
Under review as submission to TMLR

Holistic Continual Learning under Concept Drift
with Adaptive Memory Realignment

Anonymous authors
Paper under double-blind review

Abstract

Traditional continual learning methods prioritize knowledge retention and focus primarily
on mitigating catastrophic forgetting, implicitly assuming that the data distribution of pre-
viously learned tasks remains static. This overlooks the dynamic nature of real-world data
streams, where concept drift permanently alters previously seen data and demands both sta-
bility and rapid adaptation. We introduce a holistic framework for continual learning under
concept drift that simulates realistic scenarios by evolving task distributions. As a baseline,
we consider Full Relearning (FR), in which the model is retrained from scratch on newly la-
beled samples from the drifted distribution. While effective, this approach incurs substantial
annotation and computational overhead. To address these limitations, we propose Adaptive
Memory Realignment (AMR), a lightweight alternative that equips rehearsal-based learn-
ers with a drift-aware adaptation mechanism. AMR selectively removes outdated samples
of drifted classes from the replay buffer and repopulates it with a small number of up-
to-date instances, effectively realigning memory with the new distribution. This targeted
resampling matches the performance of FR while reducing the need for labeled data and
computation by orders of magnitude. To enable reproducible evaluation, we introduce four
concept drift variants of standard vision benchmarks: Fashion-MNIST-CD, CIFAR10-CD,
CIFAR100-CD, and Tiny-ImageNet-CD, where previously seen classes reappear with shifted
representations. Comprehensive experiments on these datasets using several rehearsal-based
baselines show that AMR consistently counters concept drift, maintaining high accuracy
with minimal overhead. These results position AMR as a scalable solution that recon-
ciles stability and plasticity in non-stationary continual learning environments. Full im-
plementation of our framework and concept drift benchmark data sets are available at
https://anonymous.4open.science/r/CL-Under-Concept-Drift-8380/README.md.

1 Introduction

In recent years, there has been a lot of progress (Masana et al., 2020; Kirkpatrick et al., 2016; Chaudhry
et al., 2018; Buzzega et al., 2020a; Arani et al., 2022; Zhuo et al., 2023) in Continual Learning (Chen & Liu,
2018) research. The key challenge in this field is to ensure that models can learn over time while retaining
information from earlier tasks and mitigating catastrophic forgetting (French, 1999) — a phenomenon where
previously learned knowledge is overwritten by new information. Despite this progress, much of the existing
work assumes that the properties of past data remain static (Masana et al., 2020) once learned. While
simplifying the problem, such an assumption overlooks the dynamic nature of real-world data streams (Gama
et al., 2014a), where concept drift—shifts in the statistical properties of previously seen data—is a frequent
occurrence.

Concept drift (Widmer & Kubat, 1993) poses a unique challenge for continual learning, as it requires models
not only to retain knowledge but also to adapt to changes in previously encountered classes (see Figure 1).
In traditional continual learning, the changes in distributions of already learned classes are considered in the
Domain-Incremental scenario (van de Ven & Tolias, 2019), where no new classes are introduced over time.
On the other hand, the Class-Incremental scenario (van de Ven & Tolias, 2019) assumes that changes in
data distribution occur only by introducing completely new classes, with no shifts in previously learned ones.

1

Under review as submission to TMLR

Initial Distribution Incremental Task Concept Drift

Old Concept

Evolved Concept

Visual Drift

Figure 1: Visualization of concept drift in continual learning. (a) Initial Distribution: The learning process begins
with a class of kittens. (b) Incremental Task: A new task introduces adult dogs, prompting the model to form a
decision boundary that separates kittens from dogs. (c) Concept Drift: Over time, kittens evolve into adult cats,
and adult dogs are replaced by puppies. Although the class labels remain the same (cats vs. dogs), their visual
representation shifts, requiring an update in the decision boundary to maintain correct classification.

However, the combination of both scenarios (Korycki & Krawczyk, 2021; Lyu et al., 2024) is rarely addressed
in the literature. Recently introduced Class-Incremental Learning with repetition scenario (Hemati et al.,
2023) assumes that past classes can reappear in the future, but with distribution of class remaining the same.
Considering changes in both past and current class distributions could lead to development of more flexible
algorithms, that could handle complexity more easily.

Among the various strategies developed for continual learning, rehearsal methods (Buzzega et al., 2020a;
Caccia et al., 2022; Zhuo et al., 2023; Arani et al., 2022) have achieved remarkable success. These methods
maintain a small memory buffer of past data samples (Chaudhry et al., 2019), which are replayed during
training to mitigate catastrophic forgetting. Korycki & Krawczyk (2021) adapted rehearsal algorithms for
continual learning under concept drift by using class centroids to determine whether past representations
should be relabeled as a new class. While their approach improves performance, it has several limitations.
First, it overlooks the widely adopted reservoir sampling algorithms (Vitter, 1985), which are now standard
in most rehearsal-based methods. Second, the assumption that past representations can be reused as new
classes conflicts with certain types of concept drift. In cases of domain shift, where class feature distributions
change, newly sampled examples may have entirely different representations. Relabeling old samples after
drift detection may not enhance classification accuracy and could unnecessarily occupy buffer memory.

Two sides of the same coin: Concept drift and evolving data distributions expose the complementary
strengths and limitations of continual learning and data-stream mining. Although these two fields have
historically developed along parallel trajectories, they address fundamentally intertwined aspects of learning
in dynamic environments. Whereas continual learning stresses knowledge retention, safeguarding past infor-
mation against catastrophic forgetting, data-stream mining stresses knowledge adaptation, enabling models
to respond quickly and accurately to evolving data distributions and concept drift. A method that focuses
solely on adaptation may achieve only locally optimal performance by discarding valuable long-term knowl-
edge, whereas one that clings rigidly to prior knowledge risks retaining outdated or irrelevant information.
Unifying these perspectives is therefore essential for developing learning systems that are both resilient and
adaptive. By bridging insights from both fields, we aim to advance toward holistic approaches that can
simultaneously remember and evolve.

Main contributions: To the best of our knowledge, we present the first continual-learning framework that
explicitly accounts for representation-level concept drift. Our solution couples a lightweight drift-detection
module with Adaptive Memory Realignment (AMR): a drift-aware buffer-update strategy that preserves
relevant past knowledge while rapidly adapting to evolving distributions. By addressing representation shift
directly, the framework models real-world non-stationary streams more realistically and integrates seamlessly
with existing continual-learning architectures. Our contributions are:

• A framework for continual learning under concept drift. We design a framework for continual
learning that enables the simulation of diverse concept drift scenarios across multiple benchmark
datasets and severity levels through a set of configurable parameters.

2

Under review as submission to TMLR

• Concept-drift-adaptive memory. We propose AMR, a buffer-update mechanism that mitigates
gradient misalignment by selectively removing outdated samples while maintaining robustness to
catastrophic forgetting.

• Efficiency in data and compute. Extensive experiments on Fashion-MNIST, CIFAR10, CI-
FAR100, and Tiny-ImageNet show that AMR recovers accuracy after drift with minimal labeled
data and low computational overhead.

Together, these contributions provide a scalable, holistic solution that reconciles stability and plasticity for
continual learning in truly non-stationary environments.

2 Related Work

Continual Learning: Efforts to address catastrophic forgetting can be broadly categorized into three
approaches (Masana et al., 2020): rehearsal methods, regularization techniques, and network expansion
strategies.

Regularization methods constrain the learning process to reduce forgetting. Kirkpatrick et al. (2016) pro-
posed a regularization approach using the Fisher Matrix to preserve key parameters from previous tasks.
Similarly, Zenke et al. (2017) introduced a per-parameter regularization technique based on quadratic loss.
Another method, presented in Li & Hoiem (2016), use predictions from a model trained on prior tasks
as a knowledge distillation-based regularizer for new tasks. Petit et al. (2023) developed a pseudo-feature
generation strategy that freezes the backbone after the initial task. In the work of Zhuang et al. (2024),
a frozen backbone is also utilized, but the authors frame Continual Learning as a Concatenated Recursive
Least Squares problem to compute weight updates through a closed-form solution.

Rehearsal methods mitigate forgetting by retrieving data from past tasks using memory buffers. Even
introducing a few learning examples from past tasks (Chaudhry et al., 2019) could limit forgetting. More
advanced rehearsal methods incorporate knowledge distillation (Buzzega et al., 2020a), asymmetrical cross-
entropy loss (Caccia et al., 2022) or gradient projection (Chaudhry et al., 2018). Some methods use data
from the buffer to reduce the recency bias in the classifier layer (Wu et al., 2019). Other methods specify
what samples should be selected for storage (Buzzega et al., 2020b; Aljundi et al., 2019) or how to effectively
retrieve samples from the buffer (Harun et al., 2024).

Architecture-based algorithms (Rusu et al., 2016) address catastrophic forgetting by expanding network
capacity. Typically, they mitigate forgetting by freezing parameters associated with previous tasks (Rusu
et al., 2016). However, adapting to concept drift can be challenging with such approaches, and as a result,
this category will not be the focus of our work.

Concept drift: Concept drift has been widely studied (Gama et al., 2014a) in the context of streaming data
and evolving environments (Duda et al., 2001). Most works have focused on detecting and adapting to shifts
in data distributions (Lu et al., 2018), distinguishing between sudden, incremental, and recurring drifts.
Two major approaches include (i) using drift detectors (Van Looveren et al., 2024) to signal when a model
should be updated to align with the new data distribution and (ii) employing online learners with forgetting
mechanisms (Bifet et al., 2009) to implicitly adapt to the current state of the streaming environment.
Moreover, addressing concept drift requires an understanding of its underlying causes (Krawczyk et al.,
2017), whether due to changes in feature distributions (covariate shift), class boundaries (real drift), or
latent dynamics in data streams. While most works in the concept drift domain have focused on shallow
learning models, the deep learning community has recently started to show increasing interest (Xiang et al.,
2023) in this research area.

