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Abstract001

Watermarking is a key technique for detecting002
AI-generated text. In this work, we study its003
vulnerabilities and introduce the Smoothing At-004
tack, a novel watermark removal method. By005
leveraging the relationship between the model’s006
confidence and watermark detectability, our007
attack selectively smoothes the watermarked008
content, erasing watermark traces while pre-009
serving text quality. We validate our attack on010
open-source models ranging from 1.3B to 30B011
parameters on ten different watermarks, demon-012
strating its effectiveness. Our findings expose013
critical weaknesses in existing watermarking014
schemes and highlight the need for stronger015
defenses.016

1 Introduction017

Detecting whether a text is generated by language018

models is critical in domains like fraud detection,019

fake news identification, and plagiarism preven-020

tion. A common approach is watermarking, where021

subtle patterns are embedded in the generated text022

for later detection (Aaronson, 2023; Christ et al.,023

2023; Huang et al., 2023; Li et al., 2024). Water-024

marking has gained traction in both academia and025

industry (Dathathri et al., 2024) as a key safeguard026

for language model applications. While various027

watermarking techniques exist, they share a core028

principle: favoring certain tokens over others (de-029

tailed in Section 2).030

In this work, we identify key scenarios where031

watermarks fail and introduce a novel watermark re-032

moval attack that exploits this weakness, revealing033

fundamental limitations in existing watermarking034

schemes.035

Effectiveness of watermarks. We say a watermark036

is effective if (i) the watermarked text maintains037

high quality, comparable to those generated from038

the corresponding un-watermarked model, and (ii)039

the detector reliably identifies watermark traces,040

i.e., it can identify watermarked text without mak- 041

ing a large error. We analytically and empirically 042

show that these aspects are in tension: better text 043

quality often implies lower watermark detectabil- 044

ity, and vice versa. Moreover, both are connected 045

through the model’s confidence in generating out- 046

put. We explain the high-level idea as follows (see 047

more detail in Section 3). 048

Given a prefix, when the model is confident 049

about the output token, watermarking has negli- 050

gible impact on the output. In this case, the water- 051

mark trace is not obvious. Conversely, when the 052

model is not confident, watermarking makes the 053

model tend to select certain tokens (that are origi- 054

nally unlikely to get sampled) over others, making 055

watermark trace more detectable while degrading 056

the text quality. 057

Smoothing Attack. Leveraging this insight, we 058

propose the Smoothing Attack for watermark re- 059

moval. For each prefix, the attack first identifies if 060

the output token contains the watermark trace, by 061

estimating the target watermarked model’s confi- 062

dence in this output. If the confidence is low, then 063

we replace the token with a freshly sampled one 064

(see more detail in Section 4), removing watermark 065

traces while maintaining text quality; otherwise, if 066

the confidence is high, then we retain the water- 067

marked model’s output. 068

We evaluate our attack across ten diverse wa- 069

termarking schemes and three different families 070

of open-sourced models, OPT (Zhang et al., 2022) 071

(from 1.3B to 30B parameters), Llama3-8B (Dubey 072

et al., 2024) and Qwen2-1.5B (Chu et al., 2024). 073

In certain cases, our attack completely removes the 074

watermark (reducing watermark detection rates to 075

zero) while preserving the text quality. Our attack 076

can also outperform the state-of-the-art Paraphras- 077

ing Attack, which uses the strong GPT-3.5-turbo 078

to paraphrase the watermarked text. Compared 079

with Paraphrasing Attack, our attack is more cost- 080
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efficient, as it uses only much weaker reference081

models, e.g., OPT-125M (Zhang et al., 2022) when082

attacking OPT models from 1.3B to 30B parame-083

ters. These findings underscore critical weaknesses084

in existing watermarks and highlight the need for085

more robust defenses.086

2 Preliminaries and Related Work087

Given an auto-regressive language model (LM) M088

with vocabulary V , the model outputs a probabil-089

ity distribution over tokens at each position t in a090

prompt by computing logits lt(v) and applying a091

softmax:092

Pt(v) =
exp
(
lt(v)

)∑
v′∈V exp

(
lt(v′)

) . (1)093

To sample the next token, common strategies094

include top-k sampling (Fan et al., 2018; Holtzman095

et al., 2018), selecting from the top k tokens by096

probability, and top-p (nucleus) sampling (Holtz-097

man et al., 2019), selecting from the smallest set098

whose cumulative probability exceeds p.099

Watermarking schemes subtly modify this sam-100

pling to embed patterns in the generated text101

(v1, . . . , vT ). These patterns are later detected102

via a scoring function d(v1, . . . , vT ); if the score103

exceeds a threshold τ , the text is deemed water-104

marked.105

Below we briefly review representative water-106

marking approaches.107

Green–red watermark (Kirchenbauer et al.,108

2023a). For each position t, a secret key and the109

current prefix deterministically partition the vocab-110

ulary V into a green list Gt (size γ|V|) and a red111

list. The logits of green tokens are then boosted by112

a constant δ, giving the modified distribution113

P̃t(v) =
exp
(
lt(v) + δ · 1{v ∈ Gt}

)∑
v′∈V exp

(
lt(v′) + δ · 1{v′ ∈ Gt}

) .
(2)

114

The detector checks whether green tokens appear115

more frequently than expected, computing the116

score117

d(v1, . . . , vT ) =

∑T
t=1 (1{vt ∈ Gt} − γ)√

Tγ(1− γ)
. (3)118

The score is high when green tokens are overrepre-119

sented, indicating a watermark.120

Gumbel and Tournament watermarks (Aaron-121

son, 2023; Dathathri et al., 2024). These meth-122

ods introduce randomness via a secret key and se-123

lection process without altering the distribution124

Pt, preserving average text quality. In Gumbel 125

sampling, noise values ut(v) ∈ [0, 1] are gener- 126

ated using a seed derived from recent tokens and 127

a secret key; the token v∗t is selected as v∗t = 128

argmaxv − log ut(v)
Pt(v)

. The detector uses the score 129

d(v1, . . . , vT ) = −
∑

t log(1− ut(vt)). 130

Tournament sampling similarly uses m secret 131

functions g(1), ..., g(m) to score each token based 132

on a seed rt. The token is chosen through m rounds 133

of pairwise comparisons among 2m sampled candi- 134

dates. Detection relies on the average tournament 135

score: 136

d(v1, . . . , vT ) =
1

T

T∑
t=1

1

m

m∑
l=1

g(l)(vt, rt). (4) 137

If the score significantly exceeds 0.5, the text is 138

predicted as watermarked. 139

Other related work. The Green-red list water- 140

mark (Kirchenbauer et al., 2023a) introduces token- 141

level bias by amplifying the probabilities of green- 142

listed tokens and is thus considered distortionary. 143

Variants differ in list construction and detection 144

methods (Kirchenbauer et al., 2023b; Lee et al., 145

2023; Liu et al., 2023; Wu et al.). In contrast, Gum- 146

bel and Tournament sampling (Kuditipudi et al., 147

2023; Aaronson, 2023; Dathathri et al., 2024) pre- 148

serve the token distribution in expectation and 149

are distortion-free. Other distortion-free schemes 150

include those by Hu et al.; Christ et al. (2023); 151

see Zhao et al. (2024a) for a broader review. We 152

evaluate 10 representative watermarks from both 153

categories to demonstrate the generality of our at- 154

tack. 155

Watermark removal techniques typically disrupt 156

token patterns using homoglyphs, emojis, or con- 157

trol characters (Pajola and Conti, 2021; Boucher 158

et al., 2022; Goodside, 2023), but often degrade flu- 159

ency. A more effective approach is paraphrasing, 160

where a separate model rewrites the text (Kirchen- 161

bauer et al., 2023b; Krishna et al., 2023; Piet 162

et al., 2023). These attacks depend on strong para- 163

phrasers—e.g., using GPT-3.5-turbo to rewrite out- 164

puts from smaller models like LLaMA-7B (Ope- 165

nAI, 2023; Touvron et al., 2023). 166

Recent work explores adaptive paraphrasers 167

trained to evade specific watermark detectors (Diaa 168

et al., 2024), often requiring detailed knowledge 169

of the watermarking algorithm. Other methods 170

combine paraphrasing with auxiliary models to 171

select high-quality rewrites from large candidate 172

pools (Jovanović et al., 2024; Zhang et al., 2024). 173
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In contrast, our smoothing attack is lightweight:174

it leverages only top-K token probabilities from175

the watermarked model and a small reference176

model—without needing a strong paraphraser,177

large-scale sampling, or exact knowledge of the178

watermarking scheme.179

3 On the Effectiveness of Watermarks180

We investigate two key aspects of watermark ef-181

fectiveness: detectability and text quality. Our key182

finding is that these aspects are inter-connected via183

the model’s confidence in prediction and are in-184

herent tension—improving detectability typically185

decreases text quality, and vice versa. This trade-186

off arises directly from how watermarking algo-187

rithms exploit token-level decisions, revealing a188

fundamental vulnerability leveraged by our pro-189

posed attack. Full derivations and further analysis190

are provided in Appendix C.191

3.1 Token-level detectability192

Detectability. Watermark detectors aggregate193

token-wise signals. For the Green–red scheme,194

the contribution of position t is195

St = E
v∼P̃t

[
1{v ∈ Gt}

]︸ ︷︷ ︸
watermarked

− Ev∼Pt

[
1{v ∈ Gt}

]︸ ︷︷ ︸
original

,196

where Pt and P̃t are the original and logit-shifted197

distributions. The detector score in Eq. equation 3198

is just the normalised sum of these St.199

Link to model confidence. With logit shift δ, St200

can be expressed solely through Ev∼Pt [1{v ∈ Gt}]201

(full derivation in Appendix):202

St =
(eδ − 1)

(
1− Ev∼Pt [1{v ∈ Gt}]

)
1 + (eδ − 1)Ev∼Pt [1{v ∈ Gt}]

. (5)203

The variance of 1{v ∈ Gt} under Pt equals204

γ(1 − γ) ∥Pt∥2; hence departures of the expecta-205

tion from its mean γ grow with the confidence mea-206

sure ∥Pt∥2 =
∑

v Pt(v)
2. Figure 1 plots St versus207

∥Pt∥2 for 400 prefixes (OPT-1.3B, γ = 0.5, δ =208

1.0). High-confidence locations (∥Pt∥2≈1) yield209

small St, whereas low-confidence ones (∥Pt∥2 ≈210

|V|−1) maximise St. The same inverse relation211

holds for Gumbel and Tournament watermarks (see212

Fig. 7 in Appendix C.5). The take-away is that213

when the model is confident about a token, that out-214

put token leaves little trace for watermark detection215

(i.e., difficult to detect); uncertainty amplifies the216

watermark signal (i.e., easy to detect).217

3.2 Text quality 218

Ultimately, watermarking should minimize its neg- 219

ative impact on downstream text quality. While 220

we empirically assess quality via perplexity and 221

diversity in Section 5, we first quantify how water- 222

marking affects token-level distributional fidelity, 223

as changes at this level directly influence down- 224

stream quality. 225

To measure fidelity loss, we use the 226

total-variation distance: 227

DTV (Pt, P̃t) =
1
2

∑
v∈V

|Pt(v)− P̃t(v)|. 228

This metric is prompt- and task-agnostic, precisely 229

capturing how watermarking alters token probabil- 230

ities. Importantly, DTV provides an upper bound 231

on any smooth token-level objective—including 232

perplexity and diversity—thus directly linking dis- 233

tributional fidelity to measurable text quality. 234

We evaluate fidelity loss under a fixed secret key, 235

which deterministically partitions tokens (e.g., into 236

green/red lists) based on the prefix. This matches 237

the practical setting, where detectors must know the 238

exact watermark key used during text generation. 239

Link to model confidence. Figure 2 (left) shows 240

that distortion shrinks as confidence ∥Pt∥2 rises: 241

sharply peaked distributions are barely perturbed, 242

while flat ones incur substantial fidelity loss. Gum- 243

bel and Tournament watermarks exhibit the same 244

pattern (Appendix Fig. 8). In addition, if we focus 245

on the part where ∥Pt∥2 is small, we note there is 246

very little difference between the DTV measured 247

between the original model and the watermarked 248

model and the the DTV measured between the orig- 249

inal model and the watermarked reference model. 250

Effectively, that means replacing low-confidence 251

tokens with samples from a small reference model 252

harms fidelity no more (and often less, according 253

to our experiments) than the watermark itself. Con- 254

versely, at high-confidence positions the reference 255

model can be worse than the watermarked model, 256

which, in turn, underscores the watermark’s muted 257

effect per se. 258

3.3 Detectability–quality trade-off 259

Combining the findings of the previous two subsec- 260

tions, we now answer the question: are the tokens 261

that are easiest to detect are also those that most 262

distort the distribution? 263

The answer is yes. In Figure 2 (right), we see 264

that tokens that boost detectability scores (St) are 265
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Figure 1: Correlation between the token-level watermark signal St, the original model’s expected green-token
rate Ev∼Pt

