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Abstract

Selective rationalization explains the prediction of complex neural networks by
finding a small subset of the input that is sufficient to predict the neural model
output. The selection mechanism is commonly integrated into the model itself by
specifying a two-component cascaded system consisting of a rationale generator,
which makes a binary selection of the input features (which is the rationale), and
a predictor, which predicts the output based only on the selected features. The
components are trained jointly to optimize prediction performance. In this paper,
we reveal a major problem with such cooperative rationalization paradigm — model
interlocking. Interlocking arises when the predictor overfits to the features selected
by the generator thus reinforcing the generator’s selection even if the selected
rationales are sub-optimal. The fundamental cause of the interlocking problem is
that the rationalization objective to be minimized is concave with respect to the
generator’s selection policy. We propose a new rationalization framework, called
A2R, which introduces a third component into the architecture, a predictor driven
by soft attention as opposed to selection. The generator now realizes both soft and
hard attention over the features and these are fed into the two different predictors.
While the generator still seeks to support the original predictor performance, it
also minimizes a gap between the two predictors. As we will show theoretically,
since the attention-based predictor exhibits a better convexity property, A2R can
overcome the concavity barrier. Our experiments on two synthetic benchmarks
and two real datasets demonstrate that A2R can significantly alleviate the interlock
problem and find explanations that better align with human judgments.2

1 Introduction

Selective rationalization [8, 10, 11, 13, 14, 17, 27, 29, 46] explains the prediction of complex neural
networks by finding a small subset of the input – rationale – that suffices on its own to yield the same
outcome as to the original data. To generate high-quality rationales, existing methods often train a
cascaded system that consists of two components, i.e., a rationale generator and a predictor. The
generator selects a subset of the input explicitly (a.k.a., binarized selection), which is then fed to the
predictor. The predictor then predicts the output based only on the subset of features selected by the
generator. The rationale generator and the predictor are trained jointly to optimize the prediction
performance. Compared to many other interpretable methods [5, 23, 45, 38] that rely on attention
mechanism as a proxy of models’ explanation, selective rationalization offers a unique advantage:
certification of exclusion, i.e., any unselected input is guaranteed to have no contribution to prediction.

⇤Authors contributed equally to this paper. Work was done when SC was at MIT-IBM Watson AI Lab.
2We release our code at https://github.com/Gorov/Understanding_Interlocking.
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However, binarized selective rationalization schemes are notoriously hard to train [8, 46]. To
overcome training obstacles, previous works have considered using smoothed gradient estimations
(e.g. gradient straight-through [9] or Gumbel softmax [21]), introducing additional components to
control the complement of the selection [10, 46], adopting different updating dynamics between the
generator and the predictor [11], using rectified continuous random variables to handle the constrained
optimization in training [8], etc. In practice, these solutions are still insufficient. They either still
require careful tuning or are at a cost of reduced predictive accuracy.

In this paper, we reveal a major training problem of selective rationalization that has been largely
overlooked — model interlocking. Intuitively, this problem arises because the predictor only sees
what the generator selects during training, and tends to overfit to the selection of the generator. As a
result, even if the generator selects a sub-optimal rationale, the predictor can still produce a lower
prediction loss when given this sub-optimal rationale than when given the optimal rationale that it
has never seen. As a result, the generator’s selection of the sub-optimal rationale will be reinforced.
In the end, both the rationale generator and the predictor will be trapped in a sub-optimal equilibrium,
which hurts both model’s predictive accuracy and the quality of generated rationales.

By investigating the training objective of selective rationalization theoretically, we found that the
fundamental cause of the problem of interlocking is that the rationalization objective we aim to
minimize is undesirably concave with respect to the rationale generator’s policy, which leads to many
sub-optimal corner solutions. On the other hand, although the attention-based models (i.e., via soft
selection) produce much less faithful explanations and do not have the nice property of certification
of exclusion, their optimization objective has a better convexity property with respect to the attention
weights under certain assumptions, and thus would not suffer from the interlocking problem.

Motivated by these observations, we propose a new rationalization framework, called A2R (attention-
to-rationale), which combines the advantages of both the attention model (convexity) and binarized
rationalization (faithfulness) into one. Specifically, our model consists of a generator, and two
predictors. One predictor, called attention-based predictor, operates on the soft-attention, and the
other predictor, called binarized predictor, operates on the binarized rationales. The attention as
used by the attention-based predictor is tied to the rationale selection probability as used by the
binarized predictor. During training, the generator aims to improve both predictors’ performance
while minimizing their prediction gap. As we will show theoretically, the proposed rationalization
scheme can overcome the concavity of the original setup, and thus can avoid being trapped in sub-
optimal rationales. In addition, during inference time, we only keep the binarized predictor to ensure
the faithfulness of the generated explanations. We conduct experiments on two synthetic benchmarks
and two real datasets. The results demonstrate that our model can significantly alleviate the problem
of interlocking and find explanations that better align with human judgments.