Concept drift in Continual Learning: First discussion of concept drift in Continual Learning scenarios
was carried out in Cossu et al. (2021) where authors suggested that excessive focus on Class-Incremental
learning is too restrictive, as past classes could repeat over time in natural environments. In Korycki &
Krawczyk (2021), an experience replay-based method with enhanced memory management for concept drift
was introduced. It used class centroids to determine whether past samples should be relabeled. However,

3

Under review as submission to TMLR

this approach oversimplifies concept drift by reducing the problem to two meta-labels (like vs. dislike),
failing to capture the complexities of concept drift adaptation in multi-class large-scale datasets. Moreover,
the authors define concept drift solely as a shift in class labels over time, overlooking the possibility of drift
occurring through changes in data representations. This assumption does not align with many real-world
continual learning scenarios where labels remain unchanged while data representations evolve. In Casado
et al. (2021), a novel method for federated learning was introduced that considers the possibility of concept
drift, but does not explicitly measure robustness to its occurrence. In Gomez-Villa et al. (2024), the authors
raise concerns about semantic drift, which causes the prototypes of learned classes to shift in feature space
as new classes are introduced. Although their proposed learnable drift compensation mitigates this shift, it
does not address the possibility of recurring classes or how to compensate for drift if previously seen classes
reappear with altered representations.

Concept drift vs test-time adaptation. Recently, test-time adaptation (TTA) has attracted increasing
attention from the Continual Learning community (Hong et al., 2023; Ni et al., 2025). It is important to
highlight that While both concept drift and TTA address distributional shifts, they represent fundamentally
distinct challenges in Continual Learning. Concept drift refers to the gradual or abrupt change in the
underlying data distribution over time, necessitating continual model updates to remove outdated knowledge
and update the stored past task information. In contrast, test-time adaptation focuses on rapid, often
unsupervised adjustments to distribution shifts encountered during inference (Zhu et al., 2024). Crucially,
concept drift emphasizes long-term updates of the past knowledge stored in the model, whereas test-time
adaptation operates in a single-task setting and prioritizes immediate robustness.

Critical gap in Continual Learning Literature: Existing continual learning algorithms suffer from a
vital limitation: they either ignore the recurrence of classes with altered representations or reduce concept
drift to label-level changes, failing to capture the evolving shifts common in real-world data streams. In
dynamic environments such as ecological monitoring or autonomous driving, previously seen classes can
reappear under varying noise, lighting, or weather conditions, leading to representation-level drift. Our work
addresses this underexplored problem by explicitly modeling concept drift changes in image representations
of recurring classes.

3 Proposed Framework

3.1 Toward a Holistic Continual-Learning Paradigm

In continual learning settings, it is often assumed that once a class or task has been learned, it remains
stationary over time. However, real-world environments often violate this assumption, as previously acquired
knowledge may become outdated as concept drift alters the underlying distribution. Even tasks that appear
stationary may shift over time because of lighting changes, seasonal effects, sensor noise, or other unforeseen
factors. Consequently, a continual-learning system must not only accommodate new classes or tasks but
also detect and adapt to distributional changes in classes it has already encountered. If left unaddressed,
such drift renders stored representations invalid or misleading. Contemporary continual-learning methods,
which focus primarily on retention, struggle in these situations and fail to adjust their predictions or internal
representations to match new realities. A truly holistic and adaptive continual-learning framework must
therefore revisit and revise prior knowledge whenever drift is detected, preserving relevance and accuracy
for both old and new information.

3.2 Problem Formulation

In the context of continual learning, we formalize our problem as a sequence of tasks T = {T1, T2, . . . , TN}
arriving over time. Each task Ti is associated with a set of classes Ci = {ci

1, ci
2, . . . , ci

mi
}, where mi denotes

the number of classes in task Ti. The goal is to train a model fθ : X → Y, parameterized by θ, where
the data distribution D evolves over time. The model is trained incrementally on task-specific datasets
Di = {(x, y) | x ∈ X , y ∈ Yi}, where Yi ⊆ Y corresponds to the labels associated with Ci. After observing
task Ti, the model is expected to perform well on all previously seen tasks {T1, T2, . . . , Ti}.

4

Under review as submission to TMLR

Unlike standard class-incremental learning (CIL), where previously seen class distributions are assumed
static, our setting accounts for evolving class semantics due to non-stationary environments. In other words,
we extend the standard CIL setting where previously encountered classes may reappear with shifted distri-
butions, a phenomenon known as concept drift (Gama et al., 2014b; Widmer & Kubat, 1996). Specifically,
for any class c ∈ Cj from a previous task Tj (j < i), let Dj(c) denote the distribution of class c in task Tj ,
and Di(c) the corresponding distribution in task Ti. Concept drift occurs when the class reappears in a later
task with a new domain representation (Shin et al., 2017), indicating a distribution shift:

Di(c) ̸= Dj(c), for some c ∈ Cj ∩ Ci,

Given the demonstrated effectiveness of rehearsal-based continual learning methods, our proposed framework
leverages memory-based strategies to address concept drift. Rehearsal methods maintain a bounded episodic
memory bufferM of fixed capacity |M|. For each class c, letMc ⊂M denote the subset of memory allocated
to class c. The training objective at task Ti is formulated as an empirical risk over the current task data and
the memory buffer:

L(θ) = E(x,y)∼Dcurrent [ℓ(fθ(x), y)] + E(x,y)∼M[ℓ(fθ(x), y)],

where ℓ denotes the loss function (cross-entropy), Dcurrent = Di is the data for the current task.

3.3 Concept Drift Detection

Our framework assumes a dynamic test-then-train paradigm, similar to that proposed in Bifet et al. (2010)
and Sun et al. (2020), which ensures that adaptation occurs reactively in response to observable changes in the
environment. Specifically, we monitor the test-time distribution of previously seen classes as they reappear.
This distribution is compared against a reference distribution, which captures the historical statistics of class
c. Only if a distributional shift is detected at test time do we proceed to adapt the model to the updated
distribution Di(c). This setting mirrors a data stream scenario with a dynamic and monitored test stream
(Agrahari & Singh, 2022), enabling early detection and timely response to distributional shifts.

We incorporate an uncertainty-based drift detection mechanism using the two-sample Kolmogorov–Smirnov
(KS) (Massey Jr, 1951) test. Let fθ : X → RK denote a fixed pre-trained backbone that outputs class logits
for input x ∈ X , where K = |Y| is the total number of classes. The uncertainty associated with each input
is quantified using predictive entropy computed from the softmax of the logits. Specifically, we define the
uncertainty function as:

U(x) = H(softmax(fθ(x))) = −
K∑

k=1
pk(x) log pk(x),

where pk(x) is the softmax probability for class k. To detect concept drift for recurring classes, we compare
uncertainty distributions from two sources:

• The reference distribution Uref, computed using uncertainty values from class-specific samples stored
in the memory buffer Mc from previous tasks.

• The test distribution Utest, computed from uncertainty values of incoming samples for the same class
c in the current test task.

We compute the Kolmogorov–Smirnov statistic:

DKS = sup
u
|FUref(u)− FUtest(u)| ,

where FU (u) denotes the empirical cumulative distribution function (ECDF) of uncertainty values. A concept
drift event is flagged when:

DKS > δ,

where δ is a fixed threshold that governs the sensitivity of the drift detector.

5

Under review as submission to TMLR

3.4 Adaptive Memory Realignment (AMR) for Drift Adaptation

Once concept drift is detected for a class c, our adaptation mechanism, Adaptive Memory Realignment
(AMR), updates the memory buffer to reflect the new distribution. Let the memory buffer be denoted as
M = {(xj , yj)}|M|

j=1, and define the index set for class c as:

Ic = {j ∈ {1, . . . , |M|} | yj = c}

The adaptation process consists of the following steps:

• Detect Drift: Based on the KS statistic, identify the set of drifted classes Cdrift ⊆ Ci for the current
task Ti.

• Flush: For each class c ∈ Cdrift, remove outdated samples of class c from the buffer by setting
M[j] = ∅ for all j ∈ Ic.

• Resample: Repopulate the freed memory slots with updated instances drawn from the new distri-
bution Di(c). For each j ∈ Ic, sample a new instance xnew

j ∼ Di(c), and set M[j] = (xnew
j , c).

Algorithm 1 Concept-Drift Adaptive Memory Realignment
1: Input: Task stream T = {T1, . . . , TN}, model fθ, memory buffer M, drift significance threshold δ
2: Output: Updated model fθ

3: Initialize: θ ← random init, M← ∅, Ypast ← ∅
4: for Ti ∈ T do
5: Receive data Di = {(x, y) | y ∈ Yi}
6: for c ∈ Yi ∩ Ypast do
7: Uref ← {U(x) | (x, y) ∈M, y = c}
8: Utest ← {U(x) | (x, y) ∈ Di, y = c}
9: DKS ← supu |FUref(u)− FUtest(u)|

10: if DKS > δ then ▷ Drift detected
11: Mc ← Replace with new samples from Di(c)
12: end if
13: end for
14: Train fθ on Di ∪M with loss:

L(θ) = EDi
[ℓ(fθ(x), y)] + EM[ℓ(fθ(x), y)]

15: M← ReservoirSampling(M,Di)
16: Ypast ← Ypast ∪ Yi

17: end for
18: return θ

This targeted realignment ensures that the memory buffer reflects the most recent distribution Di(c) for each
drifted class c ∈ Cdrift, mitigating negative transfer from outdated samples and promoting alignment with
the most recent evolving distribution. Figure 2 illustrates the working principles of the proposed algorithm.

