
Asymptotically Best Causal Effect Identification with
Multi-Armed Bandits

Alan Malek
DeepMind London

alanmalek@deepmind.com

Silvia Chiappa
DeepMind London

csilvia@deepmind.com

Abstract

This paper considers the problem of selecting a formula for identifying a causal
quantity of interest among a set of available formulas. We assume an sequential
setting in which the investigator may alter the data collection mechanism in a
data-dependent way with the aim of identifying the formula with lowest asymptotic
variance in as few samples as possible. We formalize this setting by using the best-
arm-identification bandit framework where the standard goal of learning the arm
with the lowest loss is replaced with the goal of learning the arm that will produce
the best estimate. We introduce new tools for constructing finite-sample confidence
bounds on estimates of the asymptotic variance that account for the estimation
of potentially complex nuisance functions, and adapt the best-arm-identification
algorithms of LUCB and Successive Elimination to use these bounds. We validate
our method by providing upper bounds on the sample complexity and an empirical
study on artificially generated data.

1 Introduction

Many scientific disciplines, including biology, healthcare, and social and behavioral sciences, are
concerned with estimating the causal effect of some exposure on an outcome of interest through an
observational study. When the structure of the causal relationships between relevant variables is
known and satisfies certain conditions, the investigator can use identification formulas derived from
the do-calculus to express a causal quantity τ as a functional of the distribution of the observations
[23, 24], after which an estimate of τ can be obtained with an appropriate estimator1. For many
structures, τ can be identified using several formulas involving different variables. In most real-world
applications, the costs of measuring different variables can vary considerably. For instance, different
medical tests can be more or less expensive or difficult to perform. Ideally, the investigator should
conduct the observational study using the formula that optimally balances statistical performance
with observational cost.

Recently introduced graphical criteria allow the comparison of identification formulas derived
from the popular adjustment criterion w.r.t. the asymptotic variance of linear and nonparametric
estimators [7, 27, 29, 31]. However, information about the causal graph structure alone does not allow
comparison of certain adjustment formulas nor of arbitrary identification formulas. In addition, such
criteria only focus on statistical performance and disregard observational cost. A selection method
that is applicable to arbitrary identification formulas and accounts for both statistical performance
and observational cost must make use of data.

A naïve approach to choose a formula would be to collect a dataset in which each observation includes
all variables needed by all formulas, and then compare the cost-adjusted statistical performances of

1For simplicity of exposition, we assume that an identification formula is associated with only one estimator,
but the method proposed in this paper can also be used in the more general case of several estimators.
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the formulas. We instead propose a sequential strategy in which the investigator decides, observation-
by-observation, which subset of variables to observe with the goal of identifying the best formula with
the fewest observations. We cast this strategy into the best-arm-identification bandit framework [20],
by considering each formula as one arm and by replacing the typical goal of learning the arm with
the best mean with the goal of learning the formula with the best long-run cost-adjusted statistical
performance. This enables us to introduce methods for implementing the strategy by leveraging
algorithms from the bandit literature.

To enable us to meaningfully compare long-run behavior of different estimators, we focus on
√
n-

consistent estimators, i.e.with error op(1/
√
n), and use the asymptotic variance, which is the leading

constant in the error rate [22], as the performance evaluation metric. We adapt well-known bandit
algorithms to this goal by introducing finite-sample confidence intervals on the asymptotic variance.
In particular, we show how to obtain such intervals for asymptotically linear estimators with known
influence functions, which form a large class of

√
n-consistent estimators that can be constructed for

any causal effect [15]. Estimators of causal quantities typically contain high-dimensional nuisance
functions η, and modern practice is to estimate such functions using large model classes that do
not have classical Donsker-like smoothness (e.g. neural networks), which often leads to a slow
convergence rate of O(n−1/4) and therefore to loosing asymptotic linearity. Recent work in double
machine learning has established Neyman orthogonality as a sufficient condition for asymptotic
linearity even when η is estimated at rate O(n−1/4) [2]. This result allows us to include estimators
with complex nuisance functions in our setting. A critical aspect of our setting is that the asymptotic
variance needs to be estimated at the same rate as τ ; otherwise the samples needed to estimate the
asymptotic variance could be larger than the samples needed to directly estimate τ with an arbitrary
estimator. Our main theorems show that, even without Neyman orthogonality, O(n−1/2) estimation
of the asymptotic variance is possible whenever O(n−1/2) estimation of τ is possible.

The rest of the paper is organized as follows. Section 2 introduces our technical assumptions on
the estimators and formalizes selection of the best formula as a best-arm-identification problem
in multi-armed bandits. Section 3 shows how to construct finite-sample confidence sequences (i.e.
confidence intervals that hold uniformly over sequences of random variables) on the asymptotic
variance, which are then used in Section 4 to adapt the LUCB and Successive Elimination bandit
algorithms to our setting. Sample complexity upper bounds are also derived. Finally, Section 5
presents an empirical evaluation of our methods on artificially generated data, showing significant
sample complexity reduction with respect to a naïve uniform sampling method.

