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Abstract—In robot imitation learning, policy performance
is tightly coupled with the quality and composition of the
demonstration data. Yet, developing a precise understanding
of how individual demonstrations contribute to downstream
outcomes—such as closed-loop task success or failure—remains
a persistent challenge. We propose CUPID, a robot data curation
method based on a novel influence function-theoretic formulation
for imitation learning policies. Given a set of evaluation rollouts,
CUPID estimates the influence of each training demonstration on
the policy’s expected return. This enables ranking and selection of
demonstrations according to their impact on the policy’s closed-
loop performance. We use CUPID to curate data by 1) filtering
out training demonstrations that harm policy performance and 2)
subselecting newly collected trajectories that will most improve
the policy. Extensive simulated and hardware experiments show
that CUPID can significantly improve policy performance in
mixed-quality regimes, identify robust strategies under test-time
distribution shifts, and even disentangle spurious correlations
in training data that hinder generalization. Additional materials
are made available at: https://cupid-curation.github.io.

I. INTRODUCTION

Recent successes in scaling vision and language models
have been followed by a rising interest in data attribution [19,
47, 12]—methods that causally link model behavior to training
data—and in automatic data curation algorithms [35, 55, 2],
grounded in the idea that not all data points contribute equally,
or even positively, to a model’s performance. As parts of
the robotics community scale imitation learning and robotics
datasets become increasingly diverse [46, 30], developing a
deeper understanding of (i) how demonstration data shapes
policy behavior and (ii) how we can extract maximum utility
from training datasets will be imperative to advancing policy
performance toward reliable, open-world deployment.

Curating data for robot imitation learning has been the focus
of several recent works [34, 23, 7]. A common approach retains
demonstrations deemed most valuable under a heuristic, task-
agnostic quality metric, resulting in a smaller dataset curated
offline [23]. This approach typically rests on the implicit
assumption that the designed quality metric aligns well with
the policy’s downstream performance—an assumption that may
not hold uniformly across diverse robotics tasks. While recent
efforts attempt to learn performance-correlated heuristics
using online policy experience [7], they do not establish strong
causal links between training data and policy behavior. As
a result, these methods risk misattributing the root cause of
policy success or failure with respect to the training data [11].

In this work, we formally define data curation in robot
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imitation learning as the problem of identifying which expert
demonstrations maximally contribute to the policy’s expected
return. We then introduce CUPID (CUrating Performance-
Influencing Demonstrations), a method that directly targets
this objective by leveraging influence functions [32, 33, 20] to
measure the causal impact of individual demonstrations on the
policy’s closed-loop performance. Ranking demonstrations by
their estimated performance impact facilitates curation in two
settings: (a) filtering existing demonstrations from training sets
and (b) selecting high-impact demonstrations from newly col-
lected data—whereas prior work focuses solely on filtering [23,
7]. Our results demonstrate that CUPID offers a general and ef-
fective standalone signal for curating robot demonstration data.

II. DATA ATTRIBUTION VIA INFLUENCE FUNCTIONS

The goal of data attribution methodologies is to explicitly
relate model performance and behavior to the training data.
Consider a standard supervised learning setting, where we fit
model parameters θ on a given training dataset D :={z1,...,zn}
with θ(D) = arg minθ′{R(θ′; D) := 1

n

∑n
i=1 L(zi; θ′)}.

Moreover, let f(ẑ; θ) ∈ R be any chosen performance
metric on a test sample ẑ given model parameters θ (e.g.,
cross-entropy loss for a classifier). Then, a data attribution
method Ψout : Z ×Z → R aims to approximate the change
in the performance metric f if we were to exclude sample
zi from the model’s training data. That is, we aim to design
Ψout such that Ψout(ẑ,zi)≈f

(
ẑ;θ(D\zi)

)
−f(ẑ;θ(D)).

The influence function is a data attribution
technique that approximates Ψout without retraining
any models [20]. Consider perturbing the training objective
as Rϵ,z(θ

′;D) := R(θ′;D) + ϵL(z, θ′), where we add an
infinitesimal weight ϵ on some sample z to R. The influence
function estimates the change in the performance metric f as
a function of ϵ with a first-order Taylor approximation as

Ψinf(ẑ,z) :=
df(ẑ;θ)

dϵ

∣∣∣∣
ϵ=0

=−∇θf(ẑ;θ(D))⊤H−1
θ ∇θL(z;θ(D)),

(1)
where Hθ = 1

n

∑n
i=1∇2

θL(zi;θ(D)) denotes the Hessian of
the training loss 1 [32]. Therefore, we can use the influence
function to directly approximate the leave-one-out influence
Ψout of a sample zi ∈D as Ψout

inf (ẑ,z
i) :=− 1

nΨinf(ẑ,z
i). In

addition, for z ̸∈D we similarly define the add-one-in influence
as Ψin

inf(ẑ,z) :=
1
nΨinf(ẑ,z)≈f(ẑ;θ(D∪{z}))−f(ẑ;θ(D)).

