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Abstract

Troubleshooting complex laboratory instruments, such as in chromatography and1

mass spectrometry, presents a significant information retrieval challenge due to2

highly specific, technical documentation. Existing chemistry RAG benchmarks3

primarily target short, general-purpose Q/A tasks, whereas chemists need tools4

that can address open-ended, laboratory troubleshooting questions in the context of5

scientific research. To bridge this gap, we introduce TroubleRAG, a comprehensive6

benchmark for evaluating Retrieval-Augmented Generation (RAG) pipelines in7

this domain. We first constructed a novel dataset of 113 high-quality troubleshoot-8

ing scenarios, curated from synthetic data using LLM-based scoring and expert9

chemists validation. Using TroubleRAG, we conduct an empirical analysis of10

key retrieval design choices, including sparse, dense, and hybrid fusion; HyDE11

query expansion; and advanced chunking strategies. Our key finding is that widely12

recommended “best-practice” RAG configurations do not transfer: they under-13

perform on specialized troubleshooting tasks. Guided by empirical analysis, we14

introduce a domain-tailored retrieval recipe that yields significant improvements,15

boosting Recall@5 by 8% and nDCG@5 by 8%. We also outline two extensions:16

(i) multimodal retrieval over tables and figures that routinely appear in instrument17

manuals, and (ii) multi-turn, interactive systems that request clarifying details to18

better reflect human-in-the-loop workflows. TroubleRAG is designed to advance19

robust, domain-aware RAG methodologies for practical laboratory support.20

1 Introduction21

Troubleshooting complex instruments like Liquid Chromatography-Mass Spectrometry (LC-MS)22

systems presents a critical bottleneck in scientific research, requiring experts to navigate through23

vast, unstructured technical manuals to diagnose and resolve instrument failures [15]. While Large24

Language Models (LLMs) offer potential assistance, their tendency to hallucinate makes them25

unreliable for high-stakes laboratory environments where incorrect guidance can lead to costly delays26

or equipment damage [6]. Retrieval-Augmented Generation (RAG) addresses this limitation by27

grounding LLMs in relevant documentation [10].28

However, prevailing RAG best practices have been tuned for general-domain QA (e.g., Natural29

Questions [9]) or biomedical datasets with short, factual answers (e.g., PubMedQA [7]). These30

approaches prove inadequate for scientific troubleshooting scenarios, which demand the retrieval of31

lengthy procedural texts, synthesis of multi-step solutions, and interpretation of multimodal content32

including instrument diagrams, parameter tables, and error screenshots. It remains an open question:33

Do general-purpose RAG "best practices" effectively transfer to specialized technical domains?34
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To bridge this gap, we introduce TroubleRAG, a comprehensive benchmark specifically designed for35

evaluating RAG pipelines on real-world chemistry troubleshooting tasks. Our work makes three key36

contributions:37

• Novel Dataset Construction: Through discussions with experts at the NSF Center for Bioanalytic38

Metrology (CBM), we present a carefully curated dataset of 113 expert-validated troubleshooting39

scenarios derived from authentic LC-MS and HPLC technical documentation, designed to reflect the40

complexity and open-ended nature of real laboratory problems.41

• Systematic Empirical Analysis: Through empirical evaluation across eight RAG configurations,42

we demonstrate that widely-recommended "best practice" approaches significantly underperform43

on specialized troubleshooting tasks, challenging the assumption that general-domain optimizations44

transfer to technical domains.45

• Domain-Tailored Methodology: We develop a domain-specific retrieval recipe that combines46

SPLADE sparse retrieval, dense embeddings, and advanced reranking (FlagReranker), achieving47

substantial improvements of 8% in Recall@5 and 8% in nDCG@5s. Moreover, we outline critical48

extensions including multimodal retrieval capabilities for processing instrument figures and tables, and49

interactive multi-turn systems that mirror real-world human-in-the-loop troubleshooting workflows.50

Our findings reveal that effective RAG for scientific troubleshooting requires domain-aware design51

choices that diverge significantly from general recommendations. For instance, we show that52

