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ABSTRACT

We propose a novel class of neural differential equation models called mean-field
continuous sequence predictors (MFPs) for efficiently generating continuous se-
quences with potentially infinite-order complexity. To address complex inductive
biases in time-series data, we employ mean-field dynamics structured through
carefully designed graphons. By reframing time-series prediction as mean-field
games, we utilize a fictitious play strategy integrated with gradient-descent tech-
niques. This approach exploits the stochastic maximum principle to determine the
Nash equilibrium of the system. Both empirical evidence and theoretical analysis
underscore the unique advantages of our MFPs, where a collective of continu-
ous predictors achieves highly accurate predictions and consistently outperforms
benchmark prior works.

1 INTRODUCTION

Modeling spatiotemporal processes provides profound insights into and enhances the ability to
predict the behavior of complex systems that evolve across both temporal and spatial dimensions. In
recent studies, neural differential equation models (Chen et al., 2019; Tzen & Raginsky, 2019) have
demonstrated exceptional generalization capabilities and effectiveness in capturing continuous-time
spatiotemporal dynamics, with applications ranging from generative modeling (Song et al., 2021) and
quantitative finance (Cohen et al., 2023) to physically-informed neural networks (Iakovlev et al., 2024).
Despite their notable performance, existing approaches fail to offer theoretical findings for a key
question inherent to continuous time series: How does the model behave as time granularity becomes
finer, ultimately leading to infinite observations? To answer the question, a viable approach is to
directly model data dynamics over continuous intervals with infinite complexity. To this end, this work
focuses on employing mean-field games (Lasry & Lions, 2007), to develop an infinite-dimensional
predictive decision-making framework, generalizing existing differential equation models.

The mean-field principle, a core philosophy in several scientific fields such as neuroscience (Faugeras
et al., 2009), statistical physics (Negele, 1982), and economics (Carmona, 2020; Cardaliaguet &
Lehalle, 2018), serves as a powerful tool to model and analyze how large numbers of interacting
agents behave strategically in stochastic dynamics, decentralized environments. In the mean-field
regime, a continuum of infinitely many agents is expected to satisfy Nash equilibrium by individually
governing the dynamics of partially observed historical sequential data and collectively interacting
with each other to make optimal group decisions for forecasting future events. The central premise
of this game-theoretic interpretation of the predictive system can be encapsulated in the following
statement: We extend the continuous-time sequence prediction problem into the formal setting of
mean-field games. In relation to this statement, our contribution is twofold:

• We extend existing differential equation models by proposing mean-field graphon SDEs as a novel
framework for modeling sequence predictors. This framework effectively captures the stochastic
spatiotemporal dynamics of an infinite continuum of agents, grounded in conjectures from time series
analysis (e.g., seasonality). To efficiently solve the mean-field games, we introduce gradient-based
FBSDEs, which significantly reduce the computational complexity associated with approximating
Nash equilibrium.

• Building on the concentration of empirical measures and the propagation of chaos property, our
theoretical analysis clarifies the effect of leakage in past observations on the generalization perfor-
mance of the mean-field system. We demonstrate that, as the population of agents increases, the
coalition produces increasingly accurate and reliable predictions.
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Sampling
Real Observation
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Figure 1: (Left). The mean-field predictors are conditioned on a set of labeled past observations {un}n≤N=4 ∼
p(u). Each spatiotemporal dynamic is interconnected via the neural graphon Wα, which leverages inductive
biases tailored for continuous sequential data. (Right). In the training, the collective decisions of a coalition of
mean-field predictors are calibrated to approximate the target future event interval.

2 MEAN-FIELD CONTINUOUS SEQUENCE PREDICTORS

This section introduces a stochastic differential equation model designed to represent a continuous
signal of infinite order, incorporating inductive biases in time-series modeling. For simplicity
and without loss of generality, bold-face notation will be used to omit sub- and superscripts of
mathematical objects when appropriate.

Definition 2.1. (Mean-field Graphon SDEs) For the Markovian feedback controlsα : T ×Rd×Θ→
Rd (i.e.,α := α(t, x; θ)) and continuous labels v ∼ p(u), we propose the Rd-valued controlled
stochastic differential equations called a mean-field graphon dynamics defined as follows:

dXαu (t) = ⟨Wα[νv(t)](u),ψ⟩(Xαu (t),α)dt+ b(t,Xαu (t),α)dt+ σtdW
u
t , Xαu (0) := yu, (1)

where a probability measure ν := {νv(t)}(v,t)∈O×T serves as a concise representation of the law of
dynamics, and yu ∼ p(u, y) denotes a continuous representation of past observations.

The mean-field dynamics presented in Definition 2.1 involves three terms on the right-hand side,
with an emphasis on important notions mean-field predictors and neural graphons, both critical for
comprehensive continuous time-series modeling.

Mean-field Predictor. The proposed dynamical system incorporates two types of continuity encoding:
locality (i.e., t) and labeling (i.e.,u). The state variable Xαu (t), termed a continuum of predictors or
mean-field predictors (MFPs), represents a continuous set of information trajectories, each labeled
by u ∼ p(u) and initialized from the past observation, Xαu (0) = yu ∼ p(u, y). For instance, a
continuum of predictors for the sequence of infinite i.i.d labels u∞ := {un ∼ p(u);n ≤ N →∞}
in the mean-field regime Xαu∞

(0) can be interpreted as being conditioned on the past observational
interval, i.e., the support of the label distribution p(u), with their future causal effect, producing
XαuK

(t) at future event interval being obtained from the dynamics in Eq (1). This demonstrates
that the proposed dynamics is well-suited for handling continuous signals, as it processes both input
and output in a continuous manner. In processing continuous signals, the closed Markovian control
process α(·; θ) ∈ A parameterized by neural networks θ ∈ Θ, referred to as a neural agent, governs
the trajectory of state Xαu∞

(t). Fig 1 depicts illustrative examples of how the proposed mean-field
predictors are sampled (left), propagated (mid), and utilized to produce future prediction (right).

The overarching goal is then to calibrate the trajectory of predictors by determining the optimal
neural agent α∗ that best approximates the target interval, e.g., Et[∥Eu∞Xα

∗

u∞
(t) − yt∥2E ] ≈ 0,

where decision aggregation w : O → [0, 1] captures the collective behavior of mean-field predictors.
Section 3 will present a systematic algorithm to fulfill this objective.

Neural Graphon. It is widely recognized in the literature that fundamental assumptions of inductive
biases, such as temporal decay, cycles, and seasonality are vital for effective time series modeling. To
incorporate these into our continuous mean-field system, we introduce a neural graphon, a graphon
structure parameterized with neural networks, capturing the inherent heterogeneity among predictors.
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Definition 2.2. (Neural Graphon) A graphon is a symmetric integrable function defined on L2,
W : O2 → R equipped with L2 norm. For a probability measure µ defined on O×Rd with bounded
second moment, we define a measure-valued function Wα[µ](·) : O → Ma and a continuous
symmetric function ψα := ψ(y, x,α) := Hψ(α)ProjSd−1(y − x) such that the first term in right-
hand side of Eq (1) is defined as ⟨Wα[µ](u),ψα⟩(y,α) := Ev∼p(v),x∼µ[Wα(u, v)ψα(y, x)] ∈ Rd.

aPlease refer to Section 8.1 for the deatils.

Exponential Graphon Cosinusoidal  Graphon

Figure 2: Visualization of Graphons.

For two tuples (x,u) ∼ νu⊗p(u) and (y, v) ∼ νv⊗p(v),
a symmetric function ψ estimates scaled relative dissim-
ilarity between spatial features x and y. The neural agent,
i.e., Hψ(α), then adjusts the importance of dissimilarity
by rescaling projected vectors. Meanwhile, the neural
graphon W encodes a degree of interaction between tem-
poral variables u and v. Among the various graphon de-
signs available, we propose two structures informed by
inductive biases specific to continuous time series. Note
that the key distinction from conventional methods is that our approach directly models inductive
biases in the data space Rd, rather than in latent feature spaces, facilitated by the graphon structure.

Exponential Graphon. In the first graphon structure, we incorporate temporal decay (Che et al., 2018)
assumption on spatiotemporal variables, which suggests that the influence of the past event decreases
exponentially as time deviations increase. Fig 2 shows an illustrative example of the exponential
graphon where temporally proximate events tend to exhibit strong interactions, where the neural
agent, i.e.,W1 : A→ R+ determines the magnitude of interaction. For the deviation between labels
∆u := |u− v|, the impact of temporal dissimilar events are penalized:

Wα(u, v) := W1(α) exp(−T−1∆u). (2)

Cosinusoidal Graphon. The second graphon is designed to emphasize the continuous cyclic as-
sumption (Oreshkin et al., 2020), which captures the periodic nature of time-series. To reflect
the assumption, we first perform an eigen-decomposition of the proposed graphon operator on
L2(O), using sinusoidal eigen-functions (i.e., {ϕl}) and varying frequency modes for the eigenvalues
(i.e., {λl}), as Gao & Caines (2019) suggested:

W = Id+
∑

k,l∈Z+

λlφl, {φl} ⊂ {Id,
√
2 cos 2πk(·),

√
2 sin 2πk(·)}, {λl} ⊂ {a0, bk/2}. (3)

We parameterize the graphon operator with neural networks, by replacing Fourier coefficients {Id, λl}
with corresponding neural agents, i.e.,W0,W1,l,W2,l : A→ R+. To present various periodicities,
we define f(l) ∈ {1/2, 1/4, 1/8}l≤L that represent a set of pre-determined frequencies. We then
define cosinusoidal graphon as follows:

Wα(u, v) = W0(α)+
1

2L

∑
l∈{1,··· ,L}

W1,l(α) cos

(
2πf(l)∆u

|O|

)
+W2,l(α) sin

(
2πf(l)∆u

|O|

)
. (4)

Note that we limit the summation to finite modes (i.e., L) for computational tractability. Fig 2
illustrates periodic interaction magnitudes for a predefined frequency setup. Further details on the
implementation and their analysis can be found in the Appendix.

3 TRAINING MEAN-FIELD PREDICTORS

3.1 MEAN-FIELD GAMES AS CONTINUOUS SEQUENCE PREDICTION

In the previous section, we proposed SDE-based mean-field continuous sequence predictors with
spatio-temporal interactions. Since the mean-field system in Eq (2.1) is framed as controlled SDEs
with neural agents, we can formulate the objective function as a stochastic control problem. More
specifically, our primary goal is to minimize the cost functional J designed for training neural agents
solving sequence prediction and derive the corresponding value function V:
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Definition 3.1. (Cost functional)a For the given neural graphon Wα, and fixed set of admissible
controls A, the cost functional is defined as follows:

V := inf
α∈A
J (να,α) = inf

α∈A
Eα,ν,t≤T

[
∥Eu∼p(u)X

α
u (t)− yt∥2E +G(Xαu (T ),ν

α)
]
. (5)

where G represents the terminal cost at time t = T , and w : O→ [0, 1] is a decision aggregation
function, satisfying

∫
w(u)du = 1.

aPlease refer to Section 8.3 for the detailed rationale of definition.

To generate future predictions, the mean-field predictors collaborate by forming a coalition, i.e., a
time marginal of predictors Eu∼p(u)X

α
u (t), where expectation with respect to labeling u aggregates

weighted decisions (i.e., w) of a continuum of predictors u ∼ p(u) := w#[Unif(O)](u) in approxi-
mating target continuous interval {yt}t∈T. Figure 1(right) provides an illustrative example of the
decision-making process. With the aim of generating accurate target intervals, the neural agent is
trained to derive value function V which characterizes the state in which a continuum of players form
a coalition to cooperatively predict the best possible future events.