1 To reduce the computational cost of Eq. 1, we use TRAK [47],
which leverages random projections and an efficient Gauss-Newton Hessian
approximation. This also makes the influence function amenable to the non-
smooth, non-convex loss functions in practical deep learning problems, so we
assume Eq. 1 is well-defined throughout this paper.
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III. PROBLEM FORMULATION

Imitation Learning (IL): The objective of this work
is to understand how demonstration data contributes to
closed-loop performance in robot imitation learning. Thus, we
consider a Markov Decision Process ⟨S,A,T ,R,ρ0⟩ with state
space S , action space A, transition model T , reward model R,
initial state distribution ρ0, and finite horizon H . We train a
policy πθ to minimize a behavioral cloning (BC) objective, i.e.,
θ=argminθ′{Lbc(θ

′;D) := 1
|D|H

∑
ξi∈D

∑
(s,a)∈ξi ℓ(s,a;πθ′)},

using a dataset of n expert demonstrations D = {ξ1,...,ξn}.
Each demonstration ξi = ((si0,a

i
0),...,(s

i
H ,aiH)) consists of a

state-action trajectory where the robot successfully completes
the task. We treat a trajectory τ = (s0,a0, ... ,sH) as either
a success or a failure, corresponding to the binary returns
R(τ)=1 and R(τ)=−1 respectively. We denote the expected
return of the policy with J(πθ) :=Ep(τ |πθ)[R(τ)].

Robot Data Curation: While some recent works propose
intuitive measures of data quality to curate data, we find
that such heuristics can misalign with how deep models
actually learn, sometimes even worsening test-time performance
compared to randomly choosing samples (see §V). Therefore,
we formally define robot data curation as the problem of
identifying demonstration data that maximizes the policy’s
closed-loop performance. In particular, assume that we have
a base policy πθ trained on the demonstration data D. We
consider two settings that are essential to a policy debugging
toolchain. The first is that of data filtering, where our goal is to
identify and remove redundant or harmful demonstrations from
D that may be hurting the performance of the base policy πθ.

Task 1 (Filter-k demonstrations). Let Ξ−
k ={S⊆D||S|=k}

denote all possible k-demonstration subsets of the training
dataset D = {ξ1, ... ,ξn}, where k ≤ n. Determine which k
demonstrations should be removed from D to maximize policy
performance with respect to the task objective J . That is, find

S⋆=argmax
S∈Ξ−

k

J(πθ) s.t. θ=argmin
θ′

Lbc(θ
′;D\S).

The second is that of data selection, where we seek to
guide the subselection of new data to maximally improve our
base policy, given a fixed budget.

Task 2 (Select-k demonstrations). Let Ξ+
k ={S⊆H||S|=k}

denote all possible k-demonstration subsets of a holdout
demonstration dataset H = {ξ1, ... , ξn′}, where k ≤ n′.
Determine which k demonstrations should be added to D from
H to maximize policy performance with respect to the task
objective J . That is, find

S⋆=argmax
S∈Ξ+

k

J(πθ) s.t. θ=argmin
θ′

Lbc(θ
′;D∪S).

Policy Testing & Evaluation: To make progress on Task 1
and Task 2, we assume access to a small dataset of m rollouts
Dτ = {τ1, ... , τm} iid∼ p(τ |πθ) of the base policy πθ along
with success/failure labels {R(τ1), ... , R(τm)} to estimate
J(πθ). This aligns with how we currently evaluate policies in
practice [56], despite lacking principled strategies to leverage

evaluations towards BC policy improvement.

IV. CUPID: CURATING
PERFORMANCE-INFLUENCING DEMONSTRATIONS

While recent works valuate demonstration data upon
heuristic notions of quality [23, 7, 14], our key insight is
that solving curation problems, i.e., Task 1 and Task 2 (§III),
requires causally connecting training data to the policy’s
closed-loop performance. Therefore, we first adapt techniques
from data attribution, as defined in §II, to directly compute the
influence of a training demo on the performance of a policy.

A. Demonstration-Performance Influence

Because the BC training objective is not always reflective of a
policy’s closed-loop performance [48], we must first develop an
analogous notion of the influence function to capture the impact
of a demonstration trajectory on the closed-loop performance
of an imitation learning policy. To do so, we group the BC
training objective into trajectory-level losses by introducing
ℓtraj(ξ;πθ′) := 1

H

∑
(s,a)∈ξ ℓ(s,a;πθ′), so that Lbc(θ

′;D) =
1

|D|
∑

ξi∈D ℓtraj(ξ
i;πθ′). We now formally define the perfor-

mance influence of a demonstration as the application of the
influence function (see Eq. 1) on the policy’s expected return:

Definition 1 (Performance Influence). Let ξ be a demonstration
of interest. Suppose we train a policy πθ to minimize the
perturbed BC objective Lϵ,ξ

bc (θ
′;D) :=Lbc(θ

′;D)+ϵℓtraj(ξ;πθ′).
Then, demonstration ξ’s performance influence is the
derivative of the policy’s expected return J(πθ) with respect
to the weight ϵ. That is,

Ψπ-inf(ξ) :=
dJ(πθ)

dϵ

∣∣∣∣
ϵ=0

=−∇θJ(πθ)
⊤H−1

bc ∇θℓtraj(ξ;πθ),

where Hbc := ∇2
θLbc(θ;D) denotes the Hessian of the BC

objective.