Hypothetical Document Embeddings (HyDE), often considered beneficial for query expansion,53

actually harm performance in technical domains where precision is paramount. Similarly, hierarchical54

chunking strategies underperform simple fixed-size approaches when complete procedural context is55

essential.56

By providing TroubleRAG as a dedicated benchmark, we aim to develop robust, domain-aware57

retrieval systems that can provide reliable technical support in laboratory environments, ultimately ac-58

celerating scientific discovery through more effective human-AI collaboration in real-world chemistry59

troubleshooting.60

2 Related Work61

Large Language Models in Chemistry. The integration of Large Language Models (LLMs) into62

chemistry has progressed from evaluating general knowledge recall to developing specialized agents.63

Initial efforts focused on comprehensive benchmarks that assessed LLMs across diverse chemical64

tasks [5, 11]. These evaluations demonstrated promising performance on standardized chemistry65

questions but were fundamentally limited by their focus on closed-ended problems with definitive66

ground-truth answers, easily measured through accuracy-based metrics.67

Recent research has advanced towards tool-augmented chemical agents. Systems like ChemCrow [1]68

integrate LLMs with external tools (e.g., synthesis planners, databases) to autonomously plan and69

execute complex procedures.70

Retrieval-Augmented Generation for Scientific Domains. Retrieval-Augmented Generation (RAG)71

has been identified as a key method to enhance the factual accuracy and relevance of LLM outputs72

by grounding them in retrieved external knowledge [16]. Recent work has begun to develop RAG73

benchmarks specifically tailored to chemistry and related scientific fields, showing significant im-74

provements over standalone LLM performance on chemistry-focused question-answering tasks [19].75

These studies have established the value of domain-specific retrieval for chemical knowledge tasks76

and have begun to explore optimal configurations for scientific research.77

However, a critical limitation persists across existing chemistry-focused LLM and RAG evaluations:78

they are largely designed for closed-ended knowledge recall, easily measured by metrics like accuracy79

or F1 score [11]. This leaves a significant gap in understanding how these systems perform on the80

open-ended, complex, and procedural problems that define real-world scientific research.81

Our work directly addresses this evaluation gap by shifting focus from the well-studied question82

"What is the property of X?" to the practically urgent scenario "My instrument is broken; what should I83

do?". This transition requires fundamentally different retrieval and generation capabilities, demanding84

systems that can navigate lengthy, technical procedural documentation; synthesize multi-step solutions85
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from distributed information sources and handle the inherent ambiguity of real troubleshooting86

scenarios.87

3 Benchmark Dataset88

3.1 Source Corpus and Scope89

To build a domain-specific corpus, we collected technical PDF documents spanning chromatography90

and mass spectrometry instrumentation, including troubleshooting manuals, user guides, training91

workbooks, and site-preparation specifications.92

These documents, sourced from instrument vendors and application notes, cover common laboratory93

issues such as mobile phase preparation, column care, vacuum leaks, and detector noise. The detailed94

information of these documents are listed in Table 1. The corpus is representative of real-world95

technical documentation, containing a mix of free text, bulleted checklists, parameter tables, warning96

boxes, and instrument photographs.97

Table 1: Source troubleshooting documents

Document Title Document Type Page # Source Company Target Software

The Chromatography Detective: Trou-
bleshooting Tips & Tools for LCMS

Troubleshooting Manual 67 Agilent General LC/LCMS systems

Agilent Triple Quadrupole LC/MS Sys-
tem User Guide

Official User Manual 145 Agilent MassHunter 12.1 or higher

Agilent Triple Quadrupole LC/MS Sys-
tem Introduction Workbook

Training Workbook 124 Agilent MassHunter 12.1 or higher

compact Site Preparation Specification 9 Bruker N/A (Hardware focus)
solariX series Site Preparation Specification 27 Bruker N/A (Hardware focus)
timsTOF Site Preparation Specification 12 Bruker N/A (Hardware focus)
scimaX series Site Preparation Specification 27 Bruker N/A (Hardware focus)
autoflex series Site Preparation Specification 10 Bruker N/A (Hardware focus)
impact series Site Preparation Specification 11 Bruker N/A (Hardware focus)
ultrafleXtreme Site Preparation Specification 9 Bruker N/A (Hardware focus)
maXis series Site Preparation Specification 10 Bruker N/A (Hardware focus)
neofleX series Site Preparation Specification 15 Bruker N/A (Hardware focus)

