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Abstract

Troubleshooting complex laboratory instruments, such as in chromatography and
mass spectrometry, presents a significant information retrieval challenge due to
highly specific, technical documentation. Existing chemistry RAG benchmarks
primarily target short, general-purpose Q/A tasks, whereas chemists need tools
that can address open-ended, laboratory troubleshooting questions in the context of
scientific research. To bridge this gap, we introduce TroubleRAG, a comprehensive
benchmark for evaluating Retrieval-Augmented Generation (RAG) pipelines in
this domain. We first constructed a novel dataset of 113 high-quality troubleshoot-
ing scenarios, curated from synthetic data using LLM-based scoring and expert
chemists validation. Using TroubleRAG, we conduct an empirical analysis of
key retrieval design choices, including sparse, dense, and hybrid fusion; HyDE
query expansion; and advanced chunking strategies. Our key finding is that widely
recommended “best-practice” RAG configurations do not transfer: they under-
perform on specialized troubleshooting tasks. Guided by empirical analysis, we
introduce a domain-tailored retrieval recipe that yields significant improvements,
boosting Recall@5 by 8% and nDCG@5 by 8%. We also outline two extensions:
(1) multimodal retrieval over tables and figures that routinely appear in instrument
manuals, and (ii) multi-turn, interactive systems that request clarifying details to
better reflect human-in-the-loop workflows. TroubleRAG is designed to advance
robust, domain-aware RAG methodologies for practical laboratory support.

1 Introduction

Troubleshooting complex instruments like Liquid Chromatography-Mass Spectrometry (LC-MS)
systems presents a critical bottleneck in scientific research, requiring experts to navigate through
vast, unstructured technical manuals to diagnose and resolve instrument failures [15[]. While Large
Language Models (LLMs) offer potential assistance, their tendency to hallucinate makes them
unreliable for high-stakes laboratory environments where incorrect guidance can lead to costly delays
or equipment damage [6]]. Retrieval-Augmented Generation (RAG) addresses this limitation by
grounding LLMs in relevant documentation [[10].

However, prevailing RAG best practices have been tuned for general-domain QA (e.g., Natural
Questions [9]) or biomedical datasets with short, factual answers (e.g., PubMedQA [7]]). These
approaches prove inadequate for scientific troubleshooting scenarios, which demand the retrieval of
lengthy procedural texts, synthesis of multi-step solutions, and interpretation of multimodal content
including instrument diagrams, parameter tables, and error screenshots. It remains an open question:

Do general-purpose RAG "best practices" effectively transfer to specialized technical domains?
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To bridge this gap, we introduce TroubleRAG, a comprehensive benchmark specifically designed for
evaluating RAG pipelines on real-world chemistry troubleshooting tasks. Our work makes three key
contributions:

o Novel Dataset Construction: Through discussions with experts at the NSF Center for Bioanalytic
Metrology (CBM), we present a carefully curated dataset of 113 expert-validated troubleshooting
scenarios derived from authentic LC-MS and HPLC technical documentation, designed to reflect the
complexity and open-ended nature of real laboratory problems.

o Systematic Empirical Analysis: Through empirical evaluation across eight RAG configurations,
we demonstrate that widely-recommended "best practice" approaches significantly underperform
on specialized troubleshooting tasks, challenging the assumption that general-domain optimizations
transfer to technical domains.

o Domain-Tailored Methodology: We develop a domain-specific retrieval recipe that combines
SPLADE sparse retrieval, dense embeddings, and advanced reranking (FlagReranker), achieving
substantial improvements of 8% in Recall@5 and 8% in nDCG @5s. Moreover, we outline critical
extensions including multimodal retrieval capabilities for processing instrument figures and tables, and
interactive multi-turn systems that mirror real-world human-in-the-loop troubleshooting workflows.

Our findings reveal that effective RAG for scientific troubleshooting requires domain-aware design
choices that diverge significantly from general recommendations. For instance, we show that
Hypothetical Document Embeddings (HyDE), often considered beneficial for query expansion,
actually harm performance in technical domains where precision is paramount. Similarly, hierarchical
chunking strategies underperform simple fixed-size approaches when complete procedural context is
essential.

By providing TroubleRAG as a dedicated benchmark, we aim to develop robust, domain-aware
retrieval systems that can provide reliable technical support in laboratory environments, ultimately ac-
celerating scientific discovery through more effective human-Al collaboration in real-world chemistry
troubleshooting.