[1v ∈ Gt], and model confidence ∥Pt∥2, measured on OPT-1.3B with the Green-red watermark
(γ=0.5, ; δ=1.0). Prefixes are drawn from the Harry Potter Wikipedia article. Corresponding results for Gumbel
and Tournament watermarks are provided in Fig. 7 (Appendix).
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Figure 2: Left: Token-level distributional shift
DTV (Pt, P̃t) vs. model confidence ∥Pt∥2 evaluated on
OPT-1.3B. The blue plot measures the distributional
shift due to the watermark distortion for Green–red
watermark (with γ = 0.5, δ = 1.0). The red plot
measures the distributional shift between the reference
model (OPT-125M) and the original model. Right:
DTV (Pt, P̃t) vs. token-level detectability St for the
Green-red watermark. Lower confidence leads to larger
fidelity loss and stronger watermark detectability. Gum-
bel and Tournament show identical patterns (see Fig. 9).

exactly those with the largest fidelity loss (DTV ).266

Hence token-level watermarks cannot achieve high267

detectability without sacrificing distributional fi-268

delity—and, by extension, downstreaming text269

quality. This inherent trade-off motivates our270

smoothing attack to be introduced in Section 4:271

by targeting at low-confidence positions, we can272

successfully remove the watermark signal while273

preserving the overall text quality.274

4 Smoothing Attack275

Our attack aims to remove watermarks while pre-276

serving text quality. At each token position, we277

first estimate the model’s confidence and then se-278

lectively smooth low-confidence tokens to weaken279

the watermark detection signal. Detailed justifica-280

tion and derivations are provided in Appendix C;281

here we present the core algorithm clearly.282

Adversary’s model access. We assume a practi-283

cal scenario: the adversary queries the target wa-284

termarked model via an API, obtaining only the 285

top-K token probabilities for a given prefix (with 286

K ≪ |V|). The original, un-watermarked model is 287

not available to the adversary. 288

Estimating model confidence. We estimate model 289

confidence at position t by approximating the 290

squared ℓ2-norm of the token probability vector 291

Pt: 292

ĉt =
∑
v∈Vtop

Pt(v)
2 +

(
1−
∑

v∈Vtop
Pt(v)

)2
|V| −K

, 293

where Vtop denotes the set of top-K tokens returned 294

by the model. Here we assume uniform probabili- 295

ties among unobserved tokens. - For distortion-free 296

watermarks (Gumbel, Tournament), the observed 297

probabilities Pt(v) directly reflect the original dis- 298

tribution. - For distortionary watermarks (Green- 299

red), the probabilities from the watermarked model 300

slightly deviate from the original. However, as 301

shown in Appendix C, this approximation still cor- 302

rectly ranks tokens by their confidence; hence, it 303

remains effective without additional correction. 304

Normalizing confidence scores. To convert the 305

confidence estimate ĉt into a normalized confi- 306

dence score ct ∈ [0, 1], we first establish empirical 307

bounds L (lower) and U (upper). Specifically, we 308

query the watermarked model using N random pre- 309

fixes (e.g., N = 200) and record their ĉt values. 310

Given these bounds, we set 311

ct =
ĉt − L

U − L
. 312

Smoothing procedure. Using a smoothing param- 313

eter α > 0, our attack proceeds as follows at each 314

token position. 1) For distortion-free watermarks, 315

with probability cαt , we retain the token originally 316

produced by the watermarked model; otherwise, 317

we resample from the observed top-K probabili- 318

ties. 2) For distortionary watermarks, we query a 319
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small reference model (e.g., smaller than the wa-320

termarked model) using the same prefix to obtain321

its top-K token probabilities to construct a mixture322

distribution:323

cαt · Pwm + (1− cαt ) · Pref,324

where Pwm and Pref represent the watermarked and325

reference model distributions, respectively. We326

then sample from this mixture distribution. In-327

tuitively, large α favors keeping tokens from the328

watermarked model, while small α smooths the329

watermark more aggressively by replacing tokens330

more frequently.331

Finally, if the adversary is uncertain about332

whether the watermark is distortion-free or distor-333

tionary, they simply follow the procedure designed334

for distortionary watermarks (using the reference-335

model mixture) and the attack’s success is not af-336

fected, as demonstrated in Section 5.337

Efficiency and assumptions. Our attack is com-338

putationally efficient: it requires a modest ini-339

tial overhead (a few hundred queries) to establish340

confidence-score normalization bounds (L,U), fol-341

lowed by one query per token position during gen-342

eration. Importantly, our attack requires no knowl-343

edge of the watermark’s algorithm, secret key, or344

detector internals, ensuring practical applicability.345

5 Experiments346

Setup. We evaluate our attack on three open-source347

model families: Llama3 (8B parameters) (Dubey348

et al., 2024), OPT (1.3B to 30B parameters) (Zhang349

et al., 2022), and Qwen2 (1.5B parameters) (Chu350

et al., 2024). When attacking distortionary wa-351

termarks, we use smaller models as references:352

Llama3-1B, OPT-125M, and Qwen2-0.5B, respec-353

tively.354

Following prior work (Kirchenbauer et al.,355

2023a; Pan et al., 2024), we conduct evaluations356

on the C4 dataset (Raffel et al., 2020), where water-357

mark performance has been shown effective. We358

avoid datasets with inherently low entropy (e.g.,359

code generation), since previous studies (Kirchen-360

bauer et al., 2023b; Lee et al., 2023) have demon-361

strated that watermark effectiveness significantly362

reduces in such settings. For each text in the dataset,363

the first 30 tokens form the prompt, and models gen-364

erate the subsequent 200 tokens. All reported re-365

sults are averaged over 100 prompts. Experiments366

were conducted using RTX-Titan GPUs.367

We evaluate our attack against 10 rep- 368

resentative watermarking algorithms covering 369

both distortionary and distortion-free methods: 370

KGW (Kirchenbauer et al., 2023a), Unigram (Zhao 371

et al., 2023), UPV (Liu et al., 2023), X-SIR (He 372

et al., 2024), DIP (Wu et al.), SWEET (Lee et al., 373

2023), EWD (Lu et al., 2024), Unbiased (Hu 374

et al.), SynthID (Tournament sampling) (Dathathri 375

et al., 2024), and Gumbel sampling (Aaronson, 376

2023). Our implementations build on the Mark- 377

LLM toolkit (Pan et al., 2024). Note that Gumbel 378

and X-SIR evaluations are restricted to OPT mod- 379

els, since Gumbel sampling exceeds 100 GB GPU 380

memory requirements for Llama/Qwen due to their 381

large vocabulary sizes, and X-SIR’s official imple- 382

mentation currently supports only OPT models. 383

We compare our Smoothing Attack with the 384

state-of-the-art Paraphrasing Attack (Piet et al., 385

2023), which employs GPT-3.5-turbo to rewrite 386

texts, as well as its enhanced variants: paraphras- 387

ing multiple times and using GPT-4o as a stronger 388

paraphraser. 389

Performance metric. We measure attack effective- 390

ness along two dimensions: watermark removal 391

and text quality preservation. For watermark re- 392

moval, we report the true positive rate (TPR) of 393

watermark detection, under a fixed false positive 394

rate (FPR) of less than 1%. A lower TPR indi- 395

cates better watermark removal (TPR is 1% for 396

un-watermarked texts and 100% for fully water- 397

marked texts without any attack). To evaluate text 398

quality, we follow established protocols (Kirchen- 399

bauer et al., 2023a; Pan et al., 2024; Kirchenbauer 400

et al., 2023b) by reporting perplexity (lower is bet- 401

ter) and diversity (higher is better). 402

Unless otherwise noted, we set the smoothing 403

parameter α = 1.0 and use the top-10 tokens from 404

both the watermarked and reference models. Ad- 405

ditional experimental details and parameter varia- 406

tions are provided in the appendix. 407

Performance in watermark removal. Our main 408

results are summarized in Tables 1 and 2. The 409

key finding is that the Smoothing Attack effec- 410

tively removes watermarks across diverse models 411

and watermarking algorithms, consistently outper- 412

forming the strong paraphrasing attacks. Specifi- 413

cally, our attack achieves very low watermark de- 414

tection rates (TPR around 5%, occasionally reach- 415

ing 0%), whereas paraphrasing attacks perform no- 416

tably worse. For instance, on OPT-1.3B with the 417

Unigram watermark (Table 1), paraphrasing leaves 418
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Table 1: Performance of watermark removal attacks on OPT-1.3B, Llama3-8B, and Qwen-1.5B models. We report
the watermark true positive rate (TPR, lower is better), perplexity (PPL, lower is better), and diversity (Div, higher
is better). All TPR values are measured at a fixed false positive rate below 1%. Additional results for models from
1.3B to 30B parameters are presented in Appendix B.6, demonstrating consistent trends.

Watermark Attack OPT-1.3B Llama3-8B Qwen2-1.5B

TPR PPL Div TPR PPL Div TPR PPL Div

Un-watermarked - 1 11.39 8.22 1 3.47 6.82 1 12.26 8.10
Reference - 1 19.57 7.69 1 4.40 6.52 1 16.02 8.06

KGW (Kirchenbauer et al., 2023a)
None 100 14.61 8.07 99 4.60 6.92 100 16.46 8.11
Paraphrasing 3 14.82 9.56 2 5.35 8.0 2 10.45 9.42
Smoothing 0 9.57 6.72 2 3.20 5.63 0 8.02 6.91

Unigram (Zhao et al., 2023)
None 100 14.99 7.29 99 4.61 6.56 100 15.41 7.37
Paraphrasing 53 14.51 8.75 54 5.60 8.02 5 10.40 8.56
Smoothing 5 9.44 6.73 24 3.10 5.44 1 7.77 6.71

SynthID (Dathathri et al., 2024)
None 100 7.12 7.41 99 4.83 7.31 100 6.94 7.05
Paraphrasing 1 10.57 9.11 1 5.62 8.18 1 6.90 8.43
Smoothing 0 10.40 8.64 0 3.40 6.86 0 10.21 8.04

DIP (Wu et al.)
None 100 13.73 8.44 84 4.03 7.35 100 14.34 8.27
Paraphrasing 0 13.95 9.25 0 5.25 8.34 2 10.10 8.85
Smoothing 6 9.34 6.84 6 3.17 5.67 11 7.62 6.92

Unbiased (Hu et al.)
None 100 13.61 8.29 84 4.02 7.29 100 14.64 8.21
Paraphrasing 3 14.45 10.39 2 5.36 8.57 1 9.97 8.82
Smoothing 27 9.19 6.84 5 3.17 5.75 5 7.68 6.94

UPV (Liu et al., 2023)
None 99 11.65 8.22 83 4.38 6.80 86 11.93 7.49
Paraphrasing 34 13.73 9.92 2 5.43 8.00 2 9.03 8.58
Smoothing 20 10.01 6.89 1 3.12 5.49 0 8.16 6.91