3.2 LLM-Assisted Question-Answer Generation98

We employed a multi-stage process to generate high-quality question-answer (QA) pairs. First, the99

source PDFs were segmented using a RecursiveCharacterTextSplitter with a chunk size of100

2,000 tokens and an overlap of 200 tokens. We chose a large window (2,000 tokens with 200 overlap)101

to preserve long procedural sections and avoid fragmenting multi-step instructions during generation.102

For each resulting text chunk, we prompted an Azure OpenAI chat completion model (gpt-4o-mini)103

to produce a single QA pair. The prompt was specifically designed to elicit natural, first-person104

laboratory scenarios that are open-ended in nature. we used the following prompt:105

You are a helpful and knowledgeable lab assistant trained in HPLC and LC/MS troubleshooting.
Based on the following technical content, generate ONE natural-sounding lab question in the
style of a scientist seeking help, using a realistic first-person scenario. avoid being too general.
(e.g., "I’m setting up my autoflex series instrument for a new experiment, but I’m concerned
about the environmental conditions in my lab. The temperature fluctuates quite a bit, and I’m
worried it might affect my results. What should I do?" or " I’m setting up my autoflex series
instrument for a new experiment and I’m seeing some fluctuation in the data I’m collecting. What
should I do?" Then provide a detailed, step-by-step, and comprehensive answer using ONLY the
provided content. Be thorough in your explanation, include any relevant background, rationale,
troubleshooting options, and possible causes or implications.

106

This approach encourages the generation of comprehensive, procedural answers rather than simple107

fact retrieval. To build the dataset, we randomly sampled 200 chunks from the segmented manuals108

and prompted the model once per chunk, resulting in 200 synthetic QA pairs that mimic the queries109

of a laboratory technician.110
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3.3 Multi-Stage Filtering Protocol111

To ensure the dataset’s quality and practical relevance, we implemented a rigorous two-stage filtering112

protocol involving both automated scoring and expert human review.113

Stage 1: Automated LLM-Based Filtering. Each of the 200 generated QA pairs was automatically114

scored by an LLM assessor along three distinct criteria, each on a five-point scale: (1) Groundedness:115

Whether the answer is fully supported by the provided source context. (2) Relevance: The practical116

usefulness of the question to a chromatography user. (3) Standalone Clarity: Whether the question117

is understandable without needing the source context. We automatically filtered out any pair that did118

not achieve a score of 4 or higher on all three criteria, which reduced the candidate pool to 135 QA119

pairs.120

Stage 2: Expert Chemists Review. The remaining 135 candidates were independently reviewed121

by 5 chemists at the NSF Center for Bioanalytic38 Metrology (CBM). Each expert rated the pairs on122

a four-point scale across four criteria: (i) question clarity and specificity, (ii) factual accuracy of the123

answer, (iii) whether the answer directly addresses the question, and (iv) the sufficiency of the source124

chunk for generating a complete answer. Any item receiving a score below 3 on any criterion from125

either reviewer was discarded. This final, stringent review process yielded the final dataset of 113126

high-quality QA pairs. For each pair, the source document filename and page number are stored to127

ensure traceability.128

4 Retrieval Framework for Systematic Evaluation129

We conduct a controlled evaluation of retrieval-augmented generation (RAG) pipelines using a130

modular framework designed for the chemistry troubleshooting domain. This design allows for the131

analysis of state-of-the-art components across the retrieval process, as illustrated in Figure 1. Our132

objective is to identify the most effective strategies for retrieving relevant technical documentation133

from a newly curated corpus of real-world chemistry troubleshooting queries and documents.134

Retrieval Models. We evaluate a diverse set of retriever algorithms and strategies that form the135

foundation of the pipeline. This includes:136

• Lexical & Sparse Models: The classic lexical baseline BM25 [13] and the learned sparse137

retriever SPLADE-v2 [3], which expands queries with related terms.138

• Dense Model: The state-of-the-art dense retriever BGE-large-en-v1.5 [17], indexed using139

FAISS-HNSW [8] for efficient approximate nearest neighbor search.140

• Hybrid Model: A configuration that combines sparse and dense scores via Reciprocal Rank141