2 Related Work

Selective rationalization: [27] proposes the first generator-predictor framework for rationalization.
Following this work, new game-theoretic frameworks were proposed to encourage different desired
properties of the selected rationales, such as optimized Shapley structure scores [14], comprehen-
siveness [46], multi-aspect supports [4, 11] and invariance [12]. Another fundamental direction is to
overcome the training difficulties. [6] replaces policy gradient with Gumbel softmax. [46] proposes
to first pre-train the predictor, and then perform end-to-end training. [11] adopts different updating
dynamics between the generator and the predictor. [8] replaces the Bernoulli sampling distributions
with rectified continuous random variables to facilitate constrained optimization. [39] proposes to
enhance the training objective with an adversarial information calibration according to a black-box
predictor. However, these methods cannot address the problem of interlocking.

Attention as a proxy of explanation: Model’s attention [5, 23, 45] could serve as a proxy of
the rationale. Although attention is easy to obtain, it lacks faithfulness. An input associated
with low attention weight can still significantly impact the prediction. In addition, recent works
[7, 20, 35, 38, 44] also find that the same prediction on an input could be generated by totally different
attentions, which limits its applicability to explaining neural predictions. To improve the faithfulness
of attentions, [33, 43] regularize the hidden representations on which the attention is computed over;
[17] applies attention weights on losses of pre-defined individual rationale candidates’ predictions.
Nevertheless, rationales remain to be more faithful explanations due to their certification of exclusion.
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Figure 1: A conventional selective rationalization framework.

[18, 42] force the sparsity of the attention with sparsemax [31], so as to promote the faithfulness
of their attention as rationales. The interlocking problem still persists in this framework, because
the loss landscape remains concave (refer to our arguments in Section 3.2&3.3). Specifically, since
the predictor would not see the sentences that receive 0 attention weights, it tends to underfit these
sentences. As a result, the generator does not have the incentive to assign positive weights to the
sentences that are previously assigned zero weights, thus is prone to selecting the same sentences.

Model interpretability beyond selective rationalization: There are other popular interpretability
frameworks besides selective rationalization. Module networks [2, 3, 22] compose appropriate neural
modules following a logical program to complete the task. Their applicability is relatively limited, due
to the requirement of pre-defined modules and programs. Evaluating feature importance with gradient
information [7, 28, 40, 41] is another popular method. Though [7] discusses several advantages
of gradient-based methods over rationalization, they are post-hoc and cannot impose structural
constraints on the explanation. Other lines of work that provide post-hoc explanations include local
perturbations [25, 30]; locally fitting interpretable models [1, 36]; and generating explanations in the
form of edits to inputs that change model prediction to the contrast case [37].

3 Selective Rationalization and Interlocking

In this section, we will formally analyze the problem of interlocking in conventional selective
rationalization frameworks. Throughout this section, upper-cased letters, i.e., A and A, represent
random vectors (bolded) and random values (unbolded) respectively; lower cased letters, i.e., a and
a, represent deterministic vectors (bolded) and values (unbolded) respectively. Vectors with a colon
subscript, i.e., a1:T , represent a concatenation of a1 to aT , i.e., [a1; · · · ;aT ].

3.1 Overview of Selective Rationalization

Consider a classification problem, (X, Y ), where X = X1:T is the input feature, and Y is the discrete
class label. In NLP applications, X1:T can be understood as a series of T words/sentences. The goal
of selective rationalization is to identify a binary mask, M 2 {0, 1}T , that applies to the input features
to form a rationale vector, Z, as an explanation of Y . Formally, the rationale vector Z is defined as

Z = M �X ⌘ [M1X1, · · · ,MTXT ]. (1)

Conventionally, Z is determined by maximizing the mutual information between Z and Y , i.e.,
max
M

I(Y ;M �X), s.t. M 2 M, (2)

where M refers to a constraint set, such as the sparsity constraint and a continuity constraint, requiring
that the selected rationale should be a small and continuous subset of the input features.

One way of learning to extract the rationale under this criterion is to introduce a game-theoretic
framework (see Figure 1) consisting of two players, a rationale generator and a predictor. The
rationale generator selects a subset of input as rationales and the predictor makes the prediction
based only on the rationales. The two players cooperate to maximize the prediction accuracy, so the
rationale generator would need to select the most informative input subset.

