karimi, Arash Karimi, and Ardalan Vahidi. Level-k reasoning, deep reinforcement learning,
and monte carlo decision process for fast and safe automated lane change and speed management.
IEEE Transactions on Intelligent Vehicles, 8(6):3556–3571, 2023.

Akbir Khan, Timon Willi, Newton Kwan, Andrea Tacchetti, Chris Lu, Edward Grefenstette, Tim
Rocktäschel, and Jakob Foerster. Scaling opponent shaping to high dimensional games. arXiv
preprint arXiv:2312.12568, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Hui Li, X. Liao, and L. Carin. Multi-task reinforcement learning in partially observable stochastic
environments. J. Mach. Learn. Res., 10:1131–1186, 2009. doi: 10.5555/1577069.1577109.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yueheng Li, Guangming Xie, and Zongqing Lu. Difference advantage estimation for multi-agent
policy gradients. In International Conference on Machine Learning, pp. 13066–13085. PMLR,
2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Bing Liu, Yuxuan Xie, Lei Feng, and Ping Fu. Correcting biased value estimation in mixing value-
based multi-agent reinforcement learning by multiple choice learning. Engineering Applications
of Artificial Intelligence, 116:105329, 2022.

Zichu Liu and Lacra Pavel. Recursive reasoning in minimax games: A level k gradient play method.
Advances in Neural Information Processing Systems, 35:16903–16917, 2022.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 30, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

Yue Pi, Wang Zhang, Yong Zhang, Hairong Huang, Baoquan Rao, Yulong Ding, and Shuanghua Yang.
Applications of multi-agent deep reinforcement learning communication in network management:
A survey. arXiv preprint arXiv:2407.17030, 2024.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances in
neural information processing systems, 33:10199–10210, 2020a.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020b.

D Robertson. General theory of employment, interest and money. QJ Econ, 51:791–795, 1936.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Gardar Ing-
varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, et al. Jaxmarl:
Multi-agent rl environments in jax. arXiv preprint arXiv:2311.10090, 2023.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Sara M Schaafsma, Donald W Pfaff, Robert P Spunt, and Ralph Adolphs. Deconstructing and
reconstructing theory of mind. Trends in cognitive sciences, 19(2):65–72, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. Pmlr, 2014.

Jaewook J Suh and Shiqian Ma. An adaptive and parameter-free nesterov’s accelerated gradient
method for convex optimization. arXiv preprint arXiv:2505.11670, 2025.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martín-Martín, and Peter Stone.
Deep reinforcement learning for robotics: A survey of real-world successes. Annual Review of
Control, Robotics, and Autonomous Systems, 8, 2024.

Xinpeng Wang, Songan Zhang, and Huei Peng. Comprehensive safety evaluation of highly automated
vehicles at the roundabout scenario. IEEE Transactions on Intelligent Transportation Systems, 23
(11):20873–20888, 2022.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292, 1992.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information
processing systems, 35:24611–24624, 2022.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of reinforcement learning and control, pp. 321–384,
2021.

Stephen Zhao, Chris Lu, Roger B Grosse, and Jakob Foerster. Proximal learning with opponent-
learning awareness. Advances in Neural Information Processing Systems, 35:26324–26336, 2022.

Yulai Zhao, Zhuoran Yang, Zhaoran Wang, and Jason D Lee. Local optimization achieves global op-
timality in multi-agent reinforcement learning. In International Conference on Machine Learning,
pp. 42200–42226. PMLR, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOFS

A.1 PROOF OF THEOREM 6.2

Recall Assumption 6.1. We analyze the pattern in successive updates of θ as k increases.

Consider level k=1:

θ
(1)
i = θi + ηi∇θiJ(θi,θ−i) ∀i ∈ I. (17)

The jump between θ
(1)
i and θi is

∥θ(1)
i − θi∥ = ηi∥∇θi

Ji(θi,θ−i)∥ ∀i ∈ I. (18)

Thus, for all agents

∥θ(1) − θ∥ ≤
N∑
i=1

∥θ(1)
i − θi∥ =

N∑
i=1

ηi∥∇θiJi(θi,θ−i)∥

≤ η

N∑
i=1

∥∇θiJi(θi,θ−i)∥

≤ ηN max
i
∥∇θiJi(θi,θ−i)∥

≤ ηN∇max.

