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Abstract
Multi-layer perceptron (MLP) is a fundamental
component of deep learning, and recent MLP-
based architectures, especially the MLP-Mixer,
have achieved significant empirical success. Nev-
ertheless, our understanding of why and how the
MLP-Mixer outperforms conventional MLPs re-
mains largely unexplored. In this work, we reveal
that sparseness is a key mechanism underlying
the MLP-Mixers. First, the Mixers have an effec-
tive expression as a wider MLP with Kronecker-
product weights, clarifying that the Mixers effi-
ciently embody several sparseness properties ex-
plored in deep learning. In the case of linear
layers, the effective expression elucidates an im-
plicit sparse regularization caused by the model
architecture and a hidden relation to Monarch
matrices, which is also known as another form
of sparse parameterization. Next, for general
cases, we empirically demonstrate quantitative
similarities between the Mixer and the unstruc-
tured sparse-weight MLPs. Following a guiding
principle proposed by Golubeva, Neyshabur and
Gur-Ari (2021), which fixes the number of con-
nections and increases the width and sparsity, the
Mixers can demonstrate improved performance.

1. Introduction
Multi-layer perceptron (MLP) and its variants are fundamen-
tal components of deep learning employed in various prob-
lems and for understanding the basic properties of neural net-
works. Despite their simplicity and long history (Rosenblatt,
1958; Schmidhuber, 2015), it has become apparent only
recently that there is still significant room for improvement
in the predictive performance of MLP-based architectures.

The sparseness is known as a key direction for enhancing
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the performance of dense MLP layers (Neyshabur et al.,
2014; d’Ascoli et al., 2019; Neyshabur, 2020; Golubeva
et al., 2021; Pellegrini & Biroli, 2022). For instance, Gol-
ubeva et al. (2021) reported that the prediction performance
improves by increasing both the width and the sparsity of
connectivity when the number of trainable parameters is
fixed. The MLP-Mixer is another noteworthy direction of
recent developments in MLP-based architectures (Tolstikhin
et al., 2021; Touvron et al., 2022). It does not rely on convo-
lutions or self-attention and is entirely composed of MLP
layers; instead, it utilizes MLPs applied across spatial loca-
tions or feature channels. This can be regarded as an MLP
that applies fully connected (FC) layers on both sides of
the feature matrix. Despite its simplicity, the MLP-Mixer
achieved a performance on image classification benchmarks
comparable to that of more structured deep neural networks.

However, there are few studies on experimental and theo-
retical attempts to understand MLP-Mixer’s internal mecha-
nisms (Yu et al., 2022; Sahiner et al., 2022). This contrasts
with the extensive elucidation of explicit or implicit biases
in other modern architectural components (Neyshabur et al.,
2014; Bjorck et al., 2018; Cordonnier et al., 2019). To fur-
ther advance the MLP-based architecture, it will be crucial
to unveil the underlying mechanism of the MLP-Mixer and
to address questions such as: What different inductive bi-
ases does the MLP-Mixer have compared to a naive MLP?
Which architectural factors significantly contribute to their
superior performance?

In this study, we reveal that the sparseness, which is seem-
ingly a distinct research concept, is the key mechanism
underlying the MLP-Mixer. One can see that the MLP-
Mixer is a wider MLP with sparsity inherently embedded
as an inductive bias. This equivalence also provides a quan-
titative understanding that appropriate token and channel
sizes maximizing the sparsity can improve the prediction
performance. The detailed contributions are summarized as
follows:

• We first identify an effective expression of MLP-Mixer
as an MLP by vectorizing the mixing layers (in Section
3). It is composed of the permutation matrix and the
Kronecker product and provides an interpretation of
mixing layers as an extremely wide MLP with sparse
(structured) weights.
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• We consider a linear activation case of a simple Mixer
and its effective expression. First, this reveals that the
Kronecker-product weight possesses a bias towards
an implicit L1 regularization (in Section 3.2). In deep
learning, there are two aspects of sparsity: one is a large
number of zero parameters (e.g., Neyshabur (2020))
and the other is the limited number of independent
parameters (e.g., Dao et al. (2022)). Our evaluation
of implicit regularization effectively links these two
facets of sparsity. Second, regarding the limited num-
ber of independent parameters, the MLP-Mixer can
be regarded as an approximation of an MLP with the
Monarch matrix (in Section 3.3). Thus, the sparseness
discussed in the different literature is inherently and
originally incorporated into the Mixers.

• For realistic cases with non-linear activation functions,
we quantitatively evaluate the high similarity between
the traditional sparse-weight MLP (SW-MLP) and the
MLP-Mixer. First, we confirm the similarity of hid-
den features by the centered kernel alignment. Second,
we reveal similar performance trends when increas-
ing sparseness (equivalent to widening) with a fixed
number of connections. This means that empirical ob-
servations of Golubeva et al. (2021) on appropriate
sizes of sparsity hold even in the MLP-Mixer in the
sense of both improving prediction performance (in
Section 4.2) and ensuring trainability (in Section 4.3).
We also empirically verify that the Random-Permuted
(RP) Mixer introduced in Section 5.2, which is a less
structured variant of the normal Mixer, exhibits sim-
ilar performance trends (Sections 5.3 & 5.4). This
further solidifies our understanding that sparsity is a
fundamental element underlying the Mixers.

2. Preliminaries
2.1. Related Work

MLP-based architectures. The salient property of an MLP-
Mixer is that it is composed entirely of FC layers. This prop-
erty is unique to the MLP-Mixer (and its concurrent work
ResMLP (Touvron et al., 2022)) and different from attention-
based architectures (Dosovitskiy et al., 2021). While some
previous work focused on providing a relative evaluation
of performance compared with the attention module (Yu
et al., 2022; Sahiner et al., 2022), our purpose is to elucidate
the hidden bias of MLP-Mixers as a wide and sparse MLP.
Golubeva et al. (2021) investigated that the generalization
performance can be improved by increasing the width in
FC layers. Because they fixed the number of weights, an
increase in the width caused a higher sparsity. They revealed
that even for fixed sparse connectivity throughout training,
a large width can improve the performance better than the
dense layer.

Structured weight matrices: (i) Sparse matrix. Parame-
ter sparsity is widely used to improve the performance and
efficiency of neural networks. It is known that naive MLPs
require even more data than structured deep models to im-
prove performance due to their weak inductive bias (Bach-
mann et al., 2023). The sparseness is considered useful as
a minimal necessary bias. One approach to make weights
sparse is to determine nonzero weights dynamically, such as
dense-to-sparse training (Neyshabur, 2020), pruning (Fran-
kle & Carbin, 2019), and sparse-to-sparse training (Dettmers
& Zettlemoyer, 2019; Evci et al., 2020). The other is to con-
strain the trainable weights from the beginning of training
statically (Dao et al., 2022; Golubeva et al., 2021; Liu et al.,
2022; Gadhikar et al., 2023). The current study follows
the latter approach; specifically, we reveal that the mixing
layers of the MLP-Mixer are implicitly related to such fixed
sparse connectivity. (ii) Kronecker product. Constraining
weight matrices to the Kronecker product and its summation
has been investigated in the model-compression literature.
Some works succeeded in reducing the number of trainable
parameters without deteriorating the prediction performance
(Zhou et al., 2015; Zhang et al., 2021) while others applied
them for the compression of trained parameters (Hameed
et al., 2022). In contrast, we find a Kronecker product ex-
pression hidden in the MLP-Mixer, which can be regarded
as an approximation of the Monarch matrix proposed in Dao
et al. (2022).

Notably, our study is completely different from merely ap-
plying sparse regularizers, Kronecker-product weights, or
Monarch matrices (Dao et al., 2022) to the dense weight
matrices in the mixing layers like Fu et al. (2023). Our
finding is that MLP-Mixers and their generalization (i.e.,
the PK family) inherently possess these properties.

2.2. Notations

MLP-Mixer. An MLP-Mixer is defined as follows (Tol-
stikhin et al., 2021). Initially, it divides an input image into
patches. Next, a per-patch FC layer is performed. After that,
the blocks described as follows are repeatedly applied to
them: for the feature matrix from the previous hidden layer
X ∈ RS×C ,

Token-MLP(X) = W2ϕ(W1X), (1)
Channel-MLP(X) = ϕ(XW3)W4, (2)

where ϕ denotes the entry-wise activation function, W1 ∈
RγS×S , W2 ∈ RS×γS , W3 ∈ RC×γC and W4 ∈ RγC×C .
In this paper, we set the expansion factor of the hidden
layers of token and channel-mixing MLPs to the same value
γ for simplicity. The block of the MLP-Mixer is given by
the map X 7→ Y , where

U = X + Token-MLP(LN(X)), (3)
Y = U + Channel-MLP(LN(U)). (4)
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In the end, the global average pooling and the linear classi-
fier are applied to the last hidden layer.