In essence, Definition 1 allows us to answer the
counterfactual question “how would the policy’s expected return
change if we upweighted—or by negating, downweighted—a
demonstration ξ during training?” While Definition 1 neatly
aligns with the standard definition of the influence function
in Eq. 1 using J as the performance metric and Ltraj as the
demonstration-level loss function, we cannot directly compute
Ψπ-inf because the policy’s expected return J(πθ) depends on
the unknown transition dynamics and reward function. Thus,
we show that we can decompose the performance influence
into influence scores of individual action predictions.

Definition 2 (Action Influence). The action influence of a
state-action pair (s,a) on a test state-action pair (s′,a′) is the
influence of (s,a) on the policy’s log-likelihood logπθ(a

′|s′).
That is,

Ψa-inf((s
′,a′),(s,a)) :=−∇θlogπθ(a

′|s′)⊤H−1
bc ∇θℓ(s,a;πθ). (2)

The advantage of the action influence is that we can easily
compute the quantities in Eq. 2 given the policy weights θ
and the training demos D, e.g., using the attribution methods



discussed in §II. We now show that the performance influence
decomposes into the sum of individual action influences,
weighted by the trajectory return R(τ).

Proposition 1. Assume that θ(D)=argminθ′Lbc(θ
′;D), that

Lbc is twice differentiable in θ, and that Hbc≻0 is positive
definite (i.e., θ(D) is not a saddle point)1. Then, it holds that

Ψπ-inf(ξ)=Eτ∼p(τ |πθ)

[
R(τ)

H

∑
(s′,a′)∈τ

∑
(s,a)∈ξ

Ψa-inf
(
(s′,a′),(s,a)

)]
.

(3)

See Appendix for proof. Proposition 1 directly provides a
method to estimate Ψπ-inf : First, evaluate the policy πθ by
gathering a set of rollouts Dτ = {τ1,...,τm} iid∼ p(τ |πθ) and
their associated returns {R(τ1),...,R(τm)}. Then, construct an
empirical estimate of the performance influence Ψ̂π-inf using
Eq. 3, by averaging action influences across the rollouts in Dτ .

B. Data Curation with Performance Influence

In this section, we leverage the performance influence
Ψπ-inf , which we developed in §IV-A, to curate data towards
the filtering and selection tasks (Task 1 and Task 2) defined
in §III. In particular, we use the estimates of Ψπ-inf to
make the following first-order Taylor approximations on the
leave-one-out and add-one-in influence (as defined in §II) of
a demonstration trajectory as

Ψout
π-inf(ξ) :=− Ψ̂π-inf(ξ)

|D| ≈J(πθ(D\{ξ}))−J(πθ(D)),

Ψin
π-inf(ξ) :=

Ψ̂π-inf(ξ)

|D| ≈J(πθ(D∪{ξ}))−J(πθ(D)).

Then, we use the leave-one-out and add-one-in influences
to counterfactually estimate the change in expected return
when removing or adding a set of demonstrations S with a
linear approximation as ∆Ĵ(πθ(D\S)) ∝ 1

|S|
∑

ξ∈S Ψ
out
π-inf(ξ)

and ∆Ĵ(πθ(D∪S))∝ 1
|S|

∑
ξ∈SΨ

in
π-inf(ξ). As a result, optimally

curating data under our approximate linear model on policy
performance simply entails selecting the least influential
demonstrations from the training data D—in the case of data
filtering—or selecting the most influential demonstrations from
a new set of demonstrations H—in the case of data selection:
Task 1: Filter-k Demonstrations

S⋆
out=arg top-k

(
{Ψout

π-inf(ξ
i) :ξi∈D}

)
, (4)

Task 2: Select-k Demonstrations

S⋆
in=arg top-k

(
{Ψin

π-inf(ξ
i) :ξi∈H}

)
, (5)

C. Additional Quality Metrics

In §IV-A, we constructed a method to estimate Ψπ-inf from
a dataset of policy rollouts Dτ by relying on policy gradient
methods. Therefore, the estimated performance influence
Ψ̂π-inf becomes increasingly noisy as we reduce the number of
rollouts Dτ to evaluate the policy—akin to the high variance
problem of the REINFORCE algorithm. To complement the
analysis in §IV-A, we explore the integration of a reward

agnostic, heuristic demonstration quality metric based on the
action influence scores Ψa-inf :

Ψqual(ξ;Dτ ) :=
1

m

∑
τ∈Dτ

[
max

(s′,a′)∈τ
min

(s,a)∈ξ
Ψa-inf

(
(s′,a′),(s,a)

)
− min

(s′,a′)∈τ
max

(s,a)∈ξ
Ψa-inf

(
(s′,a′),(s,a)

)]
. (6)

We base the quality score Eq. 6 on the intuition that we
should penalize demonstrations containing outlier or noisy
influence scores [32, Sec. 5.2], [23]. Therefore, we posit that
this heuristic can reduce variance on tasks requiring precise
motion, yet introduce bias uncorrelated with performance in
other settings. Thus, in §V, we investigate when the quality
score can complement Ψπ-inf to curate data by taking their
convex combination, αΨπ-inf +(1−α)Ψqual, ablating α= 1
(CUPID) and α=1/2 (CUPID-QUALITY).