The challenge in solving this problem stems from the fact that the neural agent both influences the
population of predictors να, which, in turn, continuously impacts the individual state variables as
the dynamics propagate with interactions via neural graphon. To formalize the recurrence in the
literature, such problems are often framed as (graphon) mean-field games (Lasry & Lions, 2007;
Caines & Huang, 2021). In this work, we adopt this approach to formulate the continuous sequence
prediction problem as mean-field games. Our primary focus is then searching for the best optimal
control α∗ that induces the best possible response in the recurrent relation between V and να. For
the formal analysis, we investigate how the exact solutions (V,να∗

) can be derived from optimal
control profiles over time by examining the following system of PDEs in the mean-field regime:

Definition 3.2. (Forward-Backward PDE System). For the obtained optimal neural agent α∗, exact
solutions of value function in Eq (5) can be obtained by solving the following system of PDEs:

∂tV(t, x) + σ2
t /2∆V(t, x) +H(t, x, ∂xV(t, x), νu(t),α∗) = 0, (HJB)

∂tν
α∗

u (t)− σ2
t /2∆να

∗

u (t) +∇ ·
[(
bW (x, να

∗

u (t),α∗) + b(t, x,α∗)
)
να

∗

u (t)
]
= 0, (FPK)

where ∆ and ∇· denotes Laplacian and divergence operators, respectively. The stochastic Hamilto-
nian system H is given by

H(t, xu, a, ν, α) := (bW (xu, ν, α) + b(t, xu, α)) · a + ∥Eu∼p(u)xu − yt∥2, (6)

where bW (x, ν, α) := ⟨Wα[ν](u),ψ⟩(x, α) is the graphon interaction term in Definition 2.2.

A system of decoupled PDEs consists of the Hamilton-Jacobi-Bellman (HJB) equation and the
Fokker-Planck-Kolmogorov (FPK) equation, which individually describes the propagation rules of the
state variable and the value function over time. In mean-field equilibrium states, these PDEs become
coupled as the law of the state variables i.e.,Law(Xαu (t)) matches νu(t) with marginal errors. This
specific mathematical constraint can be formally expressed in the following definition:

Definition 3.3. (Mean-field ϵ-Equilibrium). We say that a continuous flow of measure νu(·) is an
ϵ-equilibriuma of graphon mean-field games if there exists a numerical constant ϵ > 0 such that
supu,t

[
W2

2 (νu(t),Law(Xα
∗

u (t))
]
≾ O(ϵ), such that α∗ ∈ A is optimal.

aNote that the graphon mean-field equilibrium (Zhou et al., 2024) can be recovered by setting ϵ = 0.

The mean-field equilibrium described in Definition 3.3 characterizes a scenario where a continuum
of predictors is not incentivized to modify their policies α∗ to non-optimal counterpart β, which
induces marginal errors, i.e.,J (νβ,β) ≥ J (να∗

,α∗). Here, the law of optimal mean-field pre-

iv
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Figure 3: Illustrative Algorithm for the Gradient System of FBSDEs.
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Iteration

dictors closely approximates the population νu with marginal errors ϵ. This coupling integrates
the Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations, forming a
master equation. Several numerical methods exist to approximate solutions to mean-field games
including fixed-point iterations (Lauriere, 2021), and fictitious play (Min & Hu, 2021). However,
these methodologies are typically constrained to linear quadratic dynamics, leading to computational
intractability when confronting non-linearity (e.g., neural networks). Additionally, numerical simula-
tions for obtaining analytic solutions of this system of PDEs present significant challenges due to
the curse of dimensionality in high-dimensional data spaces. The following section is dedicated to
addressing these issues by leveraging the deep neural architecture.

3.2 GRADIENT SYSTEM OF NEURAL FORWARD-BACKWARD SDES

Inspired by computational algorithms designed for fictitious play (Cardaliaguet & Hadikhanloo,
2017), we explore a gradient descent-based algorithm, which enables us to tackle solving MFGs
by fusing deep neural architectures. To be more specific, we propose a gradient system of forward-
backward stochastic differential equations (Bensoussan et al., 2013), which is adapted for reflecting
the update of neural agents with respect to the gradient descent algorithm.

Definition 3.4. (Gradient System of FBSDEs). For the fixed flow of measures νu(·) : T→ P2 and the
fixed label u at each stage m, we consider a family of processes (Xu(t),Yu(t),Zu(t)) that solves
forward-backward stochastic differential equations with respect to the proposed graphon system in
Eq (1) given as follows:

dXm,αm
u (t) = bW (Xm,αm

u (t), νu,αm)dt+ b(t,Xm,αm
u (t),αm)dt+ σtdW

u
t ,

dYm,αm
u (t) = −H(t,Xm,αm

u (t),Ym,αm
u (t), νu,αm)dt− Zm

t · dW u
t ,

αm+1 := α (t,Xm,αm
u ; θm − EY,t≤T [γm∇θY

m,αm
u (t)]) ∈ A,

νu = Law(X
m−1,α∗

m−1
u ),

where γm > 0 is a learning rate of gradient descent, and A is a set of admissible neural agents.
Then, we have (Yu(t),Yu(T ),Zu(t)) = (J ,G, (∂xJ )σ−1

t ).

The proposed gradient system can be decomposed by iterating a two-step procedure, i.e., (A) and
(B), over a total of M stages. Fig 3 illustrates the evolution of the mean-field predictors related to
the updated parameters of neural agents αm across different stages m. The details of the two-step
procedure are specified below.

(A) Information Propagation. Initially, the system publicly opens the information to a continuum of
players by setting the population information of the previous stage, where the forward and backward
system of SDEs propagates information with respect to the updated population, νu.

νu ←− Law(X
m−1,α∗

m−1
u ), (Xm

u ,Ym
u ) ∼ Law(Xm

u |νu)⊗ Law(Ym
u |νu). (7)

Note that the backward dynamics is propagated in reverse direction starting from its terminal state
Yu(T ) = G while the forward dynamics evolve in the forward direction from the initial state. This
shows that the proposed FBSDEs parallel the PDE system described in Definition 3.2.

(B) Update Control Profiles. In the subsequent step, the neural agent αm is updated with respect to
its parameter θm following the steepest direction of minimizing the values of backward dynamics
Ym

u . The backward dynamics, associated with the cost functional J as described in Proposition 3.4,
guide the updates of the parameters, allowing the mean-field predictors to gradually approximate the

v
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target interval. Since we have proposed an iterative algorithm to solve MFGs, the remaining part
aims to provide convergence guarantees and highlight optimality conditions.

Stochastic Optimality. Proposition 8.3 guarantees that the gradient system in Definition 3.4 induces
optimal neural agents α∗, which yield a feasible value function (i.e.,Ym

u (0)
m→∞−−−−→ V) where

the optimality of the control is represented in the sense of the Pontryagin stochastic maximum
principle (Yong & Zhou, 2012). Specifically, we have the following two results:

lim
m→∞

H( ·,αm) ≈ inf
α∈A

H( ·,α), dt⊗ dν − a.e., V ≈ Y∞
u (0) = J (να∞ ,α∞). (8)

The result illuminates that a pair (limm→∞α
m = α∗, limm→∞ ν

αm = να
∗
) solves both HJB and

FPK equations in Definition 3.2, assuring stochastic optimality. Having obtained the value function,
the next goal is to provide an explicit estimation of ϵ in the convergence of mean-field equilibrium.

Convergence to Mean-field Equilibrium. To rigorously analyze the convergence to equilibrium
in a distributional sense, we define two distinct operators, Φ and Ψ :M→M, referred to as the
projector and updater, respectively. Each operator corresponds to one of the two steps mentioned
earlier, as illustrated in Fig. 3:

Φ(ναm) := {Law(Xαm
u (t))|

ν=ν
α∗

m−1
; t ∈ T,u ∈ O}. (9)

Ψ(ναm−1) := {ναm ; V = J (να
∗
m−1 ,α∗

m−1), ν
αm = α∗

m−1}. (10)
It can be easily verified that the composition of these operators at stage m maps the previous state’s
population to the next stage i.e.,Φ ◦ Ψ(νm−1) = νm. Proposition 3.5 asserts that the population
{ναm}m≤M generated by the proposed algorithm begins to converge in the Wasserstein metric as
the stages m increase.

Proposition 3.5. (informal) For arbitrary u ∼ p(u) and t ∈ T, the m-fold of composition Φ ◦ Ψ
induces convergent behavior of squared 2-Wasserstein distance:

W2
2 ([Φ ◦Ψ]◦m(να1), [Φ ◦Ψ]◦m(να0)) ≾ sup

t
∥∇θY

m∥E · O(γm, C) := ϵm
m→∞−−−−→ 0. (11)

where a numerical constant C is dependent on M, b0, C1, Hψ,Lipb,m2, |O|, e−|O|,LipW , h(α) =
∥Wα∥g is a cut-norma of the proposed graphons (i.e., exponential, cosinusoidal)

aEq. 64 clarifies the explicit upper-bound of the cut-norm for the proposed graphons.

Proposition 3.5 reveals two theoretical implications regarding the convergence property. First, the
proposed gradient system converges in a distributional sense, as the Wasserstein distance between the
populations ([Φ ◦Ψ]◦m(να1) = ναm+1 and ([Φ ◦Ψ]◦m)(να0) = ναm , governed by the gradient
norm of the backward dynamics, is expected to decrease as m increases. In other words, {Φ◦Ψ}◦m is
a Cauchy sequence inM, ensuring the convergent behavior of the proposed training scheme. Second,
the proposed gradient system ensures the convergence of the dynamics for the upper bounds ϵm. It is
important to note that the inequality in Eq (11) is an equivalent expression of the mean-field Nash
ϵm-equilibrium described in Definition 3.3. In this context, the neural agent with greater capacity
(i.e., a smaller radius rm of the metric balls in Eq (49)) further tightens the upper bound. In conclusion,
the findings from Proposition 3.5 validate that the proposed gradient system is theoretically sound and
efficiently utilizes neural networks to address mean-field games in continuous sequence prediction.

4 SAMPLING MEAN-FIELD PREDICTORS

In this section, we propose the numerical algorithm for sampling the proposed mean-field predictors
and provide a theoretical analysis of the sample complexity error and the asymptotic convergence of
empirical estimation for mean-field predictors.