2 Causal Effect Identification with Multi-Armed Bandits

Z1

X Z2 Y

Let X,Y , and V be random variables with X denoting an exposure,
Y an outcome of interest, and V a set of observable covariates. Let p
and pdo(x) indicate the observational and interventional distributions,
respectively, which differ in passively observing X versus intervening
on X by fixing its value to x.

We consider the causal contrast τ :=
∑
x λxµdo(x), where µdo(x) :=

Epdo(x) [Y |X = x] and λx is a scalar, in the overidentified setting in which µdo(x) can be expressed as
a functional of the observational distribution with K identification formulas, each using a different
subset of covariates Zk ⊆ V . For example, in the causal DAG above (see Appendix A), µdo(x) can
be identified with the adjustment criterion using Z1, i.e. as µdo(x) = Ep[µx(Z1)] with µx(Z1) :=
Ep[Y |X = x, Z1], or with the frontdoor criterion using Z2, i.e. as µdo(x) =

∑
z2
p(Z2 = z2|X =

x)
∑
x′ p(X = x′)µx′(Z2 = z2).

We assume that each identification formula is associated with only one estimator τ̂k of τ mapping a
dataset {wik}ni=1 of samples from p(Wk := (X,Y,Zk)), each having cost ck, to an estimate of τ .

The goal of this paper is to propose a method for identify the estimator τ̂k∗ with the best cost-adjusted
statistical performance, using a sequential strategy in which the investigator chooses an estimator τ̂k,
collects an observation of Wk, and uses it to update its belief about the estimators. The investigator
continues this process until the optimal estimator can be identified with high confidence. The aims is
to concentrate observations on the most promising estimators and to identify the best estimator in as
few observations as possible.
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Assumptions on Estimators of τ . We focus on estimators that are
√
n-consistent, i.e. with error

op(1/
√
n), and compare their statistical performance by using the asymptotic variance, which is the

leading constant in the error rate [22]. To make this comparison, our proposed algorithms in Section 4
require finite-sample confidence intervals on the asymptotic variance. While any finite-sample
confidence interval can be employed, we show how to construct such intervals for a very common
and often-studied class of

√
n-consistent estimators, namely asymptotically linear estimators with

known influence functions in the presence of nuisance functions.

Nuisance functions are quantities that are required for the estimation of τ , but of no interest otherwise.
For example, the augmented inverse probability weighted (AIPW) estimator using covariates Z ⊆ V ,
defined as τ̂(D) = ED

[∑
x λx

(
Ix(X)
ex(Z) (Y − µx(Z)) + µx(Z)

)]
, where Ix is the indicator function,

ex(Z) := p(X = x|Z), and ED[·] denotes empirical expectation w.r.t. dataset D of samples from
p(W := (X,Y,Z)), has nuisance function η = (µx(Z), ex(Z)).
Definition 1. LetD = {wi}ni=1 be a dataset of samples from p(W ). An estimator τ̂ of τ with nuisance
function η is asymptotically linear [11, 30] if there exists a function φ, called influence function
(IF), satisfying Ep[φ(W, η, τ)] = 0 and Ep[φ2(W, η, τ)] < ∞, and such that

√
n
(
τ̂(D) − τ

)
=

1√
n

∑n
i=1 φ(wi, η, τ) + op(1). By the central limit theorem, τ̂ is

√
n-consistent and asymptotically

normal with asymptotic variance σ2 = Ep[φ2(W, η, τ)].

If the influence function can be decomposed as φ(W, η, τ) = ψ(W, η) − τ , then ψ is called the
uncentered influence function (UIF). In this case, τ = Ep[ψ(W, η)] and σ2 = varp[ψ(W, η)].

The important property of asymptotically linear estimators is that they have a well-understood
asymptotic variance, and the UIF case provides additional structure.

When we need to estimate η, asymptotic linearity of τ̂ might not hold depending on the function
class used to model the estimator η̂ and on the rate at which η̂ converges to η: a rate slower than
O(n−1/2) could cause the same rate for the error of τ̂ and, therefore, a loss of asymptotically
linearity. For example, if η̂ is modelled with a high-dimensional or nonparametric function class,
one generally expects rate O(n−1/4). Recent work in double machine learning [2] has shown that
Neyman orthogonality is a sufficient condition for asymptotic linearity of τ̂ even when η̂ converges
at rate O(n−1/4). Jung et al. [15, 16] show that asymptotically linear estimators with Neyman
orthogonality exist for all identification formulas. Hence, all identification formulas can be included
in our framework even with nuisance functions estimators that converge at rate O(n−1/4).

Multi-Armed Bandit Formalism. We formalize the problem of identifying the estimator with the
best cost-adjusted asymptotic variance as a best-arm-identification (BAI) in multi-armed bandits
(MAB) problem. MAB is a powerful framework for modeling sequential decision problems under
uncertainty as a repeated game between an investigator and the environment (see Appendix B).