Fusion (RRF) [2].142

• Hypothetical Document Embeddings (HyDE): To bridge the lexical and semantic gap143

between concise queries and verbose technical passages, we implement HyDE [4]. This144

strategy uses an instruction-tuned language model to generate a hypothetical ideal response145

to the query. The embedding of this "pseudo-document" is then used for retrieval with the146

dense model, aiming to capture the query’s intent more effectively than its raw form.147

Document Chunking. We explore two fundamentally different approaches to text segmentation.148

The first is a standard fixed-size, sentence-aware window (512 tokens with a 20-token overlap). The149

second is Small2Big, a hierarchical strategy where smaller chunks are first retrieved to identify and150

return larger, more contextually rich parent documents.151

Post-Retrieval Reranking. We rigorously evaluate the utility of a refinement step by ablating three152

distinct configurations: no reranker, the established monoT5 [12] cross-encoder, and the more recent153

FlagReranker. For configurations employing a reranker, the top-50 candidates from the first-stage154

retriever are re-scored. The final top-5 documents are then selected from this refined ranking. This155

comparison is designed to quantify the performance gain from reranking itself and to determine the156

most effective model for this specific domain.157

This systematic design provides a comprehensive grid of configurations for benchmarking and158

analysis, specifically tailored to the challenges of chemistry troubleshooting documentation retrieval.159

4



Chunking

Faiss-HNSW

Embedding

Retrieval

Reranking

Sentence-level 
Small2big/Fixed_size 
Sliding window

R
et

rie
va

l S
ou

rc
e

LLM-Embedder

Sparse: BM25/SPLADE
Dense: LLm Embedder
HyDE

monoT5
FlagReranker

Tr
ou

bl
es

ho
ot

in
g 

do
cu

m
en

t

Query

Q
A 

E
xt

ra
ct

io
n

Figure 1: The modular retrieval pipeline used for evaluation. Source documents are processed
(chunked) and indexed. User queries are processed by a first-stage retriever (sparse, dense, hybrid,
or HyDE). The top-50 candidates are then optionally re-ranked by a cross-encoder (monoT5 or
FlagReranker), and the final top-5 results are selected for output.

5 Evaluation160

5.1 Experimental Setup161

To measure the efficacy of different RAG components for chemistry troubleshooting, we conduct a162

series of controlled experiments on our newly curated dataset.163

Our primary evaluation compares eight distinct pipeline configurations (ID1–ID8 in Table 2). These164

configurations are systematically derived from our modular framework (Section 4) to isolate the165

impact of individual components. We contrast these specialized configurations against a robust166

external baseline, termed Best Practice (BP). This baseline represents a generalized state-of-the-167

art setup derived from recent literature [16], which combines BM25 (sparse), LLM-Embedder168

(dense), HyDE query transformation, the Small2Big chunking strategy, and monoT5 reranking.169

This comparison allows us to rigorously test whether domain-specific tuning provides a significant170

advantage over a generic approach.171

We quantify retrieval performance using four key metrics, all focused on the top-5 retrieved chunks.172

To measure ranking quality, we use Mean Average Precision (mAP) and Normalized Discounted Cu-173

mulative Gain (nDCG@5). To assess the ability to find the correct source, we use Recall@5. Finally,174

to evaluate semantic alignment beyond lexical overlap, we compute the maximum BERTScore [18]175

between the ground truth chunk and the retrieved candidates.176

5.2 Results and Analysis177

Our experimental evaluation, summarized in Table 2, reveals notable performance differences across178

the eight RAG configurations. The comprehensive comparison of these models across all four179

evaluation metrics is visualized in Figure 2, while Figure 3 provides a detailed distribution analysis180

and a focused comparison with the Best Practice (BP) baseline.181

The results demonstrate that our domain-tailored configuration, ID7, achieves the best performance182

on our chemistry troubleshooting benchmark with a Recall@5 score of 0.9469. This configuration183

utilizing SPLADE for sparse retrieval, LLM Embedder for dense retrieval, fixed-size chunking, and184
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Table 2: TroubleRAG configurations with grouped components. Dense = LLM_Embedder; HyDE =
hypothetical document expansion.