Specifically, the rationale generator generates a probability distribution, ⇡, for the masks, based on
the input features X. Then, the mask M is randomly drawn from the distribution ⇡. To simplify
our exposition, we focus on the case that Xi represents a sentence and only one of the T sentences
is selected as a rationale. In this case, M is a one-hot vector, and ⇡ is a multinomial distribution.
Formally, the mask M is generated as follows

M ⇠ ⇡(X) = [⇡1(X), · · · ,⇡T (X)], where ⇡i(X) = p(M = ei|X)],

and ei denotes a T -dimensional one-hot vector, with the i-th dimension equal to one. The generaliza-
tion to making multiple selections will be discussed in Section 4.1.
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After the mask is generated, the predictor, fr(·;✓r) (the subscript r stands for rationale to differentiate
from the attention-based predictor introduced later), then predicts the probability distribution of Y
based only on Z = M �X, i.e.,

fr(Z;✓r) = [p̂(Y = 1|Z), · · · , p̂(Y = c|Z)], (3)

where p̂ represents a predicted distribution, and ✓r denotes the parameters of the predictor.

The generator and the predictor are trained jointly to minimize the cross-entropy loss of the prediction:

min
⇡(·),✓r

Lr(⇡,✓r), where Lr(⇡,✓r) = EX,Y ⇠Dtr
M⇠⇡(X)

[`(Y,fr(M �X;✓r))]. (4)

Dtr denotes the training set; `(·, ·) denotes the cross entropy loss. It can be shown [13] that, if ⇡(·)
and fr(·;✓r) both have sufficient representation power, the globally optimal ⇡(X) of Equation (4)
would generate masks M that are globally optimal under Equation (2).

3.2 Interlocking: A Toy Example

Despite the nice guarantee of its global optimum solution, the rationalization framework in Equa-
tion (4) suffers from the problem of being easily trapped into poor local minima, a problem we refer
to as interlocking. To help readers understand the nature of this problem, we would like to start with
a toy example, where the input consists of two sentences, X1 and X2. We assume that X1 is the
more informative (in terms of predicting Y ) sentence between the two, so the optimal solution for the
rationale generator ⇡ is to always select X1 (i.e. ⇡1 = 1, and ⇡2 = 0).

However, assume, for some reason, that the generator is initialized so poorly that it only selects X2,
and that the predictor has been trained to make the prediction based only on X2. In this case, we will
show that it is very hard for the generator-predictor to escape from this poor local minimum thus it
fails to converge to the globally optimal solution of selecting X1. Since the predictor underfits to X1,
it will produce a large prediction error when X1 is fed. As a result, the rationale generator would
stick with selecting X2 because X2 yields a smaller prediction error than X1. The predictor, in turn,
would keep overfitting to X2 and underfitting to X1. In short, both players lock the other player from
escaping from the poor solution, hence the name interlocking.

Table 1: An example payoff (negative loss) table of the
accordance game between the generator (Gen) and the pre-
dictor (Pred), where the interlocking problem is manifested
as multiple Nash Equilibria.

Pred.
Overfit to X1 Overfit to X2

Gen. Select X1 (�1,�1) (�10,�10)
Select X2 (�20,�20) (�2,�2)

The problem of interlocking can also be mani-
fested by an accordance game, where the gen-
erator has two strategies, select X1 and select
X2, and the predictor also has two strategies,
overfit to X1 and overfit to X2. An example
payoff table is shown in Table 1. As can be
seen, (select X1, overfit to X1) has the high-
est payoff, and thus is the optimal solution
for both players. However, (select X2, overfit
to X2) also constitutes a Nash equilibrium,
which is locally optimal.

3.3 Interlocking and Concave Minimization

To understand the fundamental cause of the interlocking problem, rewrite the optimization problem
in Equation (4) into a nested form:

min
⇡(·),✓r

Lr(⇡,✓r) = min
⇡(·)

min
✓r

Lr(⇡,✓r) = min
⇡(·)

Lr(⇡,✓
⇤
r (⇡)), (5)

where ✓⇤
r (⇡) = argmin

✓r

Lr(⇡,✓r). (6)

Furthermore, denote
L⇤

r(⇡) = Lr(⇡,✓
⇤
r (⇡)). (7)

Then, the problem of finding the optimal rationale boils down to finding the global minimum of
L⇤

r(⇡). In order to achieve good convergence properties, L⇤
r(⇡) would ideally be convex with respect

to ⇡. However, the following theorem states the opposite.
Theorem 1. L⇤

r(⇡) is concave with respect to ⇡.
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Figure 2: Example loss landscapes of the two-sentence scenario. (a) An example loss landscape of rationale-
based explanation (Equation (7)), which is concave and induces interlocking dynamics towards a sub-optimal
local minimum. (b) An example loss landscape of attention-based explanation (Equation (9)), which is convex
but with an unfaithful global minimum. (c) The two loss landscapes share common end points. Desirable
landscapes should lie in between.