Graphon Mean-field Euler Maruyama Scheme. Inspired by the Euler-Maruyama scheme of
Mckean-Vlasov types, we propose an Euler-Maruyama scheme for graphon interacting particle
systems to generate a set of mean-field predictors at each time stamp. Alg 1 presents the numerical
algorithm for sampling mean-field predictors. Assuming that α∗ := α(·; θ∗) is optimal in the sense
of mean-field equilibrium obtained from the operating gradient system of FBSDEs.

vi
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Algorithm 1 Sampling Mean-field Continuous Sequence Predictors
while t ∈ T do ▷ Graphon Mean-field Euler-Maruyama Sampling

while i ≤ N do
{yui}i≤N ∼ p(u, y), ∆t ∼ p(∆t), U ∼ Unif(O), t ∼ p(t).
αi = α(t,Xn

i ; θ
∗),Wij = Wαi(⌈nui⌉ /n, ⌈nvj⌉ /n),ψij = ψαi

(
Xn

i (t),X
n
j (t)

)
. (12)

Xn
i (t+∆t) = Xn

i (t) +
1
n

∑n
j Wijψij∆t + b(t,X

n
i ,αi)∆t +N (0d, σt∆tId). (13)

end while ▷ Predict Subsequent Future Event
if t ∈ T \O then

Λt+∆t =
∑K

i w(U, ⌈nui⌉ /n)Xn,αi
i (t+∆t) ≈ Eu∼p(u)X

α
u (t+∆t)

end if
end while

Due to the infinite-dimensional nature of the proposed system, sampling mean-field predictors causes
inherent complexity errors when applied to finite-dimensional real-world datasets. As the sampled
mean-field prediction is expected to approximate its mean-field limit, a natural question arises
regarding sample complexity: How does probability error emerge in relation to sampling complexity?
To rigorously address this, we begin by defining the probabilistic representation of both the sampled
and model dynamics as follows:

MFPs in Alg. 1 : νNt :=
1

N

N∑
i

δXn
i (t)

, MFPs with∞-order : µ̂t := Eu∼p(u)[νu(t)]. (14)

where XN
i (t) ∼ νNt is sampled predictors, which can be obtained from implementing the Algorithm 1

and the weighted sum Λt approximates true collective prediction made by mean-field predictors
EuX

α
u (t) ∼ µ̂t in Eq (5). In what it follows, we establish the relation between squared 2-Wasserstein

distance and the number of samples N , the dimensionality of the data distribution d.

Proposition 4.1. (Sampling Complexity) For arbitrary u ∈ O, let νNt , µ̂t be probability measures
defined in Eq (14). Then, there exist numerical constants c, c7, c8, c9 > 0, w > 0 and κ > 0 such that
the probability of squared 2-Wasserstein distance can be controlled as follows:

sup
t∈T

P
[
W2

2 (ν
N
t , µ̂t) ≥ ϵ

]
≤ a

(
e−Nϵ2/4c

ϵ2
+

e−Nϵ

N

(
1− 128ωh(α)

N

)−d/8

+
1

724ϵ
√
N

)
, (15)

a = max

(
c9,

2c
3/2
7

κ
exp(c4e

1
2 c1T )

(
eκT − 1

)
, c9 exp(−4c8)

)
. (16)

The proof primarily draws on the findings presented in Bolley et al. (2007). It is important to note that
the result guarantees the proposed system benefits from the propagation of chaos (Chaintron & Diez,
2022), validating the asymptotic behavior of the sampled predictions generated by the mean-field
predictors.

sup
t∈T
W2

2

(
Law

(
Xn

i1 , · · · ,X
n
ik

)
, ⊗{j=1,···k} νj/n(t)

) k→∞−−−→ 0. (17)

Eq. 15 and Eq. 17 and Proposition 8.4 in Appendix align with the intuition that as the number of
predictors N increases (and dimensionality d), the sampled dynamics converges more closely to the
mean-field limit µ̂t and νu(t). Notably, the right-hand side of the inequality in Eq. (15) is governed
by two terms that decay exponentially, and the remaining term decays inversely as a polynomial, both
exhibit short-tailed concentration with respect to a number of mean-field predictors.

Moreover, the result demonstrates the advantages of applying mean-field games: Rational individuals
(i.e., δXn

i (t)
) satisfying Nash equilibrium and conditioned on partial information (i.e.,Xn

i (0) = yi/n)

forms a coalition (i.e., νNt ), and the group decision is progressively refined to collaboratively solve the
continuous sequence prediction problem. As the coalition size increases, the resulting predictions
become progressively more precise and reliable. In Section 6, we conduct an ablation study to
numerically verify these theoretical findings.
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Table 1: Mean Squared Errors (MSEs) and Mean Absolute Errors (MAEs) in various continuous sequence pre-
diction tasks. The top and second-top scores in each dataset are highlighted in bold and underlined, respectively.
Each metric is scaled by 10−2.

Methods MIT Humanoid Robot MIMIC-II Beijing Air Quality
MSE MAE MSE MAE MSE MAE

Neural Laplace 8.11±0.25 17.03±0.33 7.76±0.04 18.70±0.08 3.21±0.12 11.45±0.23
MaSDEs 16.51±0.21 27.89±0.30 8.41±0.06 20.67±0.08 3.47±0.03 13.13±0.07

CRU 32.08±5.07 42.50±3.90 13.09±0.31 24.68±0.47 3.48±0.06 12.76±0.19
Latent SDE 6.01±0.14 15.94±0.14 8.04±0.02 19.63±0.06 3.29±0.03 11.99±0.07

Neural LSDE 6.80±0.14 16.51±0.08 7.93±0.05 19.09±0.07 3.74±0.04 11.98±0.15
CONTIME 6.88±0.29 16.60±0.25 12.29±0.14 25.26±0.12 5.15±0.17 15.86±0.27

Contiformer 5.94±0.23 15.29±0.26 7.90±0.12 19.05±0.18 3.25±0.10 11.48±0.16
S4 5.59±0.16 13.98±0.19 13.24±0.01 24.79±0.30 3.95±0.15 12.35±0.17

Mamba 5.21±0.09 13.71±0.15 13.23±0.02 24.76±0.19 3.68±0.14 11.56±0.24

MFPs (Exp.) 3.89±0.10 11.42±0.14 7.51±0.08 18.59±0.11 3.14±0.07 11.45±0.13
MFPs (Cosin.) 3.91±0.07 11.43±0.07 7.51±0.06 18.60±0.10 3.13±0.07 11.38±0.08

5 RELATED WORK

Neural Differential Equation Models. In recent years, neural differential equation models have
gained attention for their ability to capture the dynamics of complex continuous sequences. Latent
ODEs (Rubanova et al., 2019) extend standard RNNs to handle continuous signals by integrating
neural ODEs with them. Kidger et al. (2020) introduced differential equation models based on
controlled differential equations (Neural CDE) to address a key limitation of neural ODEs, where
solutions depend solely on initial conditions and not on subsequent observations. Recently, Contif-
ormer (Chen et al., 2024) was developed, combining neural ODEs and Transformers into a single
framework. Another line of research integrates stochasticity by utilizing SDEs, particularly for
time-series applications. Latent SDE (Li et al., 2020) encodes sequential data in the latent space
using neural SDEs, while MaSDE (Park et al., 2023) employs a concept of stochastic differential
games to analyze time series. Koshizuka & Sato (2023) proposed a regularized neural SDE based on
the Lagrangian Schrödinger bridge, and Oh et al. (2024) introduced three stable types (classes) of
neural SDEs: Langevin-type SDE, Linear Noise SDE, and Geometric SDE.

Mean-field Principles in Generative Models. Recent works utilized the mean-field principle to
model the infinitely many random particles in high-dimensional data space, where they interact with
each other. In Liu et al. (2022), the Schrödinger bridge was incorporated to address mean-field games
in order to approximate data distributions for large populations. Park et al. (2024) introduced the
concept of propagation of chaos to generate data structures with exchangeable high cardinality such
as 3D point clouds.

6 EXPERIMENTAL RESULTS

We validate our method on various time-series prediction benchmark datasets, comparing it against
several baselines. The details of our experimental settings are as follows:

Datasets. In the experiments, we evaluate our results against benchmarks using the following datasets:
(i) MIT Humanoid Robot (Li et al., 2024), (ii) MIMIC-II (Silva et al., 2012), and (iii) Beijing Air
Quality (Zhang et al., 2017). The MIT Humanoid Robot dataset contains the robot’s state trajectories
during various activities, such as running, jogging, and stepping in place, with 27 features describing
these states. The MIMIC-II dataset, from the PhysioNet Challenge 2012, consists of time series
data with 41 features representing the first 48 hours of a patient’s ICU admission (e.g., SaO2 and
cholesterol levels). The Beijing Air Quality dataset contains time series data for six air pollution
indicators, collected from 12 different locations in Beijing. For stable training, we apply either
min-max or z-score normalization to each dataset.

Benchmarks. Given our focus on continuous sequence modeling, the benchmark baselines consist
of various continuous models, including Neural Laplace (Holt et al., 2022), MaSDEs (Park et al.,
2023), CRU (Schirmer et al., 2022), Latent SDE (Li et al., 2020), Neural LSDE (Oh et al., 2024),
CONTIME (Jhin et al., 2024), and Contiformer (Chen et al., 2024). To further enhance the baselines,
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Figure 5: Visualization results on the MIT Humanoid Robot dataset. (Left) Sensitivity analysis on the sample
complexity. (Right) Prediction results compared to representative baselines.
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we also incorporate continuous state-space models, such as Mamba (Gu & Dao, 2024) and S4 (Gu
et al., 2022). Performance evaluation is carried out using mean squared error (MSE) and mean
absolute error (MAE) metrics. Each model is executed five times, with the average scores and
standard deviations reported.

Quantitative Results. Table 1 presents a performance comparison with benchmark methodologies
across three datasets. The results show that the proposed MFPs consistently outperform other
benchmarks by significant margins on all datasets. Notably, conventional neural differential equation
models perform reasonably well on the MIMIC-II and BAQD datasets, where sequences are irregularly
sampled with missing values. However, they exhibit a performance drop on the MIT Humanoid
Robot dataset, likely due to their limitations in handling complex spatio-temporal dynamics. In
contrast, state-space models excel on the MIT Humanoid Robot dataset but experience a decline in
performance on the other two datasets, indicating their limitations in dealing with irregularly sampled
sequences. Figure 5 (right) illustrates the qualitative prediction results on the MIT Humanoid Robot
dataset. As shown, our MFPs deliver superior performance compared to the other models.

Ablation Study I: Sample Complexity. To validate the theoretical findings presented in Section 4,
we conduct an ablation study to demonstrate the performance improvements as the sampling number
N increases. Fig 5 (Left) confirms the theoretical findings discussed in Proposition 4.1, indicating
that showing that additional performance gains can be realized. It is worth noting that significant
performance gains during inference can be achieved by employing multiple mean-field predictors,
even after only a single training phase. Since increasing the number of predictors generally results in
higher computational costs during the inference, it is essential to select an optimal value for N . In all
experiments, we consistently set N = 16 for balancing efficiency and performance.
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Figure 4: Impact of Noise Intervention

Ablation Study II: Noise Robustness. We perform a
robustness study to assess the impact of non-informative
noisy signal (i.e., white noise) interventions in past ob-
servations. Specifically, we inject the Gaussian random
noises with variance σnoise = 0.3 to derive the distribu-
tional shift of test continuous-time sequences and corrupt
the test data, p̂(u, y) = p(u, y)⊛N (0d, σnoiseId), where
⊛ is a convolution operation. Fig 4 shows a uniform per-
formance degradation (i.e.,∆) with an increasing number
of past observations corrupted by non-informative noisy
signals. As can be seen, our MFPs exhibit robust performance against noise interventions, as Mamba
experiences sharp declines in accuracy under high levels of noise. The coalition, adapted to the
original clean sequence p(u, y), neutralizes the influence of individuals conditioned on noisy signals
p̂(u, y), thereby preserving the Nash equilibrium, resulting the robust generalization performance.