6

Under review as submission to TMLR

+

Task
k

+

CIL Model

Memory Buffer from Task k - 1

Drift Detector

Recurring Drifted Class

New Class

Reservoir Sampling

Task
k + 1

Recurring Drifted Class

Drift Detector

New Class

Reservoir Sampling

CIL Model

Ref. Samples
Removal of Outdated Samples

Memory Realignment

Memory Buffer from Task k

Frozen

Trainable

Figure 2: Flow of our proposed Concept-Drift Adaptive Memory Realignment method for continual learning under
concept drift. The approach integrates an uncertainty-based drift detection module with adaptive memory manage-
ment to selectively retain and update buffer samples in the presence of recurring classes exhibiting distributional
shifts.

3.5 Theoretical Analysis

3.5.1 Gradient Misalignment Analysis

We now analyze why maintaining outdated representations in the memory buffer impedes learning. Consider
the gradient of the loss function L(θ) during rehearsal training:

∇θL(θ) = E(x,y)∼Dcurrent [∇θℓ(fθ(x), y)]︸ ︷︷ ︸
Current task gradient

+ E(x,y)∼M[∇θℓ(fθ(x), y)]︸ ︷︷ ︸
Rehearsal gradient

When concept drift occurs, the memory buffer contains samples from the old distribution Dj(c) for a drifted
class c, while current data follows Di(c).

Theorem 1: For a drifted class c with sufficiently different distributions Dj(c) and Di(c), the expected
gradients from these distributions exhibit interference, leading to misaligned parameter updates.

Proof: Let Gold = E(x,y)∼Dj(c)[∇θℓ(fθ(x), y)] and Gnew = E(x,y)∼Di(c)[∇θℓ(fθ(x), y)] denote the expected
gradients from the old and new distributions, respectively. The cosine similarity between these gradients
quantifies their alignment:

sim(Gold, Gnew) = Gold ·Gnew

∥Gold∥ · ∥Gnew∥

Under significant drift, this similarity decreases and can become negative. The effective gradient during
training becomes:

Geffective = Gnew + (1− α) ·Gold + α ·Gnew

where α represents the fraction of updated samples of class c in the memory buffer. When α = 0 (no buffer
update), Geffective = Gnew + Gold, which can deviate significantly from the optimal direction Gnew when

7

Under review as submission to TMLR

sim(Gold, Gnew) is low. To quantify this deviation, we define the gradient alignment efficiency:

ηalign = Geffective ·Gnew

||Geffective|| · ∥Gnew∥

For non-drifted classes, ηalign ≈ 1, indicating efficient learning. For drifted classes with outdated represen-
tations in the buffer, ηalign < 1 and potentially ηalign ≪ 1 under severe sudden drift, as it occurs in our
problem setting, resulting in inefficient learning. □

To tackle this gradient misalignment, we need a better sampling strategy than reservoir sampling. This is
because the probability of reservoir sampling effectively replacing the outdated samples from the memory
buffer is negligibly small, as we will see in the next section.

3.5.2 Limitations of Conventional Reservoir Sampling

We now demonstrate why conventional reservoir sampling is suboptimal for handling concept drift compared
to our targeted replacement strategy.

Theorem 2: With standard reservoir sampling, the probability of effectively replacing all outdated samples
of drifted classes reaches zero as the number of classes increases.

Proof: For a memory buffer of size |M| containing K classes with approximately equal representation, each
class occupies approximately |Mc| ≈ |M|

K memory slots. For a drifted class c with nc new samples, the
probability that a specific old sample in the buffer is replaced under reservoir sampling is:

P (replaced) = 1−
nc∏

j=1

(
1− 1
|M|

)
≈ 1− exp

(
− nc

|M|

)

For nc ≪ |M|, which is typical in continual learning, this approximates to:

P (replaced) ≈ nc

|M|

The expected number of replaced samples from class c is:

E[replaced samples from c] = |Mc| · P (replaced)

≈ |M|
K
· nc

|M|
= nc

K

This implies that with nc new samples and K classes, standard reservoir sampling only replaces approximately
nc

K outdated samples—far fewer than the |M|
K samples typically allocated to each class. The probability of

replacing all outdated samples of class c is:

P (replace all) =

(|M|−|Mc|
nc−|Mc|

)(|M|
nc

) · 1nc≥|Mc|

For practical values of |M|, K, and nc, this probability becomes vanishingly small as the decay is combina-
torial. □

3.5.3 Optimality of Targeted Memory Realignment

In this section, we discuss why targeted buffer resampling provides the optimal gradient alignment when
sudden drift occurs.

Theorem 3: Targeted replacement of memory samples for drifted classes (α = 1) maximizes gradient
alignment efficiency, achieving performance comparable to training on the entire sample size of the drifted
distribution.

8

Under review as submission to TMLR

Proof: With complete targeted replacement, the effective gradient becomes:

Geffective = Gnew + 0 ·Gold + 1 ·Gnew = 2 ·Gnew

This preserves the optimal gradient update direction while only scaling the magnitude, resulting in ηalign = 1.
Thus, our adaptation strategy ensures that gradient updates follow the same trajectory as they would if
training from scratch on the new distribution. □

This also ensures retention of knowledge of non-drifted classes through the memory buffer as the non-drifted
concepts remain intact in the memory without the risk of potentially being replaced by random sampling.

3.5.4 Gradient Alignment with AMR

This section provides further justification on how the gradient alignment efficiency increases with AMR.

Theorem 4: The gradient alignment efficiency ηalign monotonically increases with the proportion α of
updated samples in the memory buffer, with optimal alignment achieved at α = 1.

Proof: Recall that:

Geffective = Gnew + (1− α) ·Gold + α ·Gnew

= (1 + α) ·Gnew + (1− α) ·Gold

The alignment efficiency is:
ηalign = Geffective ·Gnew

||Geffective|| · ∥Gnew∥
Substituting and simplifying:

ηalign = (1 + α)∥Gnew∥2 + (1− α)Gold ·Gnew

||Geffective|| · ∥Gnew∥

Taking the derivative with respect to α:

dηalign

dα
= ∥Gnew∥2 −Gold ·Gnew

||Geffective|| · ∥Gnew∥
· d

dα

(
||Geffective||
∥Gnew∥

)−1

Under the condition that sim(Gold, Gnew) < 1, which holds under significant sudden drift, we have:

∥Gnew∥2 −Gold ·Gnew > 0

and
d

dα

(
||Geffective||
∥Gnew∥

)−1
> 0

Therefore, dηalign
dα > 0, proving that the alignment efficiency increases monotonically with α, reaching its

maximum at α = 1 (complete replacement). □

3.5.5 Conclusion

Our mathematical analysis demonstrates that the proposed memory adaptation strategy effectively addresses
concept drift in class-incremental learning by:

• Eliminating misaligned gradient interference from outdated representations

• Overcoming the limitations of conventional reservoir sampling

• Maximizing gradient alignment efficiency through targeted buffer updates

We validate our claims through targeted experiments in Section 5.1.

9

Under review as submission to TMLR

4 Experimental Setup

Datasets: We use standard benchmarks from the continual learning literature and adapt them to incorporate
concept drift:

• Split Fashion-MNIST (Xiao et al., 2017): Comprises 70,000 grayscale images of size 28×28 (60,000
for training and 10,000 for testing) across 10 classes. The dataset is split into 5 tasks, each containing
2 classes.

• Split CIFAR10 and Split CIFAR100 (Krizhevsky, 2012): Both datasets consist of 50,000 train-
ing and 10,000 test images of size 32×32. CIFAR10 is divided into 5 tasks with 2 classes per task,
while CIFAR100 is divided into 10 tasks with 10 classes per task.

• Split Tiny-ImageNet (Le & Yang, 2015): A subset of ImageNet (Russakovsky et al., 2015) con-
taining 100,000 training and 10,000 test images of size 64×64 across 200 classes. It is split into 10
tasks, each with 20 classes.

To induce concept drift, we apply various image transformations (Hendrycks & Dietterich, 2019) at several
severity levels. As detailed in Appendix A, the highest-severity permutation provides the most pronounced
distribution shift and is therefore used in all experiments.

In standard class-incremental (CIL) benchmarks, tasks contain disjoint class sets. Our framework reintro-
duces previously seen classes together with new ones when drift occurs. We denote these drift-augmented
variants with the suffix “-CD” (for Concept Drift). To ensure a broad evaluation, we test both single and
multi-drift scenarios over short and long task streams:

• Short streams (5 tasks): S-FMNIST-CD and S-CIFAR10-CD, each with 1 and 2 drift occurrences.

• Long streams (10 tasks): S-CIFAR100-CD and S-Tiny-ImageNet-CD, each with 2 and 4 drift
occurrences.

Experience replay methods: We base our experimental evaluation around the popular rehearsal methods:

• Experience Replay (ER) (Chaudhry et al., 2019): Vanilla experience replay that revisits a subset of
past samples to consolidate past knowledge while learning from new data,

• Experience Replay with Asymmetric Cross Entropy (ER-ACE) (Caccia et al., 2022): Experience
replay with asymmetrical loss to reduce representation overlap of new and old classes,

• Dark Experience Replay++ (DER++) (Buzzega et al., 2020a): Experience replay with knowledge
distillation from past tasks,

• Strong Experience Replay (SER) (Zhuo et al., 2023): Experience replay utilizing prediction con-
sistency between new model mimicking future experience on current training data and old model
distilling past knowledge from the memory buffer,

• Complementary Learning System-based Experience Replay (CLS-ER) (Arani et al., 2022): Experi-
ence replay with dual memories: short-term and long-term that acquire new knowledge by aligning
decision boundaries with semantic memories.

Hyperparameter and Implementation Details: Our incremental learning framework with concept drift
was implemented on top of the Mammoth library (Buzzega et al., 2020a). All experiments use a ResNet-18
backbone trained from scratch (no pre-training) with the Stochastic Gradient Descent (SGD) optimizer.
Rehearsal methods utilize reservoir sampling (Vitter, 1985) for buffer management. Algorithm and dataset-
specific hyperparameters are adopted from the optimal values reported by the original papers wherever
possible and are detailed in Appendix B.