S-Mixer. To facilitate theoretical insights, we introduce
the S-Mixer, an idealized version of the MLP Mixer:

H = ϕ(ϕ(WX)V ), (5)

where V and W represent weight matrices. In this formu-
lation, the shallow neural networks typically found within
the mixing block of the MLP-Mixer are simplified to single
layers. For the sake of simplicity in our theoretical analy-
sis of the S-Mixer, we omit layer normalization and skip
connections. It is important to note, however, that in our
numerical experiments on training deep models in Section 5,
these components are incorporated, demonstrating that their
inclusion does not detract from the fundamental outcomes
of the study. we summarized the detailed architectures used
for experiments in Appendix A.

3. Properties as a sparse MLP
3.1. Vectorization

To address the similarity between MLP-Mixer and MLP, we
consider vectorization of feature tensors and effective width.
We represent the vectorization operation of the matrix X ∈
RS×C by vec(X); more precisely, (vec(X))(j−1)d+i =
Xij , (i = 1, . . . , S, j = 1, . . . , C). We also define an in-
verse operation mat(·) to recover the matrix representation
by mat(vec(X)) = X . There exists a well-known equation
for the vectorization operation and the Kronecker product
denoted by ⊗;

vec(WXV ) = (V ⊤ ⊗W )vec(X), (6)

for W ∈ RS×S and V ∈ RC×C . The vectorization of
the feature matrix WXV is equivalent to a fully connected
layer of width m := SC with a weight matrix V ⊤ ⊗ W .
We refer to this m as the effective width of mixing layers.

In MLP-Mixer, when we treat each S ×C feature matrix X
as an SC-dimensional vector vec(X), the right multiplica-
tion by an C×C weight V and the left weight multiplication
by a S × S weight W are represented as follows:

vec(XV ) = (V ⊤ ⊗ IS)vec(X), (7)
vec(WX) = (IC ⊗W )vec(X), (8)

where In denotes an n× n identity matrix. This expression
clarifies that the mixing layers work as an MLP with special
weight matrices with the Kronecker product. As usual, the
size of S and C is approximately 102 ∼ 103, and this
implies that the Mixer is equivalent to an extremely wide
MLP with m = 104 ∼ 106. Moreover, the ratio of non-zero
entries in the weight matrix IC ⊗ W is 1/C and that of

V ⊤ ⊗ IS is 1/S. Therefore, the weight of the effective
MLP is highly sparse in the sense of non-zero entries.

Here, to consider only the left-multiplication of weights, we
introduce commutation matrices.

Definition 3.1. The commutation matrix Jc is an m ×m
matrix defined as

Jcvec(X) = vec(X⊤), (9)

where X is an S × C matrix.

Note that for any x ∈ Rm, Jcϕ(x) = ϕ(Jcx). In addition,
we have J⊤

c (IS ⊗V ⊤)Jc = V ⊤⊗ IS for any C×C matrix
V . Using the commutation matrix, we find the following:

Proposition 3.2 (Effective expression of MLP-Mixer as
MLP). The feature matrix of the S-Mixer (5) is a shallow
MLP with width m = SC as follows:

vec(H) = ϕ
(
J⊤
c

(
IS ⊗ V ⊤)ϕ (Jc (IC ⊗W ) vec (X))

)
.

(10)

The derivation is straightforward as described in Ap-
pendix B.1. This expression clarifies that the mixing layers
work as an MLP with special weight matrices with the com-
mutation matrix and Kronecker product.

It is easy to generalize the above expression for the S-Mixer
to the MLP-Mixer, where each mixing operation is com-
posed of shallow neural networks (2) (see Appendix B.1).
This equivalence with a wide MLP with sparse weights
is simple and easy to follow but has been missing in the
literature.

3.2. Implicit regularization of linear mixing layers

Considering the linear activation case to gain theoretical
insight is a common approach used in deep learning (Saxe
et al., 2014; Arora et al., 2019). yet there has been no work
on the Mixers. We find that the theoretical analysis is chal-
lenging even in the simplest case of the linear S-Mixer (6).
This model is equivalent to a so-called bi-linear regression
model, for which an analytical solution that minimizes the
MSE loss is unknown (Hoff, 2015). This makes analyzing
the linear S-Mixer more difficult compared to conventional
linear networks. Despite this difficulty, we discover the
following inequality that characterizes the implicit regular-
ization of the model:

Proposition 3.3.

min
V,W

L(V ⊗W ) +
λ

2
(∥V ∥2F + ∥W∥2F )

≥ min
B∈RSC×SC

L(B) + λ̃∥B∥1, (11)

where λ̃ = λ/CS, ∥ · ∥F is the Frobenius norm, and ∥ · ∥1
is the L1 norm.
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Figure 1. Schematic diagram of sparsity treated in this work. (a) A masked weight matrix M ⊙A in a sparse-weight MLP (SW-MLP). Its
width is O(1/

√
p), where p is the ratio of non-zero entries in the mask M . (b) A mixing layer in an MLP-Mixer with the vectorization.

The weight behaves as a block diagonal matrix. (c) A weight of a random permuted mixer (RP-Mixer), which is introduced in Section 5.
The block diagonal structure is destroyed by random permutation matrices J1, J2 to achieve similarity to the SW-MLP.

The derivation is shown in Appendix B.4. It extends the fact
that the Hadamard product parameterization has an implicit
bias towards L1 regularization to the case of the Kronecker
product parameterization (Hoff, 2017; Yasuda et al., 2023).
Note that the number of independent parameters differs be-
tween the left and right sides of the inequality. Therefore,
λ̃ might appear small, but it merely normalizes the change
in parameter size (see Appendix B.4 for more details). The
implicit bias towards sparsity is considered a desirable prop-
erty in modern neural network architectures (Neyshabur
et al., 2014; Woodworth et al., 2020; Karakida et al., 2023).

3.3. Monarch matrix hidden behind Mixers

Dao et al. (2022) proposed a Monarch matrix M ∈ Rn×n

defined by
M = J⊤

c LJcR, (12)
where L and R are the trainable block diagonal matrices,
each with

√
n blocks of size

√
n×

√
n. The previous work

claimed that the Monarch matrix is sparse in that the number
of trainable parameters is much smaller than in a dense n×n
matrix. Despite this sparsity, by replacing the dense matrix
with a Monarch matrix, it was found that various architec-
tures can achieve almost comparable performance while
succeeding in shortening the training time. Furthermore,
the product of a few Monarch matrices can represent many
commonly used structured matrices such as convolutions
and Fourier transformations.

Surprisingly, the MLP Mixer and the Monarch matrix, two
completely different concepts, have hidden connections. By
comparing (10) and (12), we find that
Corollary 3.4. Consider a S-Mixer without an intermediate
activation function, that is, its feature matrix is given by
H = ϕ(WXV ). Then, vec(H) is equivalent to an MLP
whose weight matrix is given by a Monarch matrix with
weight-sharing diagonal matrices, that is, ϕ(Mx) with n =
SC, L = IS ⊗ V ⊤ and R = IC ⊗W .

We validate the similarities between the Monarch matrix and
the Mixer through experiments. Here, we consider a shallow

MLP (x 7→ BcB2ReLU(B1x)) where Bc is the classifica-
tion layer. We compare the performance of models where
weights Bi (i = 1, 2) are replaced with Monarch matrices
Mi, and models where they are replaced with Kronecker
products Vi⊗Wi. In Figure 2 (left), the two models showed
comparable performance. This suggests that although the
Mixer incorporates a weight-sharing structure compared to
Monarch, its performance is not compromised.

3.4. Comparing hidden features

Let us back to the situation in practice where the model
has intermediate non-linear activation. To investigate the
similarity of non-linear networks, here we consider an un-
structured sparse-weight MLP (SW-MLP in short), which is
a basic implementation in the literature of naive MLPs with
sparse weights (Golubeva et al., 2021). Its weights are given
by a random sparse mask, that is, M ⊙ A where A is the
original weight matrix and M is a static mask matrix whose
entries are drawn from the Bernoulli distribution with a prob-
ability p > 0 of being one at the initialization phase. In this
section, to compare the MLP-Mixer with SW-MLP sharing
conditions, we consider the average p = (S−1 + C−1)/2
of the sparsity of MLP-Mixer for the setting of SW-MLP.
Figure 1 overviews the models that we compare in the below.
The random permuted one is an alternative to SW-MLP and
shows the result in Section 5.

As a similarity measure, we use the centered kernel align-
ment (CKA) (Nguyen et al., 2021) between hidden features
of MLPs with sparse weights and those of MLP-Mixers. In
practice, we computed the mini-batch CKA (Nguyen et al.,
2021, Section 3.1(2)) among features of trained networks.
In Figure 2(a), we observed the averaged CKA achieved
the maximum as an appropriate sparsity of the MLPs. By
comparing Figure 2(b) and (c), we found that CKA matrix
with sparse MLP was clearly higher than dense MLP. In
particular, the sparse Mixer was similar to sparser MLP in
hidden features. Detailed settings of all experiments are
summarized in Appendix C.
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Figure 2. (a) Average of diagonal entries of CKA between trained MLP-Mixer (S = C = 64, 32) and MLP with different sparsity, where
p is the ratio of non-zero entries in M . (b) CKA between MLP-Mixer (S = C = 64) and MLP with the corresponding p = 1/64, and
(c) CKA between the Mixer and a dense MLP. (d) Test error on MNIST of shallow MLPs with Monarch matrix weights and Kronecker
weights. The result is the average of five trials with different random seeds.

