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ABSTRACT

Using generative models for protein design is gaining interest for their potential scientific
impact. However, biological processes are mediated by many modalities, and simulta-
neous generating multiple biological modalities is a continued challenge. We propose
PLAID (Protein Latent Induced Diffusion), whereby multimodal biological generation
is achieved by learning and sampling from the latent space of a predictor from a more
abundant data modality (e.g. sequence) to a less abundant data modality (e.g. crystallized
structure). Specifically, we examine the all-atom structure generation setting, which re-
quires producing both the 3D structure and 1D sequence, to specify how to place sidechain
atoms that are critcial to function. Crucially, since only sequence inputs are required to
obtain the latent representation during training, we can use sequence-only databases,
thus augmenting the sampleable data distribution by 102 x to 10*x compared to experimen-
tal structure databases. Using sequence-only training further also unlocks more annotations
that can be used to control and condition the model. As a demonstration, we use two
conditioning variables: 2219 function keywords from Gene Ontology, and 3617 organ-
isms across the tree of life. Despite not receiving structure inputs during training, model
generations nonetheless exhibit strong performance on structure quality, diversity, novelty,
and cross-modal consistency metrics. Analysis of function-conditioned samples show
that generated structures preserve non-adjacent catalytic residues at active sites, and learn
the hydrophobicity pattern of transmembrane proteins, while exhibiting overall sequence
diversity. Model weights and code are publicly accessible at [redacted].

BFD

1 INTRODUCTION (2.5 billion)

Generative protein models propose designs and can accelerate innovation
in bioengineering. Many protein functions are mediated by their struc-
ture, including the identity, placement, and biophysical properties of both
sidechain and backbone atoms, known as the all-atom structure. However,
to know which sidechain atoms to place, one must first know the sequence;
all-atom structure generation thus can be seen as a multimodal problem
that requires simultaneous generation of sequence and structure.

While generative modeling for protein structures has seen rapid recent
progress, important challenges remain: (1) Existing protein structure
and sequence generation methods often treat sequence and structure as
separate modalities; structure-generation methods often only provide
backbone atoms. (2) Methods that do address all-atom design often require
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Figure 1: Compared to struc-
tural databases, protein sequence
databases offer better distribu-
tion coverage, and can approach
sizes of internet-scale datasets.

alternating between folding and inverse-folding steps using an extraneous prediction model. (3) Evaluations
often emphasize in silico oracle-based designability, or structure-conditioning, with limited progress towards
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Figure 2: (A) Using the PLAID paradigm to sample from the latent space of ESMFold unconditionally
generates high quality all-atom structure and sequence despite using only sequence input to train the
generative model. (B) Since sequence-only databases has more annotations, we can compositionally condition
by function and expression organism. Function-conditioned proteins can preserve known catalytic
residues (example shown for HUMAN and PROTEIN KINASE ACTIVITY). An example is shown for
generating human kinases; generations preserves the known DFG catalytic motif, despite these residues being
non-adjacent in sequence space. The global N-terminal and C-terminal lobes characteristic of human MAP
kinases [1]] is also preserved, despite sharing only 48% global sequence identity to the generation. Generated
samples are classified as being in active kinase conformation by the Kincore predictor [2].

other forms of flexible controllability. (4) Methods that rely on experimentally-resolved structure databases
have a strong bias towards crystallizable proteins. (5) Methods sometimes ignore scalability and flexibility;
models that ingest structure as inputs have more restrictions on architecture, and is harder to leveraging
progress in hardware-aware mechanisms for more scalable large language models.

Contributions Towards resolving these challenges, we introduce PLAID (Protein Latent Induced
Diffusion). Our principal demonstration is that multimodal generation in biology can be achieved by
learning the latent space of a predictor from a more abundant data modality (e.g. sequence) to a less abundant
data modality (e.g. crystallized structure). In particular, we introduce a controllable diffusion model capable
of sequence and all-atom structure generation, while requiring only sequence inputs during training.
Because training dataset can be defined by sequence databases rather than structural ones, this provides better
coverage of the viable protein space traversed by evolution. It furthermore allows us to leverage structural
information encoded in the pretrained weights rather than training data. Finally, it increases the availability
of labels and natural language annotations for controllable generation. As a motivating demonstration, we
examine compositional control across the axes of function and organism. Though we focus on ESMFold [3]
and all-atom structure generation in this work, the method is designed to scale readily to expanding sequence
datasets, improved infrastructure for Transformer-based models, and capitalize on the ever-expanding capabil-
ities of structure-prediction models to include more modalities, such as nucleic acids and molecular ligand
binding [4}, [5]].