For k ∈ [K] := {1, . . . ,K}, let τ̂k be an asymptotically linear estimator of τ with asymptotic
variance σ2

k and cost ck. The goal of the investigator is to identify the estimator τk∗ such that
k∗ := arg minkckσ2

k. This scaling arises because guaranteeing |τ̂k− τ | = O(ε) with high probability
requires n = O(σ2

k/ε
2) samples, which has a cost of O(ckσ

2
k/ε

2). For some δ > 0, and ε > 0, the
goal is to find an (ε, δ)-PAC index k̂, i.e. one that satisfies

P
(
ck̂σ

2
k̂
≥ minkckσ2

k + ε
)
≤ δ.

In words, k̂ has probability at least 1− δ of being at most ε-suboptimal.

At each round n = 1, 2, . . ., the investigator chooses an index kn ∈ [K], obtains an observation
wnkn ∼ p(Wk), updates its belief about the cost-adjusted asymptotic variance ckσ2

k, and decides
whether to continue sampling or return an (ε, δ)-PAC index.

The standard BAI goal is to identify the arm with the smallest average loss in as few samples as
possible. Our setting can be treated as a variant by replacing this goal with the goal of learning the
estimator with the lowest cost-adjusted asymptotic variance. This enables us to leverage algorithms
from the BAI literature.

Most BAI algorithms fall into the following three categories: (1) action elimination algorithms, such
as Successive Elimination (SE) [4], which keep a set of arms that could be optimal and alternates
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between sampling all the arms in this set and using confidence intervals to prune the set; (2) optimistic
algorithms, including Upper Confidence Bound (UCB) and LUCB [17], which first construct the
most optimistic problem instance that is consistent with the confidence intervals (e.g. by assuming
the smallest mean values) and then act greedily as if the instance was true; (3) Track-and-Stop-style
algorithms [19], which compute an asymptotic lower bound on the sample complexity and try to keep
the empirical sampling proportion close to the sampling proportion achieving the lower bound.

Track-and-Stop-style algorithms require the sampling distribution of all the arms to be from a
parametric family and therefore are not appropriate for our setting. Instead, action elimination and
optimistic algorithms can be implemented whenever one has finite-sample confidence sets. We focus
on LUCB and SE, as both algorithms can be implemented using arbitrary confidence sets (i.e. that
are not a known function of n).

In the next section, we develop the necessary tools for estimating two-sided confidence bounds on σ2
k

that hold for all estimators and all rounds simultaneously.

3 Finite-Sample Confidence Sequences for the Asymptotic Variance

We now turn towards constructing a finite-sample confidence sequence on the asymptotic variance σ2

of a particular estimator τ̂ of τ that depends on assumptions on the distribution of W , smoothness
properties of the influence function φ, and the rate of convergence of η̂.

3.1 Confidence Sequences

A confidence sequence, defined for a stochastic process, essentially provides a confidence interval
that holds uniformly over time.
Definition 2. For a stochastic process {ξn}n≥1, ξn ∈ R, and coverage level α > 0, a confidence
sequence of level α is a sequence of real numbers u := {un}n≥1, referred to as a boundary sequence
at level α, satisfying P(∀n ≥ 1 : ξn ≤ un) > 1− α.

Instead of using a confidence sequence, one could control ξn by defining a confidence interval
for every n and taking a union bound. However, to maintain a total probability of error of α, the
confidence interval for ξn must have error probabilities that sum to at most α, which typically results
in a confidence interval width that is a logarithmic factor larger [13].

3.2 Sample-Splitting Estimator of σ2

Let τ̂ be an estimator of τ with IF φ, asymptotic variance σ2, and nuisance function η with estimator
η̂. We propose and analyze the following sample-splitting estimator σ̂2 of σ2 on dataset D. We first
divide D into the three folds Dη, Dτ and Dσ. We then use Dη to obtain an estimate η̂(Dη) of η,
compute τ̂(Dτ , η̂(Dη)) as an arbitrary solution in {τ ′ : EDτ [φ(W, η̂(Dη), τ ′)] = 0}, and evaluate

σ̂2(D) := EDσ
[
φ2 (W, η̂(Dη), τ̂(Dτ , η̂(Dη)))

]
. (1)

In the case in which τ̂ has UIF ψ, the estimation procedure can be simplified by dividing D into two
folds, Dη and Dσ , and computing

σ̂2(D) := varDσ [ψ(W, η̂(Dη))] = EDσ
[
φ2 (W, η̂(Dη), τ̂(Dσ, η̂(Dη)))

]
, (2)

where varDσ indicates empirical variance w.r.t. Dσ . In both cases, data splitting alleviates the bias in
σ̂2 by forcing it to be independent of the bias in η̂ (and of the bias of τ̂ in the IF case). The UIF case
is more sample efficient because we do not need to directly compute τ̂ .