4. Properties as a wide MLP
In this section, we continue the discussion on whether the
MLP-Mixer (or S-Mixer) exhibits tendencies similar to
those of sparse-weight MLPs. In particular, we search for
desirable sparsity and discuss whether there is a desirable
setting of hyper-parameters on the Mixers.

4.1. Maximizing sparseness

The following hypothesis has a fundamental role:

Hypothesis 4.1 (Golubeva et al. (2021)). Increasing the
width up to a certain point, while keeping the number of
weight parameters fixed, results in improved test accuracy.

Figure 3. Theoretical line of m
and p (Ω = 108, γ = 1).

Intuitively, Golubeva et al.
(2021) challenged the
question of whether the
performance improvement
of large-scale deep neural
networks was due to an
increase in the number of
parameters or an increase
in width. They empirically
succeeded in verifying
Hypothesis 4.1; that is, the
improvement was due to the increase in width in normal
MLPs and ResNets (note that the width of ResNet indicates
the channel size).

Let us denote by Ω the average number of connections per
layer. We have

Ω = pγm2, (13)

where p is the ratio of non-zero entries in the static mask.
Here, for the MLP-Mixer,

Ω = γ(CS2 + C2S)/2. (14)

The average number Ω of S-Mixer is reduced to γ = 1 in
(14), which maintains the readability of the equations.

By (14), we have S = (
√
C2 + 8Ω/(γC)− C)/2. For a

fixed Ω and γ, the effective width is controlled by m = SC.
Figure 3 shows m as a function of C. The width m has a
single-peak form and is maximized at (C∗, S∗) as follows:

C∗ = S∗ = (Ω/γ)1/3, max
S,C

m = (Ω/γ)2/3. (15)

The ratio of non-zero entries p = Ω/γm2 is minimized at
this point, that is, the sparsity is maximized.

4.2. Comparing accuracy with effective width

To validate the similarity, we compare the test error of both
networks with different sparsity. Under the fixed number
Ω of connectivity per layer, the sparsity is equivalent to
the wideness. Figure 4 (left) shows the test errors of MLP-
Mixers and corresponding sparse weight MLPs under fixed
Ω = 219 and γ = 2, for several widths γm. We observed
both networks’ test error improved as the width increased. In
this sense, MLP and MLP-Mixer have a similar tendency for
performance with increasing width. However, we observed
for too-wide cases around γm = 8000 in Figure 4 (left), the
test error of SW-MLP is higher than MLP-Mixer and there
is little change in response to increasing width. We discuss
this tendency in the next section.

4.3. Spectral analysis with increasing width

Golubeva et al. (2021) reported that if the sparsity be-
came too high, the generalization performance of SW-MLP
slightly decreased. They discussed that this decrease was
caused by the deterioration of trainability, that is, it became
difficult for the gradient descent to decrease the loss func-
tion. Some previous work reported that the large singular
values of weight matrices at random initialization cause the
deterioration of trainability in deep networks (Bjorck et al.,
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Figure 4. (left) Test error of MLPs with sparse weights and MLP-
Mixers with different widths γm under the fixed Ω. We set Ω =
219, S = C = (Ω/γ)1/3, and γ = 2. The x-axis represents the
effective width γm. (right) The blue line indicates the averaged
singular values of the weight M ⊙A of SW-MLP over five trials
with different random seeds. The red line indicates cγ , which is
the square root of the right edge of the MP-Law.

2018). Therefore, we discuss the difference of singular
values of weights between MLP-Mixer and SW-MLP.

In the case of Mixers, each γC×C weight V (resp. γS×S
weight W ) is initialized by i.i.d. random variables dis-
tributed with N (0, 1/C) (resp.N (0, 1/S)). Then, by the
theory of Marchenko-Pastur law (Bai & Silverstein, 2010),
the weight’s maximal singular value is approximated by
cγ := 1 +

√
γ. Since the Kronecker product with identity

matrix does not change the maximal singular value, each
maximal singular value of V ⊤ ⊗ IS or IC ⊗W is approxi-
mated by cγ .

Consider the case of SW-MLP. We initialize the entries of
each mask matrix M by i.i.d. Bernoulli random variables
with the probability of being 1/

√
p is p and being 0 is 1− p.

We initialize each weight A by i.i.d.N (0, 1/m). Consider
the maximal singular value λmax of M ⊙A. Set q =

√
pm.

Then by (Hwang et al., 2019, Theorem 2.9), λmax is approx-
imated by

√
L+ in the following sense:

|λ2
max − L+| ≺ 1/q4 + 1/m2/3, (16)

where ≺ represents stochastic domination (Hwang et al.,
2019, Definition 2.3), and

L+ = c2γ + 3c2γ
√
γ(1− p)/q2 +O(1/q4). (17)

Under the fixed Ω, by (13), the dominant term of L+ in (17)
is linear in m as follows:

(1− p)/q2 = γm/Ω− 1/m = O(m) as m → ∞. (18)

Therefore, the maximal singular value λmax of M ⊙ A
increases as the width increases. In Appendix D.1, we
discuss the spectrum in large Ω limit and show the same
tendency on the λmax as large m limit.

In Figure 4 (right), we observed the maximal singular value
of M ⊙A increased by widening m with fixed Ω and γ. In
particular, the value was always higher than the theoretical
value of Mixer’s singular values. Such large singular values
deteriorate the performance of SW-MLP. Conversely, we
can enlarge the width and the sparsity of the MLP-Mixer
without an undesirable increase in the maximal singular
value.

5. Beyond the naive MLP on the width
As seen in Section 4.2, MLP-Mixers have similar tendencies
to SW-MLPs. In much wider models, to continue comparing
MLP-Mixer and unstructured sparse-weight MLP, we need
an alternative to static-masked MLP because of its huge
computational costs, memory requirements (Appendix D.9),
and ill behavior on the spectrum (Section 4.3). Thus we
further discuss partially destroying MLP-Mixer’s structure
and propose an alternative model of SW-MLP, which is
called random permuted mixer (RP-Mixer).

5.1. PK family

To introduce an alternative to sparse-weight MLPs, we pro-
pose a permuted Kronecker (PK) family as a generalization
of the MLP-Mixer.

Permutation matrix: An m×m permutation matrix J
is a matrix given by (Jx)i = xσ(i)(i = 1, 2, . . . ,m) for an
index permutation σ. In particular, the commutation matrix
Jc is a permutation matrix (Magnus & Neudecker, 2019).
For any permutation matrix J , x ∈ Rm, Jϕ(x) = ϕ(Jx).
Definition 5.1 (PK layer and PK family). Let J1, J2 be
m×m permutation matrices. For X ∈ Rn1×n2 , we define
the PK layer as follows:

PK-LayerW (X; J1, J2) := ϕ[J2(In1 ⊗W )J1vec(X)],

where we set m = n1n2, W ∈ Rn2×n2 . We refer to the set
of architectures whose hidden layers are composed of PK
layers as the PK family.

Since Jc is a permutation matrix, the normal S-Mixer and
MLP-Mixer belong to the PK family (See Section B.3 for
the details). The important point of the PK-Layer is that
its width m is possibly large, but there is no need to ex-
plicitly preserve the m×m weight matrix in memory. We
can compute the forward signal propagation by a relatively
small matrix multiplication in the same manner as the MLP-
Mixer: First, J1vec(X) =: y is a rearrangement of X en-
tries. Next, we compute pre-activation by using the matrix
product (In1

⊗W )y = Wmat(y). Finally, we apply entry-
wise activation and rearrangement by J2. Thus, the PK layer
is memory-friendly, whereas the naive dense MLP requires
preserving an m×m weight matrix and is computationally
demanding.
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Figure 5. Test error improved as the effective width increased. This figure presents S-Mixer, RP S-Mixer, and SW-MLP models on
CIFAR-10 (left), CIFAR-100 (center), and STL-10 (right). Experiments were conducted using three different random seeds, and the mean
test error is depicted. The observed standard deviations were less than 0.026 for CIFAR-10, 0.056 for CIFAR-100, and 0.008 for STL-10.

Table 1. Test error on CIFAR-10/CIFAR-100/ImageNet-1k from scratch. (Upper Table) By setting S and C closer under the same
number of total connections throughout layers, the maximal width of layers became larger in ours (Mixer-SS-W). Its test error eventually
improved more than β-LASSO. (Lower Table) By setting S and C closer under the same Ω, the test error in ours (Mixer-B-W) improved
than the original MLP-Mixer (Mixer-B/16). Each experiment is done with three random seeds.