(19)

Now consider level k=2:

θ
(2)
i = θi + ηi∇θi

J(θi,θ
(1)
−i) ∀i ∈ I. (20)

The jump between θ
(2)
t and θ(1) is

∥θ(2)
i − θ

(1)
i ∥ = ∥θi + ηi∇θi

Ji(θi,θ
(1)
−i)− θi − ηi∇θi

Ji(θi,θ−i)∥

= ηi∥∇θiJi(θi,θ
(1)
−i)−∇θiJi(θi,θ−i)∥

≤ ηiLi∥θ(1)
−i − θ−i∥ ∀i ∈ I.

(21)

Thus, for all agents

∥θ(2) − θ(1)∥ ≤
N∑
i=1

∥θ(2)
i − θ

(1)
i ∥

≤
N∑
i=1

ηiLi∥θ(1)
−i − θ−i∥

≤
N∑
i=1

ηiLi

∑
j ̸=i

∥θ(1)
j − θj∥

=

N∑
i=1

ηiLi

∑
j ̸=i

ηj∥∇θj
Jj(θj ,θ−j)∥

≤
N∑
i=1

ηiLi(N − 1)η∇max

≤ η2LN(N − 1)∇max.

(22)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Now consider level k=3:

θ
(3)
i = θi + ηi∇θi

J(θi,θ
(2)
−i) ∀i ∈ I. (23)

The jump between θ
(3)
t and θ(2) is

∥θ(3)
i − θ

(2)
i ∥ = ηi∥∇θiJi(θi,θ

(2)
−i)−∇θiJi(θi,θ

(1)
−i)∥

≤ ηiLi∥θ(2)
−i − θ

(1)
−i ∥ ∀i ∈ I.

(24)

Thus, for all agents

∥θ(3) − θ(2)∥ ≤
N∑
i=1

∥θ(3)
i − θ

(2)
i ∥

≤
N∑
i=1

ηiLi∥θ(2)
i − θ

(1)
i ∥

≤
N∑
i=1

ηiLi

∑
j ̸=i

∥θ(2)
j − θ

(1)
j ∥

≤
N∑
i=1

ηiLi

∑
j ̸=i

ηjLj∥θ(1)
−j − θ−j∥

≤
N∑
i=1

ηiLi

∑
j ̸=i

ηjLj

∑
l ̸=j

∥θ(1)
m − θm∥

=

N∑
i=1

ηiLi

∑
j ̸=i

ηjLj

∑
l ̸=j

ηm∥∇θm
Jm(θm,θ−m)∥

=

N∑
i=1

ηiLi

∑
j ̸=i

ηjLj

∑
l ̸=j

ηm∥∇θm
Jm(θm,θ−m)∥

≤ η3L2N(N − 1)2∇max.

(25)

We see by induction that any consecutive states during the recursive procedure are bounded by

∥θk − θk−1∥ ≤ η(ηL)k−1N(N − 1)k−1∇max. (26)

Let η < 1
L(n−1) such that the difference between between two recursive steps is a contraction.

Consider the difference ∥θ(a) − θ(b)∥, where a > b > 0:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

∥θ(a) − θ(b)∥ = ∥
a∑

j=b+1

(
θ(j) − θ(j−1)

)
∥

≤
a∑

j=b+1

∥θ(j) − θ(j−1)∥

≤
a∑

j=b+1

η(ηL)j−1N(N − 1)j−1∇max

≤ N∇max

 a∑
j=b+1

(N − 1)j−1Lj−1

 η

 a∑
j=b+1

ηj−1


≤ N∇max

 a∑
j=b+1

(N − 1)j−1Lj−1

 η

 a∑
j=b+1

ηb−1

 ≈ O(ηb).