3.3 Confidence Sequences for |σ̂2(D)− σ2|

We want to study the behavior of an estimator τ̂ evaluated on growing datasets, as one would find in
a bandit problem. We consider datasets D1 ⊆ D2 ⊆ . . ., where Dn is obtained by augmenting Dn−1

with new samples. We also assume that the data folds grow in the same manner. For example, in
the UIF case, we have Dn = Dηn ∪ Dσn with Dηn−1 ⊆ Dηn, and Dσn−1 ⊆ Dσn. We wish to obtain a
confidence sequence on the estimation error of the asymptotic variance, |σ̂2(Dn)− σ2|, in terms the
estimation error of the nuisance function ‖η̂(Dηn)− η‖ and other problem parameters.
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The main result of this section is that the estimation error of the sample-splitting estimators defined
in Eqs. (1) and (2) only scales with O(‖η̂(Dηn)− η‖2); this scaling allows for |σ̂2(Dn) − σ2| =
O(n−1/2) even when ‖η̂(Dηn)− η‖ = O(n−1/4). We present the UIF case first.
Theorem 1. Consider an L-Lipschitz UIF ψ, an upper bound τ̃ on |τ |, and let α > 0. Let
{Dn}n≥1 be a sequence of datasets with Dn = Dηn ∪ Dσn, Dηn−1 ⊆ Dηn, and Dσn−1 ⊆ Dσn. Assume
that u(ψ,1), u(ψ,2), and uη are boundary sequences of level α for

∣∣EDσn [ψ(W, η)]− E[ψ(W, η)]
∣∣,∣∣EDσn [ψ(W, η)2]− E[ψ(W, η)2]

∣∣, and ‖η̂(Dηn)− η‖, respectively. Then, the estimator σ̂2 defined in
Eq. (2) satisfies

P
(
∀n ≥ 1 :

∣∣σ̂2(Dn)− σ2
∣∣ ≤ 2L2(uηn)2 + u(ψ,2)

n +
(
u(ψ,1)
n

)2
+ 2τ̃u(ψ,1)

n

)
≥ 1− 3α.

CSUpdate (UIF version)
Input Boundary sequences u := (uη, u1, u2),
η̂, L, τ̃ , Dη , Dσ , ψ
σ̂2 ← varDσ [ψ(W, η̂(Dη))]

Using n1 = |Dη| and n2 = |Dσ|,
β ← 2L2(uηn1

)2 + u2
n2

+ (u1
n2

)2 + 2τ̃u1
n2

Return σ̂2, β

A confidence sequence for ‖η̂(Dηn)− η‖ and
tail control of ψ(W, η) are sufficient for con-
trol of

∣∣σ̂2(Dn)− σ2
∣∣. Note that we only re-

quire control of ψ(W, η) at the true η. Also note
that (uηn)2, rather than uηn, appears in the bound,
which justifies our claim of O(‖η̂(Dηn)− η‖2)
scaling. Computing this bound is an essential
subroutine, outlined on the right.

Proof Outline. Let η̂n := η̂(Dηn), σ̂2
n := σ̂2(Dn), and En := EDσn . Using the identity

varn[ψ(W, η̂n)] = En[ψ(W, η̂n)2]− En[ψ(W, η̂n)]2, we can expand σ̂2
n − σ2, as

σ̂2
n − σ2 = En

[
(ψ(W, η̂n)− ψ(W, η))2

]
+ 2En [ψ(W, η)(ψ(W, η̂n)− ψ(W, η))]

− En[ψ(W, η̂n)− ψ(W, η)]En[ψ(W, η̂n) + ψ(W, η)]

+
(
En[ψ2(W, η)]− E[ψ2(W, η)]

)
+
(
En[ψ(W, η)]2 − E[ψ(W, η)]2

)
.

Since ψ is L-Lipschitz, the first term can be bounded by L2 ‖η̂n − η‖2. The second and third terms
can be simplified with Cauchy-Schwarz, the first order terms cancel out, and the result is another
L2 ‖η̂n − η‖2 term. The forth term is controlled by u(ψ,2)

n , and the final term can bounded as∣∣En[ψ(W, η)]2 − E[ψ(W, η)]2
∣∣ ≤ ∣∣∣∣(E[ψ(W, η)]− u(ψ,1)

n

)2

− E[ψ(W, η)]2
∣∣∣∣

≤
(
u(ψ,1)
n

)2
+ 2

∣∣∣u(ψ,1)
n E[ψ(W, η)]

∣∣∣ ≤ (u(ψ,1)
n

)2
+ 2τ̃u(ψ,1)

n .