MLP CIFAR-10 CIFAR-100 max. width #connections

β-LASSO (Neyshabur, 2020) 14.81 40.44 - 256M
Mixer-SS/8 15.91 (±1.55) 44.24(±1.83) 6.3× 104 256M

Mixer-SS-W 12.07 (±0.47) 38.13(±1.36) 1.2× 105 255M

MLP ImageNet-1k max. width Ω S C

Mixer-B/16 (Tolstikhin et al., 2021) 23.56 6.0× 105 2.6× 108 196 786
Mixer-B-W 23.26 (± 0.19 ) 6.2× 105 2.6× 108 256 588

5.2. Random Permuted Mixers

In normal Mixers, J1 and J2 are restricted to the identity or
commutation. This means that the sparse weight matrices
of the effective MLP are highly structured because their
block matrices are diagonal. To destroy the structure, we
introduce RP-Mixers. A RP S-Mixer has (J1,J2) in each PK
layer, which is given by random permutation matrices as
U = PK-LayerW (X; J1, J2) and PK-LayerV ⊤(U ; J ′

1, J
′
2).

Similarly, for a RP MLP-Mixer, we set the PK layer corre-
sponding to token mixing and channel mixing to the random
permutation matrices. From the definition of the PK layer
(5.1), this is equivalent to the effective MLP with width SC
(and γSC for the MLP-Mixer) and sparse weight

Weff = J2(In1
⊗W )J1. (19)

Because (J1, J2) are random permutations, the non-zero
entries of Weff are scattered throughout the matrix. In this
sense, RP Mixers seemingly become much closer to ran-
dom sparse weights than the normal Mixers. Figure 1(d)
illustrates this scattered random weight configuration, while
Figure S.9 presents an actual numerical example. Since the
permutation matrices are orthogonal matrices, Weff ’s sin-
gular values remain identical to those of the normal Mixer,
thereby preserving the spectrum discussed in Section 4.3.

5.3. Increasing width

Figure 5 shows that the test error improves as the effective
width of the Mixers increases. We trained the normal and
RP S-Mixers for various values of S and C with fixed Ω.
The normal and RP S-Mixers show similar tendencies of in-
creasing test error with respect to the effective width m. The
normal and RP MLP-Mixers also show similar tendencies
as is shown in Appendix D.2. Because the static-mask SW-
MLP requires an m×m weight matrix, the figure cannot
show an SW-MLP with a large Ω. In contrast, we can use a
large effective width for the Mixers, and the error continues
to increase as the width increases. This can be interpreted
as the Mixers realizing a width setting where naive MLP
cannot reach sufficiently. Eventually, the figure suggests
that such an extremely large width is one factor contributing
to the Mixer’s success.

Table 1 shows a comparison of MLP-Mixer with a dy-
namic sparsity β-LASSO (Neyshabur, 2020). We found
a wider Mixer (Mixer-SS-W) has better performance than
β-LASSO. Table 1 shows a comparison of Mixer-B/16 (Tol-
stikhin et al., 2021) and a wider Mixer (Mixer-B-W). By
setting S and C closer under fixed Ω, the maximal width
of layers became larger in ours (Mixer-B-W). Its test er-
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ror eventually improved more than the original MLP-Mixer
(Mixer-B/16). In both results, the wideness improved the
performance even if Ω is fixed.

5.4. Performance at the optimal width and sparsity

Figure 6 confirms that the maximum width (15) derived
from Hypothesis 4.1 adequately explains the empirical per-
formance of the Mixers. Models were trained using su-
pervised classifications for each dataset. For CIFAR-10,
CIFAR-100 and STL-10, we trained normal and RP S-
Mixers. We fixed the dimension of the per-patch FC layer
and changed S and C while maintaining a fixed number
of Ω. It can be observed that the test error was minimized
around C = S, as expected from Hypothesis 4.1 and (15).
This tendency was common to the normal and RP Mixers.
For ImageNet-1k, we trained normal and RP MLP-Mixers.
Similarly, its performance is maximized around C = S.
We observed a similar tendency also in different settings of
hyperparameters in Appendix D.3 and Appendix D.5.

Remark on depth: As is shown in Figure 7, we observed
that RP Mixers tended to underperform at limited depths
but could achieve comparable or better results than normal
Mixers with increased depths. This seems rational due to
deep RP-Mixer’s resistance to overfitting or shallow RP-

Mixer’s small receptive fields (see Appendix D.4 for the
details). We also confirmed that this dependence on depth
did not change the fundamental similarity regarding the
width and sparsity.

6. Conclusion and future directions
This work provides novel insight into how the MLP-Mixer
effectively behaves as a wide MLP with sparse weights.
The analysis in the linear activation case elucidates the im-
plicit sparse regularization through the Kronecker-product
expression and reveals a connection to Monarch matrices.
The SW-MLP, normal and RP Mixers exhibit a quantitative
similarity in performance trends, verifying that the sparsity
is the key mechanics underlying the MLP-Mixer. Maxi-
mizing the effective width and sparsity leads to improved
performance. We expect that the current work will serve as
a foundation for exploring further sophisticated designs of
MLP-based architectures and the efficient implementation
of neural networks with desirable implicit biases.

Exploring the potential of MLPs with structured weights
further will be interesting. Theoretically evaluating the opti-
mal width and sparsity could be an exciting research topic
(Edelman et al., 2023). As we noted, the solvability of
global minima and dynamics in mixing layers, even with
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linear activation, remains uncertain, and the theory has yet
to fully address or circumvent this issue. It would be also
interesting to clarify whether other potential candidates for
memory-friendly architectures with desirable inductive bi-
ases. In particular, weight sharing is known to perform well
for image domains, occasionally outperforming networks
without weight sharing (Ott et al., 2020). Given that the
Mixers can be seen as approximations of MLPs with weight-
shared Monarch matrices, it will be an interesting theme to
evaluate the validity of such approximations.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Details of Architectures
Here, we overview more technical details of all models: MLP-Mixer, Simple Mixer (S-Mixer), and MLP with sparse weights
(SW-MLP). In Section A.1, we introduce the transformation from the input image to the first hidden layer. In Section A.2,
we overview some detailed formulation of the models including skip connection and layer normalization.

Table S.1 . Summary table of models. The notation hidden in the block means whether the model has a hidden layer in each MLP block.
The symbol (*) indicates the setting depends on the kind of experiment. Here, GAP is the global average pooling.

Model Per-patch FC Skip-conn. Layer-norm Hidden in the block GAP
SW-MLP ✓ ✓ ✓ (*) ✓

(RP) MLP-Mixer ✓ ✓ ✓ ✓ ✓
(RP) S-Mixer ✓ ✓ ✓ ✓

Shallow Kronecker
Shallow Monarch

A.1. Per-patch FC Layer

The first layer of the MLP-Mixer is given by the so-called per-patch FC layer, which is a single-layer channel mixing. In all
experiments, for a patch size P , the input image is decomposed into HW/P 2 non-overlapping image patches with size P×P ;
we rearrange the H ×W input images with 3 channels into a matrix whose size is given by (HW/P 2)× 3P 2 = S0 × C0.
For the rearranged image X ∈ RS0×C0 , the per-patch fully connected (FC) layer is given by

Y = XW⊤, (S.1)

where W is a C × C0 weight matrix. We use the per-patch FC layer not only for Mixers but also for SW-MLP.

Remark on per-patch FC layer: The original study set the size of the mixing layers to S = S0. In contrast, to investigate
the contribution of each input image size and hidden layer size independently, it is rational to change (S,C) independent of
(S0, C0). Therefore, we make the per-patch FC transform the input size C0 to the output size C and the first token mixing
layer transform S0 to S.

A.2. MLP-Mixer and S-Mixer

Let us denote a block of the MLP-Mixer by

fW1,W2
(X) = ϕ(XW⊤

1 )W⊤
2 , (S.2)

and that of the S-Mixer by

fW1
(X) = ϕ(XW⊤

1 ). (S.3)

We set ϕ = GELU.

A.2.1. MLP-MIXER

We set the layer normalization (LN) by

LN(X) =
X −m(X)√
v(X) + ϵ

⊙ γ + β, X ∈ RS×C , (S.4)

where ⊙ denotes the Hadamard product , m(X) (resp. v(X)) is the empirical mean (resp. the empirical variance) of X with
respect to the channel axis, and γ, β are trainable parameters. We set ϵ = 10−5 in all experiments.

In the implementation of fully connected layers, we use only the right matrix multiplications in the same way as the original
MLP-Mixer (Tolstikhin et al., 2021). A token-mixing block X 7→ U of MLP-Mixer is given by

U = X + fW1,W2
(LN(X)⊤)⊤, (S.5)
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where W1 is S × γS and W2 is γS × S. Similarly, we set a channel-mixing block U 7→ Y as

Y = U + fW3,W4(LN(U)), (S.6)

where W3,W4 are weight matrices.

We refer to the composed function X 7→ Y of the token-mixing block and the channel-mixing one as a base block of the
MLP-Mixer. The MLP-Mixer with L-blocks is composed in the order of the per-patch FC layer, the L base blocks, and the
global average pooling with the layer normalization, and the last fully connected classification layer.

A.2.2. S-MIXER

The S-Mixer without random permutations is implemented by replacing the MLP-block fW1,W2
and fW3,W4

in the MLP-
Mixer with FC blocks. That is, token-mixing and channel-mixing blocks are given by

U = X + fW (LN(X)⊤)⊤, (S.7)
Y = U + fV (LN(U)), (S.8)

where W and V are weight matrices. The transpose of the input matrix in the token-mixing block is implemented by
rearrangement of entries. We decided to apply both skip-connection and layer normalization even in the S-Mixer. This is a
rather technical requirement for ensuring the decrease of training loss in deep architectures.