2 Related Work

Large Language Models in Chemistry. The integration of Large Language Models (LLMs) into
chemistry has progressed from evaluating general knowledge recall to developing specialized agents.
Initial efforts focused on comprehensive benchmarks that assessed LLMs across diverse chemical
tasks [5} |11]. These evaluations demonstrated promising performance on standardized chemistry
questions but were fundamentally limited by their focus on closed-ended problems with definitive
ground-truth answers, easily measured through accuracy-based metrics.

Recent research has advanced towards tool-augmented chemical agents. Systems like ChemCrow [1]]
integrate LLMs with external tools (e.g., synthesis planners, databases) to autonomously plan and
execute complex procedures.

Retrieval-Augmented Generation for Scientific Domains. Retrieval-Augmented Generation (RAG)
has been identified as a key method to enhance the factual accuracy and relevance of LLM outputs
by grounding them in retrieved external knowledge [16]]. Recent work has begun to develop RAG
benchmarks specifically tailored to chemistry and related scientific fields, showing significant im-
provements over standalone LLM performance on chemistry-focused question-answering tasks [[19]].
These studies have established the value of domain-specific retrieval for chemical knowledge tasks
and have begun to explore optimal configurations for scientific research.

However, a critical limitation persists across existing chemistry-focused LLM and RAG evaluations:
they are largely designed for closed-ended knowledge recall, easily measured by metrics like accuracy
or F1 score [[11]]. This leaves a significant gap in understanding how these systems perform on the
open-ended, complex, and procedural problems that define real-world scientific research.

Our work directly addresses this evaluation gap by shifting focus from the well-studied question
"What is the property of X?" to the practically urgent scenario "My instrument is broken; what should 1
do?". This transition requires fundamentally different retrieval and generation capabilities, demanding
systems that can navigate lengthy, technical procedural documentation; synthesize multi-step solutions
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from distributed information sources and handle the inherent ambiguity of real troubleshooting
scenarios.

3 Benchmark Dataset

3.1 Source Corpus and Scope

To build a domain-specific corpus, we collected technical PDF documents spanning chromatography
and mass spectrometry instrumentation, including troubleshooting manuals, user guides, training
workbooks, and site-preparation specifications.

These documents, sourced from instrument vendors and application notes, cover common laboratory
issues such as mobile phase preparation, column care, vacuum leaks, and detector noise. The detailed
information of these documents are listed in The corpus is representative of real-world
technical documentation, containing a mix of free text, bulleted checklists, parameter tables, warning
boxes, and instrument photographs.

Table 1: Source troubleshooting documents

Document Title Document Type Page# Source Company Target Software

The Chromatography Detective: Trou- Troubleshooting Manual 67 Agilent General LC/LCMS systems
bleshooting Tips & Tools for LCMS

Agilent Triple Quadrupole LC/MS Sys-  Official User Manual 145 Agilent MassHunter 12.1 or higher
tem User Guide

Agilent Triple Quadrupole LC/MS Sys-  Training Workbook 124 Agilent MassHunter 12.1 or higher
tem Introduction Workbook

compact Site Preparation Specification 9 Bruker N/A (Hardware focus)
solariX series Site Preparation Specification 27 Bruker N/A (Hardware focus)
timsTOF Site Preparation Specification 12 Bruker N/A (Hardware focus)
scimaX series Site Preparation Specification 27 Bruker N/A (Hardware focus)
autoflex series Site Preparation Specification 10 Bruker N/A (Hardware focus)
impact series Site Preparation Specification 11 Bruker N/A (Hardware focus)
ultrafleXtreme Site Preparation Specification 9 Bruker N/A (Hardware focus)
maXis series Site Preparation Specification 10 Bruker N/A (Hardware focus)
neofleX series Site Preparation Specification 15 Bruker N/A (Hardware focus)

3.2 LLM-Assisted Question-Answer Generation

We employed a multi-stage process to generate high-quality question-answer (QA) pairs. First, the
source PDFs were segmented using a RecursiveCharacterTextSplitter with a chunk size of
2,000 tokens and an overlap of 200 tokens. We chose a large window (2,000 tokens with 200 overlap)
to preserve long procedural sections and avoid fragmenting multi-step instructions during generation.
For each resulting text chunk, we prompted an Azure OpenAl chat completion model (gpt-40-mini)
to produce a single QA pair. The prompt was specifically designed to elicit natural, first-person
laboratory scenarios that are open-ended in nature. we used the following prompt:

You are a helpful and knowledgeable lab assistant trained in HPLC and LC/MS troubleshooting.
Based on the following technical content, generate ONE natural-sounding lab question in the
style of a scientist seeking help, using a realistic first-person scenario. avoid being too general.
(e.g., "I'm setting up my autoflex series instrument for a new experiment, but I'm concerned
about the environmental conditions in my lab. The temperature fluctuates quite a bit, and I'm
worried it might affect my results. What should I do?" or " I'm setting up my autoflex series
instrument for a new experiment and I'm seeing some fluctuation in the data I'm collecting. What
should I do?" Then provide a detailed, step-by-step, and comprehensive answer using ONLY the
provided content. Be thorough in your explanation, include any relevant background, rationale,
troubleshooting options, and possible causes or implications.