A similar result can be obtained without an UIF as long as one has an additional confidence sequence
on τ̂(Dτn, η̂(Dηn)). See Appendix F for a precise statement and all proofs. In this case, the CSUpdate
subroutine needs to be modified to use a third data fold Dτn, the appropriate σ̂2, and the confidence
sequence from Theorem 2.
Theorem 2. Consider an L-Lipschitz IF φ, an upper bound τ̃ on |τ |, and let α > 0. Let {Dn}n≥1

be a sequence of datasets with Dn = Dηn ∪ Dτn ∪ Dσn, Dηn−1 ⊆ Dηn, Dτn−1 ⊆ Dτn, and Dσn−1 ⊆ Dσn.
Assume that there exists boundary sequences of level α as in Theorem 1 with φ replacing ψ throughout,
and that uτ is a boundary sequences of level α for |τ̂(Dτn, η̂(Dηn)) − τ |. Then, the estimator σ̂2

defined in Eq. (1) satisfies

P
(
∀n ≥ 1 :

∣∣σ̂2(Dn)− σ2
∣∣ ≤ 2L2(uηn + uτn)2 + u(φ,2)

n +
(
u(φ,1)
n

)2
+ 2τ̃u(φ,1)

n

)
≥ 1− 4α.

Combined with a result that |τ̂(Dτn, η̂(Dηn))− τ | = O(‖η̂(Dηn)− η‖2) (see e.g. [2, 5]), we have that
|σ̂2(Dn)− σ2| = O(‖η̂(Dηn)− η‖2).

We emphasize that the O(‖η̂(Dηn)− η‖2) scaling is surprising, as a naïve argument would produce a
dependence on O(‖η̂(Dηn)− η‖) instead; using the shorthand η̂n = η(Dηn) and τ̂n = τ̂(Dτn, η̂n),
σ̂2(Dn)− σ2 = En[φ2(W, η̂n, τ̂n)]− E[φ2(W, η, τ)]

= En
[
(φ(W, η̂n, τ̂n)− φ(W, η, τ))

2
+ 2φ(W, η, τ)(φ(W, η̂n, τ̂n)− φ(W, η, τ))

]
+ En[φ2(W, η, τ)]− E[φ2(W, η, τ)],
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and the second term is O(‖η̂n − η‖) under a simple bound (e.g. Cauchy-Schwarz).

3.4 Sub-Gaussian Random Variables

Confidence sequences for empirical expectations around their means are well established in the
literature, see e.g. [10]. As an illustration, this section derives a confidence sequence under the
common assumption that the variables are sub-Gaussian.
Definition 3. A random variable W is λ sub-Gaussian if there exists a constant λ such that
E
[
et(W−E[W ])

]
≤ eλ

t2

2 for all t ∈ R. A random variable W is ν sub-exponential with scale c

if there exist constants ν, c such that E
[
et(W−E[W ])

]
≤ eν t

2

2 ∀t ∈ [0, 1/c).

A useful property is that the square of a sub-Gaussian random variable is sub-exponential. The
specific parameters can be found by comparing moments; for example, [8, Appendix B] shows the
following result.

Lemma 1. If W is λ sub-Gaussian, then W 2 is 4
√

2λ2 sub-exponential with scale c = 4λ.

Intuitively, sub-Gaussian random variables have tails no heavier than a Gaussian with variance λ, and
sub-exponential random variables have tails no heavier than a χ2 distribution. Sub-Gaussianity is a
common assumption in the bandit literature satisfied in many applications; for example, a B-bounded
random variable is B2 sub-Gaussian.

Confidence sequences for sub-Gaussian and and sub-exponential random variables can be found
in the literature, see e.g. [10]. Then, we may use the fact that

∣∣EDσn [ψ(W, η)]− E[ψ(W, η)]
∣∣ is

sub-Gaussian and
∣∣EDσn [ψ(W, η)2]− E[ψ(W, η)2]

∣∣ is sub-exponential to derive the following bound
for our variance estimation error. See Appendix C for more details.
Corollary 1. Let α ∈ (0, 1) and assume the same setting as Theorem 1, and additionally that ψ(W, η)
is λ sub-Gaussian. Then, for λ′ = λ∨8λ2, anym > 0, and n′ = (91λ′(log(λ′n/m) + log(1/α)))∨
(m/λ′), we can show that

P

(
∃n ≥ n′ :

∣∣σ̂2(Dn)− σ2
∣∣ ≥ 2L2(uηn)2 + (3 + 6τ̃)

√
λ′

n

(
1

2
log

(
λ′n

m

)
+ log

2

α

))
≤ α.

3.5 Confidence Sequences for ‖η̂(Dηn)− η‖

Our main theorem presents a confidence sequence on the asymptotic variance in terms of the nuisance
function estimation error, ‖η̂(Dηn)− η‖. There are many estimators η̂ that have confidence sequences
established in the literature, such as least squares estimators [3]. Additionally, for estimators with a
confidence interval but no confidence sequence, we can always take a union bound over n.

To be precise, suppose that we have a function R(n, α) such that, for any n ≥ 1
and α < 0, P(‖η̂(Dηn)− η‖ ≥ R(n, α)) ≤ α. Then uηn = R(n, 6α/(πn)2) is a
boundary sequence of level α, verified by the calculation P (∃n > 1 : ‖η̂(Dηn)− η‖ ≥ uηn) ≤∑∞
n=1 P

(
‖η̂(Dηn)− η‖ ≥ R(n, 6α/(πn)2)

)
≤∑∞n=1

6α
πn2 ≤ α.