7 CONCLUSION

This paper introduces mean-field continuous sequence predictors, a novel class of neural SDE model
for the efficient generation of continuous sequences, which can possess infinite-order complexity. To
capture the complex inductive biases in time-series data, we propose the mean-field dynamics using
meticulously designed graphons. We recast the time-series prediction problem as a mean-field game
and adopt a fictitious play approach, integrated with a gradient-descent-based method, to leverage the
stochastic maximum principle and identify the Nash equilibrium of the system. Both empirical and
theoretical results reveal the distinctive features of our MFPs, where the coalition of a continuum of
predictors generates accurate predictions and consistently surpasses benchmark performance.
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8 APPENDIX

8.1 NOTATIONS AND DEFINITIONS

This section includes brief summary of the mathematical backgrounds, omitted notations and defini-
tions in the manuscript.

Generalized Wasserstein Distance. Recall the definition of space for probability measures that
consist of generic path measures with finite second moments,

M̂ := {ν = (νu : u ∈ O) ∈ [C([0, T ],Rd)]O; u 7→ νu ∈ P(C([0, T ],Rd) is measurable},

M̃ := {ν; sup
u∈O

∫
∥Xu(·)∥2dνu(Xu(·)) <∞}.

For the arbitrary elements µ,ν ∈M := M̂ ∩ M̃, let us considerM equipped with the generalized
2-Wasserstein metric as

Wt,M(µ,ν) := sup
u∈O

[
inf
Π

E
(
sup
s≤t
∥Xu(s)−Yu(s)∥2

)]1/2
,

{
Law(Xu) = P−1

u ◦ µ,
Law(Yu) = P−1

u ◦ ν, (18)

where Π is a coupling between two probability measures and Pu denotes a canonical projection onto
the interval O. Followed by the Kantorovich-Rubinstein duality, definition in Eq (18) can be further
modified as

LWt,M(µ,ν) ≥ sup
u∈O

sup
f∈Lip(L)

∣∣∣∣ ∫
Rd

fd(µu,t − νu,t)

∣∣∣∣, µ,ν ∈M. (19)

Note that the inner supremum is taken over a family of L-Lipschitz real-valued continuous functions.

Cut Norm of Graphon. The cut-norm measures the discrepancy between two graphons over all
possible cuts of the square of O. Formally, for a graphon W : O×O→ R+, the cut-norm is defined
as:

∥W∥g := sup
A,B⊂O

∣∣∣∣ ∫
A×B

W (u, v)dudv

∣∣∣∣, (20)

where the supremum is taken over all measurable subsets A and B. The definition illustrates that
the cut-norm quantifies the maximum deviation of W from zero over any rectangle O2. Given the
definition, one defines the metric called cut distance:

dqg(W1,W2) = ∥W1 −W2∥qg (21)

The cut distance measures how close two graphons are after optimally aligning their domains. If the
cut distance between two graphons W1 and W2 is small, the graphs they represent are structurally
similar.

(Exponential AM-GM Inequality). For the arbitrary random variables X,Y and positive constants
a, b > 0, the expectation can be decomposed as follows:

E[exp(aX2 + bY 2)] ≤
(
2E[exp(2X2)]

)1/2 (
2E[exp(2X2)]

)1/2
. (22)

(Arithmetic AM-GM Inequality). For arbitrary positive constants x, y, w > 0, we have

xy ≤ ωx+
1

4ω
y. (23)
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8.2 ASSUMPTION

Without additional information, we make the following assumptions in this paper.

1. (H1). There exists a finite collection of intervals {Ok; k ∈ {1, · · · , N}} for arbitrary
N ∈ N+ such that ∪Nk Ok = O. Then we assume the following:

• For each k, the initial datum of the graphon system is set with the data distribution νu:
Ok ∋ u 7→ µu(0) := νu ∈ P2, where the mapping assigns to independent measures.

2. (H2). For each k and Ok ∋ u, there exists a constant C1 such that we have probability
νu,s[supx∈Rd\Y(ω)∥x−Y∥−p ≤ C1] almost surely for all p ∈ N+, and the second moment
(i.e.,m2) of νu,s is bounded.

3. (H3). The Lipschitz constants of the functions in modeling of graphons W(·) : L2(νu(t)) ⊃
A→ R+ are bounded above. The parameterized Markovian feedback controls are Lipschitz
in parameters:

|W(·)(α)−W(·)(β)| ≤ LipW ∥α− β∥νu(t), (24)

{∥α− β∥νu(t), ∥α(t, x, θα)− α(t, x, θβ)∥} ≤ Lipθ∥θα − θβ∥E (25)

The drift function is Lipschitz continuous and dissipative, ensuring that the constant c1 is
well-defined.

∥(b, bW )(t, x,α)− (b, bW )(t, y,β)∥ ≤ Lipb(∥x− y∥E + ∥α− β∥νu(t)). (26)

c1 := inf
x,y
−(x− y) · [(b, bW )(x)− (b, bW )(y)] /∥x− y∥2E (27)

4. (H4). The maximal rank of embedding of neural agents in A is d′.

T× Rd ×Θ 7→ α ∈ A ↪→ L2(ν). (28)

8.3 PROOFS

8.4 STOCHASTIC OPTIMAL CONTROL, MEAN-FIELD FBSDES

Before presenting the main proofs, this section offers a detailed analysis of how the proposed
mean-field games can be formulated.

Weak Formulation of Mean-field Games. We start by explicating on the rigorous definition of
forward mean-field dynamic in Eq. (1) cost functional in Eq. (5) and gradient system of FBSDEs in
Propsoition 3.4, followed by a brief summary of how forward-backward SDEs are formulated in the
context of stochastic optimal control problems. To this end, let us first define the primitive process
X̄t, which solves the following SDE for a fixed label u:

dX̄u(t) = σtdB
u
t , X̄0(t) = yt. (29)

where Bu
t is a Brownian motion under probability measure P. Given the square of volatility term σ2

t
is bounded below some constant, we introduce the probability measure Pµ,α, which can be derived
by the following Radon-Nikodym derivative:

dPµ,α

dP
= E

(∫ (·)

0

σ−1
t

(
bW (X̄u(t),ν,α) + b(t, X̄u(t),α)

)
· dBu

t

)∣∣∣∣
t=T

. (30)

where E denotes a Doléans-Dade exponential of a martingale. Applying Girsanov’s theorem, we have
the Brownian motion Wµ,α under the probability measure Pµ,α:

W u,µ,α
t = Bu

t −
∫
T
σ−1
s

(
bW (X̄u(s),ν,α) + b(s, X̄u(s),α)

)
ds. (31)

Then, the primitive process can be rewritten as follows almost surely Pµ,α,

dX̄u(t) =
(
bW (X̄u(t),ν,α) + b(t, X̄u(t),α)

)
dt+ σtdW

u,µ,α
t . (32)
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By suppressing the objects in upper-scripts for simplicity, with the notation W u
t = W u,µ,α

t and
Xu(t) = X̄u(t), one can recover the original mean-field forward SDE defined in Eq (1). Note that
this formulation reveals that the process X̄u(t) is a weak solution under Pµ,α, and the cost functional
can be posed as follows:

J (να,α) =
∫
T
Eα,ν

[
∥Eu∼p(u)X

α
u (t)− yt∥2E +G(Xαu (T ),ν

α)
]
dt, (33)

where the expectation Eα,ν is taken with respect to Pµ,α. Note that the cost functional in Eq. (5) is
an alternative form of Eq. (33). Next, we reformulate the approximation of mean-field games with
graphon in the probabilistic sense. Let α = α(t, x; θ) := α̂(t, x, µ̄, ē) := α̂ be an extended control
with fixed arguments µ̄, ē. For the fixed να

∗

u a.e., u ∼ vUnif associated with the optimal control α̂∗,
let us consider a Hamiltonian-Jacobi-Bellman equation (HJBE), having a classical value function V:

∂tV(t, x) +
1

2
Tr[σ2

t ∂
2
xxV(t, x)] +H

(
t, x,να

∗

u , ∂xV(t, x), α̂∗(t, x,να
∗

u , ∂xV(t, x))
)
= 0, (34)

Then, forward-backward SDEs associated with the Hamiltonian system in (34) can be described in
the Proposition 8.1:

Proposition 8.1. (Weak Formulation: Forward-Backward SDEs I) (Carmona & Delarue, 2013) For
the fixed flow of measures νu(·) : T → P2 and the fixed label u, let (Xu(t),Yu(t),Zu(t)) be a
family of processes that solves forward-backward stochastic differential equations with respect to the
proposed graphon system in Eq (1) given as follows:

dXu(t) = (bW (Xu(t), νu, α̂
∗) + b(t,Xu(t), α̂

∗)) dt+ σtdW
u
t , (35)

dYu(t) = −H(t,Xu(t),Yu(t), νu, α̂
∗)dt+ Zu(t) · dW u

t . (36)

where bW (x, ν, α) := ⟨Wα[ν](u),ψ⟩(x, α) is the graphon interaction term, and terminal constraint
is given as Yu(T ) = G(XT ,νT ). Then, under the mild assumption (e.g., smooth boundness of ∂xV
and ∂xxV), there exist solutions of stochastic optimal control of the following minimization problem:

inf
α∈A
J (να,α) = Yu(0). (37)

For the closed Markovian control such as neural control introduced in Section 2, the solution to
adjoint process Zu(t) can be defined as stated in Definition 3.4. By rewriting forward-backward SDEs
in Eq (35) and Eq (36) for non-optimal neural controls α (i.e., neural networks) which are updated
via gradient descent, we can recover the proposed gradeint system of FBSDEs in Definition 3.2.

8.4.1 ANALYSIS ON STOCHASTIC OPTIMALITY AND CONVERGENCE

Stochastic Optimality. In the following, we introduce the second type of forward-backward SDEs,
which is based on the principles of stochastic maximum principle:

Proposition 8.2. (Stochastic Maximum Principle: Forward-Backward SDEs II) (Bensoussan
et al., 2013) For the fixed flow of measures νu(·) : T → P2 and the fixed label u, let
(Xu(t),Y

MP
u (t),ZMP

u (t)) be a family of processes that solves forward-backward stochastic dif-
ferential equations with respect to the proposed graphon system in Eq (1) given as follows:

dXu(t) = (bW (Xu(t), νu, α̂
∗) + b(t,Xu(t), α̂

∗)) dt+ σtdW
u
t ,

dYMP
u (t) = −∂xH(t,Xu(t),Y

MP
u (t), νu, α̂

∗)dt+ ZMP
t · dW u

t .

For the progressively measurable admissible Markovian neural control β under the mild assumption
(e.g., smooth boundness of ∂xV and ∂xxV), there exists a constant τSMP > 0 such that the following
inequality holds:

J (να̂
∗
, α̂∗) + τSMP

∫
T
∥α̂∗ − β∥νdt ≤ J (νβ,β). (38)
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Remark. Note that the backward dynamics YMP
u differs from the original backward dynamics Yu in

Definition (3.4) as the dynamics is designed to be associated with Pontryagin stochastic maximum
principle. This principle plays a central role in the proof of Proposition 8.3, demonstrating the
stochastic optimality of neural agents in the following section.

In what it follows, we demonstrate that the stochastic optimality of the proposed gradient system can
be guaranteed under the specific conditions required for constructing the control set in Prop 8.3.