This approach encourages the generation of comprehensive, procedural answers rather than simple
fact retrieval. To build the dataset, we randomly sampled 200 chunks from the segmented manuals
and prompted the model once per chunk, resulting in 200 synthetic QA pairs that mimic the queries
of a laboratory technician.
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3.3 Multi-Stage Filtering Protocol

To ensure the dataset’s quality and practical relevance, we implemented a rigorous two-stage filtering
protocol involving both automated scoring and expert human review.

Stage 1: Automated LLM-Based Filtering. Each of the 200 generated QA pairs was automatically
scored by an LLM assessor along three distinct criteria, each on a five-point scale: (1) Groundedness:
Whether the answer is fully supported by the provided source context. (2) Relevance: The practical
usefulness of the question to a chromatography user. (3) Standalone Clarity: Whether the question
is understandable without needing the source context. We automatically filtered out any pair that did
not achieve a score of 4 or higher on all three criteria, which reduced the candidate pool to 135 QA
pairs.

Stage 2: Expert Chemists Review. The remaining 135 candidates were independently reviewed
by 5 chemists at the NSF Center for Bioanalytic38 Metrology (CBM). Each expert rated the pairs on
a four-point scale across four criteria: (i) question clarity and specificity, (ii) factual accuracy of the
answer, (iii) whether the answer directly addresses the question, and (iv) the sufficiency of the source
chunk for generating a complete answer. Any item receiving a score below 3 on any criterion from
either reviewer was discarded. This final, stringent review process yielded the final dataset of 113
high-quality QA pairs. For each pair, the source document filename and page number are stored to
ensure traceability.

4 Retrieval Framework for Systematic Evaluation

We conduct a controlled evaluation of retrieval-augmented generation (RAG) pipelines using a
modular framework designed for the chemistry troubleshooting domain. This design allows for the
analysis of state-of-the-art components across the retrieval process, as illustrated in Figure[T] Our
objective is to identify the most effective strategies for retrieving relevant technical documentation
from a newly curated corpus of real-world chemistry troubleshooting queries and documents.

Retrieval Models. We evaluate a diverse set of retriever algorithms and strategies that form the
foundation of the pipeline. This includes:

* Lexical & Sparse Models: The classic lexical baseline BM25 [13]] and the learned sparse
retriever SPLADE-v2 [3]], which expands queries with related terms.

* Dense Model: The state-of-the-art dense retriever BGE-large-en-v1.5 [[17], indexed using
FAISS-HNSW [§8]] for efficient approximate nearest neighbor search.

* Hybrid Model: A configuration that combines sparse and dense scores via Reciprocal Rank
Fusion (RRF) [2].

* Hypothetical Document Embeddings (HyDE): To bridge the lexical and semantic gap
between concise queries and verbose technical passages, we implement HyDE [4]]. This
strategy uses an instruction-tuned language model to generate a hypothetical ideal response
to the query. The embedding of this "pseudo-document" is then used for retrieval with the
dense model, aiming to capture the query’s intent more effectively than its raw form.

Document Chunking. We explore two fundamentally different approaches to text segmentation.
The first is a standard fixed-size, sentence-aware window (512 tokens with a 20-token overlap). The
second is Small2Big, a hierarchical strategy where smaller chunks are first retrieved to identify and
return larger, more contextually rich parent documents.

Post-Retrieval Reranking. We rigorously evaluate the utility of a refinement step by ablating three
distinct configurations: no reranker, the established monoT5 [[12]] cross-encoder, and the more recent
FlagReranker. For configurations employing a reranker, the top-50 candidates from the first-stage
retriever are re-scored. The final top-5 documents are then selected from this refined ranking. This
comparison is designed to quantify the performance gain from reranking itself and to determine the
most effective model for this specific domain.

This systematic design provides a comprehensive grid of configurations for benchmarking and
analysis, specifically tailored to the challenges of chemistry troubleshooting documentation retrieval.
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Figure 1: The modular retrieval pipeline used for evaluation. Source documents are processed
(chunked) and indexed. User queries are processed by a first-stage retriever (sparse, dense, hybrid,
or HyDE). The top-50 candidates are then optionally re-ranked by a cross-encoder (monoT5 or
FlagReranker), and the final top-5 results are selected for output.