The proof is presented in Appendix A.1. Theorem 1 implies the cooperative rationalization objective
can contain many local optima at the corners. Going back to the two-sentence example, Figure 2(a)
plots an example L⇤

r(⇡) against ⇡1. Since there are two sentences, ⇡1 = 0 implies that the generator
always selects X2, and ⇡1 = 1 implies the generator always selects X1. As shown in the figure, since
X1 is more informative than X2, the global minimum is achieved at ⇡1 = 1. However, it can be
observed that ⇡1 = 0 is also a local minimum, and therefore the rationalization framework can be
undesirably trapped into the rationalization scheme that always selects the worse sentence of the two.

3.4 Convexity of Attention-based Explanation

Knowing that the selective rationalization has an undesirable concave objective, we now turn to
another class of explanation scheme, i.e., attention-based explanation, which uses soft attention, rather
than binary selection, of the input as an explanation. Specifically, we would like to investigate whether
its objective has a more or less desirable convexity property than that of selective rationalization.

Formally, consider an attention-based predictor, fa(↵(X) � X;✓a) (the subscript a stands for
attention), which is almost identical to the rationalization predictor in Equation (3), except that the
binary mask M is replaced with a soft attention weight ↵(X) where each dimension sums to one. So
the optimization objective becomes

min
↵(·),✓a

La(↵,✓a), where La(↵,✓a) = EX,Y ⇠Dtr [`(Y,fa(↵(X)�X;✓a))]. (8)

Similar to Equations (5) to (7), define
L⇤

a(↵) = L(↵,✓⇤
a(↵)), where ✓⇤

a(↵) = argmin
✓a

La(↵,✓a). (9)

The following theorem shows that L⇤
a(↵) has a more desirable convexity property.

Theorem 2. L⇤
a(↵) is convex with respect to ↵, if

1. La(↵,✓a) is µ-strongly convex with respect to ↵ with `2 distance metric, 8✓a;

2. La(↵,✓⇤
a(↵

0)) has a bounded regret with the optimal loss, i.e., when ↵0 = ↵, with `2 norm:

La(↵,✓⇤
a(↵

0))� La(↵,✓⇤
a(↵))  l

2
E
⇥
k↵(X)�↵0(X)k2

⇤2
, 8↵(·),↵0(·); (10)

3. µ � l.

The proof is presented in Appendix A.2, where we also discuss the feasibility of the assumptions. A
special case where the predictor has sufficient representation power is discussed in Appendix A.3
Figure 2(b) plots an example La(↵) against ↵1, again under the same two-sentence toy scenario.
Note that ↵1 = 0 means X2 gets all the weight; ↵1 = 1 means X1 gets all the weights. As can be
observed, La(↵) is now a convex function, which makes it more desirable in terms of optimization.
However, the example in Figure 2(b) also shows why such attention-based scheme is sometimes not
faithful. Even though X1 is a better sentence of the two, the global minimum La(↵) is achieved at the
point where X2 gets a larger weight than X1 does. The reason why the global minimum is usually
achieved in the interior (0 < ↵1 < 1) rather than the corner (↵1 = 0 or 1) is that the predictor would
have access to more information if both X1 and X2 get non-zero attention weights.
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Figure 3: Our proposed rationalization architecture.

3.5 Comparing Binary Selection and Soft Attention

Figure 2(c) puts together the two loss landscapes, L⇤(⇡) and L⇤
a(↵), with the rationale selection

probability tied to the attention weights, i.e., ⇡ = ↵. There are two important observations. First, the
two loss functions take the same values at the two corners, ⇡1 = ↵1 = 0 and ⇡1 = ↵1 = 1, because at
either corner case, both binary selection and soft attention schemes would exclusively select one of
the two sentences, hence yielding the same loss, if both predictors have the same architecture and
parameterization. Second, the binary selection and soft attention have complementary advantages.
The former has a faithful global minimum but concave; the latter is convex but the global minimum
is not faithful. Therefore, both advantages can be simultaneously achieved if we can design a system
with a loss landscape that lies in between the two loss functions, as shown by the gray curve.

4 The Proposed A2R (Attention-to-Rationale) Framework

4.1 The A2R Architecture

Our proposed A2R aims to combine the merits of selective rationalization and attention-based
explanations. Figure 3 shows the architecture of A2R. A2R consists of three modules, a rationale
generator, a rationale-based predictor, and an attention-based predictor.