(27)

Thus, for any ϵ > 0, we can solve for b such that η(ηL)k−1N(N − 1)k−1∇max < ϵ, or

∃C ∈ N : ∀ϵ > 0, (a > b > C =⇒ ∥θ(a) − θ(b)∥ < ϵ). (28)

Hence {θ(k)}∞k=0 is a Cauchy sequence. Since θ lies in a complete subspace of R
∑

i di , the Cauchy
sequence has a limit: lim

k→∞
θ(k) = θ∞.

A.2 PROOF OF THEOREM 6.3

We abuse notation by denoting agent i’s parameters at update step t with θt,i and the parameters one
update step later at t+ 1 with θt+1,i, where an arbitrary number of recursive reasoning steps were
taken in between. Let us define θ̂t,i = θt,i − θ∗

i and θ̂t = [θ̂t,1, ...θ̂t,N]T for all i ∈ I . It follows by
linearizing the system about the stationary point θ∗,

θ̂t+1,i = θt,i + ηi∇θiJi(θt,iθt,−i)− θ∗

≈
(
I + ηi∇2

θi,θi
Ji(θ

∗
i ,θ

∗
−i), ηi∇2

θi,θ−i
Ji(θ

∗
i ,θ

∗
−i)
)(θ̂t,i

θ̂t+1,−i

)
First order Taylor expansion

= θ̂t,i + ηiAiθ̂t,i + ηiBiθ̂t+1,−i

∴ θ̂t+1 = θ̂t + ηAθ̂t + ηBDθ̂t+1.
(29)

By analyzing the distance r of the GSPPM iterates from the stationary point,

r2t+1 = ∥θ̂t+1∥2

= θ̂T
t (I + ηA)T (I − ηBD)−T (I − ηBD)−1(I + ηA)θ̂t

≤
λ

max
(I + ηA)2

λ
min

(I − ηBD)2
r2t .

(30)

Thus, for any {ηi} satisfying
λ

max
(I+ηA)2

λ
min

(I−ηBD)2 < 1, GSPPM iterates converge asymptotically to the

local Nash equilibrium.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM 6.4

Let us define θ̂
(k)
t,i = θ

(k)
t,i − θ∗

t,i and θ̂(k) = [θ̂
(k)
1 , ...θ̂

(k)
n]T for all i ∈ I. It follows by linearizing

the system about the stationary point θ∗,

θ̂
(k)
t+1,i = θt,i + ηi∇θt,i

Ji(θt,iθ
(k−1)
t,−i)− θ∗

i

≈
(
I + ηi∇2

θi,θi
Ji(θ

∗
t,i,θ

∗
t,−i), ηi∇2

θi,θ−i
Ji(θ

∗
t,i,θ

∗
t,−i)

)(θ̂t,i
θ̂
(k−1)
t,−i

)
First order Taylor expansion

= θ̂t,i + ηiAiθ̂t,i + ηiBiθ̂
(k−1)
t,−i

∴ θ̂
(k)
t = θ̂t + ηAθ̂t + ηBDθ̂

(k−1)
t .

(31)

By analyzing the distance r(k) of the iterates from the stationary point,

(
r
(k)
t

)2
= ∥θ̂(k)

t ∥2

= θ̂T
t (I + ηA)T (I + ηA)θ̂t + θ̂T

t (I + ηA)TηBDθ̂
(k−1)
t

+ (θ̂
(k−1)
t)TDTBTηT (I + ηA)θ̂t + (θ̂

(k−1)
t)TDTBTηTηBDθ̂

(k−1)
t

≤
(

λ
max

(I + ηA)2 + 2 λ
max

(I + ηA) λ
max

(ηBD)
)(

r
(0)
t

)2
+

2 λ
max

(I + ηA) λ
max

(ηBD)
(
r
(0)
t ∇max

)
+ λ

max
(ηBD)2

(
r
(k−1)
t

)2
.

(32)

defining the bound of the finite-k iterates to the stationary point θ̂∗.

Hence, for any {ηi} satisfying λ
max

(ηBD)2 < 1, the iterates converge asymptotically to the local
Nash Equilibrium.

B DETAILS OF THE ILLUSTRATIVE EXAMPLE

We report the full details of the toy problem introduced in Sec. 6.2, which we here refer to as the
Meet-up problem.