Retrieval Chunking Reranking Index Metric

ID Sparse Dense HyDE Method Model Vector DB Recall@5

1 BM25 ✗ ✗ Fixed 512 ✗ — 0.7699
2 SPLADE ✗ ✗ Fixed 512 ✗ — 0.8849
3 ✗ ✓ ✗ Fixed 512 ✗ — 0.8673
4 SPLADE ✓ ✗ Fixed 512 ✗ FAISS-HNSW 0.8850
5 SPLADE ✓ ✓ Fixed 512 ✗ FAISS-HNSW 0.7168
6 SPLADE ✓ ✗ Small2Big ✗ FAISS-HNSW 0.8673
7 SPLADE ✓ ✗ Fixed 512 FlagReranker FAISS-HNSW 0.9469
8 SPLADE ✓ ✗ Fixed 512 monoT5 FAISS-HNSW 0.9115
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Figure 2: Retrieval performance of RAG methods (ID1–ID8) across mAP, nDCG@5, Recall@5, and
BERTScore; stars mark the best method per metric.

the FlagReranker, substantially outperforms the generic BP baseline across all metrics, as clearly185

visualized in the radar chart (Figure 3e). This performance advantage is critical for real-world186

applications, where successfully retrieving the correct troubleshooting procedure for a malfunctioning187

chromatograph or mass spectrometer can save hours of laboratory downtime.188

Key Findings:189

• The FlagReranker is optimal for technical precision. The significant gain of ID7 over ID8190

(monoT5) and ID4 (no reranker) shows that reranking is essential in technical domains. FlagR-191

eranker distinguishes between closely related explanations and ensuring the most relevant diagnostic192

procedure is ranked highest.193

• HyDE is detrimental for factual, precise retrieval. The underperformance of ID5 (Recall@5:194

0.7168) demonstrates that hypothetical generation is ill-suited for a field governed by exact param-195

eters. A HyDE-generated pseudo-document might invent a plausible but incorrect solution. This196

hallucination misdirects retrieval toward irrelevant chunks, delaying resolution for a time-sensitive197

experiment.198

• Advanced sparse retrieval (SPLADE) is highly effective for scientific terminology. The strong199

standalone performance of ID2 (Recall@5: 0.8849) shows that SPLADE can expand short queries200

into the full set of terms used in technical manuals.. A concise query like "LC-MS sensitivity drop"201

can be effectively expanded to include terms like ["electrospray ionization", "capillary voltage",202
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Figure 3: Comparison of retrieval metrics between the baseline best-practice pipeline (BP) and
configuration ID7. (a–d) show the distributions of BERTScore, Recall@5, nDCG@5, and mAP,
respectively.(e) provides a radar plot comparing the average performance of the two models across
these metrics

"source contamination"], directly mirroring the language in technical manuals and retrieving chunks203

that address the exact instrument module involved.204

• Dense retrieval alone captures semantic intent but lacks precision. The performance of ID3205

(Dense only, Recall@5: 0.8673) shows that while semantic search can interpret the general meaning206

of a query, it often fails to distinguish between closely related technical issues. Its scope is too broad207

to consistently support precise diagnosis, highlighting the need to pair dense retrieval with a sparse208

retriever for reliable performance.209

• Simple, consistent chunking outperforms complex hierarchies. The outperformance of ID7210

(Fixed512) over ID6 (Small2Big) suggests that for complex procedures, retrieving the entire context211

is essen tial. The Small2Big strategy is fragile; it might retrieve a small child chunk containing a212

common error code (e.g., "Pressure Error"), but this code could be shared across many different213

instruments and root causes. This can easily lead to retrieving the wrong "parent" chunk from a214

different system. Fixed 512-token chunking, in contrast, often encapsulates an entire, self-contained215

troubleshooting procedure, ensuring the user receives the complete context needed for resolution.216