The rationale generator generates a soft attention, ↵(X). The same soft attention also serves as the
probability distribution from which the rationale selection mask, M , is drawn. i.e., M ⇠ ↵(X). The
rationale-based predictor, fr(·;✓r), predicts the output Y based on the input masked by M . The
attention-based predictor, fa(·;✓a), predicts the output Y based on the representation weighted by
↵(X). ✓r and ✓a denote the parameter of the two predictors, respectively. Formally,

fr(M � X;✓r), fa(X,↵(X);✓a).

Note that, instead of having the input form of ↵(X) � X to the attention-based predictor (as in
Section 3.4), we write X and ↵(X) as two separate inputs, to accommodate broader attention
mechanisms that weight on the intermediate representations rather than directly on the input. In the
experiments, we implement this general framework following some common practices in the NLP
community, with details deferred in Section 5.2.

It is worth emphasizing that the output of the rationale generator, ↵(X), is just one set of attention
weights, but has two uses. First, it is used to directly weight the input features, which is fed to the
attention-based predictor. Second, it is used to characterize the distribution of the rationale mask M .
The rationale mask is applied to the input feature, which is then fed to the rationale-based predictor.

So far, our discussion has focused on the case where only one of the input features is selected as the
rationale. A2R can generalize to the case where multiple input features are selected. In this case,
the rationale mask M can have multiple dimensions equal to one. In our implementation, M is
determined by retaining q% largest elements of ↵(X), where q is a preset sparsity level.

4.2 The Training Objectives

The three components have slightly different training objectives. The rationale-based predictor
minimizes its prediction loss, while reducing the gap between the two predictors, i.e.

min
✓r

Lr(⇡,✓r) + �LJS(⇡,✓r,✓a), (11)
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where Lr(⇡,✓r) is the prediction loss of the rationale-based predictor defined in Equation (4).
LJS(⇡,✓r,✓a) is the Jensen-Shannon divergence between the two predicted distributions, defined as

LJS(⇡,✓r,✓a) = E X⇠Dtr
M⇠↵(X)

[JS(fr(M � X;✓r)kfa(X,↵(X);✓a))] .

We select the JS divergence because it matches the scale and gradient behavior of the other loss terms.

Both the rationale generator and the attention-based predictor try to minimize the prediction loss of
the attention-based predictor, while again reducing the gap between the two predictors, i.e.,

min
⇡(·),✓a

La(⇡,✓a) + �LJS(⇡,✓r,✓a), (12)

where La(⇡,✓a) is the prediction loss of the attention-based predictor defined in Equation (8). Note
that both Equation (11) and (12) can be optimized using standard gradient-descent-based techniques.
The gradient of the rationale-based predictor does not prapagate back to the generator.

4.3 How Does A2R Work

Essentially, A2R constructs a loss landscape that lies between those of the rationale-based predictor
and the attention-based predictor. To better show this, we would like to return to the toy scenario
illustrated in Figure 2(c). If the � in Equation (12) is zero, then the loss for the rationale generator
would be exactly the lowest curve (i.e., L⇤

a). As � increases, the attention-based loss curve would
shift upward towards the rationale-based loss. As a result, the actual loss curve for the generator
will resemble the gray curve in the middle, which addresses the concavity problem and thus the
interlocking problem, without introducing unfaithful solutions. We use only the attention-based
predictor to govern the generator, rather than passing the gradient of both predictors to the generator,
because the gradient of La is much more stable than that of Lr, which involves the policy gradient.

5 Experiments

5.1 Datasets

Two datasets are used in our experiments. Table 5 in Appendix B shows their statistics. Both datasets
contain human annotations, which facilitate automatic evaluation of the rationale quality. To our best
knowledge, neither dataset contains personally identifiable information or offensive content.

BeerAdvocate: BeerAdvocate from [32] is a multi-aspect sentiment prediction dataset, which has
been commonly used in the field of rationalization [6, 11, 27, 46]. This dataset includes sentence-level
annotations, where each sentence is annotated with one or multiple aspect labels.

MovieReview: The MovieReview dataset is from the Eraser benchmark [16]. MovieReview is a
sentiment prediction dataset that contains phrase-level rationale annotations.

5.2 Baselines and Implementation Details

We compare to the original rationalization technique RNP [27], and several published models that
achieve state-of-the-art results on real-world benchmarks, which include 3PLAYER [46], HARD-
KUMA3 [8], and BERT-RNP [16]. 3PLAYER model builds upon the original RNP and encourages the
completeness of rationale selection. HARDKUMA is a token-level method that optimizes the depen-
dent selection of RNP to encourage more human-interpretable extractions. BERT-RNP re-implements
the original RNP with more powerful BERT generator and predictor. RNP is our main baseline to
directly compare with, as RNP and our A2R match in granularity of selection, optimization algorithm
and model architecture. We include the other baselines to show the competitiveness of our A2R .