Hence, without loss of generality, our algorithms and results can be stated in terms of a boundary
sequence uη. Typically, if R(n, α) = O(nν log(1/α)), the above union bound construction only
adds log terms to the final bound, which is generally sufficient for most applications.

4 CS-LUCB and CS-SE Algorithms

This section introduces our adaptations of the LUCB and SE bandit algorithms that use the confidence
sequences derived in Section 3: we refer to them as CS-LUCB and CS-SE. For simplicity of
exposition, we present the UIF case (the IF case requires keeping a third data fold and modifying
CSUpdate as described in Section 3.3).

CS-LUCB and CS-SE are summarized in Algorithms 1 and 2. These algorithms take as input,
for k ∈ [K], the UIF ψk, the estimator η̂k of the nuisance function ηk, the cost ck, the boundary
sequences uk := (uηk, u

1
k, u

2
k) and constants required by Theorem 1, and a batch size B.
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Algorithm 1 CS-LUCB
Input ε > 0, B ≥ 1, τ̃ > 0, L > 0,
{ψk, η̂k, uk, ck : k ∈ [K]}
for k=1,. . . , K do

Obtain B new samples D
Add half of D to Dηk and half to Dσk
σ̂2
k, βk ← CSUpdate(uk, η̂k, ψk, L, τ̃ ,Dηk ,Dσk )

end
for t = 1, 2, . . . do

lt ← arg mink∈[K]ckσ̂
2
k

ut ← arg mink 6=ltck(σ̂2
k − βk)

if clt
(
σ̂2
lt

+ βlt
)
≤ cut

(
σ̂2
ut − βut

)
− ε then

Return k̂ = lt
end
for k ∈ ut, lt do

Obtain B new samples D
Add half of D to Dηk and half to Dσk
σ̂2
k, βk ← CSUpdate(uk, η̂k, ψk, L, τ̃ ,Dηk ,Dσk )

end
end

Algorithm 2 CS-SE
Input ε > 0, B ≥ 1, τ̃ > 0, L > 0,
{ψk, η̂k, uk, ck : k ∈ [K]}
S ← [K], and Dηk ← ∅,Dσk ← ∅ ∀k ∈ [K]
while |S| > 1 do

for k ∈ S do
Obtain B new samples D
Add half of D to Dηk and half to Dσk
σ̂2
k, βk ← CSUpdate(uk, η̂k, ψk, L, τ̃ ,Dηk ,Dσk )

end
l← arg mink∈Sckσ̂2

k

R← {k ∈ S : cl(σ̂
2
l + βl) ≤ ck(σ̂2

k − βk)}
S ← S \R
if βk ≤ ε

2 for all k ∈ S then
S ← arg mink∈Sckσ̂2

k
end

end
Return k̂ = S

At every round, CS-LUCB samples obser-
vations for the estimator with the lowest
cost-adjusted asymptotic variance and for
the estimator with the lowest lower confi-
dence bound among the remaining estima-
tors. Intuitively, samples from these esti-
mators are the most informative. The algo-
rithm stops when the confidence sequence
of the best estimator is separated from the
rest, up to the error tolerance.

CS-SE keeps a set S of plausibly best es-
timators. At every round, it obtains sam-
ples for every estimator in S, updates their
confidence sequences, and removes all es-
timators with lower bounds higher than the
upper bound of the best from S, as these
estimators are no longer plausibly optimal.
The algorithm terminates when only one es-
timator remains or all remaining estimators
are within ε of each other.

We define the gap of estimator k to be
∆k := ckσ

2
k − mink′ck′σ2

k′ . The random
variable βk(n) is the confidence width re-
turned by CSUpdate for estimator k after
n updates, which might be random. We as-
sume that βk(n) is independent of βj(n)
for all j 6= k. In the remainder of the
section, we prove that both algorithms re-
turn (ε, δ)-PAC indices if the confidence se-
quence width approaches zero and provide
upper bounds on the sample complexities
when an upper bound on the confidence
width is available.

Theorem 3. Assume that the con-
ditions of Theorem 1 hold, that
uηk,n, u

(ψ,1)
k,n , u

(ψ,2)
k,n → 0 for all k ∈ [K],

and that all boundary sequences are of
level α = δ/(3K). Then both CS-LUCB
and CS-SE with uk = (uηk, u

(ψ,1)
k , u

(ψ,2)
k )

return an (ε, δ)-PAC index.

If we have a deterministic upper bound Bk(n, δ) such that, for all δ > 0, P(βk(n) ≤ Bk(n, δ)) ≥
1− δ, then both algorithms terminate in at most

∑
k∈[K] min

{
n : Bk(n, δ/K) ≤ ∆k

4 ∨ ε
2

}
samples.