A.2.3. MIXERS WITH PERMUTED KRONECKER LAYERS

Here we implement generalized MLP-Mixer and S-Mixer with permutation matrices and PK-layers. Recall that for any
matrix X ,

X⊤ = Mat(Jcvec(X)), (S.9)

where Jc is the m×m commutation matrix. Therefore, the token-mixing block of the S-Mixer is

U = X +Mat ◦ J⊤
c ◦ vec ◦ fW ◦Mat ◦ Jc ◦ vec ◦ LN(X) (S.10)

= X +Mat ◦ PK-LayerW (LN(X); Jc, J
⊤
c ). (S.11)

Similarly, the channel-mixing block of the S-Mixer is equal to

Y = U +Mat ◦ PK-LayerV (LN(U); I, I), (S.12)

where I is the identity matrix. Note that skip-connections gather Jc and J⊤
c in the same mixing block for compatibility in

shapes of hidden units.

To get examples of PK family and to generalize Mixers, we implement the random permuted (RP) S-Mixer with skip-
connections by replacing Jc and J⊤

c with i.i.d. random permutation matrices J1 and J2:

U = X +Mat ◦ PK-LayerW (LN(X); J1, J2). (S.13)

We implement the random permutations by random shuffling of output m = SC indexes of vectors. We freeze it during the
training step. Note that we avoid using an m×m matrix representation of Jx for memory efficiency. We implement the
random permuted (RP) MLP-Mixer by the same way as the RP-S-Mixer.

A.2.4. THE SKIP-CONNECTION IN THE FIRST BLOCK

The first token-mixing block has the input shape (S0, C) and the output shape (S,C). However, we need to change S with
fixing S0 in some experiments. To control the difference of S0 and S, we set the first token-mixing block as follows:

U = SkipLayer(X) + PK-LayerW (LN(X); J1, J2), (S.14)

where the skip layer is given by

SkipLayer(X) = LN(W̃X), (S.15)

where W̃ is a S × S0 weight matrix. For a fair comparison, we use the skip layer even if S = S0 in the experiments that we
sweep S. We use the same setting for the MLP-Mixer as for the S-Mixer.
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A.2.5. SPARSE-WEIGHT (SW) MLP

Let 0 < p ≤ 1 and m ∈ N. We implement each matrix of a static sparse weight FC block with the freezing rate p as follows:

x 7→ x+ ϕ((M ⊙W ) LN(x)), x ∈ Rm, (S.16)

where M is the mask matrix whose m2p entries are randomly chosen and set to be one with a probability p and the others
are set to be zero with a probability 1− p. The mask matrix M is initialized before training and it is frozen during training.

We also consider the SW-MLP consists of sparse weight MLP-blocks as follows:

x 7→ x+ ϕ ((M2 ⊙W2)ϕ((M1 ⊙W2) LN(x))) , x ∈ Rm. (S.17)

W1 and W2 are weight matrices with hidden features γm, where γ is an expansion factor. M1,M2 are mask matrices whose
γm2p entries are randomly chosen and set to be one with a probability p and the others are set to be zero with a probability
1− p.

SW-MLP with L-blocks is composed in the order of the per-patch FC layer, vectorization, L static sparse weight FC blocks
(or MLP blocks), and the last classification FC layer.

B. Analysis
B.1. Derivation of Proposition 4.1

For H = ϕ(ϕ(WX)V ), by using vec(WXV ) = (V ⊤ ⊗W )vec(X), we have

vec(H) = ϕ((V ⊤ ⊗ IS)vec(ϕ(WX)) (S.18)

= ϕ((V ⊤ ⊗ IS)ϕ((IC ⊗W )x)). (S.19)

Because J⊤
c (A⊗B)Jc = (B ⊗A) (Magnus & Neudecker, 2019) and any permutation matrix J is commutative with the

entry-wise activation function: Jϕ(x) = ϕ(Jx), we obtain

vec(H) = ϕ(J⊤
c (IS ⊗ V ⊤)ϕ(Jc(IC ⊗W )x)). (S.20)

The skip-less MLP-Mixer (4) is expressed as follows: Y = Channel-MLP(Token-MLP(X))), and then

u = ϕ(Jc(IC ⊗W2)ϕ((IC ⊗W1)x)),

y = ϕ(J⊤
c (IS ⊗W⊤

4 )ϕ((IS ⊗W⊤
3 )u)).

where u = vec(U) and y = vec(Y ).

It may be informative that a similar transformation between the matrix and vector is used in a completely different
context of deep learning, that is, the Kronecker-factored Approximate Curvature (K-FAC) computation for natural gradient
descent (Martens & Grosse, 2015). K-FAC assumes layer-wise preconditioner given by the Kronecker product, that is,
(B ⊗A)−1vec(∇WLoss(W )) where A and B correspond to the Gram matrices of the forward and backward signals. This
K-FAC gradient can be computed efficiently because it is reduced to a matrix computation of A−1∇WLoss(W )(B⊤)−1.
Therefore, the trick of formulating a large matrix-vector product for the product among relatively small matrices is common
between K-FAC and the aforementioned effective expression. It is noteworthy that an approximation using the Kronecker
product, which may seem rough at first glance, can sometimes be sufficiently effective. For instance, K-FAC has the ability
to provide exact gradient values in over-parameterized linear models (Karakida & Osawa, 2020).

B.2. Product of Random Permutations

The uniformly distributed random m × m permutation matrix is given by J = Jg where g is the uniformly distributed
random variable on the permutation group Sm of m elements. Then the uniform distribution over Sm is the Haar probability
measure, which is translation invariant (see (Folland, 2013) for the detail), that is, J = JσJg is also uniformly distributed
if σ is Sm-valued uniformly distributed random variables and g ∈ Sm is constant. Therefore, J = JσJρ is a uniformly
distributed random permutation matrix for independent and uniformly distributed random variables σ and ρ on Sm.
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B.3. Representation as a PK-family

By (10), one can see that the block of the S-Mixer is

U = PK-LayerW (X; I, Jc), PK-LayerV ⊤(U ; I, J⊤
c ) (S.21)

For MLP-Mixer, the Token-MLP is

U = PK-LayerW2
(PK-LayerW1

(X; I, J1); J
⊤
1 , Jc) (S.22)

and Channel-MLP is

PK-LayerW⊤
4
(PK-LayerW⊤

3
(U ; I, J2); J

⊤
2 , J⊤

c ) (S.23)

for the arbitrary permutation matrices J1 and J2.

B.4. Proof of implicit regularization

Here we prove Proposition 3.3 and show a connection between that and (Hoff, 2017). Since each weight V,W are C2, S2

dimensional vectors, we only need to show the following Lemma B.1.

Lemma B.1. Let m,n ∈ N. We write ||x||p for the Lp norm of any real vector x. Let f : Rmn → R. Set h : Rmn → R,
g : Rm × Rn → R as follows:

ϕ(β) = f(β) + λ||β||2, (S.24)

h(β) = f(β) +
λ√
mn

||β||1, (S.25)

g(u, v) = f(u⊗ v) + λ(||u||22 + ||v||22)/2. (S.26)

Set

Θp := {u⊗ v | u ∈ Rm, v ∈ Rn}. (S.27)

Then it holds that

inf
u∈Rm,v∈Rn

g(u, v) = inf
β∈Θp

ϕ(β) ≥ inf
β∈Rmn

h(β). (S.28)

Proof. Since ||u⊗ v||2 = ||u||2||v||2, we have

inf
u∈Rm,v∈Rn

g(u, v) = inf
β∈Θp

[
f(β) + λ/2 inf

v∈Rn
(||β||22/||v||22 + ||v||22)

]
. (S.29)

The inner inf achieves the maximum when ||v||22 = ||β||2, and the maximum is ||β||2. (Note that it is not squared L2-norm.)
Therefore,

inf
u∈Rm,v∈Rn

g(u, v) = inf
β∈Θp

(f(β) + λ||β||2). (S.30)

Lastly, by the Hölder’s inequality, it hold that ||β||1 ≤ ||β||2
√
mn, which complete the proof.

To describe the connection of the implicit L1 regularization in the case of Hadamard product (Hoff, 2017), consider matrix
11⊤, where 1 is the vector with all entries are one. For simplicity, consider the case S = C. It is easy to recover the general
case by changing the proportional coefficients. Then we have

Tr(W⊤W ⊗ 11⊤) + Tr(11⊤ ⊗ V ⊤V ) = C2||W ||2F + S2||V ||2F = C2(||W ||2F + ||V ||2F ) (S.31)

Put
g(W,V ) := L(W ⊗ V ) + λ/2(∥W∥2F + ∥V ∥2F ). (S.32)

15



Understanding MLP-Mixer as a Wide and Sparse MLP

We have

g(W,V ) = L(W ⊗ V ) +
λ

2C2
(Tr(W⊤W ⊗ 11⊤) + Tr(11⊤ ⊗ V ⊤V )) (S.33)

Here consider the vectorization: u(W ) := vec(W ⊗ 11⊤), v(V ) := vec(11⊤ ⊗ V ). Then

u(W )⊙ v(V ) = vec(W ⊗ V ). (S.34)

Thus we have

inf
W,V

g(u, v) = inf
W,V

L(u ◦ v) + λ

2C2
(∥u∥22 + ∥v∥22), (S.35)

Because of the domain of u and v, we have

inf
W,V

g(u, v) ≥ inf
u,v∈RS2C2

L(u ◦ v) + λ

2C2
(∥u∥22 + ∥v∥22). (S.36)

By Hoff (2017), the right-hand side is equal to

inf
β∈RS2C2

L(β) + λ

2C2
∥β∥1. (S.37)

Thus the inequality for the Kronecker product has a relationship with (Hoff, 2017) from the vectorization and Kronecker
product with 11⊤.