V. EXPERIMENTS

We conduct a series of experiments to test the efficacy
of CUPID alongside state-of-the-art baselines for robot data
curation. These experiments take place across three real-world
tasks with a Franka FR3 manipulator (see Fig. 1 (Left)) and
simulated tasks in RoboMimic [40] (simulation results in
Appendix). We refer to the Appendix for detailed descriptions
of our tasks, hardware setup, baselines, and evaluation protocol.

Baselines. DemInf [23]—applicable only to filter-k
(Task 1)—curates data offline (i.e., without rollouts) to
maximize mutual information, promoting diverse and
predictable demonstrations; Demo-SCORE [7] trains binary
classifiers to distinguish states from successful and failed
rollouts, retaining demonstrations with a high average state
success probability; Success Similarity is a custom curation
method that measures a demonstration’s average state similarity
to successful rollouts, serving as a state-based proxy for
CUPID; Random chooses samples uniformly at random; Oracle
curates data using ground-truth demonstration labels.

A. Improving Policy Performance in Mixed-Quality Regimes

We first study curation of mixed-quality datasets, where
training on lower-quality demonstrations may degrade policy
performance [40, 23]. We design the real-world “Figure-8”
task (see Fig. 1, Left-(a)), where the robot must tie a simplified
cleat hitch—a knot that follows a figure-8 pattern—requiring
precise manipulation of a deformable rope.

Figure-8 analysis. Fig. 1 (Left-(a)) shows diffusion
policy results on the real-world “Figure-8” task. First,
CUPID improves over the base policy’s success rate by 38%
(averaged over filtering and selection). CUPID-QUALITY
further strengthens curation performance, corroborating the
utility of quality metrics (Eq. 6) in mixed-quality regimes.
Finally, Fig. 1 (Right-(a)) demonstrates that the “Figure-8”
dataset curated for a single-task diffusion policy using CUPID
yields an appreciable 54% improvement on the fine-tuned
performance of a large, multi-task policy π0 [5].
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Fig. 1: Left: Franka real-world diffusion policy performance. CUPID, which curates demonstrations w.r.t. policy performance, improves
success rates on mixed-quality datasets, identifies robust strategies, and disentangles spurious correlations that hinder performance. Although
quality measures (e.g., DemInf, CUPID-QUALITY) help in mixed-quality settings (Figure-8), they degrade performance when higher-quality
demonstrations induce brittle strategies at test time (TuckBox), or when quality is not the primary factor limiting policy success (Bookshelf).
Overall, curating data based on performance (CUPID) maintains robustness across these settings. Right: Data curated by single-task diffusion
policies improves π0 [5] post-training performance. Success rates are averaged over 25 rollouts performed with the final policy checkpoint.

B. Identifying Robust Test-time Strategies from Policy Failures

Heterogeneous imitation learning datasets may contain
multiple strategies for solving a task, some of which can fail
under distribution shifts at deployment. We design a real-world
“TuckBox” task, where a robot must tuck a recycling bin
under a receptacle by (a) sliding or (b) first repositioning it via
pick-and-place (see Fig. 1, Left-(b)). The dataset contains a
2:1 ratio of sliding to pick-and-place demonstrations, making
sliding the dominant strategy. At test time, we induce a
imperceptible distribution shift by altering the bin’s mass
distribution, rendering sliding unreliable. In this setting,
curation aims to rebalance the dataset to promote strategies
that are more robust to unforeseen shifts at deployment.

TuckBox analysis. Fig. 1 (Left-(b)) shows the diffusion
policy results on “TuckBox.” Due to the strategy imbalance,
the base policy exclusively exhibits the sliding behavior,
resulting in a 100% failure rate under the distribution shift.
This immediately invalidates the use of Demo-SCORE, which
requires both successful and failed rollouts. In contrast, CUPID
does not require observing successes: by linking failures to
the demonstrations that influenced them, curating with CUPID
yields a policy that exhibits increased pick-and-place behavior,
performing comparably (84%-88% success rate) to the Oracle.
In contrast, both DemInf and CUPID-QUALITY mistakenly
conflate the more stochastic pick-and-place demonstrations
with low quality, and by removing them, further reinforce the
unreliable sliding behavior at deployment. As in §V-A, we con-
duct an ablation with the π0 policy (Fig. 1, Right-(b)): training
on the dataset curated by CUPID for the single-task diffusion
policy results in a 36% improvement (averaged over filtering
and selection) to π0’s fine-tuned performance on “TuckBox.”