5.3 Limitations of Current RAG217

Our analysis reveals fundamental limitations in existing text-based RAG systems that render them218

inadequate for real-world laboratory troubleshooting scenarios. Unlike conventional information219

retrieval datasets [14], our source documents are rich with non-textual information, containing critical220

information encoded in instrument photographs, diagnostic diagrams, error screenshots, and complex221

parameter tables. Current RAG pipelines systematically ignore this non-textual content, creating222

significant gaps in retrievable knowledge.223

Furthermore, practical troubleshooting is often a human-interactive, multi-turn process. A technician224

may need to answer clarifying questions or provide additional details based on initial results. To225

address these gaps, our findings identify two primary extensions:226

1. Multi-modal Information Integration: Text-based retrieval cannot access the substantial227

technical knowledge embedded in visual content. Critical troubleshooting information228

requires visual analysis capabilities. For instance, questions like “How do I decrease my229

autotune window m/z width?” demand interpretation of instrument interface diagrams,230

while queries such as “I need to run my analysis at pH 10.5 using a phosphate buffer, but231
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Figure 1: Two Examples of Contamination Which is Taller than the Actual Calibrant Peaks.  These Taller 
Contaminants get Picked by the Tune Algorithm Instead of the Correct m/z, Causing Autotune to Fail 
 

o Check to see if autotune failure occurs with incorrect high m/z tune calibrant.  There have been some 
cases for ESI positive where a 2058 m/z is taller than the 2122 m/z tune calibrant mass.  These failures 
where autotune picks an incorrect base peak over its tune calibrant mass can occur at the low and 
high end as well as in both positive and negative ionization modes.  The key is to observe the failure 
when possible or capture the appropriate files from MSR for further investigation. 

 

 
 
Figure 3:  2058 m/z Contaminant Taller than 2122 m/z Tune Calibrant Mass 
 

o Use remedies like emptying the CDS bottle, acid etch and rinse it with organic, fill with acetonitrile, 
flush CDS for at least an hour (some contamination may require longer), and use new calibrant tune 
mix solution (different lot whenever possible). 

 
 

(a) A Figure Example (b) A Table Example

Figure 4: Multi-modal examples in the source document.

I’m currently using an EC-C18 column which only goes up to pH 8.0. Why do I get poor232

peak shape?” require analysis of tabular specification data, as illustrated in Figure 4.233

2. Multi-turn Refinement: Laboratory technicians rarely provide complete problem descrip-234

tions in initial queries, while effective troubleshooting requires systematic information235

gathering for effective troubleshooting. This diagnostic process inherently requires multi-236

turn interactions to progressively refine solutions. Consider the diagnostic gap between237

complete and typical queries:238

Diagnostic Information Gap in Real-World Queries

Complete diagnostic query: Q: I’m setting up my Autoflex series instrument for a
new experiment, but I’m concerned about the environmental conditions in my lab.
The temperature fluctuates quite a bit, and I’m worried it might affect my results.
What should I do?

Typical incomplete query: Q: I’m setting up my Autoflex series instrument for a
new experiment and I’m seeing some fluctuation in the data I’m collecting. What
should I do? Required diagnostic clarifications: – Are environmental factors like

room temperature stable? – Is there a trend in the fluctuations (upward, downward,
random)? – Which type of data is fluctuating—signal intensity, retention time, or
m/z?

239

The inability to conduct such diagnostic dialogues fundamentally limits current systems to240

providing generic rather than targeted troubleshooting guidance.241

These limitations explain why generic RAG configurations underperform in technical domains: they242

operate within architectural constraints that preclude access to essential multimodal information and243

interactive diagnostic processes that define expert-level troubleshooting.244

6 Conclusion245

In this work, we introduced TroubleRAG, a comprehensive framework for evaluating RAG pipelines246

on the challenging domain of laboratory instrument troubleshooting. We constructed a new, expert-247

validated dataset, and conducted a systematic evaluation of six retrieval configurations. Our central248

finding is that generic RAG "best practices" are insufficient for this specialized task. We presented a249

domain-tailored recipe—combining hybrid search with a strong reranker that significantly outper-250

forms a robust baseline, boosting Recall@5 by nearly 8 percentage points. However, this work also251

highlights critical limitations in current retrieval techniques that present clear avenues for future re-252

search. Our source documents are rich with non-textual information, such as instrument photographs,253

diagrams, and complex data tables, which are largely ignored by current text-based RAG pipelines.254

Furthermore, practical troubleshooting is often an interactive, multi-turn process. A technician may255

need to answer clarifying questions or provide additional details based on initial results. To address256

these gaps, our future work will focus on two primary directions: the enhancement of multi-modal257

retrieval and interactive, multi-turn dialogue.258
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