EWD (Lu et al., 2024)
None 100 15.23 7.92 100 4.56 6.71 100 16.31 7.85
Paraphrasing 0 14.95 9.95 7 5.73 7.83 1 10.18 9.28
Smoothing 0 9.93 6.78 3 3.13 5.38 0 7.82 6.85

SWEET (Lee et al., 2023)
None 100 14.36 8.02 99 4.53 6.69 100 15.89 7.65
Paraphrasing 0 14.57 9.45 14 5.64 8.05 4 10.18 9.30
Smoothing 0 9.59 6.72 4 3.09 5.40 0 7.85 6.92

53% of texts detectable, whereas our smoothing419

reduces detection to just 5%, despite using only a420

much smaller OPT-125M reference model.421

Moreover, our attack is computationally inexpen-422

sive and practical: watermarking text with KGW423

on OPT-1.3B requires about 4.2 seconds, while424

our smoothing attack using OPT-125M takes just425

6.5 seconds (on two TITAN RTX GPUs). This426

brings us an important message: existing water-427

marking schemes are vulnerable to even resource-428

limited adversaries, underscoring the significant429

real-world applicability of the smoothing attack430

and fundamental limitations of existing water-431

mark defenses.432

Performance in text quality. Our smoothing at-433

tack effectively preserves text quality, maintain-434

ing low perplexity (PPL) and competitive diver-435

sity (Div) while significantly improving watermark436

removal. For instance, on OPT-1.3B with the Un-437

igram watermark (Table 1), our attack achieves438

notably better perplexity (9.44 vs. 14.51) and com-439

parable diversity (6.73 vs. 8.75) relative to the para-440

phrasing attack, while dramatically reducing wa-441

termark detection (TPR of 5% vs. 50%). Further442

Table 2: Performance of watermark removal attacks
on OPT-1.3B with Gumbel (Aaronson, 2023) and X-
SIR (He et al., 2024) watermarks (with FPR < 1%).

Watermark Attack TPR (%) PPL Div

Gumbel
None 98 2.96 4.35
Paraphrasing 13 14.21 11.13
Smoothing 9 19.25 8.30

X-SIR
None 94 13.99 7.96
Paraphrasing 34 14.13 8.80
Smoothing 9 9.47 6.75

details on these quality metrics are provided in Ap- 443

pendix B.3 (Figures 4 and 5). 444

The effectiveness of our smoothing method is 445

also evident for Gumbel sampling (Table 2). Al- 446

though Gumbel sampling itself yields artificially 447

low perplexity by generating repetitive content, 448

it substantially reduces text diversity and overall 449

quality. Our smoothing attack, by comparison, 450

slightly increases perplexity but significantly re- 451

duces undesirable repetition, thereby improving 452

actual text readability and coherence (examples in 453

Appendix B.5, Table 14). 454

While our attack may sometimes show slightly 455
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Table 3: Effectiveness of watermark removal attacks on
OPT-1.3B under Unigram and UPV schemes. Trans-
lation can reduce TPR but significantly degrades qual-
ity. Repeated paraphrasing using GPT-3.5 lowers TPR
further, with higher cost. GPT-4o improves fluency
(lower PPL) but still leaves detectable watermark traces.
Smoothing achieves the best overall trade-off by reduc-
ing TPR while preserving fluency and diversity.

Watermark Attack TPR(%) PPL Div

Unigram

None 100 15.0 7.3
Translate (ZH) 100 22.2 7.6
Translate (FR) 0 23.0 7.3
GPT-3.5 Paraphrase (1x) 53 14.5 8.8
GPT-3.5 Paraphrase (2x) 0 15.7 9.9
GPT-3.5 Paraphrase (3x) 0 15.6 9.9
GPT-4o Paraphrase (1x) 0 11.2 8.4
Smoothing 5 9.4 6.7

UPV

None 99 11.7 8.2
Translate (ZH) 58 17.0 8.0
Translate (FR) 83 17.2 7.7
GPT-3.5 Paraphrase (1x) 34 13.7 9.9
GPT-3.5 Paraphrase (2x) 23 15.1 9.9
GPT-3.5 Paraphrase (3x) 24 14.7 10.1
GPT-4o Paraphrase (1x) 51 9.8 8.7
Smoothing 20 10.0 6.9

lower diversity compared to paraphrasing, this pri-456

marily arises because our method samples only457

from the top-K most likely tokens instead of the458

entire vocabulary. Increasing the value of K (see459

Table 5) effectively restores diversity, though it re-460

quires additional probability information from the461

model. Interestingly, by restricting token selection462

to the top-K tokens, our smoothing attack consis-463

tently achieves even lower perplexity than unwater-464

marked texts. Thus, beyond effectively removing465

watermarks, our method also enhances overall text466

quality by preventing the selection of extremely467

unlikely tokens commonly encountered in standard468

sampling.469

Comparison with translation and repeated para-470

phrasing attacks. We further contextualize our471

smoothing attack by evaluating two additional at-472

tack types—translation-based and repeated para-473

phrasing attacks—particularly targeting watermark474

schemes (Unigram and UPV) resilient to single-475

pass GPT-3.5 paraphrasing.476

For translation-based attacks, texts are translated477

to an intermediate language (Chinese or French)478

and then back to English using Google Trans-479

late (Google, 2024). For repeated paraphrasing,480

we apply GPT-3.5 up to three times iteratively, sim-481

ulating more aggressive rewriting. Additionally,482

Table 4: Comparison with the adaptive paraphraser
from Diaa et al. (2024) on Llama3-8B with the Uni-
gram watermark. The adaptive paraphraser is fine-tuned
on Llama3-3B. Our attack use the same base, non-fine-
tuned model as our reference model.

Attack TPR (%) PPL Div

None 67 4.6 6.6
Adaptive Paraphraser 0 6.5 7.4
Smoothing 0 3.1 6.6

we explore GPT-4o, a stronger paraphraser with 483

enhanced fluency and coherence. 484

Table 3 demonstrates that translation-based 485

attacks often significantly degrade text qual- 486

ity (higher perplexity) while only inconsistently 487

removing watermarks. Repeated paraphras- 488

ing improves watermark removal but substan- 489

tially increases computational cost. Paraphras- 490

ing with GPT-4o—a stronger model than GPT- 491

3.5 turbo—enhances text quality (lower perplexity) 492

but does not guarantee better watermark removal; 493

detection rates remain inconsistent and can even 494

worsen, as observed with the UPV watermark. 495

Overall, these baselines emphasize the core ad- 496

vantage of our smoothing attack: it achieves robust 497

watermark removal while preserving or even en- 498

hancing text quality, without relying on costly LMs. 499

Comparison with adaptive paraphrasers. We 500

compare our smoothing attack with the adaptive 501

paraphraser proposed by Diaa et al. (2024), which 502

relies on white-box knowledge of watermark algo- 503

rithms, including the secret key generation and em- 504

bedding mechanisms. In contrast, our smoothing at- 505

tack operates purely under black-box assumptions, 506

requiring no detailed watermark knowledge. De- 507

spite this weaker assumption, Table 4 demonstrates 508

our smoothing attack achieves comparable or supe- 509

rior watermark removal performance, while signif- 510

icantly preserving text quality (lower PPL). Thus, 511

our method offers practical effectiveness without 512

demanding unrealistic adversarial knowledge. 513

Ablation studies on K, α, and model size. We 514

extensively study the sensitivity of our smoothing 515

attack to critical parameters (K and α) and the 516

target model’s size. 517

Increasing K typically improves watermark re- 518

moval (lower TPR) and diversity, at a slight cost of 519

increased perplexity (Table 5). Notably, even with 520

a minimal setting (K = 1), our attack remains ef- 521

fective, achieving a TPR of only 18%, significantly 522

lower than GPT-3.5 paraphrasing (53%). Increas- 523

7



Table 5: Impact of K and α on Smoothing Attack per-
formance on OPT-1.3B with Unigram watermark.

K α TPR (%) PPL Div

Fixed to 10

0.5 42 9.9 6.86
1.0 5 9.44 6.73
2.0 0 9.38 6.58
3.0 1 9.25 6.43

1

Fixed to 1

18 3.21 4.62
5 10 7.46 6.11
10 5 9.44 6.73
15 5 11.73 7.11

Table 6: Smoothing Attack against Unigram watermark-
ing on models of different sizes, with OPT-125M as the
reference model.

Target model size Setting TPR (%) PPL Div

1.3B
Unwatermarked 0 12.95 8.67
Watermarked 99 16.53 7.29
Smoothing 6 10.37 6.83

2.7B
Unwatermarked 0 11.75 8.36
Watermarked 100 14.31 7.41
Smoothing 4 10.35 6.66

6.7B
Unwatermarked 0 10.20 8.45
Watermarked 100 12.94 7.48
Smoothing 6 10.54 6.68

13B
Unwatermarked 0 10.14 8.39
Watermarked 100 12.44 7.39
Smoothing 5 10.32 6.70

30B
Unwatermarked 0 8.46 8.44
Watermarked 100 10.45 7.56
Smoothing 7 10.15 6.75

ing the smoothing parameter α makes our attack524

more aggressive in replacing uncertain tokens, thus525

enhancing watermark removal and generally im-526

proving perplexity. However, higher α values can527

slightly reduce diversity. By adjusting α, adver-528

saries can effectively balance between watermark529

removal and text diversity (see Table 5). Additional530

results across diverse watermarks and models are531

presented in Appendix B.4.532

Finally, we evaluate the effect of varying the tar-533

get model size within the OPT family (from 1.3B534

to 30B), using the much smaller OPT-125M as the535

reference model. Our results (Table 5) indicate min-536

imal sensitivity to the target model’s size, confirm-537

ing the scalability of our attack. Comprehensive538

results are detailed in Appendix B.6.539

Effect of reference model size. To evaluate the540

influence of reference model size, we apply our541

smoothing attack using OPT models ranging from542

125M to 1.3B parameters as the reference model.543

Table 7 clearly indicates that using larger reference544

models improves text quality (lower PPL, higher545

diversity), and can further reduce watermark de-546

Table 7: Impact of size of reference model size on the
performance of the smoothing attack. Larger models
reduce perplexity; lower TPR; and maintain diversity.

Watermark Attack / Model Size TPR (%) PPL Div

KGW

None (Watermarked) 100 14.6 8.1
Smoothing (OPT-125M) 0 9.6 6.7
Smoothing (OPT-350M) 0 8.5 7.0
Smoothing (OPT-1.3B) 0 7.0 7.3

DIP

None (Watermarked) 100 13.7 8.4
Smoothing (OPT-125M) 6 9.3 6.8
Smoothing (OPT-350M) 9 8.2 7.0
Smoothing (OPT-1.3B) 6 6.9 7.2

UPV

None (Watermarked) 99 11.7 8.2
Smoothing (OPT-125M) 20 10.0 6.9
Smoothing (OPT-350M) 5 8.9 7.2
Smoothing (OPT-1.3B) 4 7.4 7.3

Table 8: Impact of watermark-type knowledge on
smoothing attack against the distortion-free SynthID
watermark. Smoothing attack reduces true positive rate
to zero whether or not it knows the watermark type.