Proposition 8.3. (Maximum Principle of Graphon Mean-field System) Assume that there exists a
constant KH such that ∥∂α∥H∥E∥∞,ν ≤ KH . Then, there exists a convex set of admissible neural
agents αm ∈ A such that the following relation holds:

DαJ (ναm ,αm) := lim
ε→0

d

dε
J [αm + ε(αm −αm−1)]

m→∞−−−−→ 0. (39)

Furthermore, the sequence of control profile {αm} leads to the minimization of the stochastic
Hamiltonian system in terms of Pontryagin maximum principle:

lim
m→∞

H(t,Xm
u (t),Ym,MP

u (t), νu,αm) = inf
α∈A

H(t,Xu(t),Y
MP
u (t), νu,α), dt⊗ dP− a.e. (40)

where the population is set to νu = Ψ(ναm−1) := Ψ(ν
αm−1
u ). In other words, the value function can

be derived by the proposed gradient system of FBSDEs:

V := inf
α∈A
J (να,α) = lim

m→∞
J (ναm ,αm). (41)

Proof. We divide the proof into two separate steps.

1. Computation of Gâteaux derivative DαJ . The aim of the first step is to provide an explicit
computation of the Gâteaux derivative of cost functional (value function) with respect to the neural
agent. To achieve this, we introduce the variation equation iu and its associated gradient system of
SDEs with fixed β:

dYm,MP
u (t) = −∂xH(t,Xm

u (t),Ym,MP
u (t), νu, α̂m)dt+ Zm,MP

t · dW u
t , (42)

diu(t) = [(∂xbW + ∂xb)iu(t)]dt+ [(∂αbW + ∂αb)βm]dt, (43)

dju(t) := d[iu(t) ·Ym,MP
u (t)]dt ∈ Rd. (44)

Let Υα(m, ϵ) := αm + ϵβm represent the infinitesimal changes of the admissible neural agent αm

in the direction of βm := αm−1 −αm. To feasibly select the convex combination Υα(m, ϵ) for any
m and ϵ ∈ [0, 1], both neural agents need to lie within some convex set Am. For now, we assume that
there exists a convex set Am that includes α and β. The explicit form of this set will be clarified in
the subsequent step. Given the definition, we compute the derivative as follows:

DαJ (ναm ,αm) =
d

dϵ
J (νΥα(m,ϵ),Υα(m, ϵ))|ϵ=0

= E
[∫

T
[iu(t)∂xf + βm∂αf ]dt+ iu(T )∂xG

]
,

(45)

where we denote f(t, x, α) = ∥Eu[x
α(t)]− yt∥2. While iu(T )∂xG can be identified with ju(T ), we

apply the product rule to the third dynamics dju in Eq (44) to have variational form to induce ju(T ):

dju(t) = [Yu(t) · diu(t)]dt+ [iu(t) · dYMP
u (t)]dt+Tr[dYMP

u (t)⊗ diu(t)]

=

∫ T

0

YMP
u (t) · (∂xbW + ∂xb)βm +YMP

u (t) · (∂αbW + ∂αb)iu(t)dt

=

∫ T

0

∂xG · (∂xbW + ∂xb)βm + ∂xG · (∂αbW + ∂αb)iu(t)dt.

(46)
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Combining Eq (45) with Eq (46), and Cauchy–Schwarz inequality gives explicit form for the Gâteaux
derivative of objective functional.

DαJ (Υα(m, ϵ)) = E
[∫

T
∂αH(t,Xm

u ,Ym,MP
u (t),Ψ(ναm−1),αm)dt · βm

]
≤ E

[∫
T
∥∂αH(t,Xm

u ,Ym,MP
u (t),Ψ(ναm−1),αm)∥E · ∥βm∥Edt

]
≤
∣∣∣∣∥∂αHm∥E

∣∣∣∣
∞ ·
∣∣∣∣∥βm∥E

∣∣∣∣
1
,

(47)

where ∥·∥p denotes Lp-norm, and the last inequality is obtained by applying Hölder’s inequality with
the conjugate pair (p =∞, q = 1). Then, we have∣∣∣∣∥βm∥E

∣∣∣∣
1
=
∣∣∣∣∥αm −αm−1∥E

∣∣∣∣
1
:=
∣∣∣∣∥α(t,Xm

u , θm)− α(t,Xm
u , θm−1)∥E

∣∣∣∣
1

≤ γm−1LipαEδθYm−1, δθY
m−1 := ∥∇θY

m−1,αm−1
u (t)∥E .

(48)

2. Construction of A. Next, we define the explicit form of the control set Am. The constructed
control set must meet two conditions: (1) it must be convex, and (2) the right-hand side of the
inequality in Eq (47) must converge. For properly dealing with the first condition, let us consider a
metric ball Bm in L1 space as follows:

Bm := B(αm−1, rm) ∈ L1, (49)

rm := ru,t,m = εγm−1LipαδθY
m−1
u (t), ε ∈ [0, 1]. (50)

Since any arbitrary metric ball is convex and the calculated reverse direction of gradient guarantees
local minimum at each stage, the setup of the proposed metric ball ensures the well-definedness of
Gâteaux derivative in Eq (47) and local optimality at each stage m.

Let λm
max(α) be an eigenvalue with respect to the principal direction of Hessian for cost func-

tional, i.e.,HessθJ (να,α(·; θ)). Consider another control set Cm := {αm−1;λ
m−1
max (αm−1) ≤

(γm−1)−1}. The conventional analysis of gradient descent gives the following inequality on Cm:

EYm,αm ≤ EYm−1,αm−1 − 1

2

(
2γm−1 − (γm−1)2λm−1

max (αm−1)
)
(EδθYm−1)2. (51)

While the second term in right-hand side of Eq (51) is non-negative, the sequence of expec-
tations for the backward dynamics is non-increasing, demonstrating that limm→∞ DαJ ≤
limm→∞ EδθYm−1 = 0 when the infinite sequence {αm} lies within limm→∞ Cm. To inherit afore-
mentioned properties lying in both control profiles for all m, we define Am :=

⊔
m≥m (Bm ∩ Cm),

where A = limm→∞ Am. The result directly follows from findings in the stochastic maximum
principle (SMP) (Carmona et al., 2018; Bensoussan et al., 2013), ensuring the equivalence of the
following relation:

E∂αH(·,α∗) · βm = 0 ←→ α∗ = arg inf
α∈A

H(·,α). (52)

Note that this equivalence relation is applicable only when A is constructed in the manner previously
specified.
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8.5 CONVERGENCE OF GRADIENT SYSTEM OF FBSDES, MEAN-FIELD EQUILIBRIUM

As we have formally defined the stochastic optimal control problem and established the corresponding
optimality conditions, this section delves into the detailed rationale of how the proposed gradient
descent-based FBSDEs achieve the Nash equilibrium. We will prove Proposition 3.5 through the
following steps:

1. For the arbitrary probability measures (i.e.,µβ,να) associated with fixed Markovian con-
trolsα and β, we first establish that the upper bounds of the generalized Wasserstein distance
remain stable when two measure-valued operators Φ and Ψ are composed repeatedly:

Wt,M([Φ ◦Ψ]◦m(µβ), [Φ ◦Ψ]◦m(να))
m≥M−−−−→ 0. (53)

2. Consequently, we reparameterize reference measures (µβ,να) with the laws of inferred
mean-field forward dynamics in Eq 1 at subsequent stages (i.e.,να

m

,να
m+1

), proving the
convergence towards mean-field Nash equilibrium.

Proposition 3.5. With the assumptions explored in the previous proof, for the fixed label u ∼ p(u),
the m-fold of composition Φ ◦Ψ induces convergent behavior of generalized Wasserstein distance:

W2([Φ ◦Ψ]◦m(να1), [Φ ◦Ψ]◦m(να0))2 ≤ sup
t∈T
Wt,M([Φ ◦Ψ]◦m(να1), [Φ ◦Ψ]◦m(να0))2

≤ lim
M→∞

C(T )M (supt supm rm)M − 1

C(T )(supt supm rm)− 1
+

(C ′T )M

M !
sup
t∈T
Wt,M(να1 ,να0)2

M→∞−−−−→ 0. (54)

where a numerical constant C is dependent on b0, C1, Hψ,Lipb,m2, |O|, e−|O|, h,LipW . In other
words, [Φ ◦Ψ]◦m is a Cauchy sequence onM, and the proposed gradient system converges.

Proof. Recall the definition of controlled graphon system that the particle dynamics at time t with
distinctive controls α and β can be presented as follows:

Xν,αu (t) = Xν,αu (0) +

∫ t

0

⟨Wα[νv,s],ψ⟩(Xαu (s))ds+
∫ t

0

b(s,Xαu (s),α)ds+

∫ t

0

σsdW
u
s ,

Xµ,βu (t) = Xµ,βu (0) +

∫ t

0

⟨Wβ[µv,s],ψ⟩(Xβu (s))ds+
∫ t

0

b(s,Xβu (s),β)ds+

∫ t

0

σsdW
u
s .

Given the dynamics above, the property of measure projection Ψ induces the upper bound of
generalized Wasserstein distance as follows:

Wt,M(Φ(µβ),Φ(να))2 ≤ E
[
sup
s≤t
∥Xµ,βu (s)−Xν,αu (s)∥2

]
≤ b0E

[ ∫ t

0

∫
O
∥
∫
Rd

ψ(Xµ,βu (s),Y)Wβ(u, v)dµv,s(Y)

−
∫
Rd

ψ(Xν,αu (s), Ŷ)Wα(u, v)dνv,s(Ŷ)∥2dvUnifds

]
+ b0E

[∫ t

0

∥b(s,Xµ,αu (s),α)− b(s,Xν,βu (t),β)∥2ds
]

≤ 3b0 (I + II + III) + b0IV,
(55)

where the first and second inequalities are induced from Holder’s inequality and the Burkholder-
Davis-Gundy (Chaintron & Diez, 2022) with some constant b0 > 0. Following the assumptions in
Section 8.2 and the modeling of graphons in Section 2, the first term (i.e., I) can be upper-bounded in
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the following estimation.

I := E

[∫ t

0

∫
O

∣∣∣∣∣∣∣∣∫
Rd

[
ψ(Xν,αu (s), Ŷ)−ψ(Xµ,βu (s), Ŷ)

]
Wα(u, v)dνv,s(Ŷ)

∣∣∣∣∣∣∣∣2 dvUnifds

]

≤ Lip(ψ)2E
[∫ t

0

∫
O
W 2
α(u, v)

∫
Rd

∣∣∣∣Xν,αu (s)−Xν,βu (s)
∣∣∣∣2 dνv,s(Ŷ)dvUnifds

]
.

(56)

Given the fixed control α = ᾱ, optimizing the last inequality requires estimating the (local) Lipschitz
continuity of positional encoding ψ:

Lip(ψ(·, Ŷ)) ≤ sup
x∈Rd\{Ŷ}

∥∇ψ(x, Ŷ)∥

≤ Hψ(ᾱ) sup
x∈Rd\{Ŷ}

a−2

∣∣∣∣∣∣∣∣
(
Id −

2(x− Ŷ )⊗E (x− Ŷ )

a2

)∣∣∣∣∣∣∣∣. (57)

where a = ∥x − Ŷ ∥ and ⊗E denotes the Euclidean outer product. Following by the assumption
(H2), Grönwall’s inequality with the fact that spec(∇ψ) := λ1 ≤ max(1,−1)a−2, we have

I ≤ C2
1H

2
ψ(ᾱ)h(β)E

[∫ t

0

sup
r≤s

∣∣∣∣Xν,αu (r)−Xν,βu (r)
∣∣∣∣2 ds] . (58)

Since each component ψi possesses the same spectral norm as ψ, the second term can be upper-
bounded with the improved definition of generalized Wasserstein distance in Eq (19):

II := E

[∫ t

0

∫
O

∣∣∣∣∣∣∣∣∫
Rd

ψ(Xµ,βu (s), Ŷ)Wβ(u, v)d[νv,s − µv,s](Ŷ)

∣∣∣∣∣∣∣∣2 dvUnifds

]

≤ d|O|C2
1E

[
sup
u∈O

max
i∈{1,··· ,d}

∫ t

0

∣∣∣∣∫
Rd

ψi

C1
(Xµ,βu (s), ·)Wβ(u, v)d[νv,s − µv,s]

∣∣∣∣2 ds
]

≤ d|O|C2
1h(β)

∫ t

0

Ws,M(µβ,να)2ds.