2 RELATED WORKS

Latent space diffusion models Diffusing in the latent space of pixel representations has been successful in
generating high-fidelity and resolution image samples [10, [IT]], as it can reduce compute constraints, improve
sampling speed, and improve quality. In images, the encoding to latent space can be seen as a “perceptual
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Figure 3: Overview of PLAID. (A) ESMFold [3] latent space. The latent space p(x) can be considered a
joint embedding of sequence and structure.(B) Latent diffusion training. Our goal is to learn and sample
from py(x), following the diffusion [6]] formulation. To improve learning efficiency, the embedding x is
compressed using the CHEAP [[7]] autoencoder h.. We then iteratively noise and denoise from pg(h.(x)),
(C) Inference. To obtain both sequence and structure at inference time, we can sample and uncompress to
obtain X = hg(x’) where X' ~ py(X), and use the frozen structure structure decoder (trained in ESMFold [3]))
and the frozen sequence decoder (trained in CHEAP [[7]) to obtain the all-atom structure. (D) DiT block
architecture. We use the Diffusion Transformer (DiT) [8] architecture, which uses AdaLN blocks to
incorporate conditioning information. Classifier-free guidance is used to incorporate the function (i.e. GO
term) and organism class label embeddings; with p = 0.3, the token is replaced by a & token denoting the
unconditional condition [9].

compression” stage where high-frequency and unimportant details are moved. Latent space diffusion can be
used with gradient-based control [12] or multimodal conditioning using a CLIP [[13]]-like biencoder [14} [15]],
but is also compatible with classifier-free guidance [9].

Generative Modeling for Proteins State-of-the-art diffusion models for designing protein structure have
thus far focused on generating novel backbone folds, with conditioning controllability typically governed by
secondary structure, or for generating scaffolding for a known motif [16} 17,18} [19]. Evaluation and design
of these models focus on fold stability and novelty, and often involve using oracle models [20, 3} 21} 22] for
folding or inverse folding. However, to synthesize the protein, the sequence is required, and not all sampled
structures might have a corresponding sequence. To address this, “designability” has been posited as a metric,
which assesses the correspondence between the original structure and the sequence predicted for that structure.
However, there are few mechanisms to enforce designability during training. Methods also exist for designing
sequence [23} 124} 25| 26]], sometimes conditioned by the structure [27]]. Structure can be constructed from
these generations using a protein folding model, but models do not explicitly produce atomic positions.

Multimodal Sequence-Structure and All-Atom Generation All-atom generation can thus be viewed as a
multimodal generation problem, where the 1D protein sequence and 3D protein structure are jointly produced.
Existing works [28| |29] often generate only one of structure or sequence at each diffusion step, and rely on an
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external predictor to produce the other modality. Multiflow [30]] performs co-generation without an external
tool, but does not produce side chain positions. Some works have focused on specific protein subclasses,
such as antibody design [3132]. While these models achieve success within their specialized domains,
antibodies represent a narrow subset of protein space and such models often struggle with out-of-distribution
generalization when extended to the broader protein universe. Concurrently developed with this work,
ESM3 [33] also uses generates in the shared sequence-structure space, and is conditioned on Interpro (many
of which are derived from GO terms) for controllability. However, the ESM3 tokenizer is trained on structure
datasets, rather than sequence databases, and cannot perform all-atom generation.

3 PLAID: PROTEIN LATENT INDUCED DIFFUSION

Notation A protein is composed of component amino acids. A protein sequence s := {r;}% | is often
shown as a string of characters, with each character denoting the identity of an amino acid residue r € R,
with |R| = 20. Each unique residue 7 can be mapped to a set of atoms as r := {a,; }, where a € R? is the
3D coordinates of the atom, and the number of atoms M in each residue r may be different depending on the

identity. A protein structure 2 := {ri}jL:1 consists of all atoms in the protein

From above definitions, we see that the all-atom structure § requires knowledge of the amino acid identities
at each position in order to specify the side chain atoms. To reduce complexity, protein structure designers
sometimes work with the backbone atoms Q¢ C €2 only, which only include the N, C, C,, atoms only, and
are generally sufficient to define the protein fold

3.1 DEFINING p(SEQUENCE,STRUCTURE)

We begin with the motivation that sampling directly from p(s, ) without implicitly factorizing it into
p(2)p(s|?) (e.g., Protpardelle [28]) or p(s)p(£2]s) (e.g., ProteinGenerator [29]]) circumvents the difficulty
in all-atom generation of not knowing which side chain atoms to place; one can choose a latent manifold
where residues do not need to be explicit specified during iterative generation. Avoiding reliance on external
prediction tools is computationally cheaper, and avoids amplifying errors.