Environment properties. The problem is designed as a simple 2-player continuous cooperative
game in a 2D space. The state of the game s = (s1, s2) ∈ R4 encodes the location of the two players,
with si ∈ R2. For the sake of simplicity, agents can only move by a fixed distance step of 1 around
their current position, towards a chosen direction. The initial state of the two agents is deterministic
and fixed to ι = (ι1 = (0, 0), ι2 = (3, 2)). We assume undiscounted returns (γ = 1) and terminate
an episode when the agents effectively meet each other as a result of their actions.

Policy parameterization. Although one-dimensional continuous actions are trivially tractable for
one-step games, sequential decision making problems demand finding policies that respond optimally
for any possible configuration s of the game. Here, we reduce the complexity of the problem by
conveniently parameterizing each agent as single-parameter policies. In particular, we define an agent
action as a 1-DoF unit vector ai ∈ R2, and parameterize the deterministic policy of agent i with
θi ∈ R, as

πi(s) =

{
(cos θi, sin θi)

⊤ if, s = ι

π∗
i (s) if, s ̸= ι

(33)

where, π∗
i (s) =

s−i−si
∥s−i−si∥ is the optimal policy that goes straight towards the other agent. In other

words, we assume that both agents will act optimally after taking the first action, and we only

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

parametrize the agents decisions at the starting state. This design choice allows to easily study the
joint policy space directly, as well as computing the closed-form solution of the return J(·) (see
below).

Solving the Meet-up problem. We design the reward function of the Meet-up problem to reward
each agent for getting closer to the other agent after the effect of both actions. We achieve this by
computing the cosine similarity between the agent’s action ai and the actual direction that would
have led closest to the other agent:

Ri(s, a, s
′) = ai · π∗

i (si, s
′
−i)− 1 = ai ·

s′−i − si

∥s′−i − si∥
− 1. (34)

Here, we denote the joint action as a = (a1, a2), and the next state as s′ = (s1 + a1, s2 + a2). Note
that a −1 offset is added so that both the reward signal and the return Ji(θi, θ−i) of each agent is
always ≤ 0. In turn, this makes the computation of the optimal value function V ∗(s) of this game
trivial: the strategy of moving towards each other in a straight line leads to returns of 0 from any
state s; since this is the maximum return, this joint policy must also be optimal, and V ∗(s) = 0 ∀s is
the unique optimal value function. We now derive the analytical form of Ji(θi, θ−i), as needed to
compute the recursive gradient updates. Given that both agents are assumed to act optimally in any
state besides the starting state, we can conveniently write the return as

Ji(θi, θ−i) = Ri(ι, a, s
′) + Vi(s

′)

= Ri(ι, a, s
′) + V ∗(s′) =

= Ri(ι, a, s
′)

(35)

where s′ is the resulting state after the players’ first actions a1 = (cos θ1, sin θ1) and a2 =
(cos θ2, sin θ2). Following this, we may therefore compute the gradient of the return for any pair of
agent policies θ1, θ2 in closed form:

∇θiJi(θi, θ−i) = ∇θiRi(ι, a, s
′)

= ∇θi

(
ai · π∗

i (ιi, s
′
−i)

)
= ∇θi

(
ai

)
·π∗

i (ιi, s
′
−i)

= ∇θi

(
cos θi
sin θi

)
· π∗

i (ιi, s
′
−i)

=

(
− sin θi
cos θi

)
· π∗

i (ιi, s
′
−i)

(36)

In conclusion, Eq. 36 allows us to compute the recursive reasoning steps with the true analytical
gradient of the return.

C PRACTICAL IMPLEMENTATION OF THE RECURSIVE POLICY GRADIENT IN
REMAPPO

The performance difference lemma (PDL) (Kakade & Langford, 2002) can be extended to the
recursive reasoning multi-agent setting (Zhao et al., 2023; Li et al., 2022).