(59)

Regarding the third term (i.e., III), we have

III := E

[∫ t

0

∫
O

∣∣∣∣ ∣∣∣∣ ∫
Rd

ψ(Xµ,βu (s), Ŷ)|Wβ −Wα|dνv,s(Ŷ )

∣∣∣∣ ∣∣∣∣2dvUnifds

]

≤ (2C2
1m2Hψ + 1)

∫ t

0

∫
O2

|Wβ −Wα|2dv⊗2
Unif(u, v)ds

≤ (2C2
1m2Hψ + 1)|T|d2g(Wβ,Wα).

(60)

The upper-bound of last term can be directly obtained by the Lipschitz condition.

IV := E
[∫ t

0

∥b(s,Xµ,αu (s),α)− b(s,Xν,βu (t),β)∥2ds
]

≤ LipbE
[∫ t

0

sup
r≤s

∣∣∣∣Xµ,αu (r)−Xν,βu (r)
∣∣∣∣2 ds]+ Lipb

∫ t

0

sup
r≤s
∥α− β∥2νu(s)

ds.

(61)
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By replacing each term with numerical constants C3, C4, C5 in the aggregation of all four terms, we
finally have the following upper-bounds related to dg,WM and L2-norm:

E
[
sup
s≤t
∥Xµ,βu (s)−Xν,αu (s)∥2

]
≤ 3b0 (I + II + III) + b0(IV)

≤ b0(3C1Hψ(ᾱ)h(β) + Lipb)︸ ︷︷ ︸
:=log(C3/t)

E
[∫ s

0

sup
r≤s

∣∣∣∣Xν,αu (r)−Xν,βu (r)
∣∣∣∣2 dr]

+ (6b0C
2
1m2Hψ + 3b0)|T|︸ ︷︷ ︸

:=C4

d2g(Wβ,Wα)

+ max(3b0d|O|C1h(β),Lipb)︸ ︷︷ ︸
:=C5

(∫ t

0

sup
r≤s
∥α− β∥2νu(r)

+Ws,M(µβ,να)2ds

)
. (62)

Applying Grönwall’s inequality to the above result in Eq (62) and the first inequality in Eq (55) shows
that there exists a constant C ′ = 3max(C3, C4, C5) such that

Wt,M(Φ(µβ),Φ(να))2

≤ C ′
(
d2g(Wβ,Wα) +

∫ t

0

sup
r≤s
∥α− β∥2νu(r)

+Ws,M(µβ,να)2ds

)
. (63)

Next, the aim is to show the upper-bound of d2g, ∥α−β∥2ν andW·,M. To proceed, let us first examine
the upper bounds of the cut norms for both exponential and cosinusoidal graphons as follows:

sup
A,B

∣∣∣∣∫
A×B

Wα(u, v)dudv

∣∣∣∣2 ≤ h(α) =

{
W 2

0 + 2W0(W1,l +W2,l) + (2/L)(
∑

l W1,l +W2,l)
2

(T/2)W 2
1

(
e−2T−1|O| − 1

)
.

(64)

Modifying the upper-bound in Eq (64) by replacing Wα with δW := Wα −Wβ, one can derive the
following

d2g(Wβ,Wα) = ∥δW∥2g ≤ max
(
11LipW , (T/2)(e−2T−1|O| − 1)

)
∥α− β∥2ν . (65)

At each stage {m}1≤m≤M with the given sequence of probability measures {ναm}1≤m≤M , we
substitute Φ(µβ) and Φ(να) in Eq (63) with Φ ◦Ψ(ναm+1) and Φ ◦Ψ(ναm), respectively. Then,
one can derive the following relation:

Wt,M(Φ ◦Ψ(ναm),Φ ◦Ψ(ναm−1))2 =Wt,M(Law(X
να∗

m+1
,α∗

m+1),Law(Xνα∗
m

,α∗
m))2

≤ C ′
(
d2g(Wα∗

m+1
,Wα∗

m
) +

∫ t

0

sup
r≤s
∥α∗

m+1 −α∗
m∥νu(r) +Ws,M(να

∗
m+1 ,να

∗
m)2ds

)
.

≤ C ′
(
max

(
t+ 11LipW , t+ (T/2)(e−2T−1|O| − 1)

))
sup
t
∥α(t, ·, θm+1)− α(t, ·, θm)∥2νu(t)

+ C ′
∫ t

0

Ws,M(να
∗
m+1 ,να

∗
m)2ds

≤ C ′
(
max

(
t+ 11LipW , t+ (T/2)(e−2T−1|O| − 1)

))
︸ ︷︷ ︸

:=C(t) ≤ C(T )

(
sup
t
rm

)

+ C ′
∫ t

0

Ws,M(να
∗
m+1 ,να

∗
m)2ds,

where the radius of metric ball (i.e., rm := ru,t,m) was defined in the proof of Proposition 8.3. In
the first equality, the controls α are replaced with their optimal profiles α∗ following the definition
of the operator Ψ in. To set up the subsequent stage, we substitute a pair of controls (α∗

m+1,α
∗
m)

xx
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with (αm+1,αm) again. Next, we show the stability of the result obtained above for M -th stage by
observing the upper bound of M -fold of the operator composition.

Wt,M([Φ ◦Ψ]◦M (να1), [Φ ◦Ψ]◦M (να0))2

≤ C(t) sup
t

rm + C ′
∫ t

0

Ws0,M([Φ ◦Ψ]◦M−1(να1), [Φ ◦Ψ]◦M−1(να0))2ds0
)

...

≤
M∑

m=1

(C(t) sup
t

rm)m + (C ′)M
∫ s0

0

· · ·
∫ sM

0

Wsm,M(ναm+1 ,ναm)2d[ΠM ](s0, · · · sM ).

(66)

where dΠm := ds0 ⊗ · · · ⊗ dsm denotes m-product of Lebesgue measures {dsm}1≤m≤M . Finally,
we deduce that the supremum of the left-hand side can be controlled by

lim
M→∞

sup
t∈T
Wt,M([Φ ◦Ψ]◦m(να1), [Φ ◦Ψ]◦m(να0))2 ≤

+
C(T )M (supt supm rm)M − 1

C(T )(supt supm rm)− 1
+

(C ′T )M

M !
sup
t∈T
Wt,M(να1 ,να0)2 −→ 0. (67)

where the learning rate γm is chosen such that supt supm rm ≤ 1 remains sufficiently small, and the
last term in the inequality can be derived by modifying the following

sup
t∈T
Wt,M(Φ◦m(να1),Φ◦m(να0))2 ≤ (C ′)M

∫ T

0

(T − s)

(m− 1)!
Ws,M(να1 , να0)2ds. (68)

The inequality in Eq (67) demonstrates that the sequence of operator compositions {[Φ◦Ψ]◦m}m≤M :
M→M forms a Cauchy sequence, confirming the convergence of the proposed gradient system in
the distributional sense.

8.6 SAMPLING ERRORS OF MEAN-FIELD PREDICTORS

Though not presented in the manuscript, the following result implies key theoretical conclusions: It
demonstrates that the estimation errors for the neural agent, introduced by the sampled mean-field
predictors (empirical measure) at the m-th gradient descent step, are kept within acceptable margins.

Proposition 8.4. (Worst-case Estimation Error of neural agents) Let Qn := Qn(u, t) =
(1/n)

∑
i δXα

ui
(t) and Q := νu(t) be an empirical law of mean-field predictors and its mean-field

limit. Then, the worst-case approximation error can be upper bounded with probability 1 − δ as
follows:

sup
αm∈A

∣∣∣∣∣∣∣∣ ∫ αmd(Qn −Q)

∣∣∣∣∣∣∣∣2
E

≤

√
32T 3(1 +m2)2

n
ln

(
1

δ

)

+ 4

(√
32

n
2(3d−2)/2

(
εγm−1Lipα∥∇θY

m−1,αm−1
u (t)∥E

)d/2 d+ 2

4(d− 2)

)(d/2+2)−1

. (69)

Remark. While the admissible control set A guarantees the diminishing behavior of
∥∇θY

m−1,αm−1
u (t)∥E , the second term in Eq (69) approaches zero as m becomes large, even

when n is small.

Proof. The proof follows the standard convergence analysis of empirical processes. Let us fix the
temporal variable t and the labels of mean-field predictors u. Then, one can show that the supremum
of Euclidean norm can be decomposed as follows:

d∑
j

sup
πj◦α∈Aj

m

|EQn
πj ◦αm − EQπj ◦αm| ≤

d∑
j

sup
g∈Aj

m

|EQn
g − EQg| := ΓAj

m
(QN,Q), (70)
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where ΓAj
m

denotes the integral probability metric (Müller, 1997) with respect to the set Aj
m which

consists of j-th component of neural agents at m-th stage. Note that the the supremum in the
second term is taken for all function g lying in the set of parameterized function, i.e., neural agent.
Let us define p, q : (Rd)n → R such that (Xαu1

(t), · · · ,Xαun
(t))

p7−→ supg |(1/n)
∑

i g(X
α
ui
(t)) −

EQg|, and (Xαu1
(t), · · · ,Xαun

(t))
q7−→ Eσ supg |(1/n)

∑
i σig(X

α
ui
(t))| where {σi}i≤n is a set of

i.i.d Rademacher random variables. Then both p and q satisfies the following inequality:

sup
t

max
i∈{1,···n}

∣∣(p, q)(Xαu1
(t), · · · ,Xαui−1

(t), x′,Xαui+1
(t), · · ·Xαun

(t))

− (p, q)(Xαu1
(t), · · · ,Xαun

(t))
∣∣ ≤ 4T supx,tα(t, x; θ)

n
. (71)

Following by the McDiarmid’s inequality with respect to p, we have two concentration inequalities:

exp

(
−nε2

8T 2 supx,tα(t, x; θ)
2

)
≥

{
P(p− Ep ≥ ε)

P(q− Eq ≥ ε).
(72)

By applying the symmetrization inequality (Wellner et al., 2013), we have the following inequality
with probability at least 1− δ

ΓAj
m
(QN,Q) ≤ EΓAj

m
(QN,Q) +

√
8T 2 supx,tα(t, x; θ)

2

n
ln

(
1

δ

)

≤ 2ẼEσ

 sup
g∈Aj

m

∣∣∣∣ 1n
n∑
i

σig(X
α
ui
(t))

∣∣∣∣+
√

8T 2 supx,tα(t, x; θ)
2

n
ln

(
1

δ

)
≤ 2Eσ

[
sup
g∈Aj

m

∣∣∣∣ 1n
n∑
i

σig(X
α
ui
(t))

∣∣∣∣
]

︸ ︷︷ ︸
Rm(Aj

m,{Xα
un

(t)})