Our goal is to characterize a distribution p(x) over X’ that encapsulates both sequence and structure informa-
tion, such that there is a mapping x = ¢s o(s, 2). To do this, we follow the definition of joint embedding
of sequence and structure in Lu et al. [7]: if we decompose x = ¢s (s, ) = ¢s(s) o Ppa(Q2), we can
look for a space where some deterministic mapping will map sequence s and its corresponding structure
) to the same latent embedding x € X. One way to do so is by defining x as the latent space of a protein
folding model p(€2|s). The trunk of the model provides x = ¢gsm(s), and the structure head provides
Q = @structure Module (X). If we consider there to be an implicit inverse function of the Structure Module such
that X = Pyt iure Modute () then this provides the mappings for x = ¢s (s, Q) = ¢s(s) 0 pa () that we
are looking for.

3.2 OVERVIEW OF ESMFoOLD

Briefly, ESMFold [3]] has two main components: a protein language model component x = ¢@gsm2(S)
that captures evolutionary priors via the masked language modeling loss (MLM), and a structure module

'In practice, to make use of array broadcasting, a standard M is selected for all residues, with an associated one-hot
mask to specify which atoms are present for a given residue, and we treat each structure as a matrix € RZ*M>3,
Following prior work [34} 3], we use the at om14 representation where M = 14.

’The three torsion angles in backbone-only structures induces 3” degrees of freedom; depending on the residue
identity, there may be O to 4 additional rotamer angles associated with the sidechains. Therefore, even when the sequence
is known, there may up to 4~ additional degrees of freedom necessary for all-atom structure prediction.
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component £ = Psrycture Module (X) that decodes these latent embeddings into a 3D structure. For the rest of
this work, “latent space of ESMFold” refers to the x € RZ*1924 representation at the layer just prior to the
Structure Module, where L is the length of a given protein. We choose this layer due to the observations in Lu
et al. [7]] (also see Section [3.3)) that the pairwise input at inference time to the Structure Module is initialized
to zeros, such that this sequence embedding contains all information for structure prediction (Figure[3]A and

Appendix [B).

3.3 SAMPLING ALL-ATOM STRUCTURE Cross- _cetM
Consistency

Latent Generation Our goal is to learn py(x) ~ modal consstoncy

p(x), where 6 are parameters of the model learned

through diffusion training (Flgure Ep) Then, after /

training, we can sample X ~ py(x) (Figure [3 )
To do so, we use diffusion models [6} |35], with
some modifications (described in ablation Table ??).
To obtain structure from the sampled latent embed- I e
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Figure 4: Schematic describing the cross-consistency
metric we use for assessing multimodal generation
consistency, and the self-consistency metric we use for
assessing the quality of uni-modal generated structures
and sequences, independent of the generation quality
of other modalities.

Sequence Decoder To obtain the sequence, we
need an “inverse mapping of ESM2" to get s =
¢peri(X). This inverse mapping is straightforward
to train, since x is a linearly projected version of the
ESM2 embedding, which was trained via the MLM
loss. This sequence decoder qbgslM is also trained and
provided in Lu et al. [7], with validation accuracy
on a heldout partition of UniRef [36] reaching 99.7% [7]. Note that s must be decoded first, which determines

the side-chain atoms to be placed in 2.

Latent Space Compression In initial experiments, we found that directly learning p(s) performed poorly
(results shown in Appendix ??). We suspected that this might be due to the dimensions of x € R¥* 1024 For
proteins with length L x 512, this maps to a high-resolution synthesis problem in image diffusion literature.
We therefore adopt a similar technique as in high-resolution image synthesis, where diffusion is performed in
the latent space of an autoencoder s’ = h,(x) such that the array dimensions of x" is much smaller [11]. We
use the CHEAP autoencoder [[7]], such that diffusion training becomes py(x’) = he(x). Noise is added and
denoised from p(x’). Atinference time, we first sample the compressed latent &’ ~ pg(x’), then “uncompress”
itto X = hg(x’), followed by using frozen decoders to obtain § = ngSM( x) and 0= @Structure Module (X). More
information on CHEAP can be found in Lu et al. [7] and Appendix B}

Figure [TOA offers clues to why our initial experiments without compression was difficult; prior to the
normalization and compression steps in CHEAP, noise added in the latent space does not affect sequence and
structure until the final timesteps in forward diffusion, despite using a cosine schedule (SNR and log-SNR
curves shown below), meaning that the denoising task would be trivial for most sampled timesteps.