We follow the commonly used rationalization architectures [8, 27] in our implementations: We use
bidirectional gated recurrent units (GRU) [15] in the generators and the predictors for both our A2R
and our reimplemented RNP. For A2R, we share the parameters of both predictors’ GRU while
leaving the output layers’ parameters separated. Our rationale predictor fr encodes the masked input
M �X into the hidden states, followed by max-pooling. The attention-based predictor fa encodes
the entire input X into hidden states, which is then weighted by ↵.

3https://github.com/bastings/interpretable_predictions.
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Table 2: Results on Beer-Skew (top) and Beer-Biased (bottom). P, R, and F1 indicate the token-level precision,
recall, and F1 of rationale selection. X1% refers to the ratio of first sentence selection (lower is better). The
aroma and palate aspects have 0.5% and 0.2% of the testing examples with groundtruth rationales located in the
first sentence, respectively. Bold numbers refer to the better performance between RNP and A2R in each setting.

Aspect Setting RNP A2R
Acc P R F1 X1% Acc P R F1 X1%

Aroma
Skew10 82.6 68.5 63.7 61.5 14.5 84.5 78.3 70.6 69.2 10.4
Skew15 80.4 54.5 51.6 49.3 31.2 81.8 58.1 53.3 51.7 35.7
Skew20 76.8 10.8 14.1 11.0 80.5 80.0 51.7 47.9 46.3 41.5

Palate
Skew10 77.3 5.6 7.4 5.5 63.9 82.8 50.3 48.0 45.5 27.5
Skew15 77.1 1.2 2.5 1.3 83.1 80.9 30.2 29.9 27.7 58.0
Skew20 75.6 0.4 1.4 0.6 100.0 76.7 0.4 1.6 0.6 97.0

Aroma
Biased0.7 84.7 71.0 65.4 63.4 12.6 85.5 77.9 70.4 69.0 12.2
Biased0.75 84.4 58.1 54.5 52.3 25.3 85.3 68.4 61.7 60.5 20.9
Biased0.8 83.3 2.6 6.0 3.4 99.9 85.8 59.7 54.8 53.2 29.8

Palate
Biased0.7 83.9 51.4 50.5 47.3 24.3 83.5 55.0 52.9 50.1 18.8
Biased0.75 80.0 0.4 1.4 0.6 100.0 82.8 52.7 50.7 47.9 22.0
Biased0.8 82.0 0.4 1.4 0.6 100.0 83.6 47.9 46.2 43.5 29.6

All methods are initialized with 100-dimension Glove embeddings [34]. The hidden state dimensions
is 200 for BeerAdvocate, and 100 for MovieReview. We use Adam [24] as the default optimizer with
a learning rate of 0.001. The policy gradient update uses a learning rate of 1e-4. The exploration rate
is 0.2. The aforementioned hyperparameters and the best models to report are selected according to
the development set accuracy. Every compared model is trained on a single V100 GPU.

5.3 Synthetic Experiments

To better evaluate the interlocking dynamics, we first conduct two synthetic experiments using the
BeerAdvocate dataset, where we deliberately induce interlocking dynamics. We compare our A2R
with RNP, which is closest to our analyzed framework in Section 3 that suffers from interlocking.

Beer-Skewed: In the first synthetic experiment, we let the rationale predictor overfit the first sentence
of each example at the initialization. In the BeerAdvocate dataset, the first sentence is usually about
the appearance aspect of the beer, and thus is rarely the optimal rationale when the explanation target
is the sentiment for the aroma or palate aspects. However, by pre-training rationale predictor on
the first sentence, we expect to induce an interlocking dynamics toward selecting the sub-optimal
first sentence. Specifically, we pre-train the rationale predictor for k epochs by only feeding the
first sentence. Once pre-trained, we then initialize the generator and train the entire rationalization
pipeline. We set k to be 10, 15, and 20 for our experiments.

Table 2 (top) shows the result in the synthetic Beer-Skewed setting. The k in ‘Skewk’ denotes the
number of pre-training epochs. The larger the k, the more serious the overfitting. X1% denotes the
percentage of the test examples where the first sentence is selected as rationale. The higher X1%
is, the worse the algorithm suffers from interlocking. There are two important observations. First,
when the number of skewed training epochs increases, the model performance becomes worse, i.e., it
becomes harder for the models to escape from interlocking. Second, the RNP model fails to escape in
the Aroma-Skew20 setting and all the palate settings (in terms of low F1 scores), while our A2R can
rescue the training process except for Palate-Skew20. For the other settings, both models can switch
to better selection modes but the performance gaps between the RNP and our methods are large.