Let us focus on the normalization factor 1/mn and 1/C2. In general, there is a trivial relationship between L1 and L2
regularization as follows: For θ ∈ RM ,

inf
θ
L(θ) +

√
Mλ∥θ∥2 ≥ inf

θ
L(θ) + λ∥θ∥1, (S.38)

this directly follows from the Hölder’s inequality. However, in our situation, the parameter space of W ⊗ V is a subspace
of RS2C2

, so it is not clear whether the same constant regularization for both L1 and L2 regularization is suitable. At the
initialization, we set entries of W,V independently distributed with N (0, 1/C), thus by the law of large numbers,

∥W∥2F , ∥V ∥2F = O(C). (S.39)

In the case of dense MLP, we initialize β as N (0, 1/SC), thus

∥β∥1 = O(S2C2/
√
SC) = O(C3). (S.40)

Thus

∥β∥1
∥W∥2F

,
∥β∥1
∥V ∥2F

= O(C2). (S.41)

Therefore, the normalizing factor 1/C2 in (S.37) matches the scale transformation according to the dimension of parameter
spaces. Without the normalizing factor, the L1 regularization term will be C2 times larger than the loss L.

C. Experimental Setting
C.1. Figure 2

We set the number of blocks of the MLP-Mixer, denoted by L, to 3. Both the Token-mixing block and the Channel-Mixing
block are present L times each, resulting in a total of 6 blocks when counted separately. We also set γ = 2.

For the comparison, the sparse-weight MLP replaces the components within the MLP-Mixer, namely (IC ⊗W1), (IC ⊗W2)
and (W⊤

3 ⊗ IS), (W
⊤
4 ⊗ IS), with the form M ⊙A. In this context, there’s no distinction between the token-mixing and

the channel-mixing blocks, leading to a total of 6 blocks.

16



Understanding MLP-Mixer as a Wide and Sparse MLP

In Figure 2 (a), we compare the MLP-Mixer with S = C = 64, 32 and the SW-MLP. The sparsity of the SW-MLP is taken
as 2−n where n ranges from 0 to 10. We set the patch size as 4. Each network is trained on CIFAR10 with a batch size of
128, for 600 epochs, a learning rate of 0.01, using auto-augmentation, AdamW optimizer, momentum set to 0.9, and cosine
annealing. We utilize three different random seeds for each training.

Figure 2(b) shows the CKA (for a specific seed) of the MLP-Mixer with S = C = 64 and the MLP with a sparsity of 1/64,
based on the results from Figure 2(a). However, the features targeted for CKA are taken from the layer just before the
skip-connection in each block, and they are displayed on the axis in the order of proximity to the input, labeled as 1 through
6. Figure 2(c) similarly compares the dense MLP (i.e. sparsity= 1).

Figure 2(d) shows the test error of the shallow MLP with monarch matrix weight and Kronecker weight matrix. The training
uses MNIST, with optimizer adamw with 200 epochs, and the cosine annealing of leaning rate with an initial value of 0.01.
Table S.1 summarizes the difference of the shallow models between other treated models.

C.2. Figure 4

In Figure 4 (left), we compare the MLP-Mixer and the MLP under the same training settings as in Figure 2(a). Now, here
Ω = 219 and γ = 2, with C values being 4,8,12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 64. The S values are determined
corresponding to C while keeping Ω fixed, resulting in values: 360, 252, 203, 173, 152, 136, 124, 113, 104, 96, 89, 83, 64.
We utilized four different random seeds for each training.

In Figure 4 (right), we used the same values on Ω, γ and C, S as the Figure 4 (left). We run 10 trials with different random
seeds to plot the singular values of the sparse weight matrix.

C.3. Table 1

CIFAR10, CIFAR100 We used single Tesla V100 GPU to compute the runtime. The training is by AdamW with the
mini-batch size 128. We used a 32-bit float. The runtime is averaged over 600 epochs. The averaged runtime is on four
different random seeds.

For our experiments, we utilized Tesla V100 GPUs, accumulating approximately 300 GPU hours. The networks were
trained on datasets, either CIFAR-10 or CIFAR-100. We set L = 2 and γ = 4 for the Mixer-SS/8 and Mixer-SS-W. For the
Mixer-SS/8 configuration, the parameters were set as p = 8, S = 16, and C = 986. In our wider setting (Mixer-SS-W),
the parameters were defined as p = 4, S = 64, and C = 487. The training was conducted over 4000 epochs with the
cosine-annealing. We employed the AdamW optimizer and incorporated auto-augmentation techniques. The chosen
mini-batch size was 1024, and experiments were run with three distinct random seeds. To optimize results, we conducted a
hyper-parameter search for the best initial learning rate from the set {0.04, 0.05, 0.06}. The rate that provided the highest
accuracy, when averaged over the random seeds, was subsequently chosen for experiments. Specifically, the learning rate
0.06 was selected for Mixer-SS/8 on CIFAR-100, while 0.04 was the preferred rate for all other scenarios.

ImageNet-1k For the Mixer-B-W, we set L = 8, p = 14, C = 588, S = 256, and γ = 4.57. The other settings are the
same as the other experiments on ImgeNet-1k (Appendix C.5).

C.4. Figure 5

We utilized Tesla V100 GPUs and approximately 400 GPU hours for this experiment. We trained three types of MLPs;
S-Mixer, RP S-Mixer, and SW-MLP architectures. All MLPs incorporated a per-patch FC layer as the first block, with
a patch size of P = 4. The input token size was fixed at S0 = (32/P )2 = 64. We trained the models on the CIFAR-10,
CIFAR-100, and STL-10 datasets, along with data augmentations such as random cropping and random horizontal flipping.
The input images were resized to a size of 32 × 32 × 3. We employed Nesterov SGD with a mini-batch size 128 and
a momentum of 0.9 for training, running for 200 epochs. The initial learning rate was set to 0.02, and we used cosine
annealing for learning rate scheduling. To ensure robustness, we conducted three trials for each configuration and reported
the mean and standard deviation of the results. Unless otherwise specified, these settings were used throughout the whole
study on CIFAR-10, CIFAR-100, and STL-10.
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(i) S-Mixer and RP S-Mixer We conducted training experiments on the S-Mixer architecture with eight blocks. In order
to explore various cases of integer pairs (S,C) that approximately satisfy the equation

Ω =
CS2 + SC2

2
. (S.42)

The number of connections, denoted as Ω, was fixed at Ω = 218, 221 and 227. For each value of Ω, the pairs (C, S) were
chosen in a symmetric manner. It should be noted that if (C, S) = (a, b) is a solution, then (C, S) = (b, a) is also a solution.
The selected pairs for each value of Ω are as follows:

• Ω = 218: (C, S) = (16, 173), (32, 113), (48, 83), (83, 48), (113, 32), (173, 16).

• Ω = 221: (C, S) = (16, 504), (32, 346), (64, 226), (226, 64), (346, 32), (504, 16).

• Ω = 227: (C, S) = (128, 1386), (256, 904), (904, 256), (1386, 128).

(ii) SW-MLP. For a fair comparison between the Mixers and SW-MLPs, we set the first layer of both models to the same
per-patch FC structure. We trained SW-MLPs with eight blocks, where the hidden layers of these MLPs share a common
Ω = 218 connectivity pattern. Following the per-patch fully connected layer, the feature matrix is vectorized and processed
as a standard MLP with masked sparse connectivity.

For each freezing rate 1− p, we determined the width m of the hidden units using the equation:

Ω = m2p, m =

√
Ω

p
. (S.43)

We set 1− p = 0.1, 0.3, 0.5, 0.7, 0.9, which correspond to m = 540, 612, 724, 935, 1619, respectively.

C.5. Figure 6

We set the number of blocks L and the other hyper-parameters as in Table S.2 .

Table S.2 . Hyper-parameters of models for normal/RP Mixers in Figure 6.

dataset L Ω γ optimizer init. lr mini-batch epoch hard aug.

CIFAR10 12 221 None AdamW 0.02 1024 2000 ✓
CIFAR100 12 221 None SGD 0.1 128 600

STL10 12 218 None SGD 0.1 128 2000
ImageNet-1k 8 290217984 4 AdamW 0.001 4096 300 ✓

CIFAR-10, 100, STL-10. We utilized Tesla V100 GPUs and approximately 200 GPU hours for our experiments. We used
a single GPU per each run. We set Ω = 218 and used the same pairs (S,C) satisfying equation S.42 as Sec. C.4.

