Under review as a conference paper at ICLR 2025

MEAN-FIELD CONTINUOUS SEQUENCE PREDICTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel class of neural differential equation models called mean-field
continuous sequence predictors (MFPs) for efficiently generating continuous se-
quences with potentially infinite-order complexity. To address complex inductive
biases in time-series data, we employ mean-field dynamics structured through
carefully designed graphons. By reframing time-series prediction as mean-field
games, we utilize a fictitious play strategy integrated with gradient-descent tech-
niques. This approach exploits the stochastic maximum principle to determine the
Nash equilibrium of the system. Both empirical evidence and theoretical analysis
underscore the unique advantages of our MFPs, where a collective of continu-
ous predictors achieves highly accurate predictions and consistently outperforms
benchmark prior works.

1 INTRODUCTION

Modeling spatiotemporal processes provides profound insights into and enhances the ability to
predict the behavior of complex systems that evolve across both temporal and spatial dimensions. In
recent studies, neural differential equation models (Chen et al.| [2019; [Tzen & Raginsky, 2019) have
demonstrated exceptional generalization capabilities and effectiveness in capturing continuous-time
spatiotemporal dynamics, with applications ranging from generative modeling (Song et al., 2021)) and
quantitative finance (Cohen et al.,|2023)) to physically-informed neural networks (lakovlev et al.| [2024)).
Despite their notable performance, existing approaches fail to offer theoretical findings for a key
question inherent to continuous time series: How does the model behave as time granularity becomes
finer, ultimately leading to infinite observations? To answer the question, a viable approach is to
directly model data dynamics over continuous intervals with infinite complexity. To this end, this work
focuses on employing mean-field games (Lasry & Lions| 2007), to develop an infinite-dimensional
predictive decision-making framework, generalizing existing differential equation models.

The mean-field principle, a core philosophy in several scientific fields such as neuroscience (Faugeras
et al., 2009)), statistical physics (Negelel [1982), and economics (Carmona, 2020; (Cardaliaguet &
Lehallel 2018)), serves as a powerful tool to model and analyze how large numbers of interacting
agents behave strategically in stochastic dynamics, decentralized environments. In the mean-field
regime, a continuum of infinitely many agents is expected to satisfy Nash equilibrium by individually
governing the dynamics of partially observed historical sequential data and collectively interacting
with each other to make optimal group decisions for forecasting future events. The central premise
of this game-theoretic interpretation of the predictive system can be encapsulated in the following
statement: We extend the continuous-time sequence prediction problem into the formal setting of
mean-field games. In relation to this statement, our contribution is twofold:

* We extend existing differential equation models by proposing mean-field graphon SDEs as a novel
framework for modeling sequence predictors. This framework effectively captures the stochastic
spatiotemporal dynamics of an infinite continuum of agents, grounded in conjectures from time series
analysis (e.g., seasonality). To efficiently solve the mean-field games, we introduce gradient-based
FBSDEs, which significantly reduce the computational complexity associated with approximating
Nash equilibrium.

* Building on the concentration of empirical measures and the propagation of chaos property, our
theoretical analysis clarifies the effect of leakage in past observations on the generalization perfor-
mance of the mean-field system. We demonstrate that, as the population of agents increases, the
coalition produces increasingly accurate and reliable predictions.
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Figure 1: (Left). The mean-field predictors are conditioned on a set of labeled past observations {u, } n<n=4 ~
p(u). Each spatiotemporal dynamic is interconnected via the neural graphon W, which leverages inductive
biases tailored for continuous sequential data. (Right). In the training, the collective decisions of a coalition of
mean-field predictors are calibrated to approximate the target future event interval.

2 MEAN-FIELD CONTINUOUS SEQUENCE PREDICTORS

This section introduces a stochastic differential equation model designed to represent a continuous
signal of infinite order, incorporating inductive biases in time-series modeling. For simplicity
and without loss of generality, bold-face notation will be used to omit sub- and superscripts of
mathematical objects when appropriate.

Definition 2.1. (Mean-field Graphon SDEs) For the Markovian feedback controls o : T x RY x © —
R? (ie., a0 == a(t,x;0)) and continuous labels v ~ p(u), we propose the R%-valued controlled
stochastic differential equations called a mean-field graphon dynamics defined as follows:

dXJ(t) = (Wa iy (0)] (), ) (XF (1), @)dt + b(t, X (1), a)dt + ordWy', XT(0) = yu, (D)

where a probability measure v := {1, (t)}(v.1)coxT Serves as a concise representation of the law of
dynamics, and y,, ~ p(u,y) denotes a continuous representation of past observations.

The mean-field dynamics presented in Definition 2.1] involves three terms on the right-hand side,
with an emphasis on important notions mean-field predictors and neural graphons, both critical for
comprehensive continuous time-series modeling.

Mean-field Predictor. The proposed dynamical system incorporates two types of continuity encoding:
locality (i.e.,t) and labeling (i.e., ). The state variable X (t), termed a continuum of predictors or
mean-field predictors (MFPs), represents a continuous set of information trajectories, each labeled
by u ~ p(u) and initialized from the past observation, X% (0) = y, ~ p(u,y). For instance, a
continuum of predictors for the sequence of infinite i.i.d labels us, = {u, ~ p(u);n < N — oo}
in the mean-field regime X (0) can be interpreted as being conditioned on the past observational
interval, i.e., the support of the label distribution p(u), with their future causal effect, producing
X& (t) at future event interval being obtained from the dynamics in Eq (I). This demonstrates
that the proposed dynamics is well-suited for handling continuous signals, as it processes both input
and output in a continuous manner. In processing continuous signals, the closed Markovian control
process a(+; 0) € A parameterized by neural networks 6 € O, referred to as a neural agent, governs
the trajectory of state X (t). Fig|l|depicts illustrative examples of how the proposed mean-field
predictors are sampled (left), propagated (mid), and utilized to produce future prediction (right).

The overarching goal is then to calibrate the trajectory of predictors by determining the optimal
neural agent o* that best approximates the target interval, e.g., E;[|E,. X% (t) — y,|%] = 0,
where decision aggregation w : @ — [0, 1] captures the collective behavior of mean-field predictors.
Section [3| will present a systematic algorithm to fulfill this objective.

Neural Graphon. It is widely recognized in the literature that fundamental assumptions of inductive
biases, such as temporal decay, cycles, and seasonality are vital for effective time series modeling. To
incorporate these into our continuous mean-field system, we introduce a neural graphon, a graphon
structure parameterized with neural networks, capturing the inherent heterogeneity among predictors.

ii
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Definition 2.2. (Neural Graphon) A graphon is a symmetric integrable function defined on L?,
W : ©? = R equipped with L? norm. For a probability measure i defined on O x R® with bounded
second moment, we define a measure-valued function W [p](-) : O — M| and a continuous
symmetric function ¥, = ¢ (y,x, a) = Hy(a)Projga—1 (y — x) such that the first term in right-
hand side of Eq (1)) is defined as (Wa[1] (1), o) (¥, @) = Eqrp(v) xmpu[Wa (0, V)b o (v, x)] € R%

“Please refer to Section for the deatils.

For two tuples (x,u) ~ v, ® p(u) and (y,v) ~ vy, @ p(v),
a symmetric function v estimates scaled relative dissim-
ilarity between spatial features x and y. The neural agent,
i.e., Hy(a), then adjusts the importance of dissimilarity
by rescaling projected vectors. Meanwhile, the neural
graphon W encodes a degree of interaction between tem-
poral variables u and v. Among the various graphon de-
signs available, we propose two structures informed by

Exponential Graphon  Cosinusoidal Graphon

\

LN

inductive biases specific to continuous time series. Note Figure 2: Visualization of Graphons.
that the key distinction from conventional methods is that our approach directly models inductive
biases in the data space R?, rather than in latent feature spaces, facilitated by the graphon structure.

Exponential Graphon. In the first graphon structure, we incorporate temporal decay (Che et al.,|2018))
assumption on spatiotemporal variables, which suggests that the influence of the past event decreases
exponentially as time deviations increase. Fig [2]shows an illustrative example of the exponential
graphon where temporally proximate events tend to exhibit strong interactions, where the neural
agent, i.e., W; : A — R determines the magnitude of interaction. For the deviation between labels
A, = |u — v/, the impact of temporal dissimilar events are penalized:

Wa(u,v) = Wi(a)exp(=TA,). )

Cosinusoidal Graphon. The second graphon is designed to emphasize the continuous cyclic as-
sumption (Oreshkin et al., [2020), which captures the periodic nature of time-series. To reflect
the assumption, we first perform an eigen-decomposition of the proposed graphon operator on
L2(0), using sinusoidal eigen-functions (i.e., {¢; }) and varying frequency modes for the eigenvalues
(i.e.,{\}), as|Gao & Caines|(2019) suggested:

W=Id+ » i, {@} C{Id,V2cos2rk(-), V2sin2rk(-)}, {\} C {a0, be/2}.  (3)

kEZ,

We parameterize the graphon operator with neural networks, by replacing Fourier coefficients {Id, \; }
with corresponding neural agents, i.e., Wy, Wy ;, Wa; : A — R, To present various periodicities,
we define f(I) € {1/2,1/4,1/8},<y, that represent a set of pre-determined frequencies. We then
define cosinusoidal graphon as follows:
1 2rf(1) Ay . (27f(1) Ay
We(u,v) = Wy(ax) + o Z }Wl’l(a) cos <7Tf|(0)|> + Ws,(a) sin <7Tf|(0)|> )

le{1,-,L

Note that we limit the summation to finite modes (i.e., L) for computational tractability. Fig
illustrates periodic interaction magnitudes for a predefined frequency setup. Further details on the
implementation and their analysis can be found in the Appendix.