Lemma C.1. It can be shown that for agent i,

Ji(πi,π
(0)
−i)− Ji(π

(0)
i ,π

(0)
−i) =

1

1− γ
E
(s,a)∼d

πi,π
(0)
−i ,πi,π

(0)
−i

[
Aπ(0)

i (s,a)
]

(37)

=
1

1− γ
E
(s,a)∼d

πi,π
(0)
−i ,π

(0)
i ,π

(0)
−i

[
πi

π
(0)
i

Aπ(0)

(s,a)

]
. (38)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

This is the version of the PDL used by MAPPO; since it does not consider the update of the other
agents, they are treated like part of the environment.

Now consider the PDL when updating recursively against non-self agents:

Ji(πi,π
(k)
−i)− Ji(π

(0)
i ,π

(0)
−i) =

1

1− γ
E
(s,a)∼d

πi,π
(k)
−i ,πi,π

(k)
−i

[
Aπ(0)

i (s,a)
]

(39)

=
1

1− γ
E
(s,a)∼d

πi,π
(0)
−i ,π

(0)
i ,π

(0)
−i

[
πi

π
(0)
i

π
(k)
−i

π
(0)
−i

Aπ(0)

(s,a)

]
, (40)

which includes a correction ratio accounting for the change in action distribution of the recursively
updated agents. Note that both cases feature a mismatch in the discounted state distribution d of the
PDL and the sample distribution (dπi,π−i); this mismatch is ignored in practice.

D ENVIRONMENT DETAILS

All SMAX maps were configured according to the default settings seen in Rutherford et al. (2023).
All experiments using SMAC mostly used the default team configurations, rewards, and observations
as the SMAC benchmark (Samvelyan et al., 2019). The state space was modified slightly by including
the last actions of each agent (using the inbuilt feature in the StarCraft II environment) as this was
found to stabilize learning for all algorithms. All MAMuJoCo environments and agents are configured
according to the default configurations used in Peng et al. (2021) where they were introduced. Each
agent observes the positions of its own body parts, receives a common team reward that depends
on the task, and controls only its joints. The exact configurations and rewards can be seen at
https://robotics.farama.org/envs/MaMuJoCo/.

E EXPERIMENTAL DETAILS

E.1 SMAX

Each baseline is run with the settings seen in Rutherford et al. (2023). Each baseline uses 1e7
total training steps and is trained against the ‘HeuristicEnemySMAX’ AI, updated every 128 steps,
and uses a γ of 0.99. Off-policy algorithms (QMIX, VDN, IQL) are trained with 16 parallel
environments with a buffer size of 5000 and a batch size of 32. Each uses Adam optimizers with a
learning rate of 5e− 5, and performs ϵ-greedy exploration during training time with and ϵ that decays
from 1 to 0.05 over the first 10% of total steps (learning is also paused until the ϵ decay is concluded).
Neural networks use a hidden size of 512 and relu activations, hard target updates every 10 updates,
8 update epochs, and a reward scale of 10 (the reward scale of the original SMAC environments).
The maximum gradient norm is constrained to be 10. In QMIX, the mixer embedding dimension
is 64, the mixer hypernet hidden dimension is 256, and the initial scale of the kernel weights of the
mixer weights is set to 0.001. Baselines are evaluated every 5% of total steps for 128 steps across
512 environments. On-policy algorithms (ReMAPPO, MAPPO, IPPO, POLA) are trained with 64
parallel environments. Each uses Adam optimizers with a learning rate of 4e− 3 which is annealed
to 0 over the entire course of training. Neural networks use a hidden size of 128 and relu activations,
2 minibatch updates, and 2 update epochs. The maximum gradient norm is constrained to be 0.5.
The value of λ for the GAE is set to 0.95, the value of ϵ for surrogate clipping is 0.2, the value loss
coefficient is 0.5, and no entropy bonus is provided.