C. Disentangling Spurious Correlations in Demonstration Data

Spurious correlations in training data may cause a policy
to rely on non-causal features, hindering generalization to
variations in the input or task [11]. We design a real-world
“Bookshelf” task, where a robot must extract a target book

via (a) horizontal or (b) vertical pulling motion, depending
on whether another book is stacked above the target. While
both strategies are equally represented in the training set, each
co-occurs more frequently with a certain background color
(see Fig. 1, Left-(c)). At evaluation, we test the policy under
slight variations in the number and position of distractor books,
while keeping the white background fixed—the correlate
associated with the horizontal pulling behavior.

Bookshelf analysis. Diffusion policy results are shown in
Fig. 1 (Left-(c)). The base policy achieves only a 44% success
rate, as the presence of the white background often causes the
policy to extract the target book horizontally despite another
book being stacked on top (causing it to fall). Interestingly, by
training classifiers to distinguish failed from successful states,
Demo-SCORE appears to misattribute failure to the presence
of rollout correlates (e.g., the stacked book) rather than causal
factors (i.e., the white background). In contrast, CUPID attains
an 84% success rate by identifying demonstrations that causally
drive failure—in this case, horizontal pulling motion with a
white background—enabling dataset rebalancing that mitigates
the effect of spurious correlations. As in §V-B, DemInf and
CUPID-QUALITY incorrectly prioritize the lower-variance hor-
izontal pulling motion, yielding negligible performance gains.

VI. REAL-WORLD DEPLOYABILITY AND GENERALIZATION

Our evaluation setup comprises a taxonomy of curation
settings in which a policy’s closed-loop performance varies
with the choice of training data. In contrast to prior work [23],
we specifically focus on deployment-time settings, where data
curation is informed by rollouts collected under the policy.
Our results highlight the general utility of performance-based
curation for (a) filtering existing training demonstrations and
(b) subselecting new demonstrations as principled means
to improve test-time performance (“Figure-8”), robustness
(“TuckBox”), and generalization (“Bookshelf”). We hope this
work spurs continued investigation into how training data
shapes policy behavior and performance during deployment.
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APPENDIX OVERVIEW – CURATING DATA YOUR ROBOT LOVES WITH INFLUENCE FUNCTIONS

The appendix offers additional details with respect to related work ( §A), the implementation of CUPID and CUPID-QUALITY
(§B), the experiments conducted (§C), extended results and analysis (§D), supporting derivations (§E), and noted limitations (§F).
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APPENDIX A
RELATED WORK

Data Curation in Robotics. Assembling larger and more diverse datasets has been central to scaling efforts in robot
imitation learning [46, 30, 6, 63, 44, 31, 5], yet how to extract greater utility from these datasets remains an open question.
Several works have explored data augmentation [41, 60, 39, 52, 61] and mixture optimization [22]. Only recently has attention
shifted to valuating individual demonstrations for data curation [34, 23, 7]. Hejna et al. [23] estimate demonstration quality
offline via mutual information—without considering policy performance. Closest to our work is Demo-SCORE [7], which trains
classifiers to distinguish successful and failed rollouts across multiple policy checkpoints. In contrast, we directly measure the
causal influence of each demonstration on the policy’s expected return, providing a signal that (a) does not require observing
both successes and failures, (b) uses only a single policy checkpoint, (c) is robust to spurious correlations in the policy’s rollout
distribution, and (d) naturally extends to selecting new data, whereas [23, 7] exclusively focus on filtering existing training sets.

Data Attribution outside Robotics. Data attribution methods model the relationship between training data and learned behavior,
with applications in model interpretability [47, 50], data valuation [17, 9], machine unlearning [16], and more [38]. Recent work
has focused on improving the accuracy of data attribution methods [4, 3, 26], such as influence functions [32, 33], and extending
them to increasingly complex generative architectures [19, 62, 15]. A related line of research explores improving language model
pre-training [12] and fine-tuning [58, 37, 13] through data selection. However, these settings typically assume aligned training
and evaluation objectives (i.e., prediction loss) and access to test-time labels. In contrast, robot imitation learning involves
an objective mismatch: policies are trained via supervised learning but evaluated through closed-loop environment interactions,
where task success depends on many sequential predictions and ground-truth action labels are unavailable at test-time.

APPENDIX B
IMPLEMENTATION DETAILS

A. Influence Functions for Diffusion Policies

a) Restatement of Definition 2.
The action influence of a state-action pair (s,a) on a test state-action pair (s′,a′) is the influence of (s,a) on the policy’s

log-likelihood logπθ(a
′|s′). That is,

Ψa-inf((s
′,a′),(s,a)) :=−∇θlogπθ(a

′|s′)⊤H−1
bc ∇θℓ(s,a;πθ).

b) Restatement of Proposition 1.
Assume that θ(D)=argminθ′Lbc(θ

′;D), that Lbc is twice differentiable in θ, and that Hbc≻0 is positive definite (i.e., θ(D)
is not a saddle point)1. Then, it holds that

Ψπ-inf(ξ)=Eτ∼p(τ |πθ)

[
R(τ)

H

∑
(s′,a′)∈τ

∑
(s,a)∈ξ

Ψa-inf
(
(s′,a′),(s,a)

)]
.

where Ψπ-inf(ξ) is the performance influence of a demonstration ξ (as introduced in Definition 1).