3 TRAINING MEAN-FIELD PREDICTORS

3.1 MEAN-FIELD GAMES AS CONTINUOUS SEQUENCE PREDICTION

In the previous section, we proposed SDE-based mean-field continuous sequence predictors with
spatio-temporal interactions. Since the mean-field system in Eq 2-1)) is framed as controlled SDEs
with neural agents, we can formulate the objective function as a stochastic control problem. More
specifically, our primary goal is to minimize the cost functional 7 designed for training neural agents
solving sequence prediction and derive the corresponding value function V:

iii
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Definition 3.1. (Cost functional [f] For the given neural graphon W, and fixed set of admissible
controls A, the cost functional is defined as follows:

Vi= inf T0%,0) = inf Bawcr [[Bump X3 () - ull} + GXI@),0%)]. 6)

where G represents the terminal cost at timet = T, and w : QO — [0, 1] is a decision aggregation
function, satisfying [ w(u)du = 1.

“Please refer to Section for the detailed rationale of definition.

To generate future predictions, the mean-field predictors collaborate by forming a coalition, i.e., a
time marginal of predictors E., ) X (%), where expectation with respect to labeling u aggregates
weighted decisions (i.e., w) of a continuum of predictors u ~ p(u) := wx[Unif (0)](u) in approxi-
mating target continuous interval {y; };ct. Figure right) provides an illustrative example of the
decision-making process. With the aim of generating accurate target intervals, the neural agent is
trained to derive value function V which characterizes the state in which a continuum of players form
a coalition to cooperatively predict the best possible future events.

The challenge in solving this problem stems from the fact that the neural agent both influences the
population of predictors ¥, which, in turn, continuously impacts the individual state variables as
the dynamics propagate with interactions via neural graphon. To formalize the recurrence in the
literature, such problems are often framed as (graphon) mean-field games (Lasry & Lions| 2007}
Caines & Huangl [2021)). In this work, we adopt this approach to formulate the continuous sequence
prediction problem as mean-field games. Our primary focus is then searching for the best optimal
control o* that induces the best possible response in the recurrent relation between ) and v. For
the formal analysis, we investigate how the exact solutions (V, u"‘*) can be derived from optimal
control profiles over time by examining the following system of PDEs in the mean-field regime:

Definition 3.2. (Forward-Backward PDE System). For the obtained optimal neural agent o, exact
solutions of value function in Eq () can be obtained by solving the following system of PDEs:

OV(t,x) + 02 J2AV(t, %) + H(t,x,0V(t,x), vy(t),a*) = 0, (HIB)
e (1) = o2 2808 (1) + V- [ (bw (x, 12" (1), @) + blt,x,0) ) ve” ()] =0, (FPK)

u

where A and V- denotes Laplacian and divergence operators, respectively. The stochastic Hamilto-
nian system H is given by

H(t,Xu, a, Vv, a) = (bW(Xm v, Oé) + b(ta Xu, Oé)) cat ||Eu~p(u)Xu - yt||2a (6)
where by (x,v, o) = (Wq[v](u), ¥)(x, a) is the graphon interaction term in Definition|2.2)

A system of decoupled PDEs consists of the Hamilton-Jacobi-Bellman (HJB) equation and the
Fokker-Planck-Kolmogorov (FPK) equation, which individually describes the propagation rules of the
state variable and the value function over time. In mean-field equilibrium states, these PDEs become
coupled as the law of the state variables i.e., Law (X (¢)) matches vy, (t) with marginal errors. This
specific mathematical constraint can be formally expressed in the following definition:

Definition 3.3. (Mean-field e-Equilibrium). We say that a continuous flow of measure v, (+) is an
e-equilibriunt’] of graphon mean-field games if there exists a numerical constant € > 0 such that

sup, ; [W3 (n(t), Law (X2 (t))] 2 Ole), such that a* € A is optimal.

“Note that the graphon mean-field equilibrium (Zhou et al., 2024) can be recovered by setting € = 0.

The mean-field equilibrium described in Definition [3.3|characterizes a scenario where a continuum
of predictors is not incentivized to modify their policies a* to non-optimal counterpart 3, which
induces marginal errors, i.e., 7 (vP,3) > J(v® ,a*). Here, the law of optimal mean-field pre-

iv
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Figure 3: Illustrative Algorithm for the Gradient System of FBSDE:s.

m Iteration
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dictors closely approximates the population 1, with marginal errors e. This coupling integrates
the Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations, forming a
master equation. Several numerical methods exist to approximate solutions to mean-field games
including fixed-point iterations (Laurierel 2021), and fictitious play (Min & Hul 2021). However,
these methodologies are typically constrained to linear quadratic dynamics, leading to computational
intractability when confronting non-linearity (e.g., neural networks). Additionally, numerical simula-
tions for obtaining analytic solutions of this system of PDEs present significant challenges due to
the curse of dimensionality in high-dimensional data spaces. The following section is dedicated to
addressing these issues by leveraging the deep neural architecture.

3.2 GRADIENT SYSTEM OF NEURAL FORWARD-BACKWARD SDES

Inspired by computational algorithms designed for fictitious play (Cardaliaguet & Hadikhanloo|
2017), we explore a gradient descent-based algorithm, which enables us to tackle solving MFGs
by fusing deep neural architectures. To be more specific, we propose a gradient system of forward-
backward stochastic differential equations (Bensoussan et al.l 2013)), which is adapted for reflecting
the update of neural agents with respect to the gradient descent algorithm.

Definition 3.4. (Gradient System of FBSDEs). For the fixed flow of measures v, (-) : T — Py and the
fixed label u at each stage m, we consider a family of processes (X (t), Yu(t), Zy(t)) that solves
forward-backward stochastic differential equations with respect to the proposed graphon system in
Eq (0)) given as follows:

dX e (t) = bw (XT0* (1), vu, ot )dt + b(t, X503 (), 0y )dt + o dW,
dYT’am (t) = _H(ty Xgn’am (t)7 erln,am (t)7 Vu, Oém)dt - Z;n : thu7
Comg1 = 0 (t, X% 0™ — By pop VoY (1)]) € A,

m—1,a’

vy = Law (X, mh),

where v > 0 is a learning rate of gradient descent, and A is a set of admissible neural agents.
Then, we have (Y4 (t), Yo(T), Zy(t)) = (T, G, (0xT)a; ).

The proposed gradient system can be decomposed by iterating a two-step procedure, i.e., (A) and
(B), over a total of M stages. Fig[3|illustrates the evolution of the mean-field predictors related to
the updated parameters of neural agents «,,, across different stages m. The details of the two-step
procedure are specified below.

(A) Information Propagation. Initially, the system publicly opens the information to a continuum of
players by setting the population information of the previous stage, where the forward and backward
system of SDEs propagates information with respect to the updated population, v;,.

m—1,a”

vy — Law (X, ™), (XY ~ Law(X'v,) @ Law (Y1 [vg). (7

Note that the backward dynamics is propagated in reverse direction starting from its terminal state
Y. (T) = G while the forward dynamics evolve in the forward direction from the initial state. This
shows that the proposed FBSDEs parallel the PDE system described in Definition [3.2]

(B) Update Control Profiles. In the subsequent step, the neural agent o™ is updated with respect to
its parameter 6™ following the steepest direction of minimizing the values of backward dynamics
Y. The backward dynamics, associated with the cost functional 7 as described in Proposition
guide the updates of the parameters, allowing the mean-field predictors to gradually approximate the
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target interval. Since we have proposed an iterative algorithm to solve MFGs, the remaining part
aims to provide convergence guarantees and highlight optimality conditions.

Stochastic Optimality. Proposition 8.3 guarantees that the gradient system in Definition [3.4]induces
optimal neural agents a*, which yield a feasible value function (i.e., Y7"(0) %% V) where
the optimality of the control is represented in the sense of the Pontryagin stochastic maximum
principle (Yong & Zhoul, 2012)). Specifically, we have the following two results:

lim H(- o)~ inf H(\, ), d@dv—ae, VRYZ(0)=JWV* ax). (3

m—o0 achA

The result illuminates that a pair (lim,, o, @™ = a*, lim,,— 0o V™ = V"‘*) solves both HIB and
FPK equations in Definition [3.2] assuring stochastic optimality. Having obtained the value function,
the next goal is to provide an explicit estimation of € in the convergence of mean-field equilibrium.

Convergence to Mean-field Equilibrium. To rigorously analyze the convergence to equilibrium
in a distributional sense, we define two distinct operators, ® and ¥ : M — M, referred to as the
projector and updater, respectively. Each operator corresponds to one of the two steps mentioned
earlier, as illustrated in Fig. [3}

o(v*m) = {Law(Xy™(t))| _ oz _, 5t €T, ue O} ©)
(pom=1) = (v V = J (w1, ak,_), v = al,_, ). (10)

It can be easily verified that the composition of these operators at stage m maps the previous state’s
population to the next stage i.e., ® o U(v™~1) = ™. Proposition asserts that the population
{v*m },,<m generated by the proposed algorithm begins to converge in the Wasserstein metric as
the stages m increase.

Proposition 3.5. (informal) For arbitrary u ~ p(u) and t € T, the m-fold of composition ® o ¥
induces convergent behavior of squared 2-Wasserstein distance:

W2([® 0 U]°™ (1), [® 0 U]°™ (1)) =X s1t1p|\v9Ym||E O™, 0) =€y —2250.  (11)

where a numerical constant C' is dependent on M, by, C1, Hy,, Lipy, mo, |O|, e~ 19l Lipyy, h(a) =
Wallg isa cut—nomﬂ of the proposed graphons (i.e., exponential, cosinusoidal)

“Eq. clariﬁes the explicit upper-bound of the cut-norm for the proposed graphons.