10

Under review as submission to TMLR

We omit standard augmentations during training and rehearsal, as they modify image representations and
adversely affect the drift detector’s performance. The drift detector relies on original image representations
as a stable reference to identify image representation changes over time. For drift detection, we employ
Van Looveren et al. (2024)’s uncertainty-based detector, which uses a pre-trained ResNet-18 model with
ImageNet1k weights. Statistical tests for drift detection are conducted at a significance level of 0.05.

Metrics: We evaluate all the methods using the following two standard metrics used in the literature:

• FinalAverageAccuracy(FAA) : The Final Average Accuracy measures the model’s overall perfor-
mance on all seen tasks after training on the entire task stream. Let Ai,j represent the accuracy on
task j after training on task i. For a task stream with N tasks, the FAA is computed as:

FAA = 1
N

N∑
j=1

AN,j ,

where AN,j is the accuracy on task j after training on the final task N . Higher values of FAA
indicate better overall retention and performance across tasks.

• Forgetting(F) : Forgetting quantifies the loss in performance on a task due to learning subsequent
tasks. For a task j, the forgetting score is the difference between the accuracy immediately after
learning task j and its accuracy after the entire task stream:

Fj = max
k≥j

Ak,j −AN,j ,

where maxk≥j Ak,j is the highest accuracy on task j during training and AN,j is the final accuracy
on task j. The overall forgetting metric is the average forgetting across all tasks:

F = 1
N − 1

N−1∑
j=1

Fj .

Lower forgetting scores indicate better retention of previously learned tasks.

5 Experiments

5.1 Empirical Validation of Theoretical Claims

To validate the theoretical claims made in section 3.5, we conduct empirical experiments comparing three
adaptation strategies under concept drift:

• Vanilla: Baseline for a particular rehearsal method without any drift adaptation mechanism.

• AMR (Adaptive Memory Realignment): Our proposed approach that selectively replaces outdated
samples in the memory buffer with new instances of drifted classes, without requiring additional
data for retraining.

• Full Relearning (FR): A drift response that retrains the model using a full set of labeled samples
from the drifted class distribution.

For each strategy, we evaluate:

• Number of labeled samples required for drift adaptation,

• Computational resource consumption in relative runtime and GFLOPs,

• Final average class-incremental accuracy after adaptation to concept drift.

11

Under review as submission to TMLR

These experiments are conducted on CIFAR10-CD and CIFAR100-CD datasets under different memory
buffer capacities (|M| = 500 and 5000).

We first verify Theorem 1, which predicts gradient misalignment when a previously learned class undergoes
concept drift. Our hypothesis states that if the distribution of a learned class shifts in a later task, the
gradients computed from its new features will diverge from those based on the old features stored in the
replay buffer. To illustrate this shift, we visualize the feature distributions of the two classes from task 1
of CIFAR10 as training progresses through five tasks. Because past training data are unavailable during
class-incremental learning, we plot the test samples of task 1 after each subsequent task is learned. We use
Uniform Manifold Approximation and Projection (UMAP) (McInnes & Healy, 2018) to project the high-
dimensional features onto a 2D space for visualization. UMAP is a non-linear dimensionality reduction
technique that preserves the local and global structure of the feature manifold, making it well-suited for
tracking evolving feature distributions across tasks. Figure 3a shows that in the absence of drift, the two
classes remain linearly separable. In contrast, Figure 3b depicts the scenario in which concept drift occurs
at task 3. In this case, the model can no longer produce linearly separable features for the two classes using
its stale buffer, leading to overlapping representations. Without adaptation, such overlap yields sub-optimal
gradient updates and a drop in accuracy on the drifted classes, which supports our claim in Theorem 1.

5 0 5 10 15
0

2

4

6

8

10

12
Task 1

Classes
0
1

5 0 5 10 15

0

2

4

6

8

10

12
Task 2

Classes
0
1

5 0 5 10 15
0

2

4

6

8

10

12
Task 3

Classes
0
1

5 0 5 10 15
0

2

4

6

8

10

12
Task 4

Classes
0
1

5 0 5 10 15
0

2

4

6

8

10

12
Task 5

Classes
0
1

Reduced Feature Dimension 1

Re
du

ce
d

Fe
at

ur
e

Di
m

en
sio

n
2

(a) No concept drift

5 0 5 10 15
0

2

4

6

8

10

12

Task 1

Classes
0
1

5 0 5 10 15
0

2

4

6

8

10

12
Task 2

Classes
0
1

5 0 5 10 15
0

2

4

6

8

10

12

Task 3
Drift Occurs

Classes
0
1

5 0 5 10 15
0

2

4

6

8

10

12
Task 4

Classes
0
1

5 0 5 10 15
0

2

4

6

8

10

12
Task 5

Classes
0
1

Reduced Feature Dimension 1

Re
du

ce
d

Fe
at

ur
e

Di
m

en
sio

n
2

(b) Concept drift at task 3

Figure 3: Evolution of the task-1 feature space (two classes) across five tasks on CIFAR-10. Without drift (top) the
classes remain linearly separable; with drift introduced at task 3 (bottom) the features collapse.

Figure 4 highlights the computational efficiency trends of AMR in terms of both relative sample requirement
(4a), runtime (4b), and FLOPs (4c). While FR requires forward-backward passes on a large number of labeled
examples, AMR limits adaptation to small, targeted memory realignments. This validates Theorem 3, which
showed that full replacement of drifted samples restores optimal gradient alignment without the cost of full-
scale retraining.

As shown in Figure 5, AMR closely matches the accuracy improvements of FR for both single and multiple
drift occurrences but achieves this with a substantially reduced sample requirement. This supports Theorem
4, which predicts increasing gradient alignment with targeted memory updates, leading to efficient drift
recovery. As a result, AMR enables efficient adaptation to concept drift without the need for extensive
retraining, offering a resource-efficient solution for real-world continual learning scenarios where drift is
prevalent.

12

Under review as submission to TMLR

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relative Sample Cost (is better) = # samples required per class
samples available per class

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

CIFAR10
CIFAR100

AMR
FR

(a) Relative sample cost vs. accuracy

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x
Relative Time Cost per epoch (x AMR, is better)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

CIFAR10
CIFAR100

AMR
FR

(b) Relative time cost vs. accuracy

20000 40000 60000 80000 100000
GFLOPS / epoch (is better)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

CIFAR10
CIFAR100

AMR
FR

(c) GFLOPs vs. accuracy

Figure 4: Comparison of computational cost and accuracy for different drift adaptation strategies. AMR achieves
near-equivalent accuracy to FR with significantly lower sample requirement, relative time and GFLOP consumption.

0
No Adaptation

125
AMR

5000
FR

0

10

20

30

40

50

60

70

80

90

100
Buffer 500

ER
ER-ACE
DER++

1 Drift
2 Drifts

0
No Adaptation

1250
AMR

5000
FR

Buffer 5000

Ac
cu

ra
cy

 (%
)

Samples required per class for adaptation

(a) CIFAR10

0
No Adaptation

10
AMR

500
FR

0

10

20

30
Buffer 500

ER
ER-ACE
DER++

2 Drifts
4 Drifts

0
No Adaptation

100
AMR

500
FR

Buffer 5000

Ac
cu

ra
cy

 (%
)

Samples required per class for adaptation

(b) CIFAR100

Figure 5: Comparison of class-incremental accuracy across different experience replay methods and varying number
of drifts using No Adaptation, AMR, and Full Relearning strategies. AMR consistently achieves comparable accuracy
to FR while using significantly fewer labeled samples.

5.2 Experimental Results

We conducted a series of experiments on Fashion-MNIST-CD, CIFAR10-CD, CIFAR100-CD, and Tiny-
ImageNet-CD to evaluate the effectiveness of our proposed method under concept drift. The experiments
varied buffer sizes (|M| = 500 and 5000) and included both single and multiple drift scenarios. An overview
of the experimental outcomes is provided in Tables 1, 2, 3 and 4.

1 2 3 4 5
20

30

40

50

60

70

80

90

100
ER

No Drift: Vanilla
1 Drift: Vanilla
1 Drift: FR
1 Drift: AMR

1 2 3 4 5
20

30

40

50

60

70

80

90

100
ER-ACE

1 2 3 4 5
20

30

40

50

60

70

80

90

100
DER++

1 2 3 4 5
20

30

40

50

60

70

80

90

100
SER

1 2 3 4 5
20

30

40

50

60

70

80

90

100
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

1 2 3 4 5
20

30

40

50

60

70

80

90

100
ER

No Drift: Vanilla
1 Drift: Vanilla
1 Drift: FR
1 Drift: AMR

1 2 3 4 5
20

30

40

50

60

70

80

90

100
ER-ACE

1 2 3 4 5
20

30

40

50

60

70

80

90

100
DER++

1 2 3 4 5
20

30

40

50

60

70

80

90

100
SER

1 2 3 4 5
20

30

40

50

60

70

80

90

100
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

Figure 6: Class-incremental accuracy on S-FashionMNIST-CD with a single drift event occurring at task 3. Results
are shown for buffer sizes 500 (top) and 5000 (bottom).