Computing the Action Influence

Although Proposition 1 provides a clean mechanism to attribute policy performance to its training data by leveraging
influence scores on action log-likelihoods, computing ∇θlogπθ(a

′|s′) (in the action influence Ψa-inf ) for diffusion-based policy
architectures is nontrivial due to the iterative denoising process [24, 53]. Instead, various works outside robotics propose
to approximate the log-likelihood with the denoising loss ℓ(s′,a′;πθ) for the purpose of data attribution [15], because the
denoising loss is proportionate to the variational lower bound on logπθ(a

′|s′). In §V, we apply a similar approximation to
perform data attribution on state-of-the-art diffusion policies [8], which we describe below.

Diffusion Policy: Consider the standard diffusion policy architecture [8]. An action a := a0 is generated by iteratively
denoising an initially random action aT ∼N (0,1) over T steps as aT ,...,a0 using a noise prediction network ϵθ, where ai denotes
the generated action at the i-th denoising iteration. Following the imitation learning setting described in §III, the parameters θ
of the noise prediction network ϵθ are fit to the BC objective as θ=argminθ′{Lbc(θ

′;D) := 1
|D|H

∑
ξi∈D

∑
(s,a)∈ξiℓ(s,a;πθ′)}.

Here, the noise prediction network ϵθ is trained to predict random noise ϵi∼N (0,1) added to the action a at randomly sampled
timesteps i∼U [0,T ) of the diffusion process using the loss function ℓ defined as

ℓ(s,a;πθ′) :=Eϵi,i

[
||ϵi−ϵθ′(

√
ᾱia+

√
1−ᾱiϵ

i,s,i)||2
]
, (7)

where the constants ᾱi depend on the chosen noise schedule of the diffusion process.
Influence Approximations: Since the denoising loss ℓ in Eq. 7 is proportionate to the variational lower bound on the

action log-likelihood logπθ(a|s), it may seem intuitive to substitute ∇θlogπθ(a
′|s′) with −∇θℓ(s

′,a′;πθ)—assuming gradient
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Fig. 2: Overview of curation with CUPID. Upon training a policy on a set of demonstrations, we evaluate it online to collect closed-loop
rollout trajectories, which are used to estimate the policy’s expected return. CUPID ranks demonstration based on their measured influence
on this performance estimate and selects the top-k. Thus, curating with CUPID results in a dataset of demonstrations that most strongly
influences closed-loop policy success.

alignment—to approximate the action influence (Eq. 2) as

Ψa-inf((s
′,a′),(s,a))≈∇θℓ(s

′,a′;πθ)
⊤H−1

bc ∇θℓ(s,a;πθ). (8)

A similar approach is taken by Georgiev et al. [15] for attributing the generations of image-based diffusion models. However,
consistent with more recent results in the data attribution literature [62, 36], we find this approximation to work poorly in
practice, with highly influential training samples (s,a)∈D rarely reflecting the test-time transitions (s′,a′)∈τ over which the
action influences are computed. Instead, we follow the approach of Zheng et al. [62], which entails replacing both logπθ(a

′|s′)
and ℓ(s,a;πθ) in Eq. 2 with a surrogate, label-agnostic output function ℓsquare(s,a;πθ) :=Eϵi,i[||ϵθ(

√
ᾱia+

√
1−ᾱiϵ

i,s,i)||2],
making our final approximation of the action influence

Ψa-inf((s
′,a′),(s,a))≈∇θℓsquare(s

′,a′;πθ)
⊤H−1

square∇θℓsquare(s,a;πθ). (9)

Here, Hsquare = 1
|D|H

∑
ξi∈D

∑
(s,a)∈ξi ∇θℓsquare(s, a;πθ)∇θℓsquare(s, a;πθ)

⊤ is the Gauss-Newton approximation of the
Hessian—as introduced by Martens [42] and applied for stable and efficient influence estimation in [47, 3]—under the surrogate
output function ℓsquare.

Additional Remarks: While the use of ℓsquare may seem counterintuitive at first, it offers three key advantages for
computing action influences:

1) Leave-one-out influences (§II) computed using ℓsquare (Eq. 9) are empirically found to correlate better with actual
changes in a diffusion model’s loss—i.e., the difference ℓ(s′,a′;πθ(D\(s,a)))−ℓ(s′,a′;πθ(D))—than those computed using
the loss ℓ (Eq. 8) [62].