We set the initial learning rate to 0.1. On CIFAR-10, we trained models 200 epochs, 600-epochs on CIFAR-100, and we did
five trials with random seeds. We trained models 2000-epochs on STL-10 with three random seeds.

ImageNet-1k. We utilized Tesla V100 GPUs and approximately 4000 GPU hours for our experiments. for training
MLP-Mixer and RP MLP-Mixer on ImageNet-1k; we used a GPU cluster of 32 nodes of 4 GPUs per node for each run.

We set the expansion factor γ = 4 for both token-mixing MLP and channel-mixing MLP. We set Ω = 290217984 =
(7682 · 196 + 768 · 1962)γ/2 on a baseline P = 16, (S,C) = (196, 768). We sweep P = 7, 8, 14, 16, 28, 32 and set
C = 3P 2 and set S so that it approximately satisfies the equation

Ω =
γ(CS2 + SC2)

2
. (S.44)
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For each setting, we did three trials with random seeds.

Training on the ImageNet-1k is based on the timm library (Wightman, 2019). We used AdamW with an initial learning rate
of 10−3 and 300 epochs. We set the mini-batch size to 4096 and used data-parallel training with a batch size of 32 in each
GPU. We use the warm-up of with the warm-up learning rate 10−6 and the warm-up epoch 5. We used the cosine annealing
of the learning rate with a minimum learning rate 10−5. We used the weight-decay 0.05. We applied the random erasing in
images with a ratio of 0.25. We also applied the random auto-augmentation with a policy rand-m9-mstd0.5-inc1. We used
the mix-up with α = 0.8 and the cut-mix with α = 1.0 by switching them in probability 0.5. We used the label smoothing
with ε = 0.1.

C.6. Figure 7

For our experiments in Figure 7, we utilized Tesla V100 GPUs, with approximately 70 GPU hours utilized. We trained both
S-Mixer and RP S-Mixer models on CIFAR-10, CIFAR-100, and STL-10 datasets. We considered different numbers of
blocks, specifically L = 4, 8, 12, 16, 20. The values of S and C were fixed at 128. Each configuration was evaluated using
three trials with different random seeds.

D. Supplementary Experiments
D.1. Trainability of highly sparse weights
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Figure S.1 . On the trainability of SW-MLP. (Left) Trainability decreases as the sparsity 1− p becomes too high. We set γ according
to (Golubeva et al., 2021) under fixed Ω = 216. We performed five trials for each p with random seeds. (Center) The singular value
distribution of the sparse weight at random initialization. We set a = 1.5, Ω = 103 and performed 50 trials. (Right) The largest eigenvalue
monotonically increases as the sparsity increases.

Golubeva et al. (2021) found that as the sparsity (width) increased to some extent, the generalization performance improved.
They also reported that if the sparsity became too high, the generalization performance slightly decreased. They discussed
that this decrease was caused by the deterioration of trainability, that is, it became difficult for the gradient descent to
decrease the loss function. In fact, we confirmed their decrease of the performance in SW-MLP as is shown in Figure S.1
(left). In contrast, we hardly observed such a decrease in performance for the Mixers. This seems rational because we can
take an arbitrary small sparsity 1− p for the SW-MLP while it is lower-bounded for the Mixers as is described in Section 4.

As a side note, we give here quantitative insight into the trainability from the perspective of the singular value of the weight
matrix. Some previous work reported that the large singular values of weight matrices at random initialization cause the
deterioration of trainability in deep neural networks (Bjorck et al., 2018). Following this line of study, let us consider a
random weight of SW-MLP. Set the width by m = Ω(1+a)/2 and the sparsity by p = 1/Ωa with a constant a > 0 and take a
large Ω limit. We use this scaling because our interest is in the case where the expected number of weights, i.e., m2p = Ω,
is independent of the scaling of p. We generate Z = M ⊙W where Wij ∼ N (0, 1) and M is a static mask matrix whose
entries are given by the Bernoulli distribution with probability p. The singular value of the weight matrix Z is equivalent to
the square root of the eigenvalue of Q = ZZ⊤. Because we are uninterested in a trivial scale factor, we scaled the matrix Q
as Q/c where c denotes the average over the diagonal entries of Q. This makes the trace of Q, that is, the summation (or
average) of eigenvalues, a constant independent of a. We computed the eigenvalues of Q and obtained the singular values of
Z denoted by λ.
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As is shown in Figure S.1 (center), the spectrum of the singular values peaked around zero but widely spread up to its edge.
Figure S.1 (right) demonstrates that the largest singular value becomes monotonically large for the increase of a. Because
the larger singular value implies the lower trainability (Bjorck et al., 2018), this is consistent with the empirical observation
of (Golubeva et al., 2021) and our Figure S.1 (left).

In contrast, the Mixers are unlikely to suffer from the large singular values as follows. Suppose S-Mixer with S = C ≫ 1
for simplicity. Then, each layer of the effective MLP has p = 1/C which corresponds to the scaling index a = 1/3 in
SW-MLP. Actually, its singular value becomes further better than a = 1/3, because the weight matrices of the normal and
RP Mixers are structured: Consider the singular values of Z = J2(IC ⊗W )J1 with a C × C random Gaussian matrix
W and permutation matrices (J1, J2). Then, the singular values of Z are equivalent to those of W , excluding duplication.
Therefore, the singular values of the Mixers are determined only by the dense weight matrix W . Define Q = WW⊤.
Because the normalized matrix Q/c obeys the Marchenko-Pastur law in the random matrix theory and its largest eigenvalue
is given by 4 in the infinite C limit (Bai & Silverstein, 2010). This means that the largest singular value of the normalized
W is 2 and corresponds to a = 0 of SW-MLP (i.e., dense MLP) with the infinite Ω limit in Figure S.1 (right). Thus, we can
say that from the perspective of random weights, the trainability of the Mixers is expected to be better than that of SW-MLP.

We can also extend our analysis to the models incorporating the expansion factor γ. For SW-MLP with MLP blocks, the
expected number of weights is given by Ω = γpm2. We just need to replace p in the S-Mixer case to γp and the monotonic
increase of the largest singular value appears as well. For the MLP-Mixer, its normalized W is a γC ×C matrix. According
to the Marchenko-Pastur law for rectangular random matrices, as C → ∞, the largest singular value approaches a constant
value of 1 +

√
γ. This corresponds to the singular value of a = 0 in the corresponding SW-MLP, and the result is similar as

in the S-Mixer.

Note that the effective width of the mixing layers is sufficiently large but still has an upper bound (15). It satisfies

(
√
1 + 8Ω/γ − 1)/2 ≤ m ≤ (Ω/γ)2/3, (S.45)

where the equality of the lower bound holds for S = 1 or C = 1. In contrast, for SW-MLP, we have no upper bound and
only the lower bound

√
Ω ≤ m, where this equality holds for a dense layer. We can consider an arbitrarily small p and

a large m for a fixed Ω if we neglect the issue of memory (Golubeva et al., 2021). Golubeva et al. (2021) reported that
extremely small p can cause a decrease in test accuracy owing to the deterioration of trainability. We observed a similar
deterioration for the SW-MLP, as shown in this section, but not for the Mixers. This is expected because m is upper-bounded
in the Mixers and the trainability is less damaged than that of the SW-MLP with high sparsity.

D.2. MLP-Mixer with increasing width

Figure S.2 shows the test accuracy improves as the width increases on the models SW-MLP and normal and RP MLP-Mixer
even if the expansion factor γ is incorporated in the models. We set the expansion factor γ = 4. We set the initial learning
rate to be 0.1. For normal and RP MLP-Mixer, we set C = 16, 32, 48, 64, 83, 113, 173 and determined S by combinations
of C and Ω = 218, 220. For SW-MLP, we set p = 0.1, 0.3, 0.5, 0.7, 0.9 and set the width by m =

√
Ω/γp.

D.3. Increasing expanding factor

The effective MLP expression of the MLP-Mixer (S.21) has two widths: m = SC and γSC. As both are proportional to
SC, we have focused on changing SC and fixed γ so far. Here, we consider a complementary setting, that is, changing γ
with fixed m = SC. By substituting S = m/C into (14), we obtain γ = 2Ω/(m(C +m/C)). Similar to m of C shown in
Fig. 3, this γ is a single-peak function of C and takes its maximum as

C∗ = S∗ =
√
m, max

S,C
γ = Ω/(m

√
m). (S.46)

Fig. S.3 (left) confirms that increasing the width (γ) leads to performance improvement as is expected from Hypothesis4.1.
We trained normal and RP MLP-Mixers with various γ in a realistic range. We plotted some cases of fixed Ω under the same
m. Fig. S.3 (right) shows the test accuracy maximized around C = S as is expected from (S.46).