Proposition [3.5]reveals two theoretical implications regarding the convergence property. First, the
proposed gradient system converges in a distributional sense, as the Wasserstein distance between the
populations ([® o U]°™(v*1) = p*m+1 and ([ o U]°™)(v*0) = v*m, governed by the gradient
norm of the backward dynamics, is expected to decrease as m increases. In other words, {® o W }°™ is
a Cauchy sequence in M, ensuring the convergent behavior of the proposed training scheme. Second,
the proposed gradient system ensures the convergence of the dynamics for the upper bounds ¢,,. It is
important to note that the inequality in Eq (TT) is an equivalent expression of the mean-field Nash
€ém-equilibrium described in Definition [3.3] In this context, the neural agent with greater capacity
(i.e., a smaller radius r,,, of the metric balls in Eq (@9)) further tightens the upper bound. In conclusion,
the findings from Proposition 3.5] validate that the proposed gradient system is theoretically sound and
efficiently utilizes neural networks to address mean-field games in continuous sequence prediction.

4 SAMPLING MEAN-FIELD PREDICTORS

In this section, we propose the numerical algorithm for sampling the proposed mean-field predictors
and provide a theoretical analysis of the sample complexity error and the asymptotic convergence of
empirical estimation for mean-field predictors.

Graphon Mean-field Euler Maruyama Scheme. Inspired by the Euler-Maruyama scheme of
Mckean-Vlasov types, we propose an Euler-Maruyama scheme for graphon interacting particle
systems to generate a set of mean-field predictors at each time stamp. Alg|[T]presents the numerical
algorithm for sampling mean-field predictors. Assuming that a* := «(+; #*) is optimal in the sense
of mean-field equilibrium obtained from the operating gradient system of FBSDE:.

vi
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Algorithm 1 Sampling Mean-field Continuous Sequence Predictors

while ¢ € T do > Graphon Mean-field Euler-Maruyama Sampling
while : < N do

{yu; Fisv ~p(W,y), At ~ p(Ay), U ~ Unif (0), t ~ p(t).

ai = a(t,X507), Wiy = Wa, ([nui] /n, [nvy] /n) iy = g, (X7 (), X7 (1)) - (12)
X:L(t + At) = X?(t) + % Z;L Wij'll’ijAt + b(t, X;n, th,)At +N(0d7 O'tAtId). (13)
end while > Predict Subsequent Future Event

ift € T\ O then

Avra, = 35 w(U, [nwg] /m)XP% (L4 Ar) & Bup) XG(E+ Ar)
end if
end while

Due to the infinite-dimensional nature of the proposed system, sampling mean-field predictors causes
inherent complexity errors when applied to finite-dimensional real-world datasets. As the sampled
mean-field prediction is expected to approximate its mean-field limit, a natural question arises
regarding sample complexity: How does probability error emerge in relation to sampling complexity?
To rigorously address this, we begin by defining the probabilistic representation of both the sampled
and model dynamics as follows:

N
1
MFPs in Alg.[[ : v} = NZ‘SXW’ MFPs with co-order : ji; = E, () [va(t)]. (14)

where X2 (¢) ~ v/} is sampled predictors, which can be obtained from implementing the Algorithm
and the weighted sum A; approximates true collective prediction made by mean-field predictors
E,X%(t) ~ fi in Eq (3). In what it follows, we establish the relation between squared 2-Wasserstein
distance and the number of samples N, the dimensionality of the data distribution d.

Proposition 4.1. (Sampling Complexity) For arbitrary u € O, let v}, ji; be probability measures
defined in Eq (T4). Then, there exist numerical constants ¢, ¢z, cs, ¢g > 0,w > 0 and k > 0 such that
the probability of squared 2-Wasserstein distance can be controlled as follows:

—Né? /4c e—Ne 128wf)(a) —d/8 1
supP W2, i) > €] < a € + (1— ) 4+ ——1, (5
te?Ir) [ 207 ) 2 ]_ ( €2 N N 724/ N (15)

9c3/2
a = max (Cg, c; exp(C4e%‘1T) (e"T —1) ¢ exp(—4c8)> . (16)

The proof primarily draws on the findings presented in|Bolley et al.|(2007). It is important to note that
the result guarantees the proposed system benefits from the propagation of chaos (Chaintron & Diez|
2022), validating the asymptotic behavior of the sampled predictions generated by the mean-field
predictors.

sup W2 (Law (X2, X2), ®@gjmtk) V() 225 0. (17)
Eq. [I5] and Eq. [I7)and Proposition [8.4]in Appendix align with the intuition that as the number of
predictors N increases (and dimensionality d), the sampled dynamics converges more closely to the
mean-field limit fi; and v,,(t). Notably, the right-hand side of the inequality in Eq. (I3) is governed
by two terms that decay exponentially, and the remaining term decays inversely as a polynomial, both
exhibit short-tailed concentration with respect to a number of mean-field predictors.

Moreover, the result demonstrates the advantages of applying mean-field games: Rational individuals
(i-e.,0x7 (1)) satisfying Nash equilibrium and conditioned on partial information (i.e., X7'(0) = yi/»)
forms a coalition (i.e., ;Y ), and the group decision is progressively refined to collaboratively solve the
continuous sequence prediction problem. As the coalition size increases, the resulting predictions
become progressively more precise and reliable. In Section [6] we conduct an ablation study to
numerically verify these theoretical findings.

vii
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Table 1: Mean Squared Errors (MSEs) and Mean Absolute Errors (MAES) in various continuous sequence pre-
diction tasks. The top and second-top scores in each dataset are highlighted in bold and underlined, respectively.
Each metric is scaled by 102,

Methods MIT Humanoid Robot MIMIC-1I Beijing Air Quality

) MSE MAE MSE MAE MSE MAE
Neural Laplace 8.11+0.25 17.03+0.33 7.76+0.04 18.70+0.08 | 3.21+0.12 11.45+0.23
MaSDEs 16.51+0.21 27.89+0.30 8.41+0.06 20.67+£0.08 | 3.47+0.03 13.13+0.07
CRU 32.08+£5.07  42.50+3.90 13.09+0.31 24.68+0.47 | 3.48+0.06 12.76+0.19
Latent SDE 6.01+0.14 15.94+0.14 8.04+0.02 19.63+0.06 | 3.29+0.03 11.99+0.07
Neural LSDE 6.80+0.14 16.51£0.08 7.93£0.05 19.09+0.07 | 3.74+0.04 11.98+0.15
CONTIME 6.88+0.29 16.60£0.25 12.2940.14  25.26+0.12 | 5.15+0.17 15.86+0.27
Contiformer 5.94+0.23 15.29+0.26 7.90£0.12 19.05+£0.18 | 3.25+0.10 11.48+0.16
S4 5.59+0.16 13.98+0.19 13.24+0.01 24.79+0.30 | 3.95+0.15 12.35+0.17
Mamba 5.21+0.09 13.71+0.15 13.23+0.02  24.76+0.19 | 3.68+0.14 11.56+0.24
MFPs (Exp.) 3.89+0.10 11.42+0.14 7.51£0.08 18.59+0.11 | 3.14+0.07 11.45+0.13
MEFPs (Cosin.) 3.91+0.07 11.43+0.07 7.51+0.06 18.60+0.10 | 3.13+x0.07  11.38+0.08

5 RELATED WORK

Neural Differential Equation Models. In recent years, neural differential equation models have
gained attention for their ability to capture the dynamics of complex continuous sequences. Latent
ODEs (Rubanova et al,[2019) extend standard RNNs to handle continuous signals by integrating
neural ODEs with them. |Kidger et al.| (2020) introduced differential equation models based on
controlled differential equations (Neural CDE) to address a key limitation of neural ODEs, where
solutions depend solely on initial conditions and not on subsequent observations. Recently, Contif-
ormer (Chen et al.,[2024)) was developed, combining neural ODEs and Transformers into a single
framework. Another line of research integrates stochasticity by utilizing SDEs, particularly for
time-series applications. Latent SDE (Li et al.l [2020) encodes sequential data in the latent space
using neural SDEs, while MaSDE (Park et al.| 2023) employs a concept of stochastic differential
games to analyze time series. [Koshizuka & Sato| (2023)) proposed a regularized neural SDE based on
the Lagrangian Schrodinger bridge, and |Oh et al.| (2024) introduced three stable types (classes) of
neural SDEs: Langevin-type SDE, Linear Noise SDE, and Geometric SDE.

Mean-field Principles in Generative Models. Recent works utilized the mean-field principle to
model the infinitely many random particles in high-dimensional data space, where they interact with
each other. In|Liu et al.|(2022), the Schrodinger bridge was incorporated to address mean-field games
in order to approximate data distributions for large populations. [Park et al.|(2024) introduced the
concept of propagation of chaos to generate data structures with exchangeable high cardinality such
as 3D point clouds.

6 EXPERIMENTAL RESULTS

We validate our method on various time-series prediction benchmark datasets, comparing it against
several baselines. The details of our experimental settings are as follows:

Datasets. In the experiments, we evaluate our results against benchmarks using the following datasets:
(i) MIT Humanoid Robot (Li et al., 2024)), (ii) MIMIC-II (Silva et al.,[2012), and (iii) Beijing Air
Quality (Zhang et al.,|2017)). The MIT Humanoid Robot dataset contains the robot’s state trajectories
during various activities, such as running, jogging, and stepping in place, with 27 features describing
these states. The MIMIC-II dataset, from the PhysioNet Challenge 2012, consists of time series
data with 41 features representing the first 48 hours of a patient’s ICU admission (e.g., SaO5 and
cholesterol levels). The Beijing Air Quality dataset contains time series data for six air pollution
indicators, collected from 12 different locations in Beijing. For stable training, we apply either
min-max or z-score normalization to each dataset.