E.2 MULTI-AGENT MUJOCO AND SMAC

For each algorithm, we evaluate the performance in the following manner: we pause training after
10,000 steps and run a fixed number of independent test episodes (10 for MAMuJoCo and 32 for
SMAC). During these test episodes, each agent acts greedily in a decentralized fashion (DDPG agents
don’t use action noise, DQN agents don’t select random actions, etc.). The mean performance of
the agents is reported in MAMuJoCo (the performance for each agent is identical since they share a
common objective) and the mean success rate is reported for SMAC. Note that we chose to report

18

https://robotics.farama.org/envs/MaMuJoCo/

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

the mean success rate rather than the median, as certain SMAC maps (especially Super Hard maps)
commonly result in very success rates. Using the mean success rate better reflects the difficulty of
these maps, as the median success rate can sometimes skew results to look more positive than they
should. We set γ = 0.99 for all experiments.

Since our results are primarily obtained by applying recursive reasoning to FACMAC, we mostly kept
the algorithmic implementation standards used in FACMAC for reproducibility. We use parameter
sharing for all actor and critic networks to speed up learning. All actor, critic, mixer, and Q-networks
have target networks.

MAMuJoCo The architecture of all deep Q-networks is an MLP with 2 hidden layers with 400
and 300 units respectively. In all actor-critic methods, the architecture of the shared actor and critic
networks is an MLP with 2 hidden layers with 400 and 300 hidden units respectively. All hidden
layers for all networks use ReLU activations. All critic networks provide raw outputs while actor
networks have a tanh activation at the output. Actor networks and DQNs receive the local observations
of that agent as an input, appended with a one-hot vector due to the parameter sharing. All centralized
critics and mixing networks are conditioned on the global state provided by the environment.

Each episode has a maximum length of 1000 steps. The total training time for each algorithm is set to
2 million steps. To improve initial exploration, each agent takes 10,000 random steps at the beginning
of each run. During training we apply uncorrelated, mean-zero noise with a standard deviation of 0.1
to further encourage exploration. Each agent has a replay buffer with a maximum size of 1 million
and trains with a batch size of 100 after every new sample. Target networks are updated using Polyak
averaging with τ = 0.001. All neural networks are trained using the Adam optimizer (Kingma, 2014)
with a learning rate of 0.001.

SMAC The architecture of all shared deep Q-networks is a DRQN with a recurrent layer comprised
of a GRU with a 64-dimensional hidden state, with fully connected layers on either side. In all
actor-critic methods, the architecture of all shared actors is a recurrent MLP comprised of a GRU
with a 64-dimensional hidden state, with fully connected layers on either side. We train the GRU
networks on batches of 32 fully unrolled episodes (with 0-padding to account for temporal mismatch
between episodes). The architecture of all shared critic networks is an MLP with 2 hidden layers
with 64 units. All networks use ReLU activations for the hidden layers. All actor critic methods
select discrete actions using the Gumbel-Softmax estimator (De Boer et al., 2005) in order to turn
continuous softmaxed logits into discrete one-hot actions while retaining the ability to backpropagate
through the network. Actor networks and DRQNs receive the local observations of that agent as
an input, appended with the last action taken by the agent, as well as a one-hot vector due to the
parameter sharing. All agents use ϵ-greedy action selection and we anneal ϵ from 0.5 to 0.05 over
50k training steps. The replay buffer contains the most recent 5000 episodes. All target networks
are updated hard every 200 training steps. All networks are trained using Adam with a learning rate
of 0.0025 for the actor network and 0.0005 for the critic network (except for QMIX which uses the
learning rates specified in Samvelyan et al. (2019) as they have already been tuned for SMAC).

19

	Introduction
	Related works
	Preliminaries
	Recursive Reasoning in multi-agent policy gradient algorithms
	ReMAPPO
	ReFACMAC and ReMADDPG

	Experiments
	Experimental Setup
	Experimental Results

	Higher Recursive Reasoning
	Theoretical study
	Illustrative example
	Higher recursive reasoning in deep multi-agent reinforcement learning

	Conclusion
	Reproducibility statement
	Proofs
	Proof of Theorem 6.2
	Proof of Theorem 6.3
	Proof of Theorem 6.4

	Details of the illustrative example
	Practical Implementation of the Recursive Policy Gradient in ReMAPPO
	Environment Details
	Experimental Details
	SMAX
	Multi-Agent MuJoCo and SMAC