13

Under review as submission to TMLR

Table 1: Final Average Accuracy (FAA[↑]) and Forgetting (F[↓]) for Split-Fashion-MNIST-CD (3-run average)

Vanilla = Baseline without Drift Adaptation, FR = Full Relearning, AMR = Adaptive Memory Realignment
S-FMNIST-CD

M Method Adaptation No Drift 1 Drift 2 Drifts

500

ER
Vanilla 74.35±1.27 (22.86) 63.01±0.66 (36.69) 54.61±0.86 (55.03)

FR - 84.26±0.49 (18.27) 82.23±0.19 (20.50)
AMR - 86.30±0.86 (15.88) 78.80±0.34 (24.79)

ER-ACE
Vanilla 82.77±0.14 (8.32) 73.00±1.67 (20.71) 63.13±1.20 (31.75)

FR - 87.83±0.16 (1.40) 89.65±0.50 (5.49)
AMR - 88.67±0.93 (6.01) 85.11±0.35 (12.80)

DER++
Vanilla 81.92±0.07 (14.07) 69.69±0.87 (27.07) 60.13±1.37 (40.40)

FR - 89.13±0.42 (7.93) 74.39±0.41 (26.78)
AMR - 88.28±0.90 (10.27) 79.86±0.15 (18.93)

SER
Vanilla 81.38±0.47 (13.19) 70.32±0.99 (26.39) 63.18±1.43 (34.82)

FR - 86.86±0.15 (7.38) 89.37±0.27 (3.40)
AMR - 89.39±0.15 (6.04) 80.25±0.60 (16.68)

CLS-ER
Vanilla 79.98±0.72 (18.82) 68.13±1.64 (33.45) 57.34±1.40 (46.85)

FR - 76.52±0.29 (24.44) 85.82±0.18 (12.93)
AMR - 76.37±0.61 (25.30) 79.11±0.63 (21.28)

5000

ER
Vanilla 80.62±0.97 (17.55) 62.51±1.20 (40.55) 58.79±0.32 (48.08)

FR - 85.11±1.17 (10.24) 90.76±0.45 (7.89)
AMR - 84.51±0.64 (14.19) 92.48±0.12 (6.80)

ER-ACE
Vanilla 87.14±0.27 (3.58) 74.89±0.65 (18.04) 58.51±1.09 (39.78)

FR - 89.23±0.73 (0.84) 90.40±0.57 (4.44)
AMR - 93.39±0.18 (2.75) 93.17±0.11 (4.25)

DER++
Vanilla 87.99±0.13 (5.88) 74.27±1.16 (23.23) 62.65±1.16 (37.55)

FR - 90.70±0.61 (4.83) 91.23±0.07 (1.44)
AMR - 91.82±0.28 (5.73) 87.72±0.77 (10.98)

SER
Vanilla 87.50±0.22 (3.78) 72.86±0.57 (22.27) 66.19±1.14 (30.83)

FR - 89.08±0.43 (1.14) 90.66±0.24 (3.54)
AMR - 91.39±0.79 (6.13) 91.51±0.23 (4.98)

CLS-ER
Vanilla 78.17±1.63 (22.24) 59.91±1.13 (43.87) 59.80±1.48 (44.19)

FR - 87.37±0.13 (10.93) 85.48±0.95 (11.34)
AMR - 87.44±0.45 (11.92) 80.49±0.44 (20.93)

Table 2: Final Average Accuracy (FAA[↑]) and Forgetting (F[↓]) for Split-CIFAR10-CD (3-run average)

Vanilla = Baseline without Drift Adaptation, FR = Full Relearning, AMR = Adaptive Memory Realignment
S-CIFAR10-CD

M Method Adaptation No Drift 1 Drift 2 Drifts

500

ER
Vanilla 34.37±0.50 (74.96) 32.36±0.51 (77.06) 29.32±0.31 (81.53)

FR - 56.00±0.69 (47.00) 46.88±0.80 (58.06)
AMR - 51.88±0.52 (52.44) 49.25±0.60 (55.78)

ER-ACE
Vanilla 57.32±1.10 (29.26) 37.68±0.93 (52.40) 30.76±0.77 (64.03)

FR - 60.50±0.76 (27.72) 53.90±1.24 (37.75)
AMR - 60.02±0.67 (31.63) 50.62±0.21 (44.63)

DER++
Vanilla 41.40±0.62 (63.55) 37.83±1.24 (68.14) 30.07±0.51 (78.15)

FR - 64.31±1.24 (35.21) 50.36±1.51 (51.62)
AMR - 55.13±1.60 (46.51) 55.36±0.31 (46.55)

SER
Vanilla 58.98±1.05 (29.73) 40.88±0.86 (53.20) 32.54±0.70 (63.96)

FR - 68.15±1.14 (22.05) 59.60±0.69 (23.66)
AMR - 62.55±0.88 (32.45) 48.68±1.45 (51.50)

CLS-ER
Vanilla 28.78±0.61 (81.80) 29.20±0.72 (81.05) 26.20±0.42 (84.63)

FR - 54.46±0.31 (49.34) 46.48±0.75 (58.90)
AMR - 54.06±0.71 (49.85) 53.41±0.84 (50.61)

5000

ER
Vanilla 66.17±0.54 (33.25) 47.56±0.22 (56.36) 36.13±0.15 (71.00)

FR - 75.27±0.41 (21.78) 63.20±0.52 (36.73)
AMR - 73.92±0.42 (24.33) 65.27±0.36 (35.24)

ER-ACE
Vanilla 68.76±0.57 (13.86) 44.62±0.44 (46.05) 32.37±0.43 (59.81)

FR - 71.07±0.45 (15.28) 61.31±0.75 (27.70)
AMR - 73.58±0.32 (15.72) 65.27±0.46 (28.43)

DER++
Vanilla 65.17±0.95 (29.63) 46.58±0.33 (52.06) 35.25±0.23 (67.99)

FR - 75.76±0.25 (19.28) 64.12±0.77 (31.77)
AMR - 70.65±1.13 (26.54) 64.24±0.62 (35.23)

SER
Vanilla 69.22±0.33 (15.20) 46.73±0.44 (43.97) 33.95±0.40 (58.70)

FR - 72.74±0.76 (12.13) 63.54±0.38 (23.94)
AMR - 72.96±0.43 (17.36) 59.05±0.68 (39.98)

CLS-ER
Vanilla 66.87±0.77 (33.13) 49.06±0.17 (55.47) 36.31±0.23 (71.57)

FR - 76.27±0.11 (21.16) 64.59±0.30 (34.99)
AMR - 77.20±0.42 (20.18) 67.58±0.40 (32.15)

Figures 6, 7, 8, and 9 present the results on shorter task streams from Tables 1 and 2 on Fashion-MNIST-CD
and CIFAR10-CD under one and two drift events. Across all settings, both the AMR and FR strategies
consistently restore model performance following drift(s). These results confirm that the proposed AMR

14

Under review as submission to TMLR

Table 3: Final Average Accuracy (FAA[↑]) and Forgetting (F[↓]) for Split-CIFAR100-CD (3-run average)

Vanilla = Baseline without Drift Adaptation, FR = Full Relearning, AMR = Adaptive Memory Realignment
S-CIFAR100-CD

M Method Adaptation No Drift 2 Drifts 4 Drifts

500

ER
Vanilla 9.74±0.18 (74.80) 9.45±0.09 (74.94) 8.70±0.07 (75.58)

FR - 12.15±0.20 (69.16) 13.71±0.28 (66.74)
AMR - 12.57±0.34 (70.55) 12.79±0.27 (69.96)

ER-ACE
Vanilla 21.95±0.35 (39.40) 12.37±0.24 (48.92) 7.05±0.35 (55.04)

FR - 18.06±0.32 (43.28) 16.24±0.46 (49.96)
AMR - 16.29±0.17 (45.09) 11.87±0.09 (51.70)

DER++
Vanilla 12.11±0.07 (69.80) 10.38±0.10 (72.03) 8.90±0.04 (74.33)

FR - 16.78±0.53 (63.39) 16.08±0.55 (63.68)
AMR - 13.57±0.28 (67.61) 12.02±0.18 (68.91)

SER
Vanilla 26.60±0.28 (42.38) 18.62±0.11 (51.06) 12.29±0.15 (58.29)

FR - 20.71±0.14 (41.83) 22.00±0.48 (42.04)
AMR - 17.73±0.71 (46.52) 13.37±0.18 (52.77)

CLS-ER
Vanilla 11.85±0.02 (73.15) 10.45±0.12 (74.87) 9.38±0.13 (76.09)

FR - 18.99±0.14 (62.31) 17.04±0.16 (64.99)
AMR - 17.11±0.10 (66.79) 14.95±0.31 (68.71)

5000

ER
Vanilla 22.89±0.20 (57.28) 15.77±0.43 (64.33) 10.96±0.14 (69.67)

FR - 24.04±0.24 (53.18) 22.05±0.26 (54.66)
AMR - 25.71±0.33 (53.43) 24.06±0.29 (55.40)

ER-ACE
Vanilla 32.44±0.45 (31.83) 16.80±0.19 (48.50) 9.80±0.14 (56.52)

FR - 27.36±0.17 (38.41) 23.33±0.50 (44.47)
AMR - 27.29±0.13 (39.81) 22.92±0.58 (46.73)

DER++
Vanilla 30.88±0.33 (36.13) 15.81±0.38 (52.48) 10.43±0.08 (58.87)

FR - 27.34±0.83 (40.33) 24.41±0.11 (44.11)
AMR - 27.71±0.15 (45.62) 22.68±0.27 (54.97)

SER
Vanilla 36.18±0.61 (14.16) 17.19±0.41 (34.61) 10.96±0.16 (42.29)

FR - 26.79±0.58 (25.56) 25.33±0.38 (28.76)
AMR - 27.40±0.24 (34.61) 20.88±0.51 (46.44)

CLS-ER
Vanilla 32.78±0.14 (43.26) 19.43±0.12 (57.74) 12.83±0.19 (64.49)

FR - 32.06±0.08 (42.17) 26.47±0.21 (48.64)
AMR - 31.47±0.31 (44.51) 26.75±0.37 (51.58)

Table 4: Final Average Accuracy (FAA[↑]) and Forgetting (F[↓]) for Split-Tiny-ImageNet-CD (3-run average)

Vanilla = Baseline without Drift Adaptation, FR = Full Relearning, AMR = Adaptive Memory Realignment
S-Tiny-ImageNet-CD