Benchmarks. Given our focus on continuous sequence modeling, the benchmark baselines consist
of various continuous models, including Neural Laplace (Holt et al., [2022)), MaSDEs (Park et al.,
2023)), CRU (Schirmer et al., 2022), Latent SDE (Li et al., |2020), Neural LSDE (Oh et al., [2024),
CONTIME (Jhin et al., 2024}, and Contiformer (Chen et al., 2024)). To further enhance the baselines,
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Figure 5: Visualization results on the MIT Humanoid Robot dataset. (Left) Sensitivity analysis on the sample
complexity. (Right) Prediction results compared to representative baselines.
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we also incorporate continuous state-space models, such as Mamba (Gu & Daol 2024) and S4 (Gu
et al} 2022). Performance evaluation is carried out using mean squared error (MSE) and mean
absolute error (MAE) metrics. Each model is executed five times, with the average scores and
standard deviations reported.

Quantitative Results. Table|l|presents a performance comparison with benchmark methodologies
across three datasets. The results show that the proposed MFPs consistently outperform other
benchmarks by significant margins on all datasets. Notably, conventional neural differential equation
models perform reasonably well on the MIMIC-II and BAQD datasets, where sequences are irregularly
sampled with missing values. However, they exhibit a performance drop on the MIT Humanoid
Robot dataset, likely due to their limitations in handling complex spatio-temporal dynamics. In
contrast, state-space models excel on the MIT Humanoid Robot dataset but experience a decline in
performance on the other two datasets, indicating their limitations in dealing with irregularly sampled
sequences. Figure 3] (right) illustrates the qualitative prediction results on the MIT Humanoid Robot
dataset. As shown, our MFPs deliver superior performance compared to the other models.

Ablation Study I: Sample Complexity. To validate the theoretical findings presented in Section[4]
we conduct an ablation study to demonstrate the performance improvements as the sampling number
N increases. Fig 5] (Left) confirms the theoretical findings discussed in Proposition 4.1} indicating
that showing that additional performance gains can be realized. It is worth noting that significant
performance gains during inference can be achieved by employing multiple mean-field predictors,
even after only a single training phase. Since increasing the number of predictors generally results in
higher computational costs during the inference, it is essential to select an optimal value for N. In all
experiments, we consistently set N = 16 for balancing efficiency and performance.

Ablation Study II: Noise Robustness. We perform a le=3
robustness study to assess the impact of non-informative 251 7 pietee)
noisy signal (i.e., white noise) interventions in past ob- 2.0{ —e— Mamba

servations. Specifically, we inject the Gaussian random < 1°
noises with variance opoe = 0.3 to derive the distribu- Lo
tional shift of test continuous-time sequences and corrupt
the test data, f)(.u,y) = p(u,y) @J\/(Od, O'noiseI.d), where LT e
® is a convolution operation. Fig[4]shows a uniform per- # of Intervention

formance degradation (i.e., A) with an increasing number Figure 4: Impact of Noise Intervention

of past observations corrupted by non-informative noisy

signals. As can be seen, our MFPs exhibit robust performance against noise interventions, as Mamba
experiences sharp declines in accuracy under high levels of noise. The coalition, adapted to the
original clean sequence p(u, y), neutralizes the influence of individuals conditioned on noisy signals
p(u,y), thereby preserving the Nash equilibrium, resulting the robust generalization performance.

0.5
0.0

7 CONCLUSION

This paper introduces mean-field continuous sequence predictors, a novel class of neural SDE model
for the efficient generation of continuous sequences, which can possess infinite-order complexity. To
capture the complex inductive biases in time-series data, we propose the mean-field dynamics using
meticulously designed graphons. We recast the time-series prediction problem as a mean-field game
and adopt a fictitious play approach, integrated with a gradient-descent-based method, to leverage the
stochastic maximum principle and identify the Nash equilibrium of the system. Both empirical and
theoretical results reveal the distinctive features of our MFPs, where the coalition of a continuum of
predictors generates accurate predictions and consistently surpasses benchmark performance.
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8 APPENDIX

8.1 NOTATIONS AND DEFINITIONS

This section includes brief summary of the mathematical backgrounds, omitted notations and defini-
tions in the manuscript.

Generalized Wasserstein Distance. Recall the definition of space for probability measures that
consist of generic path measures with finite second moments,

M={v=(v,:ue0)elC(0,T],R)]°ur v, € P(C([0,T],R?) is measurable},

K= (vsup [0 P (o) < o).

For the arbitrary elements pu, v € M = M N M, let us consider M equipped with the generalized
2-Wasserstein metric as

Law(X,) = P o p,

Law(Y,) =P, lov, (18)

1/2
Wi m(p,v) = sup [ianE (sup||Xu(s) - Yu(s)|2)] , {

ueo [ 11 s<t
where II is a coupling between two probability measures and P, denotes a canonical projection onto
the interval O. Followed by the Kantorovich-Rubinstein duality, definition in Eq (I8) can be further
modified as

y fd(pae — V)

LWim(p,v) = sup  sup , pVEM. (19)

u€eo feLip(L)

Note that the inner supremum is taken over a family of L-Lipschitz real-valued continuous functions.

Cut Norm of Graphon. The cut-norm measures the discrepancy between two graphons over all
possible cuts of the square of Q. Formally, for a graphon W : @ x O — R, the cut-norm is defined
as:

W (u, v)dudv
AxB

[Wlg = sup
A,BCO

) (20)

where the supremum is taken over all measurable subsets A and B. The definition illustrates that
the cut-norm quantifies the maximum deviation of W from zero over any rectangle Q2. Given the
definition, one defines the metric called cut distance:

dg(Wy, Wa) = [[W1 — Wal|§ 2

The cut distance measures how close two graphons are after optimally aligning their domains. If the
cut distance between two graphons W7 and W5 is small, the graphs they represent are structurally
similar.

(Exponential AM-GM Inequality). For the arbitrary random variables X, Y and positive constants
a,b > 0, the expectation can be decomposed as follows:

1/2

Elexp(aX? + bY?)] < (2E[exp(2X2)])"/? (2E[exp(2X2)) (22)

(Arithmetic AM-GM Inequality). For arbitrary positive constants x, y, w > 0, we have

1
ry < wr + @y (23)
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8.2 ASSUMPTION

Without additional information, we make the following assumptions in this paper.

1. (H1). There exists a finite collection of intervals {Oy;k € {1,---,N}} for arbitrary
N € N* such that UV Oy, = Q. Then we assume the following:

* For each k, the initial datum of the graphon system is set with the data distribution v,,:
O, 3 u py(0) := vy, € Pa, where the mapping assigns to independent measures.

2. (H2). For each k and Oy, > u, there exists a constant Cy such that we have probability
Vi, [SUDera v () X — Y || 77 < C1] almost surely for all p € N, and the second moment

(i.e.,mz) of v, , is bounded.

3. (H3). The Lipschitz constants of the functions in modeling of graphons W,y : La(vy(t)) D
A — R are bounded above. The parameterized Markovian feedback controls are Lipschitz
in parameters:

[Wiy(a) = Wy (8)| < Lipy |lac — B, 1), (24)
{”a - /6| vu(t)r ||O‘(t>Xv 90() - Oz(t7X, eﬁ)ll} < Lip9||9a - 6,3||E (25)

The drift function is Lipschitz continuous and dissipative, ensuring that the constant ¢; is
well-defined.

(b, bw) (£, @) — (b, b ) (3. B) | < Lipy(x = ¥ll + la = Blluir)-  26)
cr = inf —(x = ) - [(B,bw) (9) = (B,bw) (¥)]/x — ¥ @

4. (H4). The maximal rank of embedding of neural agents in A is d’.

TxRIx O acA < Ly(v). (28)

8.3 PROOFS
8.4 STOCHASTIC OPTIMAL CONTROL, MEAN-FIELD FBSDES

Before presenting the main proofs, this section offers a detailed analysis of how the proposed
mean-field games can be formulated.

Weak Formulation of Mean-field Games. We start by explicating on the rigorous definition of
forward mean-field dynamic in Eq. (T)) cost functional in Eq. (3) and gradient system of FBSDEs in
Propsoition followed by a brief summary of how forward-backward SDEs are formulated in the
context of stochastic optimal control problems. To this end, let us first define the primitive process
X, which solves the following SDE for a fixed label u:

dX,(t) = 01dBy,  Xo(t) = yi. (29)

where B}! is a Brownian motion under probability measure P. Given the square of volatility term o7

is bounded below some constant, we introduce the probability measure P*“, which can be derived
by the following Radon-Nikodym derivative:

dpH-e

)

t=T

where £ denotes a Doléans-Dade exponential of a martingale. Applying Girsanov’s theorem, we have
the Brownian motion W#:* under the probability measure P# *:

W = By — / ot (bW(Xu(s), v,a) + b(s, Xy(s), a)) ds. (31)
T

Then, the primitive process can be rewritten as follows almost surely P#<,

dX,(t) = (bw (Xu(t), v, a) + b(t, Xy (t), o)) dt + o d W, H. (32)

Xiv
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By suppressing the objects in upper-scripts for simplicity, with the notation W* = W;*** and
X.u(t) = Xy (t), one can recover the original mean-field forward SDE defined in Eq (I). Note that
this formulation reveals that the process X,,(t) is a weak solution under P#', and the cost functional
can be posed as follows:

T, e) = / Eow [[Bup(y X&) — will% + GX(T), )] dt, (33)

where the expectation E,, ,, is taken with respect to P#*. Note that the cost functional in Eq. (3] is
an alternative form of Eq. (33)). Next, we reformulate the approximation of mean-field games with
graphon in the probabilistic sense. Let & = «/(t,x;0) := G(t, x, i, ¢) := & be an extended control
with fixed arguments /i, ¢. For the fixed I/g‘* a.e., U ~ vy associated with the optimal control &*,
let us consider a Hamiltonian-Jacobi-Bellman equation (HIBE), having a classical value function V:

9V (t,x) + %T&r[afafxvu,x)] +H (x0T, 00(t%), & (b x, 8, 0V(1%) ) =0, (34)

Then, forward-backward SDEs associated with the Hamiltonian system in (34) can be described in
the Proposition [8.T}

Proposition 8.1. (Weak Formulation: Forward-Backward SDEs I) (Carmona & Delarue, |2013) For
the fixed flow of measures v, (-) : T — Pa and the fixed label v, let (X, (), Yu(t), Zy(t)) be a
family of processes that solves forward-backward stochastic differential equations with respect to the
proposed graphon system in Eq (1)) given as follows:

qu(t) = (bW (X“(t)v Vay,s d*) + b(ta Xu(t)v d*)) dt + o dW, (35)
dY,(t) = —H(t, Xu(t), Yu(t), vu, &")dt + Zy(t) - AW} (36)
where by (x, v, o) = (Wq [V](0), ¥)(x, @) is the graphon interaction term, and terminal constraint

is given as Yo (T) = G(Xr,vr). Then, under the mild assumption (e.g., smooth boundness of 0.,V
and 0., V), there exist solutions of stochastic optimal control of the following minimization problem:

érég J (v, a) = Yu(0). 37)

For the closed Markovian control such as neural control introduced in Section [2} the solution to
adjoint process Z,, (t) can be defined as stated in Deﬁnition By rewriting forward-backward SDEs
in Eq (35) and Eq (36) for non-optimal neural controls e (i.e., neural networks) which are updated
via gradient descent, we can recover the proposed gradeint system of FBSDEs in Definition 3.2}

8.4.1 ANALYSIS ON STOCHASTIC OPTIMALITY AND CONVERGENCE

Stochastic Optimality. In the following, we introduce the second type of forward-backward SDEs,
which is based on the principles of stochastic maximum principle:

Proposition 8.2. (Stochastic Maximum Principle: Forward-Backward SDEs II) (Bensoussan
et all 2013) For the fixed flow of measures v,(-) : T — Py and the fixed label u, let
(X, (1), YME(t) ZMP(t)) be a family of processes that solves forward-backward stochastic dif-
ferential equations with respect to the proposed graphon system in Eq (1) given as follows:

dX,(t) = (b (Xy(8), vy, &) + b(t, X, (t), &F)) dt + o, dW},
dYﬁ/IP@) = _8XH(t7 Xu(t)v Yﬁlp(t)a Vu, d*)dt + ZQ/IP ’ thu'

For the progressively measurable admissible Markovian neural control 3 under the mild assumption
(e.g., smooth boundness of 0,V and 0,V ), there exists a constant Tsyp > 0 such that the following
inequality holds:

T &) + mup / l&* = Bll,dt < TP, ). (38)
T
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Remark. Note that the backward dynamics YMP differs from the original backward dynamics Y, in
Definition (3.4) as the dynamics is designed to be associated with Pontryagin stochastic maximum
principle. This principle plays a central role in the proof of Proposition [8.3] demonstrating the
stochastic optimality of neural agents in the following section.

In what it follows, we demonstrate that the stochastic optimality of the proposed gradient system can
be guaranteed under the specific conditions required for constructing the control set in Prop[8.3]

Proposition 8.3. (Maximum Principle of Graphon Mean-field System) Assume that there exists a
constant Ky such that ||0a || H || gllco,y < Kn. Then, there exists a convex set of admissible neural
agents o, € A such that the following relation holds:

d m—o0
(o 2°%)
Do J (V™ o) = i.lII(l) —dEJ [ +e(am — am—1)] —— 0. (39)

Furthermore, the sequence of control profile {au,} leads to the minimization of the stochastic
Hamiltonian system in terms of Pontryagin maximum principle:

lim H (8, X7 (8), Y (1), v, 0m) = inf H (8, X (1), Yo' (1), v, @), dt @ dP —ace. (40)

O — 1)

where the population is set to v, = ¥ (v®m-1) = U(1y
be derived by the proposed gradient system of FBSDEs:

Vis T = fin T an) @

In other words, the value function can

Proof. We divide the proof into two separate steps.

1. Computation of Gateaux derivative D, 7. The aim of the first step is to provide an explicit
computation of the Gateaux derivative of cost functional (value function) with respect to the neural
agent. To achieve this, we introduce the variation equation i,, and its associated gradient system of
SDEs with fixed 3:

AY MR () = =0 H (£, X7 (8), YirMP (), v, Gy ) dt + Z7M - dW, (42)
diy(t) = [(Oxbw + 0xb)iu(t)]dt + [(Oabw + 0ab)B,,Jdt, (43)
diu(t) = dlin(t) - Y (1)) dE € R (44)

Let Yo (m, €) = au, + €3,, represent the infinitesimal changes of the admissible neural agent o™
in the direction of 3,,, := a,;,—1 — @y, To feasibly select the convex combination Yo, (2, €) for any
m and € € [0, 1], both neural agents need to lie within some convex set A,,,. For now, we assume that
there exists a convex set A, that includes o and 3. The explicit form of this set will be clarified in
the subsequent step. Given the definition, we compute the derivative as follows:

Daj(yama am) = %j(y'ra(m,e), Ta(mv e))|e:0
(45)
—E [ [0 + 8,001 +iu00.6]
T

where we denote f(t,x,a) = |Ey[x*(¢)] — y:]|*>. While i,,(T)9,.G can be identified with j, (7)), we
apply the product rule to the third dynamics dj, in Eq (#4) to have variational form to induce j, (7'):

diu(t) = [Yu(t) - dia(D)]dt + [ia(t) - YT ()]t + Te[dYY (1) @ dia(2)]

/ YMP(2) - (Ocbw + 04b)B,, + YNP(1) - (Oabw + Oab)iu(t)dt 46)

- 8XG (Oxbw + Oxb)B,, + 0xG - (Db + Jub)in(t)dt.

0
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Combining Eq (@3) with Eq (@6), and Cauchy—Schwarz inequality gives explicit form for the Gteaux
derivative of objective functional.

Do J(Ta(m,e)) =E UT Do H (t, X™, Y™ MP (1) W (p*m=1) a,, )dt - ﬁm}

47
SE[/ ||aaH<t,x:an:?’M"<t>,\If(u“m1>,am>||E-|ﬂm|Edt} “7)
T

< |N0aBH™(l5|| - [[1Bmlle]];;

where |||, denotes L,,-norm, and the last inequality is obtained by applying Holder’s inequality with
the conjugate pair (p = 0o, ¢ = 1). Then, we have

H”l@m”EHl = H”am - am—1||EH1 = ||||a(t7Xum79m) - a(taxumvem_l)HEHl

— — — m—1,a (48)

<A™ Lip, EsfY™ 1, SoY™ = ||[VoYu )|
2. Construction of A. Next, we define the explicit form of the control set A,,. The constructed
control set must meet two conditions: (1) it must be convex, and (2) the right-hand side of the
inequality in Eq must converge. For properly dealing with the first condition, let us consider a
metric ball B,,, in L; space as follows:

B,, = B(atm—1,7Tm) € Ly, (49)
T = Tutm = g’ym_lLipa(SgYJ”_l(t), e €10,1]. (50)

Since any arbitrary metric ball is convex and the calculated reverse direction of gradient guarantees
local minimum at each stage, the setup of the proposed metric ball ensures the well-definedness of
Géteaux derivative in Eq (7)) and local optimality at each stage m.

Let A\l () be an eigenvalue with respect to the principal direction of Hessian for cost func-
tional, i.e., Hessy J (v*, (+;6)). Consider another control set C,,, == {Q;_1; A7 H(am_1) <
(y™~1)~1}. The conventional analysis of gradient descent gives the following inequality on C,,:

max

1
EYm’a"" S Emel,am,l o 5 (Q,mel o (,ym71)2)\m71<am_1)) (]E(SgYmil)Q‘ (51)

While the second term in right-hand side of Eq (51 is non-negative, the sequence of expec-
tations for the backward dynamics is non-increasing, demonstrating that lim,, ,., DoJ <
lim,,, oo Edg Y™~ ! = 0 when the infinite sequence {a, } lies within lim,,, o, C,;,. To inherit afore-
mentioned properties lying in both control profiles for all m, we define A, :=| |, <, (Ba N Ci),
where A = lim,,, oo A,,. The result directly follows from findings in the stochastic maximum
principle (SMP) (Carmona et al., |2018; |Bensoussan et al.,|2013), ensuring the equivalence of the
following relation:
EoH(,a®)-8,,=0 +— «a"=arginf H(-, ). (52)
acA

m

Note that this equivalence relation is applicable only when A is constructed in the manner previously
specified. O
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8.5 CONVERGENCE OF GRADIENT SYSTEM OF FBSDES, MEAN-FIELD EQUILIBRIUM

As we have formally defined the stochastic optimal control problem and established the corresponding
optimality conditions, this section delves into the detailed rationale of how the proposed gradient
descent-based FBSDESs achieve the Nash equilibrium. We will prove Proposition [3.3] through the
following steps:

1. For the arbitrary probability measures (i.e., u?, v®) associated with fixed Markovian con-
trols «c and 3, we first establish that the upper bounds of the generalized Wasserstein distance
remain stable when two measure-valued operators ® and ¥ are composed repeatedly:

Wi ([® 0 W (1?), [® 0 W] (b)) =25 0, (53)

2. Consequently, we reparameterize reference measures (u?, v®) with the laws of inferred

mean-field forward dynamics in Eqat subsequent stages (i.e., v, po ), proving the
convergence towards mean-field Nash equilibrium.