2) Theoretical analysis also shows that ℓsquare more closely aligns with a distributional formulation of the leave-one-out influ-
ence compared to the loss ℓ [36]. In the case of diffusion policies, this distributional formulation would seek to design Ψa-inf
such that it approximates the leave-one-out divergence Ψa-inf((s

′,a′)),(s,a))≈DKL(πθ(D)(a
′|s′)||πθ(D\(s,a))(a

′|s′)).
3) Using ℓsquare significantly reduces the computational cost of computing action influences for policies with high-dimensional

action spaces, because the ℓ2-norm collapses the model’s prediction into a scalar ||ϵθ(
√
ᾱia+

√
1−ᾱiϵ

i,s,i)||2. As
a result, computing Eq. 9 requires only a single model gradient ∇θℓsquare per training and test sample. In contrast,
while the technique proposed by Lin et al. [36] offers a more accurate estimate of the leave-one-out divergence
DKL(πθ(D)(a

′|s′)||πθ(D\(s,a))(a
′|s′)), its computational cost scales linearly with the dimensionality of the model’s

output, which may be prohibitive.

Accuracy-Efficiency Tradeoff: We note that our approach for computing the performance influence of a demonstration
(Eq. 3) is agnostic to the choice of influence estimation technique [15, 62, 36, 43, 59], allowing practitioners to trade off
between accuracy and efficiency based on available computational resources, and enabling integration of improved data
attribution methods (e.g., [26]) in the future.

B. CUPID Hyperparameters

We use the same set of hyperparameters for CUPID and CUPID-QUALITY across all experiments.
Performance Influence (Eq. 3): For all tasks, we define the trajectory return to be R(τ)=1 if τ completes the task and

R(τ)=−1 otherwise. As a result, every rollout trajectory τ∼p(·|πθ) provides information on the utility of each demonstration
toward the policy’s closed-loop performance. We also found CUPID to work with alternative return definitions—for example,
focusing solely on successful rollouts by setting R(τ)=0 when τ fails. However, such choices may increase sample complexity.

Action Influence (Eq. 9): The action influence requires computing the gradient of an expectation
∇θℓsquare(s, a; πθ) = ∇θEϵi,i[||ϵθ(

√
ᾱia +

√
1−ᾱiϵ

i, s, i)||2]. For all tasks, we approximate the expectation using a
batch of B=64 samples (ϵ(b),i(b)), where ϵ(b)∼N (0,1) and i(b)∼U [0,T ) are sampled independently.



Data Attribution: We leverage TRAK [47] to efficiently compute action influences as defined in Eq. 9. First, TRAK
uses random projections P∼N (0,1)p×d, where p is the number of model parameters and d<<p is the specified projection
dimension, to reduce the dimensionality of the gradients as gθ = P⊤∇θℓsquare while preserving their inner products
gθ ·gθ≈∇θℓsquare ·∇θℓsquare [28]. Second, TRAK ensembles influence scores over C independently trained models (i.e., from
different seeds) to account for non-determinism in learning. In our experiments, we use the standard projection dimension
d=4000 and minimize computational cost by using only a single policy checkpoint C=1, noting that ensembling over C>1
policy checkpoints is likely to improve the accuracy of our influence scores.

C. Combining Score Functions

For ease of exposition in §IV-C, we express the overall score of a demonstration as the convex combination of its performance
influence and its quality score αΨπ-inf+(1−α)Ψqual, where α=1 and α∈ [0,1) instantiates CUPID and CUPID-QUALITY,
respectively. Here, we additionally note that taking weighted combinations of score functions requires first normalizing them to
equivalent scales. Hence, our implementation uniformly normalizes demonstration scores within the range [0,1] (i.e., producing
an absolute ranking of demonstrations) for each score function Ψπ-inf and Ψqual before combining them. This simple approach
can be applied to combine an arbitrary number of demonstration score functions.

APPENDIX C
EXPERIMENTAL SETUP

A. Hardware Setup

As depicted in Fig. 1, our hardware experiments involve a Franka FR3 manipulator robot. We use a single ZED 2 camera to cap-
ture RGB-D observations and disregard the depth information. Our image-based policies process 256×256 downsampled RGB ob-
servations and predict sequences of end-effector poses for the manipulator, which are tracked using operational space control [29].

B. Policy Architectures

Diffusion Policy (DP): We use the original diffusion policy implementation2 from Chi et al. [8]. Specifically, we use the
convolutional-based diffusion policy architecture for efficiency. For state-based tasks (e.g., in RoboMimic; Fig. 3), actions
are generated solely using the noise prediction network ϵθ as described in §B-A. However, for image-based tasks (e.g., on
hardware; Fig. 1), the policy πθ contains two sets of parameters θ=(θo,θa) corresponding to a ResNet-18 encoder Eθo and
the noise prediction network ϵθa . When scoring demonstrations, we compute action influences (Eq. 9) over all available policy
parameters θ, noting that one might also consider using a subset of the parameters, e.g., those of the noise prediction network
or an alternative action head, under reduced computational budgets.

Other optimizations: In preliminary experiments, we found that the original diffusion policy (a) was heavily over-parameterized
and (b) converged in performance much earlier in training than the specified maximum number of epochs. Thus, to accelerate exper-
imentation in RoboMimic (Fig. 3), we (a) manually determined the smallest model size that performed similarly to the original pol-
icy and (b) adjusted the maximum number of epochs to the point where additional training would result in no further performance
gains. Importantly, we keep the model size and training epochs consistent across all curation methods for a given RoboMimic
task. For real-world hardware experiments, we use the same model size and limit the number of training steps to 200K across all
tasks, similar to Hejna et al. [23]. All other diffusion policy hyperparameters are consistent with the original implementation [8].