Setting TPR (%) PPL Div

Watermarked (no attack) 100 7.1 7.4
Smoothing (type known) 0 10.4 8.6
Smoothing (type unknown) 0 9.6 6.7

tectability. These results confirm that the expres- 547

siveness of the reference model positively impacts 548

overall attack performance. 549

Impact of watermark type knowledge. Our 550

smoothing attack requires knowledge of the wa- 551

termark type—specifically, whether it is distortion- 552

free or distortionary—only for deciding whether 553

and how to re-sample tokens. To assess the impor- 554

tance of this assumption, we evaluate our attack on 555

the distortion-free SynthID watermark both with 556

and without access to this information (Table 8). 557

The results show that our attack achieves identical 558

performance (TPR of 0%) in both settings, demon- 559

strating its robustness and practical applicability 560

even without watermark-type knowledge. 561

6 Conclusion 562

We revealed limitations in existing watermarks for 563

language models and examined their robustness 564

against watermark removal attacks. We introduced 565

Smoothing Attack, a novel method that leverages 566

model confidence to selectively remove watermark 567

traces while preserving text quality. Comprehen- 568

sive evaluations demonstrated that Smoothing At- 569

tack can completely remove watermarks, outper- 570

forming the state-of-the-art attack and highlighting 571

a critical gap in current watermarks, and calling for 572

more robust solutions. 573
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7 Limitations and Ethical Considerations574

In conducting this study, we have carefully consid-575

ered several factors that could influence the general-576

izability and applicability of our findings. Here we577

outline these considerations explicitly, along with578

the steps taken to address potential limitations.579

Access to confidence-related information. Our580

smoothing attack relies on estimating model confi-581

dence from top-K token probabilities, commonly582

provided by public APIs (e.g., OpenAI’s API). Al-583

though limiting access to probability information584

could theoretically mitigate our attack, in practice,585

such restrictions are challenging to enforce and586

may conflict with broader ethical goals around AI587

transparency and interpretability (OECD, 2019;588

National Institute of Standards and Technology589

(NIST), 2023). Recognizing this tension, we high-590

light the need for watermarking methods robust591

to scenarios where confidence estimates remain592

partially accessible.593

Dependence on reference models. For distor-594

tionary watermark removal, our attack uses a ref-595

erence model to generate alternative token candi-596

dates. We explicitly evaluated different reference597

model sizes (Table 7), confirming strong perfor-598

mance even when using significantly smaller refer-599

ence models. However, selecting an extremely mis-600

matched or lower-quality reference model could601

impact both watermark removal and text quality.602

We recommend using reference models carefully603

matched to the domain or distribution of the target604

model.605

Dataset selection and evaluation scope. We606

evaluated our methods extensively on the C4607

dataset due to its well-documented suitability for608

watermark evaluation (Kirchenbauer et al., 2023a;609

Pan et al., 2024). Prior research indicated that610

datasets with low-entropy generation (e.g., code)611

already significantly reduce watermark effective-612

ness (Kirchenbauer et al., 2023b; Lee et al., 2023).613

Thus, while our findings clearly establish the effec-614

tiveness of our attack under typical high-entropy615

generation conditions, results may differ in special-616

ized, low-entropy contexts.617

Future watermarking approaches. Our attack618

exploits inherent structural vulnerabilities shared619

by current token-level watermark schemes. We ex-620

plicitly acknowledge that future watermarking al-621

gorithms could be designed specifically to counter622

such confidence-based attacks. Recognizing this 623

potential evolution, we strongly encourage further 624

research into watermark robustness and the devel- 625

opment of methods resilient to confidence-based 626

adversaries. 627

8 Ethical Considerations 628

Our work demonstrates that an adversary, under 629

realistic assumptions, can successfully remove wa- 630

termarks from texts without compromising text 631

quality. Although robustness concerns regarding 632

watermarking have been highlighted by prior stud- 633

ies, our research underscores that these risks may 634

be even greater than previously assessed. 635

We conducted experiments on LLama (Dubey 636

et al., 2024), OPT (Zhang et al., 2022), and 637

Qwen (Chu et al., 2024), each of which has been re- 638

leased under their respective licenses, as detailed in 639

their documentation. Our implementation is based 640

on MarkLLM (under the Apache License), and all 641

modifications we have introduced are clearly doc- 642

umented in the README file included with our 643

submitted code. Furthermore, any external pack- 644

ages used in our evaluations have been explicitly 645

presented in the code we submitted. 646

Artifact use in this research has been consistent 647

with intended purposes. Our dataset derives from 648

the publicly available C4 dataset, which, to the 649

best of our knowledge, does not contain person- 650

ally identifiable information or offensive content. 651

Additionally, relevant statistics regarding the data 652

utilized in our experiments have been comprehen- 653

sively reported C4 dataset (Raffel et al., 2020). 654

We utilized ChatGPT to revise portions of the 655

manuscript; however, all revisions were performed 656

under direct human supervision, ensuring that the 657

final text accurately reflects our intent and ethical 658

standards. 659

We approach this research with a firm commit- 660

ment to ethical standards and responsible disclo- 661

sure. By openly illustrating vulnerabilities, rec- 662

ommending effective mitigation, and transparently 663

sharing our methods and outcomes, our objective 664

is to inform and assist the broader research commu- 665

nity. Our goal is to facilitate advancements in water- 666

marking techniques that effectively balance trans- 667

parency, innovation, and security, aligning with 668

emerging regulatory standards such as the EU AI 669

Act and the U.S. AI safety policies (European Com- 670

mission, 2021). Moreover, we explicitly discuss 671

potential defensive strategies and evaluate their ef- 672
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ficacy (see Appendix D and Table10), providing673

actionable guidance for enhancing the resilience674

of watermarking techniques. Overall, by clearly675

outlining these ethical considerations and limita-676

tions, we believe our research contributes robust677

and actionable insights, responsibly addressing the678

ethical implications and boundaries inherent in our679

study.680
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A More on Related Work925

Variations of Green-red list watermark. Differ-926

ent variations of Green-red list watermark, e.g.,927

see (Kirchenbauer et al., 2023b; Lee et al., 2023;928

Liu et al., 2023; Wu et al.; Huo et al.; Zhou et al.,929

2024; Lu et al., 2024; Liu et al., 2024; He et al.,930

2024; Zhao et al., 2023; Kirchenbauer et al., 2023a),931

mainly differ in the assignment of the green lists932

and the detection process. In particular, the assign-933

ment of Gt could depend on the prefix, e.g., the pre-934

ceding h tokens in the generated text. When h = 0,935

we say the assignment is context-independent and936

is referred to as the Unigram watermark (Zhao937

et al., 2023); when h = 1, the assignment depends938

on the previous token and is referred to as the KGW 939

watermark (Kirchenbauer et al., 2023a) 940

Scalable Tournament sampling. As shown 941

in their paper, the original tournament process 942

in (Dathathri et al., 2024) can be costly to 943

implement, as there are O(2m) times of sam- 944

pling and pair-wise comparison of tokens. In- 945

stead, they obtain a modified distribution for to- 946

kens. With P̃
(0)
t = Pt, they iteratively compute 947

P̃
(l)
t (v) =

(
1 + g(l)(v, rt) −

∑
v′∈V

(
g(l)(v′, rt) · 948

P
(l−1)
t (v′)

))
· P̃ (l−1)

t (v), for l = 1, . . . ,m, and 949

then sample the token from P̃ (m). 950

Distortion-free watermark. There are also other 951

distortion-free watermarks, which aim to preserve 952

the original model’s token distribution and avoid de- 953

tectable shifts in probabilities of output tokens, e.g., 954

see Hu et al.; Zhao et al. (2024b); Fu et al. (2024); 955

Christ et al. (2023); Fairoze et al. (2023); Christ 956

and Gunn (2024); Cohen et al. (2024); Ghentiyala 957

and Guruswami (2024); Golowich and Moitra; 958

Dathathri et al. (2024); Wu et al.. 959

Comparison with paraphrasing attacks. When 960

attacking OPT models (from 1.3B to 30B parame- 961

ters), our attack only leverages the OPT-125M as 962

the reference model when attacking distortionary 963

watermarks such as the Unigram watermark. When 964

attacking distortion-free watermarks, our attack 965

sometimes resamples from the target watermarked 966

model. In either case, the resource used in our at- 967

tack is significantly smaller than the state-of-the-art 968

paraphrasing attack, which uses the much larger 969

GPT-3.5-turbo. Despite using fewer resources, our 970

approach achieves higher watermark removal rates 971

and comparable text quality. This highlights that 972

even resource-limited adversaries can thwart water- 973

marks, underscoring the need for stronger water- 974

mark defenses. 975

B More on Experiments 976

B.1 Implementation 977

We evaluate the smoothing attack on eight 978

different watermarking algorithms, including 979

KGW (Kirchenbauer et al., 2023a), Unigram (Zhao 980

et al., 2023), SWEET (Lee et al., 2023), UPV (Liu 981

et al., 2023), EWD (Lu et al., 2024), X-SIR (He 982

et al., 2024), DIP (Wu et al.), Unbiased (Hu 983

et al.), SynthID (Dathathri et al., 2024) and Gum- 984

bel (Aaronson, 2023). We use the implementa- 985

tions and default configurations provided by Mark- 986

LLM (Pan et al., 2024). For completeness, we 987
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Table 9: Table of notation definitions and their locations.

Notation Meaning Definition Location
M Auto-regressive language model (LM), which generates text sequentially

based on a given prompt.
Section 2

M̃ Watermarked model, a variant of M that embeds watermarks into generated
text.

Section 3.1

V Vocabulary of the LM, the set of all possible tokens that can be generated. Section 2
t Token position in the generated sequence, indicating the index of a specific

token.
Section 2

lt(v) Logit assigned by the model to token v at position t before applying softmax. Eq. equation 1
Pt(v) Probability of token v at position t after applying the softmax function. Eq. equation 1
P̃t(v) Modified probability distribution in the watermarked model after logit ma-

nipulation.
Eq. equation 2

(v1, . . . , vT ) Sequence of tokens forming the output text from the language model. Section 2
d(v1, . . . , vT ) Detection score function used to determine whether a text is watermarked. Section 2

τ Threshold value for watermark detection; if d(v1, . . . , vT ) > τ , the text is
classified as watermarked.

Section 2

Gt Green list, a subset of vocabulary containing tokens whose logits are in-
creased in green-red list watermarking.

Section 2

γ Fraction of the vocabulary included in the green list Gt, determining the
probability of token selection.

Section 2

δ Logit increase applied to tokens in the green list Gt, influencing token
selection probabilities.

Eq. equation 2

T Length of the generated sequence, i.e., the total number of tokens in the
output text.

Section 2

ut(v) Randomly sampled value from [0, 1] for token v in Gumbel sampling water-
marking.

Section 2

v∗t Token selected using Gumbel sampling watermarking by maximizing a
transformed probability.

Section 2

St Contribution of the token at position t to the overall watermark detection
score.

Eq. equation ??

Ev∼Pt [1{v ∈ Gt}] Expected probability mass assigned to green tokens at position t from proba-
bility distribution Pt.

Eq. equation ??

∥Pt∥2 L2 norm of the probability vector, measuring model confidence at position t.
A higher value means greater confidence.

Section 3.1

DTV (Pt, P̃t) Total variation distance between original and watermarked probability distri-
butions, measuring distortion.

Section 3.1

DTV (Pt, P
ref
t ) Total variation distance between the original model and a reference model’s

probability distributions.
Section 3.1

K Number of most probable tokens that the adversary has access to from the
watermarked model.

Section 4

VTop-K Set of top-K most probable tokens observed by the adversary. Section 4
β Scaling factor used to estimate ∥Pt∥2 from watermarked probabilities in

Green-red list watermarking.
Section 4

c Normalized confidence score in [0, 1] based on estimated L2 norm. Section 4
U,L Upper and lower bounds for normalizing L2 norms into the confidence score

c.
Section 4

α Exponential factor controlling the aggressiveness of the smoothing attack.
A larger α favors keeping watermarked tokens, while a smaller α favors
replacement.