If, additionally, there exists constants νη, ν(ψ,1), and ν(ψ,2) such that uθk,n ≤ O(n−νθ log (nK/δ))

for all θ ∈ {η, (ψ, 1), (ψ, 2)} and all k ∈ [K], then the sample complexity is

O
(

K∑
k=1

(∆k ∨ ε)−1/ν

(
log

K

δ(∆k ∨ ε)1/ν

)1/ν
)
,

with probability at least 1 − δ, where ν = min{2νη, ν(ψ,1), ν(ψ,2)}. In particular, if ψ(W, η) is
sub-Gaussian, we recover the sample complexity results (up to log factors) of [4, 17] under the mild
condition of νη ≥ 1/4.

Discussion. To aid comparison with the BAI literature, we have provided sample complexity bounds
for the special case in which uθk,n = O(n−νθ log(n/δ)). The most common assumption in the bandit
literature is that the data is sub-Gaussian, meaning that we may take νθ = 1

2 . In this case, our sample
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complexity results are within a log-factor of the optimal and within a log-factor of the lower bound
when ε = 0. Algorithms achieving the optimal rate include lil’UCB [14] and Exponential Gap
Elimination [18]. Unfortunately, these algorithms require the widths of the confidence regions for the
arm mean estimates to decrease at the same rate, which is not an assumption we can make in our
setting (as the rates in our setting depend on properties of the estimator and its influence function).

5 Experiments

m = 1, . . . , M

Vm Zm

X Z0 Y

We studied the empirical sample complexities of the CS-
LUCB and CS-SE algorithms for the task of selecting an
identification formula for the causal DAG on the right,
where the plate notation indicates that the path X ←
Vm → Zm → Y is repeated M times. Specifically,
we considered the problem of selecting between the 2M

identification formulas obtained from the adjustment
criterion using either Vm or Zm, for all m ∈ [M ], and the identification formula obtained from the
frontdoor criterion usingZ0; i.e. between 2M+1 different formulas. We compared our two algorithms
against a simple uniform sampling baseline that samples every estimator the same number of times.
The code implementing the experiments is available at github.com/deepmind/abcei_mab.

If we ignore cost, graphical criteria suggest that the adjustment formula with the lowest lower
asymptotic variance is obtained by choosing Zm for all m ∈ [M ] (see Appendix A.2) . Therefore,
we set the cost of including Zm or Vm equal to 3 and 1, respectively (X and Y have no cost).

We assumed a binary exposure X and considered causal contrast τ :=
∑
x λxµdo(x) with λ0 =

−1, λ1 = 1, corresponding to the average treatment effect. We used the AIPW estimator for the
adjustment formulas and a Neyman orthogonal estimator derived from Fulcher et al. [6, Theorem 1]
for the frontdoor formula (see Appendix A.3 for details); both have uncentered influence functions,
thus the estimator from Eq. (2) was used.

5.1 Linear Model

In our first experiment, we considered observational data generated from the following linear model.
Form ∈ [M ], Vm ∼ N (0, I2), Zm = AmVm+εz,m for matrixAm ∈ R3×2 and εz,m ∼ N (0, .1I3),

X ∼ Bernoulli
(

1
/(

1 + e−
∑M
m=1 B

>
mVm

))
for vector Bm ∈ R2, and Z0 is sampled from a

categorical distribution conditioned on X . Specifically, for support points S := {si ∈ R2 : i ∈ [10]}
and vectors q1 and q0 in the 9-simplex, we set p(Z0 = sj |X = i) = qi(j), where qi(j) is the jth
element of qi. Finally, Y =

∑M
m=0 C

>
mZm + εy for vector Cm ∈ R2 and εy ∼ N (0, .1).

Specific observational distributions were obtained by sampling Um ∼ Uniform[.1, .9], and then each
element of Am, Bm, and Cm, from N (0, U2

m/4), N (0, U2
m), and N (0, (2 − Um)2), respectively.

The purpose of this sampling scheme was to produce distributions where the correlation between
Vm and X and the correlation between Zm and Y are not both large. This choice widens the gaps to
the best estimator and results in a more interesting bandit problem. B0 had elements independently
sampled from N (0, 1/4).

To generate the distribution of Z0, we sampled each support point of S from N (0, I2), G1 and
G0 from N (0, I10), and set q1 = softmax(.4G1) and q0 = softmax(.4G0). We then computed
τ =

∑10
i=1(q1(i)− q0(i))B>0 si and resampled S , q0, and q1 until τ was larger than 1, which avoided

the hardest instances and allowed us to run more simulations. As harder instances increase the sample
complexity of the uniform algorithm the most, this resampling step does not inflate the advantages of
CS-LUCB or CS-SE.