+

√
32T 3(1 +m2)2

n
ln

(
1

δ

) (73)

where the outer expectation is taken with respect to the randomness of mean-field predictors in the
second line, and we apply McDiarmid’s inequality in Eq (72) again to derive the last line. Following
by the covering number of

Rm(Aj
m, {Xαun

(t)}) ≤ Eσ

[
sup
g∈Aj

m

∣∣∣∣ 1n
n∑
i

σig(X
α
ui
(t))

∣∣∣∣
]

≤ inf
ϵ>0

{
2ϵ+

√
32

n

∫ ∞

ϵ/4

√
H(τ,Aj

m,L2(Qn))

}

≤ inf
ϵ>0

{
2ϵ+

√
32

n

∫ ∞

ϵ/4

(
2rm
τ

)d/2

dτ

}

≤ inf
ϵ>0

{
2ϵ+

√
32

n
(2rm)d/2(ϵ/4)−d/2+1(d/2− 1)−1

}

≤ inf
ϵ>0

{
2ϵ+

√
32

n
2(3d−2)/2rd/2m ϵ−d/2−1(d− 2)−1

}

= 4

(√
32

n
2(3d−2)/2

(
εγn−1LipαδθY

m−1
u (t)

)d/2 d+ 2

4(d− 2)

)(d/2+2)−1

,

(74)

where we assume the data dimensionality is d > 2. The second line is a direct consequence of
Theorem 16 (von Luxburg & Bousquet, 2004), the second inequality can be derived from the fact that
Qn is an empirical measure, and Aj

m is a metric ball of radius rm embedded on finite-dimensional
Hilbert space following by (H4). By setting d = d′, the last result comes from the definition of
radius rm.
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Proposition 4.2. (Sampling Complexity) Let νNt , µ̂t probability measures defined in Eq (14). Then,
there exist numerical constants c, c7, c8, c9 > 0, w > 0 and κ > 0 such that the probability of squared
2-Wasserstein distance can be controlled as follows:

P
[
W 2

2 (ν
N
t , µ̂t) ≥ ϵ

]
≤ a

(
1

ϵ2
e−Nϵ2/4c +

1

N
e−Nϵ

(
1− 128ωh(α)

N

)−d/8

+
1

724ϵ
√
N

)
, (75)

a = max

(
c9,

2c
3/2
7

κ
exp(c4e

1
2 c1T )

(
eκT − 1

)
, c9 exp(−4c8)

)
, (76)

where u ∈ O, t ∈ T is arbitrary and h(α) = ∥Wα∥g is a cut-norma of the proposed graphons (i.e.,
exponential, cosinusoidal).

aEq. 64 clarifies the explicit upper-bound of the cut-norm for the proposed graphons.

Remark. The approach used in the proof to establish the concentration bound is largely inspired
by the series of works on the measure concentration (Bolley et al., 2007; Budhiraja & Fan, 2017;
Bayraktar & Wu, 2022; Bayraktar et al., 2023; Bayraktar & Wu, 2023), with slight modifications
tailored to the structure of the proposed mean-field system. We intentionally omit some parts of the
proofs in this work that have already been covered in the reference.

Proof. We divide the proof into separate steps.

1. Estimation of Concentration Inequality. For the controlled mean-field system via neural agents
α, fix the the population να and its related control Xν,αu = Xu and let u = i/n for the moment.
First, let us define the following probability measures:

νnt :=
1

n

n∑
i

δXn
i (t)

, ν̄nt :=
1

n

n∑
i

δX(i/n)(t), µ̂t =

∫
νu(t)p(du), µ̄

n
t =

1

n

n∑
i

νu=i/n(t). (77)

Then, we analyze the law of difference between the following two mean-field dynamics:

Xu(t) = Xu(0) +

∫ t

0

⟨Wα[νv,s],ψ⟩(Xu(s))ds+

∫ t

0

b(s,Xu(s),α)ds+

∫ t

0

σsdW
u
s ,

Xn
i (t) = X(i/n)(0) +

∫ t

0

⟨Wα[δv,s],ψ⟩(Xn
i (s))ds+

∫ t

0

b(s,Xn
i (s),α)ds+

∫ t

0

σsdW
(i/n)
s .

Given that fact that the expectation of Ito’s differential for mean-square error can be expressed as
dI∥A(t)∥2 = 2⟨A(t),mA⟩dt + 2σA(t)dWt + σ2dt where R+ ∋ σ and mA are compensate and
martingale part of A(t), we get

dI∥X(i/n)(t)−Xn
i (t)∥2E = 2δX(t) ·

(
b(s,Xn

i (s),α)− b(s,Xi/n(s),α)
)
dt

≤

 1

n

n∑
j=1

Wα

(
i

n
,
j

n

)
ψα(X

n
i (t),X

n
j (t))− Ê

[
Wα

(
i

n
, v

)
ψα(X(i/n)(t), x)

]
· 2δX(t)dt

(78)

where we denote Ê := Ev∼p(v),x∼νv=j/n(t) and p(v) := w#[Unif(O)], δX(t) := X(i/n)(t)−Xn
i (t).

Then, the dissipativity assumption gives

dI∥δX(t)∥2E ≤ I + II + III + IV (79)

For simplicity let us denote W i,j := Wα(i/n, i/j), and W i,v := Wα(i/n, v). Using the dissipativity
of the proposed drift function. For the second first, one can get

I := 2δX(t) ·
(
b(s,Xn

i (s),α)− b(s,Xi/n(s),α)
)
≤ −c1∥δX(t)∥2E (80)
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By adding and subtracting new terms, we have

II :=

 1

n

n∑
j

W i,j
[
ψα(X

n
i ,X

n
j )−ψα(X(i/n) −X(j/n))

] · δX(t)

≤ Lipb
n

n∑
j

|δX(t)|
(
|δX(t)|+ |Xn

j (t)−X(j/n)(t)|
) (81)

Similarly, the second term can be upper-bounded as follows:

III :=

 1

n

n∑
j

W i,j
[
ψα(X(i/n),X(j/n))− Eνj/n(t)ψα(X

n
i , ·)

] · δX(t)

≤ |δX(t)| · ∥W i,j∥∞∥F i
III∥2E .

(82)

By adding and subtracting the term Wi,jEψα(Xi/n(t), ·), the fourth term can be improved as

IV :=

 1

n

n∑
j

[
W i,j

∫
ψα(Xi/n(t), ·)dνi/n(t)−

∫
W i,vψα(Xi/n(t), ·)dνv(t)

] · δX(t)

≤ 1

n

n∑
j

∥W i,j∥∞
(
C1W2(νi/n(t), νv(t)) + n2dg(W

i,j ,W i,v)
)

≤ |δX(t)| · ∥W i,j∥∞∥F i
IV∥2E

n→∞−−−−→ 0.
(83)

Note that the last inequality tends to zero for large enough n. Aggregating all the terms and using the
fact that g′(t) ≤ ag(t) + b implies g(t) ≤

∫
e−a(t−s)bds and d/dt∥g(t)∥2E ≤ (1/2)g(t)−1/2ġ(t),

where g(t) := (1/n)
∑n

i ∥δX(t)∥2E and a = (2Lipb − c1), b := b(F i
III,F i

IV), we have

W2
2 (ν

n
t , ν̄

n
t ) ≤

1

n

n∑
i

∥δX(t)∥2E

≤
∫ t

0

e−(4Lipb−2c1)(t−s)

(
sup
i′,j′
∥W i′,j′∥2∞

1

n

n∑
i

∣∣∣∣∥F i
III∥2E + ∥F i

IV∥2E
∣∣∣∣2
)
ds.

≤
∫ t

0

e−(4Lipb−2c1)(t−s)

(
sup
i′,j′
∥W i′,j′∥2∞

1

n

n∑
i

∥F i
III∥2E + ∥F i

IV∥2E

)
ds︸ ︷︷ ︸

:=V+VI

(84)

where the first inequality follows from the estimation of Wasserstein distance for empirical measures,
and the last inequality can be derived by applying AM-GM inequality.

P
[
W 2

2 (ν
n
t , µ̂t) ≥ ϵ

]
≤ P

[
W 2

2 (ν̄
n
t , µ̂t)︸ ︷︷ ︸

:=VII

≥ ϵ/2

]
+ P[V ≥ ϵ/4] + P[VI ≥ ϵ/4]︸ ︷︷ ︸

=0, n≫N

, (85)

where the last term vanishes for small enough ϵ, with large N .

2. Estimation of Exponential eλexp∥Xu(t)∥2
E . In this step, we derive the upper bound of the exponen-

tial for the square norm of mean-field predictors. We first apply the Ito’s lemma to eλexp∥Xu(t)∥2
E for

arbitrary scalar λexp > 0 and observe that

dIe
λexp∥Xu(t)∥2

E =

λexpe
λexp∥Xu(t)∥2

E
(
2Xu · (b+ bW )dt+ σt(d+ 2λexp∥Xu(t)∥2E)dt+ σtdBu

)
. (86)
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where gradient and Laplace of exponential can be calculated as ∇eλexp∥Xu(t)∥2
E = 2λexpe

λexp∥Xu(t)∥2
E

and ∆eλexp∥Xu(t)∥2
E = 2λexpe

λexp∥Xu(t)∥2
E (d+ 2λexpe

λexp∥Xu(t)∥2
E ). Taking expectation on both sides

with the dissipative condition, we can show that there exist constants c2 = 2λexp(−c1 + σtλexp),
c3 = λexpσtd that directly gives following two inequalities

dIE[eλexp∥Xu(t)∥2
E ] ≤ E

[
eλexp∥Xu(t)∥2

E
(
c2∥Xu(t)∥2E + c3

)]
dt+ E

[∫
Msdt

]
, (87)

sup
t≤T
∥Xu(t)∥2E ≤ sup

t≤T
∥yu∥2 +Nt + c1

∫ t

0

∥Xu(s)∥2Eds ≤ c4e
c1T . (88)

where the second inequality is a direct consequence of Grownall’s inequality, and Mt and Nt denote
some martingale. Applying Grownall’s inequality again, we have the desired result.

dIE[eλexp∥Xu(t)∥2
E ] ≤ (c5 + c6E[eλexp∥Xu(t)∥2

E ])dt, (89)

E[eλexp∥Xu(t)∥2
E ] ≤ (exp(λexp∥yu∥2E) + c5) exp(c6T ) ≤ (e7)

2. (90)

where we used inequality ea + eb ≤ exp (max(a, b) + ln(1 + exp(−|a− b|)) = (e7)
2 such that

a = λexp∥Xu(t)∥2E + c6T , b = ln c5 + c6T . Note that the upper-bound of the term exp(λexp∥yu∥2E)
at initial time t = 0 determines the exponential integrability of the right-hand side above.

3. Estimation of Probability P[V ≥ ϵ/4]. By the exponential Markov inequality with some constant
λ > 0, Jensen’s inequality, we obtain

P[V ≥ ϵ/4] := P

[∫ t

0

e−(4Lipb−2c1)(t−s)

(
sup
i′,j′
∥W i′,j′∥2∞

1

n

n∑
i

∥F i
III∥2E

)
ds > ϵ/4

]

≤ 1

n

n∑
i

e−λϵ/4E
[ ∫ t

0

e−(4Lipb−2c1)(t−s)

· exp

λh(α)∥ 1
n

n∑
j

ψα(X(i/n),X(j/n))− Eνj/n(t)ψα(X(i/n), ·)∥2E

 ds

]
.