3.4 DATA AND TRAINING

Choice of Sequence Database The general paradigm in PLAID can be used on any sequence database. As
of 2024, sequence-only database sizes can range from UniRef90 [36] (193 million sequences) to metagenomic
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datasets such as BFD [37] (2.5 billion sequences) and OMG [38]] (3.3 billion sequences). We use Pfam
because it provides more annotations for in silico evaluation, and because protein domains are the main units
of structure-mediated functions. More information can be found in Appendix [C]

Compositional Conditioning by Function and Organism Gene Ontology (GO) is a structured hierarchical
vocabulary for annotating gene functions, biological processes, and cellular components across species [39,
40]. We examine all Pfam domains for which there exists a Gene Ontology mapping; there are 2219 GO
terms compatible with our model (an abbreviated list is listed in Appendix ??). We also examine all unique
organisms in our dataset, and find 3617 organisms. Models are trained with classifier-free guidance [9]. The
conditioning architecture is described in Figure [3]D. More details can be found in Appendix [A]

Architecture We use a Diffusion Transformer [8] (DiT) for the denoising task. This enables more flexible
options for finetuning on mixed input modalities, as protein structure prediction models begin expanding to
complexes with nucleic acids and small molecular ligands. It also makes better use of Transformer training
infrastructure [41}42] 143|144, 145]). In early experiments, we found that proportioning available memory to
a larger DiT model was more helpful than using triangular self-attention [20]. We train our models using
the xFormers [41] implementation of [46], which provided a 55.8% speedup with a 15.6% reduction in
GPU memory usage in our inference-time benchmarking experiments compared to a vanilla implementation
using PyTorch primitives (Appendix [G). We train two versions of the model with 100 million and 2 billion
parameters respectively, both for 800K steps. More details are in Appendix [A]

Diffusion Training and Inference-Time Sam- Tapje 1: Ablation results (see Section B4). Metrics are
pling We use the discrete-time diffusion def-  gefined in Section @l

inition propose?q in Ho et al.. [6], using 1000 Configuration «TM  scTM  Ppl. DSi»jq% ?)L:\llj(‘:;o
tlmeStePS' Addltlogal strategies are used to SFa_ A cosine noise sched.& pred. noise 0.54 0.55 16.97 0.98 0.86
bilize training and improve performance: min- B A + v-diffusion 052 053 1737 098 0.89
SNR reweighting [47], v-diffusion [48] 49], € A +MinSNR. 059 059 1676 097 0.86

If ditioni 5051 dasi id . D A +B+C + sigmoid noise sched. 0.56 0.58 16.88 0.92 0.86
self-conditioning [50,51], and a Sigmoid noise D + self-conditioning 070 065 1538 093 076
schedule [52], and EMA (exponential moving _F E + no cond drop 057 057 1728 097 0.85

average) decay. Ablation results are shown in

Table ??. For sampling, unless otherwise noted, all results use the DDIM sampler [[12}[35] with 500 timesteps.
We use ¢ = 3 as the conditioning strength for conditional generation; however, we find (Figure[TOC) that
sample quality is not strongly affected by this hyperparameter. We also find that that DPM-Solvers [53] can
attain comparable results with 10x fewer steps in cases where speed is of concern (Appendix Figure[12)), but
here prioritize sample quality. More details are in Appendix

4 EVALUATION

Following previous works and to address the unique challenges of all-atom generation, we examine the
following metrics. More details on how metrics are calculated can be found in Appendix|[E]

1. Multimodal Cross-Consistency: Do the simultaneously generated structure and sequence accord with
each other? When the generated sequence is refolded using Omegafold [56]], does it match the generated
structure? [Cross-consistency TM-Score (ccTM), cross-consistency RMSD (ccRMSD).] When the gen-
erated structure is inverse-folded into a sequence using ProteinMPNN [21]], does it match the generated
sequence? [Cross-consistency sequence recovery (ccSR).] What percentage of generated samples are

designable? [ccRMSD < 24. ]