Section 4

P ref
t Token probability distribution from a much smaller, un-watermarked refer-

ence model.
Section 4

provide details of the algorithms below.988

• KGW (Kirchenbauer et al., 2023a): The green989

set Gt at each position t is selected based on990

the previous h tokens and a secret key known991

to the service provider. The hyperparameters 992

are set as follows: γ = 0.5, δ = 2.0, and 993

h = 1. 994

• Unigram (Kirchenbauer et al., 2023a): The 995
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green set Gt is fixed for each token t and996

each prefix, depending solely on the secret key997

known to the service provider. No dynamic998

updates are performed based on previous to-999

kens. The parameters are: γ = 0.5, δ = 2.0.1000

• SWEET (Lee et al., 2023): A shift is applied1001

only when the entropy of the probability dis-1002

tribution at position t is high, improving text1003

quality, particularly for code generation tasks.1004

The parameters are set as: γ = 0.5, δ = 2.0,1005

the entropy threshold is 0.9, and h = 1.0.1006

• UPV (Liu et al., 2023): The green token se-1007

lection process is similar to the previous ap-1008

proaches. However, this method requires train-1009

ing two additional models: a generator net-1010

work to separate red and green tokens and a1011

detector network for classification based on1012

the input text. The watermarks are introduced1013

using γ = 0.5, δ = 2.0, and h = 1.0. The1014

detector produces a binary prediction rather1015

than a continuous score like a z-score.1016

• EWD (Lu et al., 2024): Watermark introduc-1017

tion follows a similar process as the previous1018

methods. The hyperparameters are γ = 0.5,1019

δ = 2.0, and h = 1.0. During detection,1020

tokens are assigned different weights based1021

on their entropy, with higher entropy tokens1022

receiving greater weight to improve detectabil-1023

ity in low-entropy scenarios.1024

• X-SIR (He et al., 2024): Instead of operating1025

at the token level, the red-green partition is ap-1026

plied at the level of semantic clusters, group-1027

ing similar words together and adding bias1028

at the group level. This improves robustness1029

against Cross-lingual Watermark Removal At-1030

tacks (CWRA).1031

• DIP (Wu et al.): Similar to Kirchenbauer et1032

al. (2023), this method selects green tokens1033

but uses a distribution-preserving reweight1034

function to adjust token probabilities. This in-1035

creases the probability of green tokens while1036

maintaining the overall distribution. The1037

reweighting is controlled by the parameter1038

α. The hyperparameters are set as γ = 0.5,1039

h = 5.1040

Implementation of the paraphrasing attack.1041

We include the strongest baseline that paraphrases1042

the given text based on the GPT-3.5-turbo (Piet1043

et al., 2023), denoted as P-GPT3.5 using the 1044

prompt: “Please rewrite the following text:”. As 1045

shown in (Kirchenbauer et al., 2023b), GPT-3.5- 1046

turbo is more powerful in removing the watermarks 1047

compared to Dipper model (Krishna et al., 2023). 1048

Text quality metric. We use Llama3-8B, Qwen2- 1049

7B, and OPT-2.7B to evaluate the perplexity of 1050

the text generated from Llama3, Qwen2, and OPT 1051

models. We also report the log diversity of the 1052

text (Welleck et al.; Kirchenbauer et al., 2023b; Li 1053

et al., 2022), following the definition in (Kirchen- 1054

bauer et al., 2023b) considering the 2-gram, 3-gram, 1055

and 4-gram repetition in the generated text. A 1056

higher diversity score represents a more diverse 1057

text. 1058

B.2 Performance of the smoothing attack 1059

Figure 3 shows three scatterplots of TPR vs. PPL 1060

for text generated under different watermarking 1061

and attack settings. Each point is colored by 1062

the watermarking method and corresponds to one 1063

of three models (OPT-1.3B, Llama3-8B, Qwen2- 1064

1.5B). Overall, the smoothing attack yields substan- 1065

tially lower TPR relative to the watermarked set- 1066

ting, demonstrating its performance at watermark 1067

removal. Notably, smoothing’s TPR is on par with 1068

that of the paraphrasing attack, which uses a more 1069

powerful model (GPT-3.5-turbo). In terms of per- 1070

plexity (PPL), smoothing also generates text that is 1071

competitive with (and sometimes lower than) both 1072

the watermarked text and the paraphrased text, indi- 1073

cating that it preserves text quality while removing 1074

the watermark. 1075

B.3 Text Quality Evaluation 1076

Figure 4 and Figure 5 present boxplots of the per- 1077

plexity (PPL) and diversity of text generated from 1078

different sources using the OPT-1.3B model. We 1079

observe that the smoothing attack generally yields 1080

text with lower PPL than the watermarked model, 1081

except in cases involving the Gumbel watermark. 1082

This suggests that, according to the PPL metric, the 1083

smoothing attack can generate high-quality text. In 1084

terms of diversity, the constrained selection pro- 1085

cess—where sampling is restricted to the top-K 1086

candidates from both the reference and target mod- 1087

els—results in lower diversity for the smoothing 1088

attack. These findings are consistent with the av- 1089

erage PPL results reported in Table 1 in the main 1090

paper. 1091

In addition, we compute the P-SP score (Wieting 1092
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Figure 3: Each subfigure shows how the true positive rate (TPR) varies with perplexity (PPL) for a specific attack.
No attack (a) corresponds to watermarked text without modifications, paraphrasing (b) uses GPT-3.5-turbo to rewrite
the text, and smoothing (c) randomly replaces some tokens to remove the watermark. Colors indicate the particular
watermarking method and each point corresponds to one of three models (OPT-1.3B, Llama3-8B, Qwen2-1.5B).
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Figure 4: Text Quality Comparison – Perplexity (OPT-1.3B). Box plots of perplexity for text generated from
different sources, with perplexity computed using the OPT-2.7B model. Our smoothing attack produces text with
quality comparable to, and in some cases better than, that of the watermarked model.
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Figure 5: Text Quality Comparison – Diversity (OPT-1.3B). Box plots of text diversity for outputs generated from
different sources. Our smoothing attack produces text with diversity comparable to, and in some cases lower than,
that of the watermarked model due to its constrained selection process.

et al., 2022), which quantifies the similarity be-1093

tween pairs of texts in the embedding space, with1094

higher scores indicating greater similarity. Specifi-1095

cally, we calculate P-SP scores for text generated1096

from different sources and visualize the results in1097

the heatmap shown in Figure 6. We observe that,1098

aside from the paraphrasing case, texts from dif-1099

ferent sources generally exhibit low similarity. For1100

instance, text generated by the watermarked model1101

has a P-SP score of 53.6 on Unigram, whereas the1102

similarity between the watermarked text and its1103

paraphrased version reaches 82.3. Our smoothing1104

attack produces a P-SP score (measuring similarity 1105

between text from the smoothing attack and unwa- 1106

termarked text) comparable to that of the water- 1107

marked text (measuring similarity between water- 1108

marked text and unwatermarked text). The gener- 1109

ally low P-SP scores across different sources reflect 1110

the natural variability in generated responses, as 1111

multiple reasonable outputs can exist for the same 1112

prompt. Therefore, P-SP metrics may not be a reli- 1113

able measure for assessing text quality degradation 1114

due to watermarking or smoothing. 1115
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Figure 6: Text Quality Comparison – P-SP (OPT-1.3B). Heatmap comparing the similarity of text generated
by different models in the sentence embedding space. Text from the watermarked model has a low similarity
score compared to unwatermarked text, reflecting the inherent variability in generated responses. However, the
paraphrased text (Paraphrasing vs. watermarked) exhibits a high similarity score, suggesting that the P-SP metric is
more suitable for evaluating paraphrasing rather than assessing text quality degradation due to watermarking or
smoothing.

Table 10: Effect of K on Smoothing Attack Performance (OPT-1.3B). Evaluation of the smoothing attack’s
effectiveness against different watermarking algorithms on the OPT-1.3B model, varying the number of top-K
tokens accessible to the attacker.

K KGW Unigram SynthID DIP Unbiased

TPR PPL Div TPR PPL Div TPR PPL Div TPR PPL Div TPR PPL Div
1 9% 3.22 4.54 18% 3.21 4.62 0% 10.45 8.47 1% 3.36 4.57 7% 3.36 4.56
3 0.0% 5.76 5.71 8.0% 5.9 5.68 0.0% 10.5 8.31 4.0% 5.58 5.66 14.0% 5.59 5.68
5 2.0% 7.27 6.17 10.0% 7.46 6.11 0.0% 10.35 8.71 3.0% 6.97 6.23 19.0% 7.11 6.29
7 1.0% 8.14 6.46 5.0% 8.48 6.55 0.0% 10.42 8.63 7.0% 7.97 6.46 29.0% 8.06 6.47
10 0.0% 9.57 6.72 5.0% 9.44 6.73 0.0% 10.4 8.64 6.0% 9.34 6.84 27.0% 9.19 6.84

K XSIR UPV Gumbel EWD SWEET

TPR PPL Div TPR PPL Div TPR PPL Div TPR PPL Div TPR PPL Div
1 14% 3.31 4.5 22% 3.62 4.63 0% 20.8 8.2 1% 3.31 4.49 2% 3.41 4.57
3 17.0% 5.69 5.52 14.0% 6.22 5.87 2.0% 21.72 8.47 0.0% 5.78 5.71 0.0% 5.64 5.75
5 8.0% 6.8 6.04 16.0% 7.68 6.3 8.0% 20.3 8.23 0.0% 7.32 6.18 0.0% 7.15 6.23
7 10.0% 8.26 6.48 7.0% 8.75 6.65 9.0% 21.15 8.15 0.0% 8.65 6.52 0.0% 8.47 6.45
10 9.0% 9.47 6.75 20.0% 10.01 6.89 9.0% 19.25 8.3 0.0% 9.93 6.78 0.0% 9.59 6.72

B.4 Effect of K and α1116

Table 10 and Table 12 show the performance of1117

smoothing attacks against different watermarking1118

algorithms under varying values of K. In a smooth- 1119

ing attack, the adversary has access only to the 1120

top-K tokens and their probabilities from both the 1121

17



Table 11: Effect of α on Smoothing Attack Performance (OPT-1.3B). Evaluation of the smoothing attack’s
effectiveness against different watermarking algorithms on the OPT-1.3B model, varying the parameter α. A larger
α indicates that the attack relies more on the reference model’s output, while a smaller α means the attack is more
influenced by the watermarked text.

α KGW Unigram SynthID DIP Unbiased

TPR PPL Div TPR PPL Div TPR PPL Div TPR PPL Div TPR PPL Div
0.5 11.0% 10.03 7.02 42.0% 9.9 6.86 2.0% 9.33 7.9 29.0% 9.27 7.11 63.0% 8.92 7.09
1.0 0.0% 9.57 6.72 5.0% 9.44 6.73 0.0% 10.4 8.64 6.0% 9.34 6.84 27.0% 9.19 6.84
2.0 0.0% 9.35 6.65 0.0% 9.38 6.58 0.0% 11.16 8.26 1.0% 9.03 6.71 9.0% 8.89 6.59
3.0 0.0% 9.45 6.46 1.0% 9.25 6.43 0.0% 11.33 8.61 0.0% 9.32 6.82 1.0% 9.05 6.65

α X-SIR UPV Gumbel EWD SWEET

TPR PPL Div TPR PPL Div TPR PPL Div TPR PPL Div TPR PPL Div
0.5 28.0% 9.47 6.94 42.0% 10.01 7.14 80.0% 13.73 7.54 0.0% 9.76 7.01 6.0% 9.66 7.13
1.0 9.0% 9.47 6.75 20.0% 10.01 6.89 9.0% 19.25 8.3 0.0% 9.93 6.78 0.0% 9.59 6.72
2.0 6.0% 9.45 6.46 4.0% 9.28 6.59 0.0% 25.39 9.04 0.0% 9.63 6.58 0.0% 9.29 6.45
3.0 0.0% 9.12 6.41 1.0% 9.85 6.57 0.0% 25.77 9.5 0.0% 9.43 6.68 0.0% 9.33 6.53

Table 12: Effect of K on Smoothing Attack Performance (Llama3-8B). Evaluation of the smoothing attack’s
effectiveness against different watermarking algorithms on the Llama3-8B model, varying the number of top-K
tokens accessible to the attacker.