M Method Adaptation No Drift 2 Drifts 4 Drifts

500

ER
Vanilla 6.22±0.11 (57.50) 6.25±0.15 (58.50) 6.30±0.03 (58.16)

FR - 6.64±0.15 (55.21) 6.48±0.17 (55.67)
AMR - 6.19±0.15 (57.67) 6.18±0.10 (57.17)

ER-ACE
Vanilla 10.76±0.13 (32.76) 5.00±0.18 (37.99) 2.56±0.05 (41.23)

FR - 6.00±0.37 (39.87) 5.46±0.23 (44.64)
AMR - 5.96±0.20 (38.40) 3.19±0.11 (41.38)

DER++
Vanilla 6.61±0.10 (58.85) 6.45±0.12 (58.67) 6.44±0.07 (59.03)

FR - 7.04±0.19 (48.77) 7.97±0.11 (54.27)
AMR - 6.65±0.24 (56.54) 6.20±0.08 (57.37)

SER
Vanilla 16.41±0.59 (21.69) 10.74±0.26 (27.80) 6.86±0.15 (32.29)

FR - 11.71±0.12 (26.65) 8.71±0.33 (31.77)
AMR - 7.32±0.29 (28.07) 4.73±0.22 (26.84)

CLS-ER
Vanilla 6.50±0.07 (57.30) 6.30±0.00 (57.60) 6.16±0.27 (57.21)

FR - 7.87±0.04 (53.70) 8.72±0.03 (53.56)
AMR - 7.46±0.19 (56.56) 7.30±0.08 (56.29)

5000

ER
Vanilla 9.91±0.26 (58.40) 8.30±0.06 (60.74) 7.12±0.14 (61.27)

FR - 9.69±0.05 (56.20) 9.35±0.17 (56.19)
AMR - 10.12±0.08 (57.86) 8.57±0.18 (58.20)

ER-ACE
Vanilla 16.16±0.30 (32.52) 8.60±0.09 (40.89) 5.16±0.17 (44.78)

FR - 11.71±0.04 (38.26) 9.23±0.05 (45.20)
AMR - 11.10±0.17 (41.24) 7.48±0.08 (46.96)

DER++
Vanilla 11.55±0.45 (36.43) 6.52±0.08 (42.46) 5.38±0.15 (43.10)

FR - 10.52±0.30 (39.23) 8.82±0.12 (41.06)
AMR - 9.87±0.62 (49.14) 8.04±0.17 (53.03)

SER
Vanilla 16.22±0.45 (10.87) 7.33±0.29 (20.35) 4.84±0.29 (23.95)

FR - 9.46±0.38 (20.87) 7.63±0.04 (21.91)
AMR - 10.53±0.22 (23.22) 6.84±0.26 (31.33)

CLS-ER
Vanilla 16.23±0.38 (39.80) 9.81±0.16 (46.77) 7.41±0.13 (49.77)

FR - 14.47±0.18 (42.63) 11.13±0.14 (47.10)
AMR - 14.33±0.29 (43.24) 10.78±0.30 (48.96)

strategy can match the performance of FR. Interestingly, we observe that larger buffers exacerbate the
impact of concept drift. We hypothesize that smaller buffers, due to stronger forgetting, reduce reliance
on outdated representations, forcing the model to adapt more aggressively to new data. In contrast, larger

15

Under review as submission to TMLR

1 2 3 4 5
20

30

40

50

60

70

80

90

100
ER

No Drift: Vanilla
2 Drifts: Vanilla
2 Drifts: FR
2 Drifts: AMR

1 2 3 4 5
20

30

40

50

60

70

80

90

100
ER-ACE

1 2 3 4 5
20

30

40

50

60

70

80

90

100
DER++

1 2 3 4 5
20

30

40

50

60

70

80

90

100
SER

1 2 3 4 5
20

30

40

50

60

70

80

90

100
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

1 2 3 4 5
20

30

40

50

60

70

80

90

100
ER

No Drift: Vanilla
2 Drifts: Vanilla
2 Drifts: FR
2 Drifts: AMR

1 2 3 4 5
20

30

40

50

60

70

80

90

100
ER-ACE

1 2 3 4 5
20

30

40

50

60

70

80

90

100
DER++

1 2 3 4 5
20

30

40

50

60

70

80

90

100
SER

1 2 3 4 5
20

30

40

50

60

70

80

90

100
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

Figure 7: Class-incremental accuracy on S-FashionMNIST-CD with drift events at tasks 2 and 4. Results are shown
for buffer sizes 500 (top) and 5000 (bottom).

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
ER

No Drift: Vanilla
1 Drift: Vanilla
1 Drift: FR
1 Drift: AMR

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
ER-ACE

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
DER++

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
SER

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
ER

No Drift: Vanilla
1 Drift: Vanilla
1 Drift: FR
1 Drift: AMR

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
ER-ACE

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
DER++

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
SER

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

Figure 8: Class-incremental accuracy on S-CIFAR10-CD with a single drift event occurring at task 3. Results are
shown for buffer sizes 500 (top) and 5000 (bottom).

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
ER

No Drift: Vanilla
2 Drifts: Vanilla
2 Drifts: FR
2 Drifts: AMR

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
ER-ACE

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
DER++

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
SER

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
ER

No Drift: Vanilla
2 Drifts: Vanilla
2 Drifts: FR
2 Drifts: AMR

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
ER-ACE

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
DER++

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
SER

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

Figure 9: Class-incremental accuracy on S-CIFAR10-CD with drift events at tasks 2 and 4. Results are shown for
buffer sizes 500 (top) and 5000 (bottom).

buffers retain older samples longer, potentially hindering adaptation by reinforcing outdated features. This
observation reveals an intriguing insight that while larger buffers improve performance in static continual
learning settings, they may require adaptive mechanisms like AMR to remain effective under drift.

To further evaluate generalization, we test our approach on CIFAR-100-CD and Tiny-ImageNet-
CD—benchmarks with longer task streams and larger class spaces (Tables 3 and 4). We simulate two
and four drift events, each of which changes the representations of all previously seen classes. Figures 10,

16

Under review as submission to TMLR

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
ER
No Drift: Vanilla
2 Drifts: Vanilla
2 Drifts: FR
2 Drifts: AMR

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
ER-ACE

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
DER++

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
SER

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
ER
No Drift: Vanilla
2 Drifts: Vanilla
2 Drifts: FR
2 Drifts: AMR

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
ER-ACE

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
DER++

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
SER

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

Figure 10: Class-incremental accuracy on S-CIFAR100 with drift events at tasks 4 and 7. Results are shown for
buffer sizes 500 (top) and 5000 (bottom).

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
ER
No Drift: Vanilla
4 Drifts: Vanilla
4 Drifts: FR
4 Drifts: AMR

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
ER-ACE

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
DER++

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
SER

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
ER
No Drift: Vanilla
4 Drifts: Vanilla
4 Drifts: FR
4 Drifts: AMR

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
ER-ACE

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
DER++

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
SER

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

Figure 11: Class-incremental accuracy on S-CIFAR100 with drift events at tasks 3, 5, 7, and 9. Results are shown
for buffer sizes 500 (top) and 5000 (bottom).

11, and 12 show that, while FR consistently restores full performance, AMR achieves comparable accuracy
and reliably outperforms the No-Adaptation baseline.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

ER
No Drift: Vanilla
2 Drifts: Vanilla
2 Drifts: FR
2 Drifts: AMR

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

ER-ACE

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70
DER++

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

SER

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

(a) Drift events at tasks 4 and 7

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

ER
No Drift: Vanilla
4 Drifts: Vanilla
4 Drifts: FR
4 Drifts: AMR

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

ER-ACE

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70
DER++

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

SER

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

(b) Drift events at tasks 3, 5, 7, and 9

Figure 12: Class-incremental accuracy on S-Tiny-ImageNet-CD with 5000 buffer size.

On large datasets such as Tiny-ImageNet-CD, forgetting is so pronounced that a small buffer cannot support
meaningful recovery. Table 3 confirms that a 500-sample buffer suffices for CIFAR-100-CD. However, from

17

Under review as submission to TMLR

Table 4, it is evident that several methods fail to recover on Tiny-ImageNet-CD with the same capacity. We
therefore recommend a buffer size of 5000 for effective drift adaptation on large-scale datasets.

Beyond accuracy, practical deployment requires minimizing both the number of labeled samples and the com-
putational cost of adaptation. To quantify these trade-offs, we compared the two approaches across three key
metrics: time per epoch, GFLOPs, and the number of labeled samples required for adaptation. All metrics
were normalized with respect to the FR baseline, which is assigned a normalized value of 1.0 (representing the
highest cost). The performance of AMR is expressed on a 0∼1 scale, where lower values indicate better effi-
ciency relative to FR. As shown in Figure 13, AMR consistently requires fewer computational resources and
labeled samples across FashionMNIST-CD, CIFAR10-CD, CIFAR100-CD, and Tiny-ImageNet-CD datasets.

Time/epoch (s)

 GFLOPs/epochRequired samples per class

0.25x

0.5x

0.75x

1.0x FR
AMR

(a) Fashion-MNIST-CD

Time/epoch (s)

 GFLOPs/epochRequired samples per class

0.25x

0.5x

0.75x

1.0x FR
AMR

(b) CIFAR10-CD
Time/epoch (s)

 GFLOPs/epochRequired samples per class

0.25x

0.5x

0.75x

1.0x FR
AMR

(c) CIFAR100-CD

Time/epoch (s)

 GFLOPs/epochRequired samples per class

0.25x

0.5x

0.75x

1.0x FR
AMR

(d) Tiny-ImageNet-CD

Figure 13: Radar plots comparing the efficiency of AMR and FR across normalized metrics: time per epoch, GFLOPs,
and labeled samples required. All values are normalized such that FR = 1.0 (maximum cost), with lower values
indicating better efficiency. AMR consistently shows lower resource requirements across all dimensions.