2. Uni-modal Sample Quality: When structure and sequence are separately considered, do samples exhibit
high quality?
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Figure 5: By-length analysis of quality, sample diversity, and secondary structures. Additional Figures
can be found in Appendix FigureEl (A) For each protein between lengths {64, 72, 80, ..., 508, 512}, we
co-generate 64 proteins, and cluster the generated sequences using MMseqs2 [54] and Foldseek [53]. We then
plot each representative cluster. The red line is the TM-Score= 0.5 threshold that is used in prior work to refer
to designability 28] [16]. At each protein length, we plot: (1) The fraction of designable samples that have
ccTM > 0.5; (2) The ratio of unique structure clusters to samples, as a measure of structural diversity; (3)
The ratio of unique sequence clusters to samples, as a measure of sequence diversity; and (4) The beta sheet
and alpha helix percentage of generations, follow prior work that demonstrate that protein generative models
often produce more alpha helices than beta sheets. At higher sequence lengths, PLAID can produce higher
quality samples, whereas baseline methods often struggle, and/or exhibit mode collapse. (B) Unconditional
generation results on proteins with length 256 using PLAID. Protpardelle [28]] and ProteinGenerator
suffer mode collapse at this length towards TIM barrels and alpha helix bundles.

(a) Structure. Do the inverse-folded sequences of a given structure fold back into itself? [Self-consistency
TM-Score (s¢cTM), self-consistency RMSD (scRMSD).]

(b) Sequence. Do the inverse-folded results from the predicted structure of a generated sequence
match the original? [Self-consistency sequence recovery (scSR).] Do generated sequences have low
perplexity on next-token prediction models trained on natural proteins? [Perplexity (Ppl.) under RITA
XL [26]].]

3. Naturalness: Do samples exhibit sensible biophysical parameters for real-world characterization? What
is the Wasserstein Distance between Prot Param properties provided by the Biopython [57] package? In
other words, how similar are the distributions of biophysical properties between generated proteins and
real proteins? [Distributional conformity [23]] scores. ]

4. Diversity: Are the designable proposals by the model actually diverse in sequence and structural space?
At the default clustering threshold for popular bioinformatics tools [54} [55]], how many distinct clusters do
we observe? [# Des. seq. clusts., # Des. struct. clusts..]

5. Novelty: Do generated structures differ from those found in nature? How similar is the structure to its
closest structural match? [Foldseek TMScore.] How similar is the generated sequence to its closest
sequence match? [MMseqs seq id. %.]
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5 EXPERIMENTS

Table 2: Comparison of model performance across consistency and quality metrics. Arrows indicate whether
higher (1) or lower ({) values are better. Bold values show best performance among all-atom generation
models. pLDDT refers to the confidence score directly returned by the structure trunk of the generative
model; for models which do not return a PLDDT metric, N/A is used. Heavy asterisk (*) indicates Multiflow,
which generates backbone structure and residue identities without sidechain positions. Italic values represent
natural/reference measurements.

Cross-Modal Consistency Structure Quality ~ Sequence Quality
Model ccTM  ccRMSD  ccSR ¢ccRMSD | scTM  pLDDT | scSR Ppl.
M (€3] M <2AM ) ) M )
PG 0.58 11.86 0.28 8.00% 0.72 69.00 0.40 8.60
Protpardelle  0.44 24.28 0.22 0.00% 0.57 N/A 0.44 8.86
PLAID 0.69 9.47 026  32.00% 0.64 59.46 0.27 14.61
Multiflow*  0.92% 2.45% 0.52% 78%* | 0.91* N/A | 0.61% 8.1%
Natural 1.00 0.07 039  100.00% | 0.84 84.51 | 039 7.40

Table 3: Diversity, novelty, and distributional conformity [23] metrics across models. Metrics are
described in Section[d] As with Table[2} asterisk (*) indicates methods which generate backbone structure and
sequence without sidechain positions, bold indicates best performance across all-atom generation methods,
and italic indicates performance on a reference set of natural sequences.