D.4. Dependence on depth

As shown in Figs.5-S.3 , both the normal and RP Mixers exhibited similar tendencies for a fixed depth. Fig. 7 confirms
that by increasing the depth, i.e., the number of blocks, RP S-Mixers can even become comparable to the normal ones or
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Figure S.2 . Test accuracy improves as the effective width increases. MLP-Mixer, RP-MLP-Mixer, and SW-MLP with γ = 4 on (Left)
CIFAR-10, (Right) CIFAR-100.
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Figure S.3 . (Left) Increasing expansion factor γ improved the test error in normal and RP MLP-Mixers. (Right) The lowest error is
achieved around C = S with fixed m = 4096.

better than them in some cases. First, we observed that, when the depth was limited, the RP Mixers were inferior to the
normal Mixers in most cases. As we increased the depth, we observed that in some cases, overfitting occurred for the normal
Mixer, but not for the RP one (see also the training and test losses shown in Section D.6). In such cases, the results of the RP
Mixers were comparable (in Figs. 7(left, right)) or better (in Fig. 7(center)). Although RP Mixers are not necessarily better
than normal ones, it is intriguing that even RP Mixers defined by a random structure can compete with normal Mixers.

The random permutation in RP-Mixer initially selects and fixes the size of receptive field (i.e., the number of input pixels
flowing into a neuron in each upper layer through weights) at a rate of 1/

√
m. Therefore, the training becomes difficult

in shallow networks. However, in the RP-Mixer, since an independent random permutation is chosen for each layer, the
receptive field expands as the number of layers increases. From this, the performance of the RP-Mixer improves as layers
are added. The normal MLP-Mixer performs well even with fewer layers because the receptive field and diagonal-block
structure are aligned.

D.5. Replacement of Jc in specific layers

Figure S.4 provides more detailed insight into the case where the depth is limited and RP Mixers perform worse than normal
Mixers. We investigated special S-Mixers whose l-th block was replaced with its RP counterpart while the other layers
remained the same. Interestingly, when the accuracy deterioration apparently appears (e.g., cases of CIFAR-10 and STL-10
in Figure 7), this deterioration is attributed to the first block. This seems rational because the neighboring image patches are
likely to be correlated, which makes the input units to the first token mixing correlated. Although the usual mixing weights
can reflect such neighboring structures, RP Mixers randomly choose tokens and may lose the neighboring structure specific
to the images. However, as the depth increases, the token mixing layers can merge all the tokens, which is consistent with
the increase in the accuracy of the RP Mixers, as confirmed in Figure 7. Thus, we conclude that the RP and normal mixing
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Figure S.4 . Replacing a single block of the normal Mixer with a corresponding RP block clarifies that the upstream layers are functionally
commutative with the RP block. (Left) CIFAR-10, (Center) CIFAR-100, (Right) STL-10. We set C = S = 128.
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Figure S.5 . Dependence on C0.

layers have almost the same inductive bias, especially in the upstream layers.

We utilized Tesla V100 GPUs and approximately 10 GPU hours for our experiments. Consider the S-Mixer architecture
consisting of four blocks and S = C = 64. In this study, we trained a modified version of the S-Mixer architecture
by replacing one of the four blocks with a block that incorporates random permutation. The training was conducted on
CIFAR-10, CIFAR-100, and STL-10 datasets. The optimizer and training settings used in this experiment were consistent
with those described in Section C.6.

D.6. Remark on input patch size

In this study, we focused on changing the size of the mixing layers and fixed the input token and channel size (S0, C0). In
other words, the patch size P , satisfying C0 = 3P 2, is fixed. While we observe that our experimental results hold regardless
of the patch size, one naive question is whether there is any optimal patch size for achieving the highest accuracy. Although
this is beyond the scope of this study, we show the performance depending on C0 in Figure S.5 as a side note. The number
of mixing layers is fixed at C = S = 64. We observed that the optimal C0 depended on data; C0 = 48 (S0 = 64) for
CIFAR-10 and 100, and C0 = 108 (S0 = 225) for STL-10. Note that the dimension of an input image is S0C0 = 3, 072 for
CIFAR datasets and 24, 300 for STL-10. It would be rational that the optimal patch size depends on the detailed information
of data.

We utilized Tesla V100 GPUs and approximately 30 GPU hours for our experiments. We conducted training experiments on
CIFAR-10, CIFAR-100, and STL-10 datasets using both S-Mixer and RP S-Mixer architectures with S = C = 64, along
with four blocks. For optimization, we set the initial learning rate to be 0.1.

For CIFAR-10 and CIFAR-100, we trained the models for 200 epochs and evaluated them with different patch sizes
(P = 1, 2, 4, 8, 16, 32). We performed three trials with different random seeds for each setting. On the STL-10 dataset, we
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resized the images to 90× 90× 3 and trained the models for 400 epochs. We varied the patch size (P = 1, 3, 6, 10, 18, 30)
and performed five trials with different random seeds for each setting.

D.7. RP can prevent the overfitting

In Figure S.6 , we explored several values of C fixed Ω, the normal model shows overfitting of more than twice the magnitude
compared to the RP model, especially C is the largest one in the exploring range. In this case, S takes the smallest value
among the explored values. This suggests that RP has a regularization effect beyond the token-mixing side and affects the
channel-mixing side, particularly when C is large.

To mitigate overfitting, additional augmentation (auto-augmentation, based on (Cubuk et al., 2019)) was applied to the
dataset, and the model was switched from S-Mixer to MLP-Mixer (γ = 4) due to the observed slower decrease in training
loss for S-Mixer in Figure S.7 . RP S-Mixer outperformed S-Mixer in terms of test loss for C = 173, indicating that RP still
provides overfitting prevention even with relatively strong data augmentations.

Figure S.6 . (Left) The average test loss curves are shown for C = 16, 32, 64, 114, 173 and five trials with different random seeds. The
models used in this experiment were Normal and RP S-Mixers trained on CIFAR-10 with L = 8 for 600 epochs. The initial learning rate
was set to 0.1. (Right) The test loss curve for C = 173 represents the worst case of overfitting. The shaded area in both figures represents
the range between the maximum and minimum values.

Figure S.7 (right) illustrates that RP did not reach the relatively small training loss as the normal model. To address this,
SGD was replaced with AdamW as the optimizer, with a reduced initial learning rate (lr = 0.01) due to the instability
observed with lr = 0.1 in Figure S.8 . This resulted in reduced overfitting in the C > S region, and RP performed
exceptionally well compared to the normal model for C = S = 64. In Figure S.8 , neither the normal nor RP models
exhibited a significant increase in test loss for C = S. However, while the normal model’s test loss plateaued, the RP model
continued to decrease its test loss, eventually surpassing the normal model in terms of test accuracy. This highlights the
potential of RP to outperform the normal model with a choice of optimization such as AdamW.

D.8. Visualization of how random permutation breaks the structure

Observing the differences between RP-Mixer, MLP-Mixer, and SW-MLP from the perspective of weights. Figure S.9
shows three types of models where components can only be 0 or 1. In RP-Mixer, it is evident that the block structure of
MLP-Mixer has been disrupted.

D.9. Computational Costs

Table S.3 shows the computational resource of SW-MLPs and RP-Mixers. In the setting for ImageNet, SW-MLP requires
huge memory and runtime, whereas RP-Mixer needs 103 to 106 times less. Note that the spacial complexity of the
SW-MLP (resp. the RP-Mixer) is O(m2) = O(S2C2) (resp.O(C2 + S2)) as S,C → ∞. Therefore, the RP-Mixer is more
memory-efficient and computationally undemanding than the SW-MLP.
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Figure S.7 . (Left) Average of test loss curves. (Right) Average train loss with C = 173. In both figures, the area shows max and min
values. We trained normal and RP MLP-Mixer with γ = 4 with an initial learning rate of 0.1 and a mini-batch size of 256 for 600 epochs.
The results are average of five trials. The shaded area in the figure represents the range of values between the maximum and minimum
values.

Table S.3 . Comparison on memory requirements, FLOPs(floating point operations), and averaged runtime. For the three models, we set
S = 256, C = 588, L = 8, γ = 4 for ImageNet and S = 64, C = 48, L = 3, γ = 2 for CIFAR.

Model Memory(CIFAR/ImageNet) FLOPs(CIFAR/ImageNet) Runtime(CIFAR)

SW-MLP 3.22GB / 23.2TB 805M / 5.80T 28.2(±0.00) s/epoch
RP-Mixer 3.94MB / 26.3MB 12.5M / 4.06G 6.41(±0.01) s/epoch

MLP-Mixer 3.93MB / 26.3MB 12.5M / 4.06G 6.08(±0.26) s/epoch
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Figure S.8 . Results of training with AdamW and auto-augmentation with S = C = 64. The RP MLP-Mixer exceeded the results of the
normal one in test loss and test accuracy. (Left) Average of test loss curves. (Right) Average train loss. (Lower) Test Accuracy curves. We
set the initial learning rate to be 0.01 with a mini-batch size of 256 and 600 epochs. In all figures, the results are average of five trials and
the area shows the range between the maximum and minimum values.
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Figure S.9 . Samples of weight matrices at initialization. (Left) M ⊙ A, (center)IC ⊗ W , (right)J1(IC ⊗ W )J2, C = S = 8,m =
CS, p = 1/S, and J1 and J2 are independent random permutation matrices. Each sample is a realization of one trial.
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