As expected, these results confirm that although effective at mitigating concept drift, the FR strategy incurs
significant overhead, as it requires full retraining on large labeled datasets following each drift event. In
contrast, AMR’s selective replacement of only outdated entries in the memory buffer avoids unnecessary
retraining and reduces the overall adaptation cost. This makes AMR not only competitive in terms of
accuracy, but also significantly more efficient in both computational and labeling costs. By operating well
below the resource demands of Full Relearning, AMR presents a practical and scalable solution for real-world
continual learning under concept drift.

6 Conclusion and Future Work

We propose a novel continual learning scenario that offers adaptation to evolving distributions of past tasks
due to concept drift. Our proposed approach integrates a drift detection mechanism with adaptive memory
management, ensuring both excellent knowledge retention and effective adaptation to changes in old classes.
This approach enables continual learning models to maintain robust performance in dynamic, non-stationary

18

Under review as submission to TMLR

environments while minimizing the need for extensive labeled data during drift recovery. Experimental re-
sults demonstrate that our method effectively recovers from concept drift while maintaining performance
on stationary past tasks, providing a comprehensive solution for challenging, continually streaming environ-
ments.

Several challenges remain for future exploration. One key direction is refining drift detection mechanisms to
distinguish minor distribution shifts from significant concept drifts, reducing unnecessary memory updates.
Additionally, incorporating uncertainty estimation techniques could enable unsupervised task discovery and
concept drift adaptation, paving the way for more holistic lifelong learning systems.

References
Supriya Agrahari and Anil Kumar Singh. Concept drift detection in data stream mining : A literature review.

J. King Saud Univ. Comput. Inf. Sci., 34(10 Part B):9523–9540, 2022. doi: 10.1016/J.JKSUCI.2021.11.006.
URL https://doi.org/10.1016/j.jksuci.2021.11.006.

Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin, and Tinne
Tuytelaars. Online continual learning with maximally interfered retrieval, 2019. URL https://arxiv.
org/abs/1908.04742.

Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual learning
method based on complementary learning system. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https:
//openreview.net/forum?id=uxxFrDwrE7Y.

Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard Gavaldà. New ensemble
methods for evolving data streams. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’09, pp. 139–148, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-495-9.

Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Massive online analysis. J.
Mach. Learn. Res., 11:1601–1604, August 2010. ISSN 1532-4435.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience for
general continual learning: a strong, simple baseline. In Proceedings of the 34th International Conference
on Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020a. Curran Associates Inc.
ISBN 9781713829546.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, and Simone Calderara. Rethinking experience replay: a
bag of tricks for continual learning. 2020 25th International Conference on Pattern Recognition (ICPR),
pp. 2180–2187, 2020b. URL https://api.semanticscholar.org/CorpusID:222290541.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky. New
insights on reducing abrupt representation change in online continual learning. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022. URL https://openreview.net/forum?id=N8MaByOzUfb.

Fernando E. Casado, Dylan Lema, Marcos F. Criado, Roberto Iglesias, Carlos V. Regueiro, and Senén
Barro. Concept drift detection and adaptation for federated and continual learning. Multimedia Tools
and Applications, 81(3):3397–3419, July 2021. ISSN 1573-7721. doi: 10.1007/s11042-021-11219-x. URL
http://dx.doi.org/10.1007/s11042-021-11219-x.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with A-GEM. CoRR, abs/1812.00420, 2018. URL http://arxiv.org/abs/1812.00420.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet Kumar Doka-
nia, Philip H. S. Torr, and Marc’Aurelio Ranzato. Continual learning with tiny episodic memories. CoRR,
abs/1902.10486, 2019. URL http://arxiv.org/abs/1902.10486.

19

https://doi.org/10.1016/j.jksuci.2021.11.006
https://arxiv.org/abs/1908.04742
https://arxiv.org/abs/1908.04742
https://openreview.net/forum?id=uxxFrDwrE7Y
https://openreview.net/forum?id=uxxFrDwrE7Y
https://api.semanticscholar.org/CorpusID:222290541
https://openreview.net/forum?id=N8MaByOzUfb
http://dx.doi.org/10.1007/s11042-021-11219-x
http://arxiv.org/abs/1812.00420
http://arxiv.org/abs/1902.10486

Under review as submission to TMLR

Zhiyuan Chen and B. Liu. Lifelong machine learning, second edition. Synthesis Lectures on Artificial Intel-
ligence and Machine Learning, 2018. URL https://api.semanticscholar.org/CorpusID:52100963.

Andrea Cossu, Gabriele Graffieti, Lorenzo Pellegrini, Davide Maltoni, Davide Bacciu, Antonio Carta, and
Vincenzo Lomonaco. Is class-incremental enough for continual learning? CoRR, abs/2112.02925, 2021.
URL https://arxiv.org/abs/2112.02925.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley, New York, 2. edition,
2001.

Robert French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3:128–135,
05 1999. doi: 10.1016/S1364-6613(99)01294-2.

João Gama, Indrundefined Žliobaitundefined, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. A survey on concept drift adaptation. ACM Comput. Surv., 46(4), March 2014a. ISSN
0360-0300. doi: 10.1145/2523813. URL https://doi.org/10.1145/2523813.

João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A survey on
concept drift adaptation. ACM computing surveys (CSUR), 46(4):1–37, 2014b.

Alex Gomez-Villa, Dipam Goswami, Kai Wang, Andrew D Bagdanov, Bartlomiej Twardowski, and Joost
van de Weijer. Exemplar-free continual representation learning via learnable drift compensation. In
European Conference on Computer Vision, pp. 473–490. Springer, 2024.

Md Yousuf Harun, Jhair Gallardo, Junyu Chen, and Christopher Kanan. Grasp: A rehearsal policy for
efficient online continual learning, 2024. URL https://arxiv.org/abs/2308.13646.

Hamed Hemati, Andrea Cossu, Antonio Carta, Julio Hurtado, Lorenzo Pellegrini, Davide Bacciu, Vincenzo
Lomonaco, and Damian Borth. Class-incremental learning with repetition, 2023. URL https://arxiv.
org/abs/2301.11396.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, and Michael Spranger. MECTA: memory-economic continual
test-time model adaptation. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia
Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in neural networks.
CoRR, abs/1612.00796, 2016. URL http://arxiv.org/abs/1612.00796.

Lukasz Korycki and Bartosz Krawczyk. Class-incremental experience replay for continual learning under
concept drift. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 3649–3658, 2021.

Bartosz Krawczyk et al. Ensemble learning for data stream analysis: A survey. Inf. Fusion, 37:132 – 156,
2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05 2012.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Zhizhong Li and Derek Hoiem. Learning without forgetting. CoRR, abs/1606.09282, 2016. URL http:
//arxiv.org/abs/1606.09282.

Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. Learning under concept drift:
A review. IEEE Transactions on Knowledge and Data Engineering, pp. 1–1, 2018. ISSN 2326-3865. doi:
10.1109/tkde.2018.2876857. URL http://dx.doi.org/10.1109/TKDE.2018.2876857.

20

https://api.semanticscholar.org/CorpusID:52100963
https://arxiv.org/abs/2112.02925
https://doi.org/10.1145/2523813
https://arxiv.org/abs/2308.13646
https://arxiv.org/abs/2301.11396
https://arxiv.org/abs/2301.11396
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1606.09282
http://arxiv.org/abs/1606.09282
http://dx.doi.org/10.1109/TKDE.2018.2876857

Under review as submission to TMLR

Fan Lyu, Daofeng Liu, Linglan Zhao, Zhang Zhang, Fanhua Shang, Fuyuan Hu, Wei Feng, and Liang Wang.
Overcoming domain drift in online continual learning, 2024. URL https://arxiv.org/abs/2405.09133.

Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew D. Bagdanov, and Joost van de
Weijer. Class-incremental learning: survey and performance evaluation. CoRR, abs/2010.15277, 2020.
URL https://arxiv.org/abs/2010.15277.

Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the American statistical
Association, 46(253):68–78, 1951.

Leland McInnes and John Healy. UMAP: uniform manifold approximation and projection for dimension
reduction. CoRR, abs/1802.03426, 2018. URL http://arxiv.org/abs/1802.03426.

Chenggong Ni, Fan Lyu, Jiayao Tan, Fuyuan Hu, Rui Yao, and Tao Zhou. Maintaining consistent inter-class
topology in continual test-time adaptation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2025, Nashville, TN, USA, June 11-15, 2025, pp. 15319–15328. Computer Vision
Foundation / IEEE, 2025.

Grégoire Petit, Adrian Popescu, Hugo Schindler, David Picard, and Bertrand Delezoide. Fetril: Fea-
ture translation for exemplar-free class-incremental learning, 2023. URL https://arxiv.org/abs/2211.
13131.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
doi: 10.1007/s11263-015-0816-y.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR, abs/1606.04671,
2016. URL http://arxiv.org/abs/1606.04671.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay.
Advances in neural information processing systems, 30, 2017.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A. Efros, and Moritz Hardt. Test-time training
with self-supervision for generalization under distribution shifts. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pp. 9229–9248. PMLR, 2020. URL http://proceedings.mlr.press/
v119/sun20b.html.

Gido M. van de Ven and Andreas S. Tolias. Three scenarios for continual learning. CoRR, abs/1904.07734,
2019. URL http://arxiv.org/abs/1904.07734.

Arnaud Van Looveren, Janis Klaise, Giovanni Vacanti, Oliver Cobb, Ashley Scillitoe, Robert Samoilescu,
and Alex Athorne. Alibi Detect: Algorithms for outlier, adversarial and drift detection, April 2024. URL
https://github.com/SeldonIO/alibi-detect.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS),
11(1):37–57, 1985.

Gerhard Widmer and Miroslav Kubat. Effective learning in dynamic environments by explicit context
tracking. In PavelB. Brazdil (ed.), Machine Learning: ECML-93, volume 667 of Lecture Notes in Computer
Science, pp. 227–243. Springer Berlin Heidelberg, 1993. ISBN 978-3-540-56602-1.

Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and hidden contexts.
Machine learning, 23:69–101, 1996.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large scale
incremental learning, 2019. URL https://arxiv.org/abs/1905.13260.

21

https://arxiv.org/abs/2405.09133
https://arxiv.org/abs/2010.15277
http://arxiv.org/abs/1802.03426
https://arxiv.org/abs/2211.13131
https://arxiv.org/abs/2211.13131
http://arxiv.org/abs/1606.04671
http://proceedings.mlr.press/v119/sun20b.html
http://proceedings.mlr.press/v119/sun20b.html
http://arxiv.org/abs/1904.07734
https://github.com/SeldonIO/alibi-detect
https://arxiv.org/abs/1905.13260

Under review as submission to TMLR

Qiuyan Xiang, Lingling Zi, Xin Cong, and Yan Wang. Concept drift adaptation methods under the deep
learning framework: A literature review. Applied Sciences, 13(11), 2023. ISSN 2076-3417. doi: 10.3390/
app13116515. URL https://www.mdpi.com/2076-3417/13/11/6515.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. CoRR, abs/1708.07747, 2017. URL http://arxiv.org/abs/1708.07747.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence, 2017.
URL https://arxiv.org/abs/1703.04200.

Zhilin Zhu, Xiaopeng Hong, Zhiheng Ma, Weijun Zhuang, Yaohui Ma, Yong Dai, and Yaowei Wang. Re-
shaping the online data buffering and organizing mechanism for continual test-time adaptation. In Ales
Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gül Varol (eds.), Computer
Vision - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceed-
ings, Part LXXXII, volume 15140 of Lecture Notes in Computer Science, pp. 415–433. Springer, 2024.

Huiping Zhuang, Run He, Kai Tong, Ziqian Zeng, Cen Chen, and Zhiping Lin. Ds-al: A dual-stream analytic
learning for exemplar-free class-incremental learning, 2024. URL https://arxiv.org/abs/2403.17503.

Tao Zhuo, Zhiyong Cheng, Zan Gao, and Mohan S. Kankanhalli. Continual learning with strong experience
replay. CoRR, abs/2305.13622, 2023. doi: 10.48550/ARXIV.2305.13622. URL https://doi.org/10.
48550/arXiv.2305.13622.

A Justification for Concept Drift Transformation

Figure 14 shows the effects of various transformations on recurring classes in CIFAR10, using vanilla Expe-
rience Replay (ER) with a buffer size of 5000. Specifically, during tasks 2 and 4, previously learned classes
reappear alongside new classes, with the recurring ones modified using the indicated transformations to
induce concept drift. The figure shows that certain transformations have a more pronounced impact than
others. Defocus blur and shot noise fail to produce meaningful representation shifts, even at their highest
severity levels. In contrast, Gaussian noise, rotation, and permutation significantly degrade performance,
indicating stronger representation drift.

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
Defocus Blur Drift

no drift: 65.78%
severity=1: 66.62%
severity=3: 65.97%
severity=5: 60.87%

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
Shot Noise Drift

no drift: 65.78%
severity=1: 63.10%
severity=3: 55.48%
severity=5: 48.60%

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
Gaussian Noise Drift

no drift: 65.78%
severity=1: 50.84%
severity=3: 38.08%
severity=5: 35.75%

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
Rotation Drift

no drift: 65.78%
severity=1: 49.30%
severity=3: 45.08%
severity=5: 45.50%

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
Permutation Drift

no drift: 65.78%
severity=1: 45.89%
severity=3: 36.39%
severity=5: 36.01%

Task Trained On

Ac
cu

ra
cy

 (%
)

Figure 14: Impact of concept drifts induced by image transformations of varying severity at tasks 2 and 4 on CIFAR10

B Hyperparameter Selection

Abbreviations: mb = mini-batch size, bs = batch size, regw = regularization weight, sm_uf = stable model
update frequency, pm_uf = plastic model update frequency

22

https://www.mdpi.com/2076-3417/13/11/6515
http://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1703.04200
https://arxiv.org/abs/2403.17503
https://doi.org/10.48550/arXiv.2305.13622
https://doi.org/10.48550/arXiv.2305.13622

Under review as submission to TMLR

S-FMNIST-CD
Method M Hyperparameters

ER 500 lr: 0.1, mb: 10, bs: 10, epochs: 1
5000 lr: 0.1, mb: 10, bs: 10, epochs: 1

ER-ACE 500 lr: 0.03, mb: 10, bs: 10, epochs: 1
5000 lr: 0.03, mb: 10, bs: 10, epochs: 1

DER++ 500 lr: 0.1, mb: 10, bs: 10, α: 0.2, β: 0.5, epochs: 1
5000 lr: 0.1, mb: 10, bs: 10, α: 0.2, β: 0.5, epochs: 1

SER 500 lr: 0.1, mb: 10, bs: 10, α: 0.2, β: 0.2, epochs: 1
5000 lr: 0.1, mb: 10, bs: 10, α: 0.2, β: 0.2, epochs: 1

CLS-ER
500 lr: 0.1, mb: 10, bs: 10, reg_w: 1.0, sm_uf : 0.9,

smα: 0.99, pm_uf : 1.0, pmα: 0.99, epochs: 1

5000 lr: 0.1, mb: 10, bs: 10, reg_w: 1.0, sm_uf : 0.8,
smα: 0.99, pm_uf : 1.0, pmα: 0.99, epochs: 1

S-CIFAR10-CD
Method M Hyperparameters

ER 500 lr: 0.1, mb: 32, bs: 32, epochs: 50
5000 lr: 0.1, mb: 32, bs: 32, epochs: 50

ER-ACE 500 lr: 0.03, mb: 32, bs: 32, epochs: 50
5000 lr: 0.03, mb: 32, bs: 32, epochs: 50

DER++ 500 lr: 0.03, mb: 32, bs: 32, α: 0.2, β: 0.5, epochs: 50
5000 lr: 0.03, mb: 32, bs: 32, α: 0.1, β: 1.0, epochs: 50

SER 500 lr: 0.03, mb: 32, bs: 32, α: 0.2, β: 0.2, epochs: 50
5000 lr: 0.03, mb: 32, bs: 32, α: 0.2, β: 0.2, epochs: 50

CLS-ER
500 lr: 0.1, mb: 32, bs: 32, reg_w: 0.15, sm_uf : 0.1,

smα: 0.999, pm_uf : 0.9, pmα: 0.999, epochs: 50

5000 lr: 0.1, mb: 32, bs: 32, reg_w: 0.15, sm_uf : 0.8,
smα: 0.999, pm_uf : 1.0, pmα: 0.999, epochs: 50

S-CIFAR100-CD
Method M Hyperparameters

ER 500 lr: 0.1, mb: 32, bs: 32, epochs: 50
5000 lr: 0.1, mb: 32, bs: 32, epochs: 50

ER-ACE 500 lr: 0.03, mb: 32, bs: 32, epochs: 50
5000 lr: 0.03, mb: 32, bs: 32, epochs: 50

DER++ 500 lr: 0.03, mb: 32, bs: 32, α: 0.1, β: 0.5, epochs: 50
5000 lr: 0.03, mb: 32, bs: 32, α: 0.1, β: 0.5, epochs: 50

SER 500 lr: 0.03, mb: 32, bs: 32, α: 0.5, β: 0.5, epochs: 50
5000 lr: 0.03, mb: 32, bs: 32, α: 0.5, β: 0.5, epochs: 50

CLS-ER
500 lr: 0.1, mb: 32, bs: 32, reg_w: 0.15, sm_uf : 0.1,

smα: 0.999, pm_uf : 0.9, pmα: 0.999, epochs: 50

5000 lr: 0.1, mb: 32, bs: 32, reg_w: 0.15, sm_uf : 0.8,
smα: 0.999, pm_uf : 1.0, pmα: 0.999, epochs: 50

S-Tiny-ImageNet-CD
Method M Hyperparameters

ER 500 lr: 0.03, mb: 32, bs: 32, epochs: 100
5000 lr: 0.1, mb: 32, bs: 32, epochs: 100

ER-ACE 500 lr: 0.03, mb: 32, bs: 32, epochs: 100
5000 lr: 0.03, mb: 32, bs: 32, epochs: 100

DER++ 500 lr: 0.03, mb: 32, bs: 32, α: 0.2, β: 0.5, epochs: 100
5000 lr: 0.03, mb: 32, bs: 32, α: 0.1, β: 0.5, epochs: 100

SER 500 lr: 0.03, mb: 32, bs: 32, α: 0.2, β: 1.0, epochs: 100
5000 lr: 0.03, mb: 32, bs: 32, α: 0.2, β: 1.0, epochs: 100

CLS-ER
500 lr: 0.05, mb: 32, bs: 32, reg_w: 0.1, sm_uf : 0.05,

smα: 0.999, pm_uf : 0.08, pmα: 0.999, epochs: 100

5000 lr: 0.05, mb: 32, bs: 32, reg_w: 0.1, sm_uf : 0.07,
smα: 0.999, pm_uf : 0.08, pmα: 0.999, epochs: 100

23

	Introduction
	Related Work
	Proposed Framework
	Toward a Holistic Continual-Learning Paradigm
	Problem Formulation
	Concept Drift Detection
	Adaptive Memory Realignment (AMR) for Drift Adaptation
	Theoretical Analysis
	Gradient Misalignment Analysis
	Limitations of Conventional Reservoir Sampling
	Optimality of Targeted Memory Realignment
	Gradient Alignment with AMR
	Conclusion

	Experimental Setup
	Experiments
	Empirical Validation of Theoretical Claims
	Experimental Results

	Conclusion and Future Work
	Justification for Concept Drift Transformation
	Hyperparameter Selection