We further study the failure in the Palate-Skew20 setting with another experiment where we set �=0
to degrade our system a soft-attention system, which in theory would not suffer from interlocking. In
the mean time it still generates the hard mask as rationales and trains the rationale-based predictor.
This results in a 2.2% F1 score, with 97.3% X1 selection – i.e., the soft model also fails. This suggests
that the failure of A2R may not be ascribed to its inability to cope with interlocking, but possibly to
the gradient saturation of the predictor.
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Table 3: Full results on Beer Review. Our A2R achieves best results on all the aspects. Note that the appearance
aspect does not suffer from interlocking so all approaches performs similarly.

Appearance Aroma Palate
Acc P R F1 Acc P R F1 Acc P R F1

HardKuma [8] 86.0 81.0 69.9 71.5 85.7 74.0 72.4 68.1 84.4 45.4 73.0 46.7
RNP 85.7 83.9 71.2 72.8 84.2 73.6 67.9 65.9 83.8 55.5 54.3 51.0
3PLAYER 85.8 78.3 66.9 68.2 84.6 74.8 68.5 66.7 83.9 54.9 53.5 50.3

Our A2R 86.3 84.7 71.2 72.9 84.9 79.3 71.3 70.0 84.0 64.2 60.9 58.0
(std) ±0.2 ±1.2 ±0.7 ±0.8 ±0.1 ±0.5 ±0.3 ±0.4 ±0.2 ±0.7 ±0.4 ±0.5

BeerAdvocate - Palate Aspect

pours a dark brown , almost black color . there is minimal head that goes away almost immediately with
only a little lacing . smell is a little subdued . dark coffee malts are the main smell with a slight bit of hops
also . taste is mostly of coffee with a little dark chocolate . it starts sweets , but ends with the dry espresso
taste . mouthfeel is thick and chewy like a stout should be , but i prefer a smoother feel . drinkability is
nice . a very good representation for its style .

Figure 4: Examples of generated rationales on the palate aspect. Human annotated words are underlined. A2R
and RNP rationales are highlighted in blue and red colors, respectively.

Beer-Biased: The second setup considers interlocking caused by strong spurious correlations. We
follow a similar setup in [12] to append punctuation “,” and “.” at the beginning of the first sentence
with the following distributions:

p(append , |Y = 1) = p(append . |Y = 0) = ↵; p(append . |Y = 1) = p(append , |Y = 0) = 1 � ↵.

We set ↵ to 0.7, 0.75, and 0.8 for our experiments, which are all below the achievable accuracy that
selecting the true rationales. Intuitively, since sentence one now contains the appended punctuation,
which is an easy-to-capture clue, we expect to induce an interlocking dynamics towards selecting the
first sentence, even though the appended punctuation is not as predictive as the true rationales.

Table 2 (bottom) shows the result in the synthetic Beer-Biased setting. The result is similar to that in
the Beer-Skewed setting. First, the higher correlated bias makes it more difficult for the models to
escape from interlocking. Second, our model can significantly outperforms the baseline across all the
settings. Third, the RNP model fails to escape in the Aroma-Biased0.8 and the Palate-Biased settings
with biases ratios of 0.75 and 0.8, while our A2R can do well for all of them.

5.4 Results on Real-World Settings

BeerAdvocate: Table 3 gives results on the standard beer review task. Our A2R achieves new
state-of-the-art on all the three aspects, in terms of the rationale F1 scores. All three baselines
generate continuous text spans as rationales, thus giving a similar range of performance. Among
them, the state-of-the-art method, HardKuma, is not restricted to selecting a single sentence, but
would usually select only 1⇠2 long spans as rationales, due to the dependent selection model and the
strong continuity constraint. Therefore, the method has more freedom in rationale selection compared
to the sentence selection in others, and gives high predictive accuracy and good rationalization quality.

A2R achieves a consistent performance advantage over all the baselines on all three aspects. In
addition, we have observed evidence suggesting that the performance advantage is likely due to
A2R’s superior handling of the interlocking dynamics. More specifically, most beer reviews contain
highly correlated aspects, which can induce interlocking dynamics towards selecting the review of a
spuriously correlated aspect, analogous to the appended punctuations in the Beer-Biased synthetic
setting. For example, when trained on the aroma or the palate aspect, RNP has the first 7 epochs
selecting the “overall” reviews for more than 20% of the samples. On the palate aspect, RNP also
selects the aroma reviews for more than 20% samples in the first 6 epochs. Both of these observations
indicate that RNP is trapped in a interlocking convergence path. On the appearance aspect, we do not
observe severe interlocking trajectories in RNP; therefore for this aspect, we do not expect a huge
improvement in our proposed algorithm. The aforementioned training dynamics explain why our
approach has a larger performance advantage on aroma and palate aspects (4.5% and 7.4% in F1
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respectively) than on appearance. Figure 4 gives an example where the RNP makes a mistake of
selecting the “overall” review. More examples can be found in Appendix D.