Retrieval Source
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5 Evaluation

5.1 Experimental Setup

To measure the efficacy of different RAG components for chemistry troubleshooting, we conduct a
series of controlled experiments on our newly curated dataset.

Our primary evaluation compares eight distinct pipeline configurations (ID1-ID8 in Table[2). These
configurations are systematically derived from our modular framework (Section M) to isolate the
impact of individual components. We contrast these specialized configurations against a robust
external baseline, termed Best Practice (BP). This baseline represents a generalized state-of-the-
art setup derived from recent literature [[16], which combines BM25 (sparse), LLM-Embedder
(dense), HyDE query transformation, the Small2Big chunking strategy, and monoT5 reranking.
This comparison allows us to rigorously test whether domain-specific tuning provides a significant
advantage over a generic approach.

We quantify retrieval performance using four key metrics, all focused on the top-5 retrieved chunks.
To measure ranking quality, we use Mean Average Precision (mAP) and Normalized Discounted Cu-
mulative Gain (nDCG@5). To assess the ability to find the correct source, we use Recall@5. Finally,
to evaluate semantic alignment beyond lexical overlap, we compute the maximum BERTScore [|18]]
between the ground truth chunk and the retrieved candidates.

5.2 Results and Analysis

Our experimental evaluation, summarized in Table [2] reveals notable performance differences across
the eight RAG configurations. The comprehensive comparison of these models across all four
evaluation metrics is visualized in Figure[2] while Figure [3|provides a detailed distribution analysis
and a focused comparison with the Best Practice (BP) baseline.

The results demonstrate that our domain-tailored configuration, ID7, achieves the best performance
on our chemistry troubleshooting benchmark with a Recall@5 score of 0.9469. This configuration
utilizing SPLADE for sparse retrieval, LLM Embedder for dense retrieval, fixed-size chunking, and
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Table 2: TroubleRAG configurations with grouped components. Dense = LLM_Embedder; HyDE =
hypothetical document expansion.

Retrieval Chunking Reranking Index Metric
ID Sparse Dense HyDE Method Model Vector DB Recall@5
1 BM25 X X Fixed 512 X — 0.7699
2 SPLADE X X Fixed 512 X — 0.8849
3 X v X Fixed 512 X — 0.8673
4 SPLADE v X Fixed 512 X FAISS-HNSW 0.8850
5 SPLADE v v Fixed 512 X FAISS-HNSW 0.7168
6 SPLADE v X Small2Big X FAISS-HNSW 0.8673
7 SPLADE v X Fixed 512  FlagReranker = FAISS-HNSW 0.9469
8 SPLADE v X Fixed 512 monoT5 FAISS-HNSW 09115

Comparison of RAG Methods (ID1-1D8) Across Retrieval Metrics
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Figure 2: Retrieval performance of RAG methods (ID1-ID8) across mAP, nDCG@35, Recall@5, and
BERTScore; stars mark the best method per metric.

the FlagReranker, substantially outperforms the generic BP baseline across all metrics, as clearly
visualized in the radar chart (Figure [3g). This performance advantage is critical for real-world
applications, where successfully retrieving the correct troubleshooting procedure for a malfunctioning
chromatograph or mass spectrometer can save hours of laboratory downtime.

Key Findings:

e The FlagReranker is optimal for technical precision. The significant gain of ID7 over ID8
(monoT5) and ID4 (no reranker) shows that reranking is essential in technical domains. FlagR-
eranker distinguishes between closely related explanations and ensuring the most relevant diagnostic
procedure is ranked highest.

o HyDE is detrimental for factual, precise retrieval. The underperformance of ID5 (Recall @5:
0.7168) demonstrates that hypothetical generation is ill-suited for a field governed by exact param-
eters. A HyDE-generated pseudo-document might invent a plausible but incorrect solution. This
hallucination misdirects retrieval toward irrelevant chunks, delaying resolution for a time-sensitive
experiment.

o Advanced sparse retrieval (SPLADE) is highly effective for scientific terminology. The strong
standalone performance of ID2 (Recall@5: 0.8849) shows that SPLADE can expand short queries
into the full set of terms used in technical manuals.. A concise query like "LC-MS sensitivity drop"

can be effectively expanded to include terms like ["electrospray ionization", "capillary voltage",
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Figure 3: Comparison of retrieval metrics between the baseline best-practice pipeline (BP) and
configuration ID7. (a—d) show the distributions of BERTScore, Recall@5, nDCG@5, and mAP,
respectively.(e) provides a radar plot comparing the average performance of the two models across
these metrics