For the AIPW estimator, we used ridge regression and logistic regression to fit µx(Z) := Ep[Y |X =
x,Z] and ex(Z) := p(X|Z) respectively. We used known confidence sequences for ridge regression
(see Abbasi-Yadkori et al. [1, Theorem 2] or Lemma 7 in Appendix D), and confidence intervals
for logistic regression were approximated by a standard central limit theorem (CLT) confidence
interval,

[
σ̂2 + zαn/2

std(σ̂2)√
n

, σ̂2 + z1−αn/2
std(σ̂2)√

n

]
, with δ = 0.1 and αn = 6δ/πn2, following the

construction described in Section 3.5.
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Figure 1: (a): Example of confidence sequences corresponding to the four best estimators for CS-SE,
up to the 8.1 ∗ 105 samples required to find the optimal estimator. (b): Box plot comparing sample
complexities of CS-LUCB, CS-SE, and uniform sampling.

For the frontdoor estimator, we used ridge regression for µx(Z0) and the MLE (i.e. empirical counts
since the random variables are categorical) for p(X = x) and ex(Z0).

Results. ForM = 3 (which produces 8 adjustment formulas and a frontdoor formula), we generated
10 observational distributions and, for each distribution, ran the algorithms 5 times from scratch on
independent data. A typical run of CS-SE is shown in Fig. 1(a): confidence sequences of the four best
formulas are plotted, and one can identify visually when sub-optimal estimators are removed from
S. The algorithm terminates as soon as the two lowest confidence sequences no longer intersect. In
Fig. 1(b), we provide a box plot for the distribution of sample complexities for the three algorithms.
The orange line, box, and whiskers indicates the median, the IQR (the 25th percentile to the 75th
percentile), and the outlier-filtered range (points with values 1.5×IQR greater than the 75th percentile
are removed), respectively. We see that some instances can be difficult for all algorithms (if, for
example, many of the gaps are small), but CS-LUCB and CS-SE display substantial reduction in
sample complexity w.r.t. the uniform sampling algorithm, on average needing 34% and 51% the
number of samples to terminate.

5.2 Nonlinear Model

A key result from Theorems 1 and 2 is the second-order dependence on the rate of η estima-
tion, which allows the use of high-dimensional, nonparametric estimators for η. To showcase
this, we considered a more complex nonlinear generation process. Given nonlinear functions
fm, gm, hm for m ∈ [M ] and g0, we generated observations as in Section 5.1, except with X ∼
Bernoulli

(
1
/(

1 + e−
∑M
m=1 hm(Vm)

))
, Zm = fm(Vm) + εz,m, and Y =

∑M
m=0 gm(Zm) + εy.

We sampled the nonlinear functions to be element-wise from a Gaussian process prior with the RBF
kernel on 10d equidistant points in (−2, 2)d, where d is the dimension of the domain. We fit all the
nonlinear functions with gradient-boosted regression trees with the same kernel. The confidence
sequences for the nuisance functions were approximated using the same CLT-based construction used
for logistic regression.

Results. Similar to the linear case, we generated 10 random observational distributions with 9
formulas and, for each distribution, ran each algorithm 5 times from scratch on independent data.
We found a similar reduction in sample complexity as in the linear case (see Fig. 2(a)). We
also explored how the sample complexity changes with the number of formulas. We sampled an
observational distribution for all M ∈ {3, 4, 5, 6} (corresponding to 9, 17, 33, and 65 formulas); for
each distribution, we ran the algorithms from scratch 4 times on independent data and plotted the
average sample complexities as a function of the number of formulas in Fig. 2(b). Our theory from
Section 4 predicts that the sample complexity is determined not by the number of estimators but by
the reciprocals of the squared gaps, which increases sub-linearly with the number of estimators as
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Figure 2: (a) Box plot of sample complexities with 9 formulas. (b) Sample complexities as a function
of the number of formulas.

many of them have large gaps. In contrast, the sample complexity of the uniform algorithm should
increase linearly. This prediction is confirmed by our experiments.

6 Discussion

Much of the literature on causal inference from observational data has focused either on identify-
ing causal effects using structural knowledge of the causal graph underlying the data generation
mechanism or on the design or selection of sample efficient estimators. The problem of selecting an
identification formula using the efficiency of a corresponding estimator is only starting to receive
attention.

Despite the recent progress of graphical criteria, comparing arbitrary formulas with statistical and
practical considerations, such as cost or inability to observe certain covariates, remains an open
problem. This work attempts to provide a functional answer to this problem: instead of trying to
derive a solution from graph properties, we have provided a practical method that uses observational
data to select a formula. When the graphical criteria do not apply, such as when the graph is partially
unknown, latent variables exist, or when costs need to be considered, our methods can help the
investigator reach a conclusion in a sample efficient way.

Our methods have the limitations of only guaranteeing an asymptotically optimal formula and relying
on the availability of influence functions to quantify the asymptotic variance. To the best of our
knowledge, more data-driven approaches to estimating the variance of estimators, such as resampling
methods, do not have any finite-sample guarantees and are not appropriate for a bandit algorithm.
Still, selecting between more general classes of estimators is an interesting direction.
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