MovieReview: Table 4 gives results on the movie review task. Since the human rationales are
multiple phrase pieces, we make both RNP and A2R perform token-level selections to better fits
to this task. We follow the standard setting [6, 27] to use the sparsity and continuity constraints to
regularize the selected rationales for all methods. For fair comparisons, we use a strong constraint
weight of 1.0 to punish all algorithms that highlight more than 20% of the inputs, or have more than
10 isolated spans. These numbers are selected according to the statistics of the rationale annotations.

Table 4: Results on movie review.

P R F1

RNP impl by [26] – – 13.9
BERT-RNP [16] – – 32.2
HARDKUMA [8] 31.1 28.3 27.0
RNP 35.6 21.1 24.1
3PLAYER 38.2 26.0 28.0

Our A2R 48.7 31.9 34.9±0.5

Different from BeerAdvocate, the annotations of
MovieReview are at the phrase-level, which are
formed as multiple short spans. In addition, these
annotated rationales often tend to be “over-complete”,
i.e., they contain multiple phrases, all of which are
individually highly predictive of the output. Because
of this, the advantage of HARDKUMA becomes less
obvious compared to other baselines. Yet it still out-
performs two different implementations of RNP (i.e.,
the published result in [26], and our own implemen-
tation). Our A2R method consistently beats all the
baselines including the strong BERT-based approach.

Sensitivity of �: In the previous experiments, we set �=1.0. This is a natural choice because the
two loss terms are of the same scale. To understand the sensitivity of the � selection, we add the
analysis as follows: we re-run the experiments following the setting in Table 3, with the value of �
varying from 1e3 to 10. Figure 5 summarizes the results. As can be seen, A2R performs reasonably
well within a wide range of � ⇠ [0.1, 2.0], within which the two loss terms are of comparable scales.

Figure 5: Analysis of the sensitivity of �.

Finally, we would like to discuss the possible future
direction of annealing � instead of using a fixed value.
Intuitively, since the soft model does not suffer from
interlocking, it may help if at the beginning of train-
ing we give the soft branch more freedom to arrive at
a position without interlocking, then control the con-
sistency to guarantee faithfulness. This corresponds
to first set a small � and then gradually increase it.
However, our preliminary study shows that a simple
implementation does not work. Specifically, we start
with � = 0 and then gradually increase � to 1.0 by
the 10-th epoch. This gives slightly worse results in
almost all settings, except for the Palate-Biased0.8
case, where a slight increase is observed.

6 Conclusion and Societal Impacts

In this paper, we re-investigate the training difficulty in selective rationalization frameworks, and
identify the interlocking dynamics as an important training obstacle. It essentially results from the
undesirable concavity of the training objective. We provide both theoretical analysis and empirical
results to verify the existence of the interlocking dynamics. Furthermore, we propose to alleviate
the interlocking problem with a new A2R method, which can resolve the problem by combining the
complementary merits of selective rationalization and attention-based explanations. A2R has shown
consistent performance advantages over other baselines on both synthetic and real-world experiments.
A2R helps to promote trustworthy and interpretable AI, which is a major concern in society. We do
not identify significant negative impacts on society resulting from this work.

Our proposed A2R has advantages beyond alleviating interlocking. Recent work [19, 47] pointed out
the lack of inherent interpretability in rationalization models, because the black-box generators are not
guaranteed to produce causally corrected rationales. Our A2R framework can alleviate this problem
as the soft training path and the attention-based rationale generation improves the interpretability,
which suggests a potential towards fully interpretable rationalization models in the future.
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(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] In the experiments in Sec-
tion 5.4, we show our approach does not show advantage if the task has no significant
interlocking dynamics.

(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Please see Appendix A.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Please find the
code in the supplemenal material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Please see Section 5.2.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Please see Table 3 and 4.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Described at the end of Section 5.2.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] The BeerAdvocate needs to be

obtained by emailing the creators, so we did not mention the license in the paper. The
MovieReview data is publicly available at http://www.eraserbenchmark.com/.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
The only new asset is our codebase, which is included in the supplemental material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Discussed in Section 5.1.
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