Diversity Novelty Distributional Conformity
# #Slzes. gt?u?t MMseqs Foldseek Avg. Aroma- Instab- Iso- GRAVY Charge
Des. Clu?t.ﬂ Clum- Seqld %  TMScore MW. ticity ility electric W pH=7
M N N (€3} (€3} (€5 @) Index (})  Point (}) @)
™ ]

PG 309 309 309 0.57 0.57 9.54 0.07 14.55 1.42 0.31 6.12
Protpardelle 0 0 0 0.56 0.72 10.4 0.07 8.61 1.99 0.37 8.58
PLAID 1171 809 522 0.60 0.67 0.62 0.01 1.98 0.49 0.28 2.71
Multiflow* 2812% 2452% 460% | 0.45% 0.68% 543% | 0.07* 4.11% 1.59%* 0.3% 7.55%
Natural 3570 1362 600 | 081 0.87 0 | 0 0 0 0 0

5.1 UNCONDITIONAL GENERATION

Following prior work demonstrating the effect of protein length on performance [[16} 28 [30]], we sample 64
proteins for each protein length between {64, 72, 80, ..., 496, 504, 512}, for a total of 3648 samples. Results
in Figure [5]and Tables [2]and [3| show that while PLAID performance also decreases at longer lengths, this
degradation is less pronounced, and at longer lengths, PLAID can better balance quality and diversity. This
may be due to the fact that the expanded dataset means that there are more samples available for lengths
that are less commonly seen in the dataset. Despite not seeing structures when training the diffusion model,
PLAID is able to achieve high cross-modal consistency between generated sequences and structures. Table 3]
shows that the distribution of biophysical features for PLAID generations are closer to that of natural proteins,
potentially due to the removed biases towards structure in its training data.
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Figure 6: Function conditioned generation for human proteins. (A) PLAID generations preserve
catalytic motifs at non-adjacent residues, despite maintaining low sequence identity. For each generation,
we examine the closest Foldseek neighbor in the PDB [58]] that was crystallized in complex with a ligand, to
analyze residue behaviors at the active site. RMSD is the global structural alignment between generation and
target. Sequence identity is the sequence lap in the aligned structural regions. (B) Generated membrane pro-
teins recapitulate known hydrophobicity patterns. (Left) Generated samples match known hydrophobicity
patterns of membrane proteins, where hydrophobic residues are found in the transmembrane portions that
span the lipid bilayer’s hydrophobic core, hydrophilic residues at the ends which interact with the aqueous
environment, and for ion transporters, coordinated hydrophilic residues at the core for mediating ion interac-
tions. (Right) For GPCR samples, structures exhibit the expected 7-helix structure. DeepTMMHMM [59]
predictions on sequences classifies generations as alpha transmembrane proteins, matching the known topol-
ogy of GPCRs. (C) Additional generations. Samples consistently exhibit high structural conservation that
indicates preservation of function, yet can attain high degrees of sequence diversification.
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5.2 CONDITIONAL GENERATION

Computational evaluation of function- and organism-conditioned generative models presents a conundrum:
lower similarity is a favorable heuristic in machine learning, since it is indicates that the generative model
did not merely memorize the training data. From a bioinformatics perspective, however, conservation is key
to function; taxonomic membership can be difficult to validate, given the high degree of similarity between
homologs. In our case study experiments, we look for high structural similarity to evaluate for function
conditioning, and low sequence similarity to penalize exact memorization. For organisms in particular,
differences are more likely to manifest at the sequence rather than the structural level. Case studies shown in
Figure[6] show that function-conditioned proteins possess known biological characteristics, such as conserved
active site motifs, and membrane hydrophobicity patterns. Global sequence diversity is low despite high levels
of conservation at catalytic sites, suggesting the the model has learned key biochemical features associated
with the function prompt without direct memorization.

We further by examining the Sinkhorn distance between generated latents and a reference distribution, taken
from a heldout validation set unseen during training (Figure [TOD). This assess conditional generations
indepedent of the sequence and structural decoders. For comparison, the Sinkhorn distance between random
real proteins from the validation set and the function-conditioned generations are also evaluated. Conditional
generations generally have lower Sinkhorn distances than random samples, suggesting that the desired
latent information has been captured in the embedding. FigurdIOB shows tSNE plots colored by organism.
Organisms that are further away phylogenetically (e.g. soybean, E. coli) form more distinct clusters than those
closer evolutionarily (e.g. human, mouse). These all serve to demonstrate that our function and organism
conditioned samples have been imbued with desired characteristics.