K KGW Unigram SynthID DIP

TPR PPL Div TPR PPL Div TPR PPL Div TPR PPL Div
1 6% 2.37 4.67 19% 2.41 4.67 0% 3.6 6.86 2% 2.53 4.84
3 1% 2.81 5.17 27% 2.8 5.2 0% 3.42 6.87 4% 2.91 5.47
5 3% 2.99 5.36 24% 2.92 5.31 0% 3.41 6.89 1% 2.97 5.55
7 2% 3.14 5.55 23% 3.03 5.43 0% 3.41 6.86 4% 3.1 5.78
10 2% 3.2 5.63 24% 3.1 5.44 0% 3.4 6.86 6% 3.17 5.67

K Unbiased UPV EWD SWEET

TPR PPL Div TPR PPL Div TPR PPL Div TPR PPL Div
1 1% 2.5 4.8 1% 2.48 4.76 3% 2.43 4.68 3% 2.41 4.72
3 4% 2.9 5.44 1% 2.97 5.37 4% 2.94 5.33 3% 2.91 5.27
5 2% 2.95 5.53 0% 3.02 5.55 3% 3.06 5.48 4% 3.01 5.43
7 7% 3.14 5.72 1% 3.1 5.54 6% 3.09 5.43 5% 3.01 5.37
10 5% 3.17 5.75 1% 3.12 5.49 3% 3.13 5.38 4% 3.09 5.4

Table 13: Effect of α on Smoothing Attack Performance (Llama3-8B). Evaluation of the smoothing attack’s
effectiveness against different watermarking algorithms on the Llama3-8B model, varying the parameter α. A
larger α indicates greater reliance on the reference model’s output, while a smaller α means the attack text is more
influenced by the watermarked model.

α KGW Unigram SynthID DIP

TPR PPL Div TPR PPL Div TPR PPL Div TPR PPL Div
0.5 13% 3.45 5.92 62% 3.4 5.77 0% 3.78 6.88 35% 3.34 6.19
1.0 2% 3.2 5.63 24% 3.1 5.44 0% 3.4 6.86 6% 3.17 5.67
2.0 0% 3.05 5.28 12% 2.93 5.21 0% 3.49 6.87 3% 2.99 5.23
3.0 0% 2.93 5.17 12% 2.99 5.26 0% 3.52 6.83 1% 2.96 5.16

α Unbiased UPV EWD SWEET

TPR PPL Div TPR PPL Div TPR PPL Div TPR PPL Div
0.5 26% 3.37 6.09 10% 3.47 6.08 28% 3.44 5.84 44% 3.38 5.9
1.0 5% 3.17 5.75 1% 3.12 5.49 3% 3.13 5.38 4% 3.09 5.4
2.0 3% 2.98 5.28 0% 2.96 5.2 0% 3.0 5.36 1% 3.06 5.38
3.0 3% 2.96 5.21 0% 2.99 5.2 0% 2.89 5.18 0% 2.93 5.22
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reference and target models. Even with K = 1,1122

the attack can drastically reduce the true positive1123

rate (TPR) from 99% (without any attack) to an1124

extremely low value, sometimes reaching 0%. This1125

indicates that even with minimal access to both1126

models, the smoothing attack can effectively re-1127

move watermarks. Furthermore, we observe that1128

increasing K leads to more diverse text generation,1129

as discussed in the main paper. This is because a1130

higher K provides the attack with a larger selection1131

of candidate tokens, allowing for greater variation1132

in the generated text. This observation remains con-1133

sistent across both the OPT-1.3B and Llama3-8B1134

models.1135

Table 11 and Table 13 analyze the performance1136

of smoothing attacks against different watermark-1137

ing algorithms under varying values of α. In this1138

attack, the weight assigned to the top-K tokens1139

from the watermarked model is given by cα, while1140

the weight for the top-K tokens from the reference1141

model is 1− cα, where c is a confidence score be-1142

tween 0 and 1. A larger α shifts the token selection1143

preference toward the reference model, making the1144

generated text more aligned with it. Conversely, a1145

smaller α biases the attack toward the watermarked1146

model, producing text that more closely resembles1147

the watermarked output. As α increases, the true1148

positive rate (TPR) decreases, leading to a higher1149

watermark removal rate—an effect consistently ob-1150

served across all watermarking methods for both1151

the OPT-1.3B and Llama3-8B models.1152

In terms of text quality, when α is lower, the gen-1153

erated text is more influenced by the watermarked1154

model, which generally exhibits higher quality than1155

the reference model. Consequently, decreasing α1156

can improve text quality. This provides an adver-1157

sary with a way to adjust α to balance watermark1158

removal and text quality preservation.1159

B.5 Text example1160

Table 14 presents text generated by the Gumbel1161

sampling algorithm and the smoothing attack. We1162

observe that, although the perplexity of the water-1163

marked text is significantly lower than that of the1164

text from the smoothing attack, this is primarily1165

due to repetition in the generated text. This be-1166

havior may stem from the deterministic nature of1167

Gumbel sampling, which can lead to less diverse1168

outputs.1169

B.6 Impact of model size 1170

Table 15 presents the performance of the smooth- 1171

ing attack across different watermarking algorithms 1172

and varying sizes of OPT models. Perplexity 1173

(PPL) is computed with respect to the OPT-30B 1174

model, while the reference model remains consis- 1175

tent across all settings—the OPT-125M. 1176

For unwatermarked models, the True Positive 1177

Rate (TPR) is consistently 0%. In contrast, wa- 1178

termarked models achieve near-perfect TPR. How- 1179

ever, the smoothing attack significantly reduces 1180

TPR across all model sizes, with its impact increas- 1181

ing as the model size grows—for instance, TPR 1182

drops to 0% for the KGW watermark in the 30B 1183

model. 1184

Watermarked models exhibit a notable increase 1185

in perplexity, indicating that watermarking impacts 1186

text fluency. The smoothing attack reduces per- 1187

plexity, bringing it closer to unwatermarked lev- 1188

els, suggesting a partial recovery of fluency. Re- 1189

garding diversity, the unwatermarked text demon- 1190

strates the highest variation, while watermarking 1191

constrains generation patterns, resulting in a no- 1192

ticeable drop in diversity. The smoothing attack 1193

further reduces diversity, primarily because tokens 1194

are sampled only from the top-K tokens of both 1195

the watermarked and reference models, limiting 1196

the range of possible candidates. 1197

C Analysis 1198

C.1 Contribution Depends on the Confidence 1199

Score of the Unwatermarked Model 1200

We first demonstrate that the contribution of each 1201

token to the detection score is influenced by the 1202

confidence score of the unwatermarked model, as 1203

measured by its probability distribution. 1204

C.1.1 Case Study: Green-Red List 1205

Watermark 1206

Suppose that lt is the logit vector for predicting the 1207

t-th token from the unwatermarked model, and Gt 1208

is the green list used by the watermarked model 1209

at position t, with size γ|V|. Given the watermark 1210

shift δ, the probabilities assigned by the unwater- 1211

marked and watermarked models are expressed as: 1212

Pt(v) =
exp
(
lt(v)

)∑
v′ ∈V exp

(
lt(v′)

) . 1213

P̃t(v) =
exp
(
lt(v) + δ · 1{v∈Gt}

)
∑

v′ ∈V exp
(
lt(v′) + δ · 1{v′∈Gt}

) . 1214
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Table 14: Text generated by watermarked model and smoothing attack (OPT-1.3B against Gumbel sampling).

Watermarked Smoothing Attack
Cluster comprises IBM’s Opteron-based eServer 325
server and systems management software and storage
devices that can run Linux and Windows operating
systems.
The data center will be built on top of existing IBM
Power servers. The company will offer a variety of
services, including cloud-based services, as well as a
"plug and play" environment that will allow users to
transition to other hardware.
The data center will be built on top of existing IBM
Power servers. The company will offer a variety of
services, including cloud-based services, as well as a
"plug and play" environment that will allow users to
transition to other hardware. (Image: IBM)
The data center will be built on top of existing IBM
Power servers. The company will offer a variety of
services, including cloud-based services, as well as a
"plug and play" environment that will allow users to
transition to other hardware.
The data center will be built on top of existing IBM
Power servers. The company will offer a variety of
services, including cloud-based services, as well as a
"plug and play" environment that will allow users to
transition to other hardware.

Cluster comprises IBM’s Opteron-based eServer 325
server and systems management software and storage
devices that can run Linux and Windows operating
systems.
IBM will start selling customers a prototype of the
cluster by July, according to Jim Bessen, the executive
vice president of middleware architecture and services
at IBM.
“The cluster is just the tip of the iceberg,” he said.
The cluster firm computing is encased in a step-by-step
process starting with activities such as how to set up
clinks that back up disks, store data, create back-up
schemes for data, and at what resolutions to save the
data.
“We are not done yet,” he said. As new kinds of
programming software and other technologies come out,
users need to act on it.
While IBM expects internal clusters with the capability
to run multiple operating systems in fuse over the next
year, this capability will be available only to Enterprise
Software Group (ESG) customers.
ESG will not sell its cluster technology to anyone else,
Bessen said.

Rewriting P̃t(v), we observe:1215

P̃t(v) = Pt(v)×
exp
(
δ 1{v∈Gt}

)∑
v′ ∈V Pt(v′) exp

(
δ 1{v′∈Gt}

) .1216

Define the normalization factor:1217

Zδ =

∑
v′∈V exp

(
lt(v

′) + δ 1{v′∈Gt}
)∑

v′∈V exp
(
lt(v′)

) (6)1218

=
∑
v′ ∈V

Pt(v
′) exp

(
δ 1{v′∈Gt}

)
. (7)1219

Then:1220

P̃t(v) =


eδ

Zδ
Pt(v), v ∈ Gt,

1

Zδ
Pt(v), v /∈ Gt.

1221

The expected fraction of tokens belonging to the1222

green list under the unwatermarked model is given1223

by:1224

Ev∼Pt [1(v ∈ Gt)] =
∑
v∈Gt

Pt(v) = PGt ,1225

where PGt represents the probability mass assigned1226

to green tokens in the unwatermarked model.1227

Similarly, the expected fraction of green tokens1228

in the watermarked model is:1229

E
v∼P̃t

[1(v ∈ Gt)] =
∑
v∈Gt

P̃t(v) =
eδ

Zδ
PGt . (8) 1230

Since Zδ = (eδ − 1)PGt + 1, the difference in 1231

green token probabilities (i.e., the detection contri- 1232

bution at token position t) is: 1233

St = E
v∼P̃t

[1(v ∈ Gt)]− Ev∼Pt [1(v ∈ Gt)] (9) 1234

=
−(eδ − 1)PGt + (eδ − 1)

(eδ − 1) + 1
PGt

. (10) 1235

In other words, the token-level detection contri- 1236

bution St is a function of the probability mass PGt 1237

assigned to green tokens by the unwatermarked 1238

model. 1239

C.1.2 Case Study: Tournament Sampling 1240

Watermark 1241

In the Tournament Sampling watermark, when gen- 1242

erating the t-th token, the algorithm assigns scores 1243

to each token using m independent watermarking 1244

functions g(1), ..., g(m). These scores depend on a 1245

random seed generated based on the recent context 1246

and a secret watermarking key. The token selection 1247

follows a multi-round elimination process, where 1248

2m tokens are first sampled from Pt(·), then com- 1249

pete in m rounds to determine the final output. 1250
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Table 15: Impact of Model Size on the Smoothing Attack (OPT). Performance of the smoothing attack across
different watermarking algorithms and various sizes of OPT models. The perplexity (PPL) is computed with respect
to the OPT-30B model, while the reference model is consistently the OPT-125M. The table reports True Positive
Rate (TPR), Perplexity (PPL), and Diversity (Div.) for unwatermarked, watermarked, and smoothed settings.

Size Setting KGW Unigram SynthID DIP Unbiased

TPR PPL Div. TPR PPL Div. TPR PPL Div. TPR PPL Div. TPR PPL Div.