"source contamination"], directly mirroring the language in technical manuals and retrieving chunks
that address the exact instrument module involved.

o Dense retrieval alone captures semantic intent but lacks precision. The performance of ID3
(Dense only, Recall@5: 0.8673) shows that while semantic search can interpret the general meaning
of a query, it often fails to distinguish between closely related technical issues. Its scope is too broad
to consistently support precise diagnosis, highlighting the need to pair dense retrieval with a sparse
retriever for reliable performance.

o Simple, consistent chunking outperforms complex hierarchies. The outperformance of ID7
(Fixed512) over ID6 (Small2Big) suggests that for complex procedures, retrieving the entire context
is essen tial. The Small2Big strategy is fragile; it might retrieve a small child chunk containing a
common error code (e.g., "Pressure Error"), but this code could be shared across many different
instruments and root causes. This can easily lead to retrieving the wrong "parent" chunk from a
different system. Fixed 512-token chunking, in contrast, often encapsulates an entire, self-contained
troubleshooting procedure, ensuring the user receives the complete context needed for resolution.

5.3 Limitations of Current RAG

Our analysis reveals fundamental limitations in existing text-based RAG systems that render them
inadequate for real-world laboratory troubleshooting scenarios. Unlike conventional information
retrieval datasets [|14], our source documents are rich with non-textual information, containing critical
information encoded in instrument photographs, diagnostic diagrams, error screenshots, and complex
parameter tables. Current RAG pipelines systematically ignore this non-textual content, creating
significant gaps in retrievable knowledge.

Furthermore, practical troubleshooting is often a human-interactive, multi-turn process. A technician
may need to answer clarifying questions or provide additional details based on initial results. To
address these gaps, our findings identify two primary extensions:

1. Multi-modal Information Integration: Text-based retrieval cannot access the substantial
technical knowledge embedded in visual content. Critical troubleshooting information
requires visual analysis capabilities. For instance, questions like “How do I decrease my
autotune window m/z width?” demand interpretation of instrument interface diagrams,
while queries such as “I need to run my analysis at pH 10.5 using a phosphate buffer, but
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Figure 4: Multi-modal examples in the source document.

I’m currently using an EC-C18 column which only goes up to pH 8.0. Why do I get poor
peak shape?” require analysis of tabular specification data, as illustrated in Figure 4]

2. Multi-turn Refinement: Laboratory technicians rarely provide complete problem descrip-
tions in initial queries, while effective troubleshooting requires systematic information
gathering for effective troubleshooting. This diagnostic process inherently requires multi-
turn interactions to progressively refine solutions. Consider the diagnostic gap between
complete and typical queries:

Complete diagnostic query: Q: I'm setting up my Autoflex series instrument for a
new experiment, but I'm concerned about the environmental conditions in my lab.
The temperature fluctuates quite a bit, and I'm worried it might affect my results.
What should I do?

Typical incomplete query: Q: I'm setting up my Autoflex series instrument for a
new experiment and I'm seeing some fluctuation in the data I'm collecting. What
should I do? Required diagnostic clarifications: — Are environmental factors like

room temperature stable? — Is there a trend in the fluctuations (upward, downward,
random)? — Which type of data is fluctuating—signal intensity, retention time, or
m/z?

The inability to conduct such diagnostic dialogues fundamentally limits current systems to
providing generic rather than targeted troubleshooting guidance.

These limitations explain why generic RAG configurations underperform in technical domains: they
operate within architectural constraints that preclude access to essential multimodal information and
interactive diagnostic processes that define expert-level troubleshooting.

6 Conclusion

In this work, we introduced TroubleRAG, a comprehensive framework for evaluating RAG pipelines
on the challenging domain of laboratory instrument troubleshooting. We constructed a new, expert-
validated dataset, and conducted a systematic evaluation of six retrieval configurations. Our central
finding is that generic RAG "best practices" are insufficient for this specialized task. We presented a
domain-tailored recipe—combining hybrid search with a strong reranker that significantly outper-
forms a robust baseline, boosting Recall@5 by nearly 8 percentage points. However, this work also
highlights critical limitations in current retrieval techniques that present clear avenues for future re-
search. Our source documents are rich with non-textual information, such as instrument photographs,
diagrams, and complex data tables, which are largely ignored by current text-based RAG pipelines.
Furthermore, practical troubleshooting is often an interactive, multi-turn process. A technician may
need to answer clarifying questions or provide additional details based on initial results. To address
these gaps, our future work will focus on two primary directions: the enhancement of multi-modal
retrieval and interactive, multi-turn dialogue.
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