6 DISCUSSION

We proposed PLAID, a paradigm for multi-modal, controllable generation of proteins by diffusing in
the latent space of a prediction model that maps single sequences to the desired modality. Our method
is designed to adhere to progress in data availability, model scalability, and sequence-to-structure
prediction capabilities. To this end, we chose an architecture and implementation that leverages fast attention
kernels [41]], and chose GO terms as a proxy for the vast quantities of language annotation that are paired
with sequence databases (but are more scarce for structural ones).

It is straightforward to expand PLAID to many downstream capabilities. First, though we do not examine
motif scaffolding or binder design explicitly in this current work, this is easy to build into PLAID by holding
some input residues constant. Second, though we examine ESMFold [3] in this work, the method can be
applied to any prediction model. There is rapid progress [3} 4, 160, 161} 162]] in predicting complexes from
structure, owing to the vast differential in data access costs between sequences and experimentally-resolved
complexes, and diffusing in the latent space of such models enables us to use the frozen decoder to obtain
more modalities than just all-atom structure.

A limitation of PLAID is that performance is limited by prediction model from which the frozen decoders are
derived. Here, we rely on the optimism that such models will continue to improve. With explicit finetuning
for latent generation (e.g. training CHEAP and the structure decoder end-to-end), model performance can
likely be improved. Furthermore, since the structure decoder is deterministic, it is unable to sample different
conformations in its current form. One solution is to diffuse in the latent space of a model that returns a
distribution over structural conformations instead. Additionally, the GO term one-hot encoding used here
does not take into account the hierarchical nature of the Gene Ontology vocabulary, nor that a protein might
have several relevant GO terms. Finally, the classifier-free guidance scale can be separated for the organism
and function conditions, since the two may require different guidance strengths to produce a desired sample.
These limitations are relatively simple to resolve, and will be addressed in future work.
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APPENDIX

A ADDITIONAL TRAINING DETAILS

Our 2B model is trained with the memory efficient attention implementation in xFormers. It is trained with
float32 precision; at inference time, sequence lengths must be a multiple of 4. All other models are trained
with mixed precision (bfloat16 and float32). All models were trained with a learning rate of le-4 with a
cosine annealing applied over 1,000,000 steps.

For the 2B model used in most evaluations, since the specialized xFormers memory efficient attention kernel
was used, lengths must be a multiple of 8 — that is, the latent embedding length must be a multiple of 4, which
is upsampled to a multiple of 8 after the decoder is applied. We selected 512 based on the distribution of
sequences in Pfam and a shorten factor of 2 based on results in Lu et al. [7].

Following Ho and Salimans [9], we use the same hyperparameters and with pypcong = 0.3, the class label is
replaced with the @ unconditional token. sampled separately for both function and organism. Note that not all
data samples will have an associated GO term; we use the & token for those cases as well. At inference time,
to perform generate unconditionally (for either or both of function and/or organism), we use the & token for
conditioning.

B CHEAP COMPRESSION DETAILS

Briefly, the CHEAP encoder and decoder uses an Hourglass Transformer [63] architecture that downsamples
lengthwise, as well as downprojects the channel dimension, to create a bottleneck layer, the output of which
is our compressed embedding. The entire model is trained with the reconstruction loss M S E(x,X). Authors
show that structural and sequence information in ESMFold latent spaces are in fact highly compressible, and
despite using very small bottleneck dimensions, reconstruction performance can be nonetheless maintained
when evaluated in sequence or structure space.

Based on reconstruction results in Lu et al. [7]], we choose x’ € R %32 with [, = 512, which balances
reconstruction quality at a resolution comparable to the size of latent spaces in image diffusion models [[11].
Dividing the length in half allows us to better leverage the scalability and performance of Transformers, while
managing its O(L) memory needs.

The CHEAP module involves a channel normalization step prior to the forward pass through the autoencoder.
We find that the distribution of embedding values is fairly “smooth" here (Figure[7). Though the original
Rombach et al. [11]] paper was trained with a KL constraint to a Gaussian distribution, we use the embedding
output as is. CHEAP embeddings were also trained with a tanh layer at the output of the bottleneck; this
allows us to clip our samples between [—1, 1] at each diffusion iteration, as was done in original image
diffusion works [6, [9, (12} 64]. We found in early experiments being able to clip the output values were very
helpful for improving performance.

Without using the CHEAP compression prior to diffusion, sample quality was poor, even on short (L = 128)
generations.
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Heatmap of Embedding Values With and Without CHEAP Compression
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Figure 7: Visualizing the original ESMFold latent space before normalization, after per-channel normalization,
and after compression. The