(91)

Note that ∥ψα(x, y)∥E ≤ Lipψ(∥x∥E + ∥y∥E) have linear growth for all x, y ∈ Rd by the
assumptions.

E

exp
λh(α)

∣∣∣∣ 1
n

n∑
j

ψα(X(i/n),X(j/n))− Eνj/n(t)ψα(X(i/n), ·)
∣∣∣∣2
E


≤ E

[
exp

(
2λh(α)Lipψ

n

∣∣∣∣X(i/n)

∣∣∣∣2
E
+ 2λh(α)

∣∣∣∣∣∣∣∣ 1nFψ
∣∣∣∣∣∣∣∣2
E

)]

≤
(
2E
[
exp

(
4λh(α)Lipψ

n

∣∣∣∣X(i/n)

∣∣∣∣2
E

)])1/2
(
2E

[
exp

(
2ζ

∣∣∣∣∣∣∣∣ 1nFψ
∣∣∣∣∣∣∣∣2
E

)])1/2

(92)

where the last inequality can be derived by applying exponential AM-GM inequality

E

[
exp

(
2ζ

∣∣∣∣∣∣∣∣ 1nFψ
∣∣∣∣∣∣∣∣2
E

)]
= E

[
exp

(∣∣∣∣∣∣∣∣2√ζn Z

∣∣∣∣∣∣∣∣
E

· ∥Fψ∥E
)]

≤ E

[
exp

(
ω

∣∣∣∣∣∣∣∣2√ζn Z

∣∣∣∣∣∣∣∣2
E

+
1

4ω
∥Fψ∥2E

)]

≤
(
2E
[
exp

(
8ωζ

n2
∥Z∥2E

)])1/2 (
2E
[
exp

(
(10n) · Lipψ∥Fψ∥2E

)])1/2
exp(c4e

c1T )

≤ 2c7

(
1− 16ωζ

n2

)− d
4

· exp(c4ec1T ),

(93)
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where Z ∼ N (0, Id) is a standard Gaussian random vector. The last inequality is a direct consequence
of the property of the moment generation function. The second line can be deduced from the fact
that the discretized predictors X(i/n) and X(j/n) are i.i.d with the selection of ω > 0, λexp and ζ
satisfying the following:

1

4ω
∥Fψ∥2E ≤ n · Lipψ

(
5∥X(i/n)∥2E + exp(c4e

c1T )
)

(94)

λexp := max

(
4λh(α)Lipψ

n
, (10n)Lipψ

)
. (95)

ζ := 2λh(α) > 0 (96)
By aggregating all the terms, we finally have

E

exp
λh(α)

∣∣∣∣ 1
n

n∑
j

ψα(X(i/n),X(j/n))− Eνj/n(t)ψα(X(i/n), ·)
∣∣∣∣2
E


≤ 2c

3/2
7

(
1− 16ωζ

n2

)− d
8

· exp(c4e
1
2 c1T )

(97)

Thus, the probability of V larger than threshold ϵ/4 can be written as follows:

P[V ≥ ϵ/4] ≤ 2

κn
e−nϵc

3/2
7

(
1− 16ωζ

n2

)− d
8

· exp(c4e
1
2 c1T )

(
eκT − 1

)
, (98)

κ = −(4Lipb − 2c1), λ = 4n. (99)

4. Estimation of Probability P[VII ≥ ϵ/2]. Now, it remains to establish the upper bound of the
probability related to VII. We modify the standard estimation of concentration probabilities of
empirical measures as outlined in Bolley (2010). By the triangle inequality, the probability can be
decomposed as

P
[
VII ≥ ϵ

2

]
≤ P

 sup
h∆≤t≤(h+1)∆

0≤h≤M̄−1

W2
2 (ν̄

n
t , ν̄

n
h∆) ≥

ϵ

6

+ P

[
sup

0≤h≤M̄−1

W2
2 (ν̄

n
h∆, µ̄

n
h∆) ≥

ϵ

6

]
(100)

where the temporal interval can be also decomposed as T = [0,∆]∪ [∆, 2∆]∪· · ·∪ [(M−1)∆, T ] ⊆⋃M−1
h=0 [h∆, (h+ 1)∆]. The first term of the right-hand side above can be bounded as

P

[
sup

h∆≤t≤(h+1)∆

W2
2 (ν̄

n
t1 , ν̄

n
t2) ≥

ϵ

6

]
≤ P

[
1

n
sup

0≤t1≤t2≤t
∥Xi/n(t1)−Xi/n(t2)∥2E ≥

ϵ

6

]

≤ exp

(
−n sup

ζ>0

(
ϵζ − logE exp

(
ζ sup
0≤t1≤t2≤t

∥Xi/n(t1)−Xi/n(t2)∥2E
))) (101)

The first line is induced as any measures νn(·) are empirical, and the next line can be induced by using
Chebyshev’s exponential inequality and the independence of the mean-field predictor. Denoting
δX(i/n) := sup0≤t1≤t2≤t∥Xi/n(t1) −Xi/n(t2)∥2E for any t1 ≤ t2T, we can further improve the
right hand side by showing

E exp
(
ζδX(i/n)

)
≤ exp(ζ2c8) exp(2ζδX(i/n)) ≤ exp(ζ2c8)

(
1 + Ĉ∆

)
, (102)

where we used the fact that ax ≤ a2b+ 2ax for all a, b, x ≥ 0. In order to show the upper bound of
the first term in the last inequality (102), we used the result (4.6) Bolley (2010) tailored to our case
under the assumption made in Section 8.2 for fixed u and α. Combining results, we have

P

 sup
h∆≤t≤(h+1)∆

0≤h≤M̄−1

W2
2 (ν̄

n
t , ν̄

n
h∆) ≥

ϵ

6

 ≤ M̄ exp

(
−n sup

ζ>0

(
ϵζ − ζ2c8 − log(1 + Ĉ∆)

))

≤ M̄ exp

(
−nϵ2

4c8
− log(1 + Ĉ∆)

)
≤ c9

ϵ2
exp

(
−nϵ2 + 1

4c8

)
,

{
∆ = exp(4c−1

8 )Ĉ−1,

M̄ ≤ c9/ϵ
2.

(103)
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For the second term of the right-hand side in (100), we first apply Boole’s inequality of events to have

P

[
sup

0≤h≤M̄−1

W2
2 (ν̄

n
h∆, µ̂h∆) ≥

ϵ2

36

]
≤

→0,n≫N︷ ︸︸ ︷
P

[
sup

0≤h≤M̄−1

W2
2 (µ̄

n
h∆, µ̂h∆) ≥

ϵ2

72

]

+ P

[
sup

0≤h≤M̄−1

W2
2 (ν̄

n
h∆, µ̄

n
h∆) ≥

ϵ2

72

]

≤ M̄ϵ

(72)4
√
n
≤ c9

(72)4ϵ
√
n
.

(104)

The second inequality can be deduced by the result of Theorem 1.5 Bolley (2010) with d ≤ d′ =

4, (0, 1) ∋ δ̂ = 2, p = 2, q = 4. Then, there exists a constant n0 > 0 such that n ≥ n0 max
(
ϵ−16, ϵ

)
for any ϵ > 0 and

sup
t∈T
i≤N

P
[
W 2

2 (δX(i/n)(t)), ν(i/n)(t) ≥
ϵ2

72

]
≤ ϵ

(72)4
√
n
. (105)

where the quantity in (106) can be derived by proceeding similarly as in Step 2.

sup
t∈T
i≤N

E
[
∥X(i/n)(t)∥4E

]
≤ ∞ (106)

The first term in the first inequality is direct consequence of following result:

E
[
∥X(i/n)(t)−X(i/n)(s)∥2E

]
∝ |t− s|2. (107)

Combining all the results for the probability bounds of V, VII for deduce the upper bound in (85),

P
[
W 2

2 (ν
n
t , µ̂t) ≥ ϵ

]
≤ c9

(72)4ϵ
√
n
+

c9
ϵ2

exp(−4c8) exp
(
−nϵ2

4c8

)
+

2

κn
e−nϵc

3/2
7

(
1− 128ωh(α)

n

)− d
8

· exp(c4e
1
2 c1T )

(
eκT − 1

)
. (108)

By setting a0 as follows, the proof is complete.

a0 = max

(
c9,

2c
3/2
7

κ
exp(c4e

1
2 c1T )

(
eκT − 1

)
, c9 exp(−4c8)

)
. (109)

xxvii



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 6: Parallel Computation in Sampling Mean-field Predictors
One step of forward evaluation
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8.7 EXPERIMENTAL DETAILS

This section provides the implementation of mean-field predictors in detail.

Experimental Setup. Given that T := [0, T ] is the time span of each continuous sequence data
instance, our prediction task is to read the first (historical) α% observations, [0, (αT/100)], and
forecast the future (1− α)% events, [(αT/100), T ]. We set T to 100 for the MIT Humanoid Robot,
48 for MIMIC-II, and to 72 for the Beijing Air Quality dataset. The value of α is fixed at 80 across
all datasets.

Model Architecture. In each forward step of Xu(t) from t to t+∆t, a neural network takes Xu(t), t,
and u as inputs and outputs b(·,α),W (α), and w. In the first stage of the neural network, Xu(t) and
t are concatenated into a single vector, which is then projected into a hidden vector via a multilayer
perceptron (MLP). This hidden vector is subsequently passed through a computation block consisting
of several MLP layers with skip connections. Finally, after the computation block, the hidden vector
is projected into b(·,α), W (α), and w using respective MLPs. In our architecture, each MLP is
composed of two linear layers, with a Swish activation function positioned between them.

To process the labeling information u in the neural network, we apply adaptive normalization (Peebles
& Xie, 2023). Specifically, instead of using fixed scale and shift parameters in the normalization
layers of α(.; θ), we regress these parameters based on u. The adaptive normalization layers are
placed between MLP layers. We find that this conditioning mechanism effectively incorporates the
labeling information, outperforming the approach of simply concatenating u into input vectors.

After obtaining outputs from the neural networks, we evaluate bW(·,α) for forward evaluation of
SDEs. To derive bW(·,α), we compute an exponential or cosine graphon W using u and v where
v < t. Next we calculate the projection ProjSd−1(x − y) := (x − y)/∥x − y∥ with x = Xu(t)
and y = Xv<t(t). These values are then integrated into withW (α) using Defintion 2.2 and Eq (2)
or Eq (4) into Wα and ψα, finally leading to bW(·,α) =

∑
v<t ψα(Xu(t),Xv(t))Wα(u, v).

After forward evaluation, we utilize w to aggregate predictors by applying softmax. (i.e., Λt =∑
v<t Softmax(w(u, v); {w(t,u)}u<t)Xu(t) where Softmax(x ∈ S;S) represents the value of x

after applying the softmax operation to the entire set S which includes x.)

Parallel Computation. Since the direct application of Alg. 1 is computationally intractable for large
particle count N , we introduce novel parallel computing to efficiently sample proposed mean-field
predictors, as described in Fig 6. At each step of forward evaluation, given all predictors Xαu , each
predictor can be processed independently using Eq (1). In other words, no predictor needs to wait for
the others to complete their forward evaluation. By taking advantage of this property, at time t, we
store all predictors with u ≤ t in the shared memory and forward predictors one step in parallel. This
parallel implementation significantly decreases empirical computation time by reducing the number
of iterations for forward evaluation fromO(SN) toO(S) where S is the number of steps for forward
evaluation and N is the number of sampled observations.
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