1.3B
Unwatermarked 0.0% 12.95 8.67 0.0% 12.95 8.67 0.0% 12.95 8.67 0.0% 12.95 8.67 0.0% 12.95 8.67
Watermarked 100.0% 15.94 8.09 99.0% 16.53 7.29 100.0% 7.7 7.41 100.0% 15.16 8.44 99.0% 15.14 8.29
Smoothing 4.0% 10.48 6.72 6.0% 10.37 6.83 1.0% 11.37 8.67 6.0% 10.03 7.03 4.0% 9.94 6.79

2.7B
Unwatermarked 0.0% 11.75 8.36 0.0% 11.75 8.36 0.0% 11.75 8.36 0.0% 11.75 8.36 0.0% 11.75 8.36
Watermarked 100.0% 13.94 7.88 100.0% 14.31 7.41 99.0% 6.86 7.55 97.0% 13.86 8.61 97.0% 13.6 8.69
Smoothing 4.0% 10.35 6.77 4.0% 10.35 6.66 6.0% 9.84 8.0 13.0% 9.87 6.84 6.0% 9.85 6.88

6.7B
Unwatermarked 0.0% 10.2 8.45 0.0% 10.2 8.45 0.0% 10.2 8.45 0.0% 10.2 8.45 0.0% 10.2 8.45
Watermarked 100.0% 13.16 8.06 100.0% 12.94 7.48 98.0% 6.21 7.48 98.0% 11.8 8.48 97.0% 11.79 8.59
Smoothing 4.0% 10.07 6.92 6.0% 10.54 6.68 3.0% 8.98 8.31 8.0% 9.78 6.86 8.0% 9.68 6.74

13B
Unwatermarked 0.0% 10.14 8.39 0.0% 10.14 8.39 0.0% 10.14 8.39 0.0% 10.14 8.39 0.0% 10.14 8.39
Watermarked 100.0% 12.88 8.56 100.0% 12.44 7.39 100.0% 5.88 7.8 96.0% 11.67 9.34 93.0% 11.42 8.77
Smoothing 2.0% 10.24 6.82 5.0% 10.32 6.7 8.0% 8.07 7.8 8.0% 9.6 6.88 7.0% 9.37 6.77

30B
Unwatermarked 0.0% 8.46 8.44 0.0% 8.46 8.44 0.0% 8.46 8.44 0.0% 8.46 8.44 0.0% 8.46 8.44
Watermarked 100.0% 10.23 8.34 100.0% 10.45 7.56 100.0% 5.27 7.72 94.0% 9.43 8.78 97.0% 9.89 9.08
Smoothing 0.0% 9.5 6.8 7.0% 10.15 6.75 5.0% 6.96 8.04 4.0% 9.34 6.89 4.0% 9.36 6.88

Size Setting X-SIR UPV Gumbel EWD SWEET

TPR PPL Div. TPR PPL Div. TPR PPL Div. TPR PPL Div. TPR PPL Div.

1.3B
Unwatermarked 1.0% 12.95 8.67 0.0% 12.95 8.67 0.0% 12.95 8.67 0.0% 12.95 8.67 0.0% 12.95 8.67
Watermarked 94.0% 15.42 7.96 99.0% 12.79 8.22 98.0% 3.15 4.35 100.0% 16.88 7.92 100.0% 15.99 8.02
Smoothing 13.0% 10.3 6.72 20.0% 10.78 6.89 9.0% 20.94 8.30 1.0% 10.71 6.75 1.0% 10.54 6.81

2.7B
Unwatermarked 3.0% 11.75 8.36 0.0% 11.75 8.36 0.0% 11.75 8.36 0.0% 11.75 8.36 0.0% 11.75 8.36
Watermarked 91.0% 14.07 8.25 99.0% 12.30 8.01 99.0% 2.96 4.38 100.0% 14.88 7.98 100.0% 14.07 8.32
Smoothing 10.0% 10.34 6.77 18.0% 10.56 6.90 10.0% 19.46 8.41 1.0% 10.43 6.86 3.0% 10.49 6.86

6.7B
Unwatermarked 0.0% 10.2 8.45 0.0% 10.20 8.45 0.0% 10.20 8.45 0.0% 10.20 8.45 0.0% 10.20 8.45
Watermarked 91.0% 13.04 8.19 97.0% 10.92 7.75 100.0% 2.97 4.49 100.0% 13.42 8.69 100.0% 13.05 8.41
Smoothing 9.0% 10.01 6.7 8.0% 10.60 7.05 9.0% 14.85 8.62 0.0% 10.60 6.79 1.0% 10.07 6.89

13B
Unwatermarked 0.0% 10.14 8.39 0.0% 10.14 8.39 0.0% 10.14 8.39 0.0% 10.14 8.39 0.0% 10.14 8.39
Watermarked 88.0% 12.29 8.05 99.0% 10.59 7.91 98.0% 2.96 4.63 100.0% 13.09 8.74 100.0% 12.32 8.35
Smoothing 11.0% 9.84 6.79 12.0% 10.84 6.88 12.0% 15.06 8.27 0.0% 10.16 6.73 2.0% 10.15 6.74

30B
Unwatermarked 0.0% 8.46 8.44 0.0% 8.46 8.44 0.0% 8.46 8.44 0.0% 8.46 8.44 0.0% 8.46 8.44
Watermarked 91.0% 10.43 8.43 97.0% 8.59 8.13 97.0% 2.89 4.79 100.0% 10.75 8.54 100.0% 9.98 8.25
Smoothing 16.0% 9.65 6.74 17.0% 10.06 7.11 9.0% 11.92 8.39 2.0% 10.02 6.99 2.0% 9.55 6.84

Despite the complex sampling mechanism, the1251

probability of each token in the modified distribu-1252

tion P̃t is adjusted by a factor dependent on its1253

assigned g value. Specifically, for any token v:1254

P̃t(v) =

{
Pt(v) · (1− PGt) if g(v) = 0,

Pt(v) · (2− PGt) if g(v) = 1.
(11)1255

During watermark detection, the detector com-1256

putes the average g value across all tournament lay-1257

ers, i.e., 1
m

∑m
l=1 g

(l)(v), as the watermark score1258

for the token.1259

Single Tournament Layer (m = 1). Consider the1260

simplest case where m = 1, meaning only one1261

tournament round is used. Let Gt denote the set of1262

tokens where g(1)(v) = 1. The probability modifi-1263

cation simplifies to:1264

P̃t(v) =

{
Pt(v) · (1− PGt) if v /∈ Gt,

Pt(v) · (2− PGt) if v ∈ Gt.
(12) 1265

The expected g value for tokens sampled from 1266

P̃t is (2− PGt) · PGt , while the expectation under 1267

Pt is simply PGt . Thus, the detection contribution 1268

St is: 1269

St = (1− PGt) · PGt . (13) 1270

This mirrors the Green-Red List watermark, 1271

showing that the detection contribution per token 1272

is fundamentally tied to PGt . 1273

C.2 Low Model Confidence Leads to Large 1274

Variance in the Watermark Score for 1275

Unwatermarked Text 1276

Thus far, we have established that the contribution 1277

of each token to the detection score is correlated 1278
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with the expected watermark score under the unwa-1279

termarked model. We now analyze what affects the1280

watermark score of the unwatermarked model.1281

Let Pt = (p1, p2, . . . , pd) be the probability vec-1282

tor from the unwatermarked model at token posi-1283

tion t, where pi ∈ [0, 1] and
∑d

i=1 pi = 1. Typi-1284

cally, d = |V| is large. We randomly select a subset1285

Gt ⊂ {1, . . . , d} of indices of size γ|V|. Define the1286

random variable:1287

PGt =
∑
i∈Gt

pi.1288

We analyze how PGt is distributed over all possi-1289

ble assignments of Gt. Define the indicator variable1290

Xi as follows:1291

Xi =

{
1, if i ∈ Gt,

0, otherwise.
1292

Since each token is independently assigned to Gt1293

with probability γ, we have:1294

E[Xi] = γ, and Var(Xi) = γ(1− γ).1295

For different token indices i ̸= j, the covariance1296

between their assignments is:1297

Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ].1298

For Poisson sampling (i.e., assigning each token1299

to Gt independently with probability γ), the covari-1300

ance is zero. However, under a fixed-size sampling1301

setup (i.e., selecting exactly γ|V| tokens), we have:1302

Cov(Xi, Xj) =
γ|V|
d

·γ|V| − 1

d− 1
−γ2 = −γ(1− γ)

|V| − 1
.1303

Expressing PGt in terms of Xi, we obtain:1304

PGt =

d∑
i=1

Xi pi.1305

Expectation and Variance of PGt . The expecta-1306

tion is:1307

E[PGt ] =

d∑
i=1

E[Xi] pi = γ

d∑
i=1

pi = γ.1308

The variance is:1309

Var(PGt) =

d∑
i=1

p2iVar(Xi)+
∑
i ̸=j

pipjCov(Xi, Xj). 1310

Substituting Var(Xi) = γ(1 − γ) and 1311

Cov(Xi, Xj) = −γ(1−γ)
|V|−1 : 1312

Var(PGt) = γ(1−γ)
d∑

i=1

p2i −
γ(1− γ)

|V| − 1

∑
i ̸=j

pipj . 1313

For the first term, 1314

γ(1− γ)
d∑

i=1

p2i = γ(1− γ)σ2, 1315

where σ2 =
∑d

i=1 p
2
i represents the squared ℓ2 1316

norm of the probability vector. 1317

For the second term, using the identity: 1318

∑
i ̸=j

pipj =

(
d∑

i=1

pi

)2

−
d∑

i=1

p2i = 1− σ2, 1319

and we obtain: 1320

γ(1− γ)

|V| − 1

∑
i ̸=j

pipj =
γ(1− γ)

|V| − 1
(1− σ2). 1321

For large |V|, the correction term γ(1−γ)
|V|−1 (1−σ2) 1322

becomes negligible, and we approximate: 1323

Var(PGt) ≈ γ(1− γ)σ2. 1324

Interpretation. This analysis shows that PGt de- 1325

pends on the probability mass distribution. 1326

High-Uncertainty Case (Uniform Distribution): 1327

If pi = 1
|V| for all i, then 1328

σ2 =

|V|∑
i=1

1

|V|2
=

1

|V|
. 1329

For large |V|, σ2 is small, meaning that the dis- 1330

tribution of PGt concentrates tightly around γ with 1331

small variance. This corresponds to a scenario 1332

where the model has high uncertainty, spreading 1333

probability mass nearly uniformly over all tokens. 1334

Low-Uncertainty Case (Dominant Tokens): In 1335

practice, language models often assign high proba- 1336

bility mass to a small number of dominant tokens. 1337

Suppose pj ≥ 0.8 for some token j, then: 1338

22



σ2 ≥ p2j = 0.64.1339

In this case, σ2 is much larger than 1/|V| (which1340

is on the order of 10−5 for large models). Conse-1341

quently, PGt exhibits a bimodal distribution: it is1342

either close to 0 or close to 1, depending on whether1343

the dominant tokens are in Gt. The probability of1344

PGt ≈ γ is nearly zero.1345

Thus, when the model is confident in its predic-1346

tions (low uncertainty), the variance of PGt is large,1347

leading to a higher variance in the watermark score.1348

Conversely, when the model is uncertain, the wa-1349

termark score is more stable and centered around1350

γ.1351

Connection to Watermark Detection. Since the1352

contribution to the detection score St depends on1353

PGt (Eq. equation ??), its variance is governed by1354

Var(PGt). This means that tokens generated with1355

high confidence contribute more variability to the1356

detection score, whereas tokens generated under1357

uncertainty contribute less variability.1358

C.3 Estimating the Confidence Score of the1359

Unwatermarked Model Using the1360

Watermarked Model1361

Our goal is to estimate the squared ℓ2 norm of the1362

probability distribution ∥Pt∥2, which serves as a1363

confidence measure for the unwatermarked model,1364

using only access to the watermarked model P̃t.1365

This estimation is critical for adaptive attacks and1366

for understanding how watermarking affects text1367

quality.1368

Setup. We consider the Green-Red List water-1369

marking scheme, where the probability distribution1370

P̃t is obtained by modifying Pt as:1371

P̃t(v) =
eδ1{v∈Gt}

Zδ
Pt(v),1372

where the normalization factor Zδ is defined as:1373

Zδ = (1− PGt) + eδPGt .1374

We aim to construct an estimator Û for the con-1375

fidence measure:1376

∥Pt∥2 =
∑
v∈V

Pt(v)
2.1377

Expected Squared Norm of the Watermarked 1378

Model. Since each probability mass in Pt is 1379

scaled by either eδ/Zδ (if in Gt) or 1/Zδ (if not 1380

in Gt), we have: 1381

E[P̃t(v)
2] = (1− γ)