Proposition 3.5. With the assumptions explored in the previous proof, for the fixed label u ~ p(u),
the m-fold of composition ® o U induces convergent behavior of generalized Wasserstein distance:

Wal[2 0 BT (021), [2 0 T (B 0))" < sup Wi pa ([ 0 9] (%), [2 0 U (020))*

. O(T)M(sup,sup,, )™ -1 (C'T)M 5 M—soo
<1 = A p0)s —— 0. (54
= Mk C(T)(sup, sup,,, rm) — 1 T ilel%) Wepm@™,v5) (>4)

where a numerical constant C'is dependent on by, C1, Hy,, Lipy, ma, |0, e~ 19 p, Lipy. In other
words, [® o U]°™ is a Cauchy sequence on M, and the proposed gradient system converges.

Proof. Recall the definition of controlled graphon system that the particle dynamics at time ¢ with
distinctive controls cx and 3 can be presented as follows:

X7 (1) = X02(0) + / (Weltr.o]. ) (X (5))ds + / b(s, X% (s), @)ds + / oW,

X148(1) = X18(0) + / (Waljev o], ) (XE(5))ds + / b(s, XB(s). B)ds + / oo dWV.

Given the dynamics above, the property of measure projection ¥ induces the upper bound of
generalized Wasserstein distance as follows:

Word(®(u), (*))* < E [iggmw(s) - xz’%s)nﬂ

<o [ [ ] #X00) Y)Wal (V)

Rd

— [ (X2%(s), Y)Wa(u, v)dvy o(Y) deumfds}
Rd

+ boE UO [b(s, X4, %(s), ) — b(S»XZ’ﬁ(t)yﬁ)llgdS]

< 3bo (1+ 11+ III) + bolV,
(55)

where the first and second inequalities are induced from Holder’s inequality and the Burkholder-
Davis-Gundy (Chaintron & Diezl 2022) with some constant by > 0. Following the assumptions in
Section [8.2|and the modeling of graphons in Section [2} the first term (i.e., I) can be upper-bounded in
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the following estimation.

2
I=E

dVUnide]

L [wx260.30) = 9()82(.30)] W () o (9)
(56)

< Llp |:/ / W2 u v / ngaa(s) _ Xﬁ’ﬁ(s)"QdVV7S(Y)dVUnifd3:| .
Rd

Given the fixed control o = &, optimizing the last inequality requires estimating the (local) Lipschitz
continuity of positional encoding ):

Lip(¥:(,Y)) < sup [|[Veb(x,Y)]|

xER’i\{\?}
Y 5 (57
2x-Y -Y
< Hy(a) sup a2|||I;— (x )®2E (x ) H
x€RN\ (Y} a
where a = ||x — Y'|| and @ denotes the Euclidean outer product. Following by the assumption

(H2), Gronwall’s inequality with the fact that spec(V)) := A\; < max(1, —1)a~2, we have

t
1 < CTHy(a)h(B)E [/ sup || X% *(r) — Xﬁ’ﬁ(r)||2 ds] . (58)
0

r<s

Since each component 1), possesses the same spectral norm as 1, the second term can be upper-
bounded with the improved definition of generalized Wasserstein distance in Eq (T19):

2
I:=FE @b(X{f’ﬂ(s), ?)Wg(u, v)d[vy s — Mv,s](Y) dVUnide‘|
Rd
< d|O|C?E |sup max / ZE(XBB (), YWa(u,v)d[vy s — piv.s]| ds (59)
nue@ie{l,---,d} Rd Cl

< d|0|C2h(B) / Wapt (1%, )2 ds.

Regarding the third term (i.e., IIT), we have

2
I := 1/: (XH4B(5), Y)W — Wa|dry s (Y) dvUnifds]
(60)
< (20%mgoHy + 1) / / (W5 — Wa|?dvE2:(u,v)ds
< (2CTmyHy, + 1)|T|d3 (Wa, Wa).
The upper-bound of last term can be directly obtained by the Lipschitz condition.
t
v 5 [ [ o X000, 0) — b5, X220 B) |
’ (61)

¢
< Lip,E [/ supHXﬁ’o‘(r) —Xs"@(T)HQdS} —|—Lipb/ sup||a BH S)ds
0

r<s
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By replacing each term with numerical constants Cs, C'y, C5 in the aggregation of all four terms, we
finally have the following upper-bounds related to dg, YW and Lo-norm:

E sup||X‘;‘ﬁ(s) — X‘;’O‘(s)z} < 3bg (I+ 11+ III) + bo(IV)

s<t

< WGy (@) + Lipg | [ sup X5 () ~ X520 |

=log(Cs /t)
+ (6boCTmaHy, + 3bo)|T| di (W, Wa)
=Cy
t
+ max(3bod|O|C1H(8), Lipy,) (/0 suplla = 8|12 () +Ws,M(Hﬁ7Va)2d5) . (62)
=C5

Applying Gronwall’s inequality to the above result in Eq (62)) and the first inequality in Eq (53]) shows
that there exists a constant C’ = 3 max(Cj3, Cy, C5) such that

Wi (®(p?), 2(v*))

t
< (dg(W@Wa)—i—/ suplla — B2
0

T S

a(r) +WS,M(uﬁ,1/a)2ds> . (63)

Next, the aim is to show the upper-bound of d3, || — B]|7 and W. a4. To proceed, let us first examine
the upper bounds of the cut norms for both exponential and cosinusoidal graphons as follows:

2 WE 4+ 2Wo (Wi + Way) + (2/L) (3, Wiy + Way)?
< h( ) (T/2)W2 ( —277 0| _ 1) .

We(u, v)dudv
AxB

sup
A,B
(64)

Modifying the upper-bound in Eq (64) by replacing W, with 6W := W, — Wpg, one can derive the
following

&(Wa, Wa) = [3W3 < max (11Lipyy, (T/2)(e7* 19— 1)) o= B2, (65)

At each stage {m}1<m<n with the given sequence of probability measures {v*™ }1<p<n, We
substitute ®(u?) and ®(v*) in Eq with ® o U(v*m+1) and ® o ¥(r*m), respectively. Then,
one can derive the following relation:

Wi (® 0 W(pm), & 0 W(pm1))2 = W, y((Law (X" 1 @74 ) Law (X¥e )2
t
< <d2( oz Waz,) +/O bup||ozerl vy + W&M(V"‘mﬂ,uo‘myds) .

sc’(max(HnLipW,H<T/2><e*2T‘1'@‘71>))sup|\a<,,om“) alt, ™2,
t
C'/ W m(p&m+1, %) 2ds
0

< (max (t + 11Lipyy, t + (T/2)(e 2T 101 _ 1))) (sgp rm>

=C(t) < C(T)

t
C’/ We m(0¥mt1, v%m)2ds,
0

where the radius of metric ball (i.e.,ry, = 7y ¢m) Was defined in the proof of Proposition In
the first equality, the controls « are replaced with their optimal profiles a* following the definition
of the operator ¥ in. To set up the subsequent stage, we substitute a pair of controls (v, , 1, ;)
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with (@,+1, oy, ) again. Next, we show the stability of the result obtained above for M-th stage by
observing the upper bound of M -fold of the operator composition.

Wi ([® 0 WM (121), [@ 0 WM ()2
< C(t)suprm + c’ /Ot Way i ([® 0 WML (521 [d o \If]"M—l(uao))2d50>
(66)
M

< 3 (Cspra)” ([ [T e P ),

where dII" := ds® ® - - - ® ds™ denotes m-product of Lebesgue measures {ds™ }1<m<as. Finally,
we deduce that the supremum of the left-hand side can be controlled by

lim sup Wy ([@ o U] (v*1), [@ o U]°™ (1*0))? <
M—o0 teT

C(T)M(sup; sup,,, )M =1 (C"T)M 2
m W, L p*yE —— 0. (67
C(T)(sup, sup,, rm) — 1 T SR (™, %) (67)
where the learning rate v is chosen such that sup, sup,,, r», < 1 remains sufficiently small, and the
last term in the inequality can be derived by modifying the following

T —
sup Wt’M(q)"m(Vo‘l),@om(uao))Q < (C’)M/ uVVS,M(V"”,V"“’)st. (63)
teT g (m—1)!

The inequality in Eq demonstrates that the sequence of operator compositions {[®oW]°™},, < :
M — M forms a Cauchy sequence, confirming the convergence of the proposed gradient system in
the distributional sense. O

8.6 SAMPLING ERRORS OF MEAN-FIELD PREDICTORS

Though not presented in the manuscript, the following result implies key theoretical conclusions: It
demonstrates that the estimation errors for the neural agent, introduced by the sampled mean-field
predictors (empirical measure) at the m-th gradient descent step, are kept within acceptable margins.

Proposition 8.4. (Worst-case Estimation Error of neural agents) Let Q, = Q,(u,t) =
(1/n) Y2 6xa (1) and Q = vy(t) be an empirical law of mean-field predictors and its mean-field
limit. Then, the worst-case approximation error can be upper bounded with probability 1 — § as

follows:
2 3 2
- \/32T (L+m)? <1>
B n )

32 a2 g ‘7
+
4 72(3(172)/2 m— 1L Ym Lam—1 e .
& (\/n (v Lip, IV ®)llz) 13 (69)

Remark. While the admissible control set A guarantees the diminishing behavior of

1, Qe .
HVgYm ™= (t)|| g, the second term in Eq (89) approaches zero as m becomes large, even
when 7 is small.

[amd@. -0

sup
o €A

Proof. The proof follows the standard convergence analysis of empirical processes. Let us fix the
temporal variable ¢ and the labels of mean-field predictors u. Then, one can show that the supremum
of Euclidean norm can be decomposed as follows:

d d
> sup  [Eq, 70 —Eqmjoau| <Y sup [Eg,g—Eqgl =T, (Qun,Q), (70)
j mjoa€Am, j 9€Al, /
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where I, ; denotes the integral probability metric (Miiller, |1997) with respect to the set AJ which
consists of j-th component of neural agents at m-th stage. Note that the the supremum in the
second term is taken for all function g lying in the set of parameterized function, i.e., neural agent.

Let us define p, q : (RY)" — R such that (X& (t),---,X& () LN sup [(1/n) >2; 9(X§ (1)) —
Eqgl, and (X (£),--- , Xg (t)) Hy Eg sup, [(1/n) >, 0:g(X5, (t))| where {o;}i<, is a set of
i.i.d Rademacher random variables. Then both p and g satisfies the following inequality:

bgpze?llaxn} |(p7 q)(Xgl (t)7 e axﬁi,l (t)a Xla X (t)a - X (t))

Ui41 Unp

4T t.x: 0
— (p, ) (X7 (2), - ’Xﬁn(t))‘ < supy a(t, x; )

Following by the McDiarmid’s inequality with respect to p, we have two concentration inequalities:
—ne? P(p —Ep > ¢)

> = 72

xp <8T2 supy a(t,x; 9)2) - {P(q —Eq>¢). 72

By applying the symmetrization inequality (Wellner et al.,2013)), we have the following inequality
with probability at least 1 — §

(71)
n

8T2 sup, , a(t, x;0)? (1)
: In

- 1 <& 872 sup, , a(t, x;0)? 1
< 2EE, | sup |— Zaig(Xﬁi (t))‘ + \/ Pi,t & ) In <)
gent, M5 n o/ a3
1< 3273 (1 4 my)?2 (1)
<2E, | sup | =S oig(XE ()| | 44/ 222 T2 (
LeAIZ); n ; “ ( ))H \/ " 0

Ron (A, {Xg, ()}

where the outer expectation is taken with respect to the randomness of mean-field predictors in the
second line, and we apply McDiarmid’s inequality in Eq again to derive the last line. Following
by the covering number of

R (A, {XE (1)}) < Eq | sup

1 n
, mes:@»”
geal, 1™ 5
32 [ ;
<inf<{ 2+ 4/ — Ay, Lo (Qy,
_220{64- n/€/4\/H(Ta L2 (Q ))}
oo d/2
< inf 26+\/g/ <2rm) dr
>0 n Jea \ T
: 32 /2 —d/2+1 ~1
<inf ¢ 26 + ¢/ —(2r,,)"“(e/4) (d/2-1)
e>0 n
. 32 (3d—2)/2,.d/2 —d/2—1 -1
< inf { 2e 4 4/ =2Bd=2/2pd/2=d/2=1 (g _ 9)
e>0 n

32 d+9 (d/2+2)~*
J +

=4 229(3d-2)/2 n=lyin S,V 1(¢ /2 a—T 24

(\/; (ev ip, 00 Y" "' (1)) d—2) ,

where we assume the data dimensionality is d > 2. The second line is a direct consequence of
Theorem 16 (von Luxburg & Bousquet, [2004)), the second inequality can be derived from the fact that
Q,, is an empirical measure, and A{n is a metric ball of radius r,,, embedded on finite-dimensional
Hilbert space following by (H4). By setting d = d’, the last result comes from the definition of
radius r,,,. O

(74)
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Proposition 4.2. (Sampling Complexity) Let v} , [i; probability measures defined in Eq (T4). Then,
there exist numerical constants ¢, ¢y, cg, cg > 0,w > 0and k > 0 such that the probability of squared
2-Wasserstein distance can be controlled as follows:

) s 1 128wh(a) ) ~®
]P’W2 N > < ~ —Ne“/4c & _—Ne 1 — == o 75
[ Q(Vt 7“’15)_6]_(1(626 +Ne N +724e\/N ) ( )
2C3/2 1
a = max | ¢g, ; exp(cae2T) (e — 1), ¢g exp(—4cs) |, (76)

where u € O, t € T is arbitrary and h(o) = ||Wa||g is a cut-nor of the proposed graphons (i.e.,
exponential, cosinusoidal).

“Eq. clan'ﬁes the explicit upper-bound of the cut-norm for the proposed graphons.

Remark. The approach used in the proof to establish the concentration bound is largely inspired
by the series of works on the measure concentration (Bolley et al.l 2007; [Budhiraja & Fan, 2017
Bayraktar & Wul 2022; Bayraktar et al., [2023; Bayraktar & Wul, [2023)), with slight modifications
tailored to the structure of the proposed mean-field system. We intentionally omit some parts of the
proofs in this work that have already been covered in the reference.

Proof. We divide the proof into separate steps.

1. Estimation of Concentration Inequality. For the controlled mean-field system via neural agents
a, fix the the population v and its related control X¥** = X, and let u = i/n for the moment.
First, let us define the following probability measures:

. 1 n . 1 n A . 1 n
vy = E dezl(t): Vp = E Zax(i/n)(t)a Ht = /Vu(t)p(du)a My = E ZVu:i/n(t)' (77)
Then, we analyze the law of difference between the following two mean-field dynamics:
t t t
Xult) = Xu0) + [ (Wali o 9)Xu(o)ds + [ b(s.Xol) s + [ o,
0 0 0

X2 (t) = X o/ (0) + / (Wb o], ) (X7(5))ds + / b(s, X2(s), @)ds + / oo dW /).

Given that fact that the expectation of Ito’s differential for mean-square error can be expressed as
dil|A@)|* = 2(A(t), ma)dt + 20 A(t)dW; + odt where RT > o and m 4 are compensate and
martingale part of A(t), we get

|| Ximy (1) = X7 () [5 = 20X (2) - (b(s, X} (s), @) — b(s, Xy (5), ) dt

< ;iwa (; 7]1) o (XD(1), X2 () — o {Wa (;V) (K (£), ) (78)
20X (t)dt

where we denote £ := vap(v),xw,,v:j In(
Then, the dissipativity assumption gives

¢ and p(v) = wx [Unif(0)], 0X(t) := Xj/n) () — X7 (t).

di||6X ()| % < T+ T+ + IV (79)

For simplicity let us denote W7 := Wy (i/n,i/j), and WY := W, (i/n, v). Using the dissipativity
of the proposed drift function. For the second first, one can get

I= 25X(t) : (b(S,X?(S), Oé) - b(S,Xi/n(S), OL)) S _c1||5X(t)||2E (80)
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By adding and subtracting new terms, we have

= ZWW (X2 XD) — o (K ioymy — Xi/m)] | - 6X(0)
(81
< 1Py = 55 (0)] (19 X7 (1) — X
<= ZI O (10X®)] + X5 () = Xg/my))
J
Similarly, the second term can be upper-bounded as follows:
Il = ZW“ [ (Xi/n)» Xii/m) = By ity Pa(XT ')} -6X(1) 82)

< [6X(t )I W oo | Fi 1 -

By adding and subtracting the term W; jEa, (X, /5, (t), -), the fourth term can be improved as

v iZ[W [ a0 ) = [ W0 (Ko 100 ) <500

IN

1 n o o '
- D IWHloe (CrWa (Vi (1), 1 (1) + n2dg (W5, W)
J

IN

X (O] W oo | Fiy | == 0.
(83)

Note that the last inequality tends to zero for large enough n. Aggregating all the terms and using the
fact that ¢/(t) < ag(t) + bimplies g(t) < [e~*!=*)bds and d/dt||g(t)||% < (1/2)g(t)~/24(t),
where g(t) == (1/n) > I'[|0X(t)[|% and a = (2Lip, — ¢1), b := b(F}y, Fiy ), we have

W3 (v, ) < ZH(SX )%

t 2
1 .
S/ —(4Lip,—2¢1)(t—s) supIIWZ o ||2 Fiul® + 1 Fv %] | ds.
0 it g (84)
t n
S/ —(4Lip, —2¢1)(t—s) (buP”Wl g ||2 Z” mllE + 17 V||E> ds
0 i, g P

:=V+VI

where the first inequality follows from the estimation of Wasserstein distance for empirical measures,
and the last inequality can be derived by applying AM-GM inequality.

P W2, fu) > €] < IP[WQ 7, i) > 6/2} + PV > /4] + P[VI > ¢/4], 85)
==VII =0, >N

where the last term vanishes for small enough €, with large V.

2. Estimation of Exponential el Xu@IIE, Tn this step, we derive the upper bound of the exponen-

tial for the square norm of mean-field predictors. We first apply the Ito’s lemma to e*ew/Xu(t) I% for
arbitrary scalar \eyp, > 0 and observe that

2
dyePerl XaOllE —

Aexpe X Ol (2K - (b + by )dt + 0y (d + 2herp | X (1) [|%)dE + 01dBy) . (86)
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where gradient and Laplace of exponential can be calculated as Ve Aol X (D) = 2)\expe’\exv”xu(“”%

and Aereol Xl = 23, erewlXu®lE (4 4 20 ereeIXu®E), Taking expectation on both sides
with the dissipative condltlon we can show that there exist constants ¢co = 2)\exp(7c1 + ot)\exp),
c3 = Aexpod that directly gives following two inequalities

B[ O1E] < | [l X 01 (6 X, (O3 + 53)] e + B [/ Msdt} @

t
sup|| X, () [ < supllyull®* + Ny + cl/ X (5) I pds < cae™™. (88)
t<T t<T 0

where the second inequality is a direct consequence of Grownall’s inequality, and M; and N; denote
some martingale. Applying Grownall’s inequality again, we have the desired result.

dE[e expuxumuE] (¢5 + coEle expl\Xu@)\l?s])dt, (39)

E[EACXPHX“(U”E] < (GXP(/\epoyuHE) +¢5) exp(cT) < (87)2- (90)

where we used inequality e + e* < exp (max(a, b) + In(1 + exp(—|a — b|)) = (e7)? such that
a = Aexp||Xu(t)||% + ¢6T, b = Inc5 + ¢6T. Note that the upper-bound of the term exp(Aexp||yull%)
at initial time ¢ = 0 determines the exponential integrability of the right-hand side above.