1

Z2
δ

Pt(v)
2 + γ

e2δ

Z2
δ

Pt(v)
2. 1382

Summing over all tokens in V , we obtain: 1383

E[∥P̃t∥2] =
(1− γ) + γe2δ

Z2
δ

∥Pt∥2. 1384

Unbiased Estimator. Rearranging the above ex- 1385

pression, we define an unbiased estimator: 1386

Û =
Z2
δ

(1− γ) + γe2δ
∥P̃t∥2. 1387

Taking expectation, we confirm: 1388

E[Û ] = ∥Pt∥2. 1389

Practical Approximation. Since Zδ depends on 1390

PGt , which is unknown to an adversary, we approx- 1391

imate it using γ: 1392

Zδ ≈ (1− γ) + γeδ. 1393

Thus, the practical estimator becomes: 1394

Ũ =
[(1− γ) + γeδ]2

(1− γ) + γe2δ
∥P̃t∥2. 1395

This provides a computationally efficient way to 1396

estimate ∥Pt∥2 using only P̃t, making it useful for 1397

designing attacks. 1398

C.4 Estimating the ℓ2 Norm Using Top-K 1399

Probabilities 1400

While we have established the connection between 1401

the squared ℓ2 norm ∥Pt∥2 of the probability dis- 1402

tribution and its contribution to the watermark de- 1403

tection score, direct access to this quantity is often 1404

unavailable, even for the watermarked model. In 1405

this section, we show how to estimate ∥Pt∥2 using 1406

only limited access to the model’s top-K probabili- 1407

ties. 1408

Suppose we only have access to the top-K prob- 1409

abilities: 1410

p1 ≥ p2 ≥ · · · ≥ pK , 1411
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where the remaining probabilities1412

pK+1, . . . , p|V| are unknown. Define the re-1413

maining probability mass of the tail as:1414

R = 1−
K∑
i=1

pi.1415

Our goal is to estimate the squared ℓ2 norm:1416

∥Pt∥2 =
|V|∑
i=1

p2i ,1417

given only p1, . . . , pK and R.1418

We bound ∥Pt∥2 by considering two extreme1419

ways in which the unknown tail probabilities could1420

be distributed:1421

1. Uniform Tail: The remaining probability mass1422

R is evenly distributed across the unknown1423

tokens, minimizing the sum of squares.1424

2. Concentrated Tail: The entire probability1425

mass R is assigned to a single token, max-1426

imizing the sum of squares.1427

Uniform Tail (Lower Bound) If the tail probabil-1428

ity mass R is uniformly spread among the remain-1429

ing |V|−K tokens, then each unknown probability1430

is R
|V|−K . The squared sum of the tail probabilities1431

is then:1432

|V|∑
i=K+1

p2i = (|V|−K)

(
R

|V| −K

)2

=
R2

|V| −K
.1433

Since distributing the mass uniformly minimizes1434

the squared sum (due to convexity), this scenario1435

provides a lower bound for ∥Pt∥2:1436

∥Pt∥2 ≥
K∑
i=1

p2i +
R2

|V| −K
.1437

Concentrated Tail (Upper Bound) At the other1438

extreme, if the entire remaining probability mass1439

R is assigned to a single token, then the squared1440

sum of the tail probabilities is simply:1441

|V|∑
i=K+1

p2i = R2.1442

Since concentrating all probability mass in one1443

entry maximizes the sum of squares, this provides1444

an upper bound for ∥Pt∥2:1445

∥Pt∥2 ≤
K∑
i=1

p2i +R2. 1446

Combining both bounds, we obtain: 1447

K∑
i=1

p2i +
R2

|V| −K
≤ ∥Pt∥2 ≤

K∑
i=1

p2i +R2, 1448

where R = 1−
∑K

i=1 pi. 1449

Practical Approximation. A commonly used 1450

practical heuristic is to assume that the remaining 1451

probability mass R follows a uniform distribution 1452

across the unknown probabilities. Under this as- 1453

sumption, we approximate: 1454

∥Pt∥2 ≈
K∑
i=1

p2i +
R2

|V| −K
. 1455

This estimate tends to be slightly lower than the 1456

true value, since in reality, the tail probabilities 1457

are rarely perfectly uniform—some tokens may 1458

have slightly higher probabilities than others. How- 1459

ever, in the case of language modeling, probability 1460

distributions often exhibit a “long tail” where the 1461

remaining probability mass is spread across many 1462

small values. In such cases, the uniform assump- 1463

tion serves as a reasonable first-order approxima- 1464

tion. 1465

C.5 Additional Numerical Analysis 1466

Generalization to other watermarking solutions. 1467

For Gumbel sampling, we define the token-level 1468

contribution to watermark detection as St = 1469

− log(1 − Uv∗) − Ev∼Pt [− log(1 − Uv)], where 1470

v∗ is the token selected by the watermarked 1471

model. Note that the choice of v∗ is determinis- 1472

tic after the secret key held by the LM provider 1473

and the prefix content are fixed. For Tourna- 1474

ment sampling, we define the token-level con- 1475

tribution as St = E
v∼P̃t

[
1
m

∑m
l=1 g

(l)(v, r)
]
− 1476

Ev∼Pt

[
1
m

∑m
l=1 g

(l)(v, r)
]
, where P̃t is the mod- 1477

ified probability distribution. 1478

For these two watermarks, we still observe the 1479

same correlation between St and ∥Pt∥2 as we have 1480

for Green-list watermarks, as shown in Figure 7. 1481

Namely, the token-level contribution St to the wa- 1482

termark detectability is negatively correlated to the 1483

model’s confidence at position t. 1484
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Figure 7: The correlation between St (watermark contribution score) and ∥Pt∥2 (model confidence) evaluated
on model OPT-1.3B with the Gumbel and Tournament sampling (with m tournaments) watermarks, using the
same setup as in Figure 1. Each sample corresponds to a specific prefix and secret key. ∥Pt∥2 is computed from
the original un-watermarked model. The overall observation is similar to what we have for the Green-red list
watermarking: St decreases as ∥Pt∥2 increases.
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Figure 8: The correlation between DTV (Pt, P̃t), i.e., the negative impact on text quality due to watermarks (in color
blue), and ∥Pt∥2, measured on OPT-1.3B with the Green-red list and Gumbel and Tournament sampling watermarks.
We also plot DTV (Pt, P

ref
t ), which measures the negative impact on text quality if we use tokens sampled from the

reference model OPT-125M (in color red).

Impact of watermarking on text quality We1485

also plot DTV (Pt, P
ref
t ), which measures the neg-1486

ative impact on text quality if we alternatively1487

sample from the reference model OPT-125M (in1488

color red). We note that when the model is not1489

confident in its output, i.e., when ∥Pt∥2 is small,1490

sampling from the reference model’s token dis-1491

tribution, i.e., P ref
t , does not hurt the text qual-1492

ity. In particular, under the Green-red list water-1493

marking scheme, DTV (Pt, P
ref
t ) is comparable to1494

DTV (Pt, P̃t) when ∥Pt∥2 is small (observe that1495

the red points generally overlap with the blue1496

ones). For Gumbel and Tournament sampling,1497

DTV (Pt, P
ref
t ) is even smaller than DTV (Pt, P̃t)1498

when ∥Pt∥2 is small (observe that the red points1499

are generally below the blue ones). Conversely,1500

when the model is confident in its output, i.e.,1501

when ∥Pt∥2 is large, replacing the watermarked1502

model with a reference model may hurt the text 1503

quality (observe that the red points are above the 1504

blue ones). 1505

Trade-off between detectability and text qual- 1506

ity In Figure 9, we plot the correlation between 1507

DTV (Pt, P̃t) and St, empirically measured on 1508

OPT-1.3B model using the same setup as the above 1509

simulations. When the watermark has little im- 1510

pact on text quality (i.e., smaller total variation dis- 1511

tance), the watermark is also less detectable (i.e., 1512

smaller St). Conversely, tokens that contribute 1513

more to watermark detection also lead to more 1514

notable text quality degradation. This finding, in 1515

turn, reveals the crucial limitation of existing wa- 1516

termarking schemes: high watermark detectability 1517

and high text quality cannot be achieved at the same 1518

time, since the very same set of tokens causes qual- 1519

ity degradation while contributing to watermark 1520
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Figure 9: The correlation between DTV (Pt, P̃t), i.e., the negative impact of watermarking on the text quality,
and St, i.e., the token-level contribution to watermark detectability. We measure this on OPT-1.3B. For all three
watermarking schemes, DTV (Pt, P̃t) increases as St increases.

detectability simultaneously.1521

D Possible Defenses to Smoothing Attack1522

Our attack exploits the correlation between a to-1523

ken’s contribution to the watermark detection score1524

and the confidence level of the unwatermarked1525

model in predicting that token. One possible de-1526

fense against this attack is to restrict access to1527

confidence-related information, such as returning1528

only the most probable token without revealing1529

its probability. Note that, if the probability of the1530

most likely token is available, our attack remains1531

effective. However, such a defense is challeng-1532

ing to enforce in practice. Many existing LLM1533

services provide top-K probabilities (e.g., Ope-1534

nAI’s API returns probabilities for the top 20 to-1535

kens), which is already sufficient to approximate1536

model confidence and execute our attack. More-1537

over, service providers often release these prob-1538

abilities to enhance transparency and build trust1539

by providing insights into the model’s reasoning,1540

addressing concerns about the opacity of AI sys-1541

tems (European Commission, 2021; OECD, 2019).1542

Access to probability distributions is also essen-1543

tial for debugging and evaluating model perfor-1544

mance, as it allows developers to identify biases,1545

diagnose overconfidence, and improve reliability1546

(National Institute of Standards and Technology1547

(NIST), 2023). Probabilities support explainable1548

AI (XAI) by revealing model uncertainty, enabling1549

users to interpret predictions and explore alterna-1550

tive suggestions (Brown et al., 2020). From an1551

ethical standpoint, making probability distributions1552

available facilitates bias auditing and aligns with1553

broader efforts to promote fairness and accountabil-1554

ity in AI (OECD, 2019). Additionally, probability1555

information empowers developers and end users 1556

by enabling advanced decision-making strategies, 1557

such as re-ranking, rejection sampling, and beam 1558

search (OpenAI, 2023). Furthermore, it helps mit- 1559

igate risks associated with model overconfidence 1560

and hallucinations, which is particularly crucial in 1561

high-stakes domains such as healthcare and law 1562

(National Institute of Standards and Technology 1563

(NIST), 2023). Given the practical difficulties in re- 1564

stricting access to confidence-related information, 1565

our findings suggest that existing watermarking 1566

techniques may be vulnerable when model confi- 1567

dence can be estimated. This highlights the need 1568

for developing watermarking schemes that remain 1569

effective even in scenarios where adversaries have 1570

partial access to confidence estimates. Future re- 1571

search should explore watermarking methods that 1572

explicitly account for the model’s confidence and 1573

ensure robustness against adversarial attacks that 1574

exploit confidence information. 1575
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