3. Estimation of Probability P[V > ¢/4]. By the exponential Markov inequality with some constant
A > 0, Jensen’s inequality, we obtain

t . VR .
PV >e/4] =P [/o o~ (ALip, —2c1)(t—s) <$/111?|W1 7 ||§oﬁ ZH}?HH% ds > e/4
i’j P
1 /4 ' (4Lip, —2¢1)(t—s)
< = —Ae/4 —(4Lip,—2¢1)(t—s
1 n
~exp [ Ab()]| D WaXiisn) Xm) = Eu, e Ximy: e dé’}
J

Note that [, (x,y)|lz < Lipy(|[x|lz + [lyll£) have linear growth for all x,y € R by the
assumptions.

E |exp [ Ah(a H*Zi/’ X(i/m) = B,y 0% Kiimy )|

. 2
<E [eXp (WHX(UMHQE + 2/\h(a)H;F¢ )] ©2)
E

. 1/2 2 1/2
< <2E {exp <4)\h(021111)1/’||x(1/n)||2>}) <2IE exp <2CH711F¢ )])
E

where the last inequality can be derived by applying exponential AM-GM inequality

o i) -5, )

exp< H 2y +F¢||E>]
93)

< <2E [exp <%IIZII%)]>1/2 (2E [exp ((10n) - Lipy || Fy|2)]) " exp(eset )

d
16 T4
< 2¢7 (1 — WC) -exp(cge?),

E

<E

n2

XXV



Under review as a conference paper at ICLR 2025

where Z ~ N (0,1y) is a standard Gaussian random vector. The last inequality is a direct consequence
of the property of the moment generation function. The second line can be deduced from the fact
that the discretized predictors X ;/,,) and X,/ are i.i.d with the selection of w > 0, Aeyp and ¢
satisfying the following:

1 .
1ol FellE < n-Lipy (51X i/m) |5 + exp(eae™™)) (94)
ANp(a)Li
Aexp ‘= Max (M, (10n)Lip¢> . 95)
n
¢ = 2)(a) > 0 (96)

By aggregating all the terms, we finally have

1 n
E |exp Ah(a)||% > Xy XGm) = Buy P Xim): )Hé
J

o7
da
: 16w\ 3 1
< 2c$/2 (1 — nzc) -exp(C4e%°1T)
Thus, the probability of V' larger than threshold €/4 can be written as follows:
d
2 —ne 3/2 16(*)6: 8 1 1T rT

PIV2e/d < —e™™ (1 - -exp(ese29h) (e — 1), (98)
k= —(4Lip, — 2¢1), A =4n. 99)

4. Estimation of Probability P[VII > ¢/2]. Now, it remains to establish the upper bound of the
probability related to VII. We modify the standard estimation of concentration probabilities of
empirical measures as outlined in Bolley| (2010). By the triangle inequality, the probability can be
decomposed as

P {VII > %} <P sup WQQ(D[L,D,’ILA) > g +P sup WQQ(DZA,[LZA) > %
hA<t<(h+1)A 0<h<M-1
0<h<NM—1

(100)
where the temporal interval can be also decomposed as T = [0, A]JU[A, 2A]U---U[(M —1)A,T] C

24:61 [hA, (h + 1)A]. The first term of the right-hand side above can be bounded as

€

D
—

—-n =n € 1
P [ sup Wi (o7, v) > 61 <P { sup || Xi/n(t1) — Xin(t2)|| 5 >
RA<Lt<(h+1)A N 0<t; <t <t

(101)

< exp (—n sup (eC —logE exp (C sup |1 X/,(t1) — Xz/n(tg)”%)))
¢>0 0<t1<t2<t

The first line is induced as any measures 1/(’?) are empirical, and the next line can be induced by using

Chebyshev’s exponential inequality and the independence of the mean-field predictor. Denoting

6X (ijn) = SUDg<, <ty < Xijn(t1) — X/ (t2)||% for any 1 < 5T, we can further improve the

right hand side by showing

E exp (CéX(i/n)) < exp(¢3cg) exp(2C6X (i /n)) < exp(¢3ceg) (1 + C’A) , (102)

where we used the fact that ax < a?b + 2ax for all a, b, x > 0. In order to show the upper bound of
the first term in the last inequality (T02), we used the result (4.6) [Bolley| (2010) tailored to our case
under the assumption made in Section [8.2]for fixed u and cr. Combining results, we have

2/(=n —n €
P sup Wy (7}, Upa) > 6
hA<Lt<(h+1)A
0<h<M-1

_ ne? A C9
< Mexp (—4c —log(1+ CA)) < — exp <
8 €

< M exp (—n sup (e( — ey — log(1 + C’A)))
¢>0

_ne2 +1 A = exp(4eg H)C1,
deg ’ M < cy/€.
(103)
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For the second term of the right-hand side in (I00), we first apply Boole’s inequality of events to have

—0,n>N

2 2
_ N € _ . €
P sup WQQ(V;LLAaMhA) > ] S P [ sup WQQ(MZA?/"L}IA) Z ]

0<h<N—1 ~ 36 0<h<M—1 72
) €2 (104)
+P | sup Wr(Uha, fifa) = 7
0<h<N—1
Me ¢
< < .
= )i = (T2)tevn

The second inequality can be deduced by the result of Theorem 1.5 Bolley| (2010) with d < d' =

4,(0,1) 3 § = 2,p = 2,¢q = 4. Then, there exists a constant g > 0 such that n > ny max (e71%¢)
for any € > 0 and

€ €
P (W3 (6x,, i) > = < ——r. 105
Stlel'll; 3 (0% (i (0)) Viym) (8) = 2| = m)tvn (105)
i<N
where the quantity in (T06) can be derived by proceeding similarly as in Step 2.
sup E [[[ X (i /) (8)[| 5] < o0 (106)
teT
i<N
The first term in the first inequality is direct consequence of following result:
E [[1X(i/m) (8) = Xi/my (8)II7] o< [t — 5. (107)

Combining all the results for the probability bounds of V, VII for deduce the upper bound in (3],

2
N % [¥s) ne
P W3 (v fie) > €] < mﬁ + 2 exp(—4cg) exp <_4C8)

2 12 o8
" 7677166?/2 (1 _ 8“;:1("‘)> .exp(c4€%t1T) (" —1). (108)

By setting a as follows, the proof is complete.

3/2
ap = max <c97 & exp(csez ) (e — 1) e exp(—4c8)) ) (109)
K
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Figure 6: Parallel Computation in Sampling Mean-field Predictors
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8.7 EXPERIMENTAL DETAILS
This section provides the implementation of mean-field predictors in detail.
Experimental Setup. Given that T := [0, 7] is the time span of each continuous sequence data

instance, our prediction task is to read the first (historical) % observations, [0, (a7'/100)], and
forecast the future (1 — )% events, [(«Z/100), T]. We set T" to 100 for the MIT Humanoid Robot,
48 for MIMIC-II, and to 72 for the Beijing Air Quality dataset. The value of « is fixed at 80 across
all datasets.

Model Architecture. In each forward step of X,,(¢) from ¢ to ¢t + At, a neural network takes X, (¢), t,
and u as inputs and outputs b(-, ), W (), and w. In the first stage of the neural network, X, (¢) and
t are concatenated into a single vector, which is then projected into a hidden vector via a multilayer
perceptron (MLP). This hidden vector is subsequently passed through a computation block consisting
of several MLP layers with skip connections. Finally, after the computation block, the hidden vector
is projected into b(-, &), W (), and w using respective MLPs. In our architecture, each MLP is
composed of two linear layers, with a Swish activation function positioned between them.

To process the labeling information u in the neural network, we apply adaptive normalization (Peebles
& Xie, [2023)). Specifically, instead of using fixed scale and shift parameters in the normalization
layers of a(.; ), we regress these parameters based on u. The adaptive normalization layers are
placed between MLP layers. We find that this conditioning mechanism effectively incorporates the
labeling information, outperforming the approach of simply concatenating u into input vectors.

After obtaining outputs from the neural networks, we evaluate by (-, ) for forward evaluation of
SDEs. To derive by (-, &), we compute an exponential or cosine graphon W using u and v where
v < t. Next we calculate the projection Projga—1(x —y) == (x — y)/||x — y|| with x = X (t)
and y = X, ;(t). These values are then integrated into with W (cx) using Defintion 2.2and Eq
or Eq (@) into W, and 1, finally leading to by (-, a) = > _, ¥, (Xu(t), Xy () Wa(u,v).
After forward evaluation, we utilize w to aggregate predictors by applying softmax. (i.e., Ay =
> ver Softmax(w(u, v); {w(t, u) fuct) Xy (t) where Softmax(x € S;S) represents the value of x
after applying the softmax operation to the entire set .S which includes x.)

Parallel Computation. Since the direct application of Alg.|l|is computationally intractable for large
particle count NV, we introduce novel parallel computing to efficiently sample proposed mean-field
predictors, as described in Fig[6] At each step of forward evaluation, given all predictors X, each
predictor can be processed independently using Eq (I). In other words, no predictor needs to wait for
the others to complete their forward evaluation. By taking advantage of this property, at time ¢, we
store all predictors with u < ¢ in the shared memory and forward predictors one step in parallel. This
parallel implementation significantly decreases empirical computation time by reducing the number
of iterations for forward evaluation from O(SN) to O(S) where S is the number of steps for forward
evaluation and N is the number of sampled observations.
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