Hyperparameter Value

Training steps 30,000
Batch size 16
Optimizer AdamW
Learning rate schedule Cosine decay
EMA Disabled
Action chunk length 50 steps
Control frequency 10 Hz
Image resolution 224×224
Observation history 1 frame

VLM backbone LoRA Rank = 16, α=16
Action expert LoRA Rank = 32, α=32

TABLE I: Hyperparameter configuration used
for π0 [5] post-training.

Generalist Robot Policy (π0): We fine-tune Physical Intelligence’s
π0 Vision-Language-Action (VLA) policy3 via Low-Rank Adaptation (LoRA) [25]
on the “Figure-8” and “TuckBox” tasks. To ensure the post-trained policy’s
performance is solely a result of the properties of the curated dataset used for
training, we use the standard fine-tuning parameter configuration from Black
et al. [5] and keep all hyperparameters fixed across experiments (see Table I).
We trained on 2 NVIDIA RTX 4090 GPUs, which took approximately 15 hours
under the configuration in Table I. In initial experiments, we found that training
for 30K steps was necessary to compensate for mismatch between our robot’s
action space (target end-effector poses tracked via operational space control) and
the action spaces used to pre-train the base π0 policy (absolute joint angles). In
addition, we found that using a descriptive prompt for the task was necessary to
yield performant policies. We kept these prompts fixed across training, evaluation,
and all curation settings. For the “TuckBox” task, we used the instruction “Move
the blue box underneath the white shelf” to avoid biasing the policy towards a

2DP’s open-source implementation: https://github.com/real-stanford/diffusion_policy.
3π0’s open-source implementation: https://github.com/Physical-Intelligence/openpi.

https://github.com/real-stanford/diffusion_policy
https://github.com/Physical-Intelligence/openpi


particular behavior mode (e.g., “sliding” or “pick-and-place”). For the “Figure-8” task, we used the instruction “Pick up the
red rope, then tie a figure 8,” where we found the two-step instruction to increase performance over shorter instructions like
“Tie the cleat.” Similar to the diffusion policy experiment, we fine-tune a separate π0 model for each curation task—filter-k
(Task 1) and select-k (Task 2)—using their corresponding base demonstration datasets. We then fine-tune additional π0 models
on datasets curated by our methods.

C. Tasks & Datasets

Here, we provide additional details regarding our real-world hardware tasks and their corresponding datasets. We refer to
Mandlekar et al. [40] for details on the simulated RoboMimic benchmark.

Figure-8: A brief description of the task is provided in §V-A. The “Figure-8” dataset contains 160 demonstrations evenly split
across four quality tiers. Higher quality demonstrations complete the task at a constant rate without errors, while lower-quality
demonstrations vary in progression rate [1] and include retry or recovery behaviors. Therefore, the “Figure-8” task intends to
reflect a practical setting where demonstrations of varying properties are introduced during data collection, whether organically
or deliberately, e.g., to improve policy robustness to recoverable failures [10]. Therefore, we expect curation algorithms that
distinguish demonstrations upon notions of quality (e.g., predictability [23]) to perform well on this task, which is consistent
with our findings in Fig. 1(a).

TuckBox: A brief description of the task is provided in §V-B. As mentioned, the “TuckBox” dataset contains 120 demonstrations
split 2:1 between two subsets: 80 demonstrations solve the task by sliding the box under the receptacle, while 40 demonstrations
first reposition the box in front of the receptacle via pick-and-place. Although the sliding strategy appears more smooth and
involves just a single step, it is rendered unreliable by imperceptible test-time distribution shifts to the box’s mass distribution. In
essence, “TuckBox” stands conceptually opposite to “Figure-8,” whereby attending to heuristic properties of the demonstrations
may result in poor curation performance (as shown in Fig. 1(b)).

Bookshelf: A brief description of the task is provided in §V-C. To summarize, the robot must extract a target book that is
either shelved alone—affording a simple, horizontal pulling motion—or with another book stacked on top of it (i.e., a bookstack).
In the bookstack case, the robot must extract the target book using a vertical pulling motion, such that the stacked book does
not fall off the shelf in the process (see Fig. 1(c)). In total, the “Bookshelf” dataset contains 120 demonstrations split across
three subsets: (a) 60 demonstrations feature the target book shelved alone with a white background, (b) 20 demonstrations
feature the bookstack with a white background, and (c) 40 demonstrations feature the bookstack with a dark background. All
subsets feature task-irrelevant distractor books on other shelves.

Spurious correlations in training data: Although the vertical pulling solution to the bookstack case is demonstrated in
scenes with both white and dark backgrounds, the disproporionate number of demonstrations in subset (a) versus subset (b)
spuriously correlates the horizontal pulling motion with the white background. Such spurious correlations may result in causal
confusion [11], where the policy ignores the bookstack, attends the white background, and executes the failing horizontal
strategy.

Spurious correlations in rollout data: Like “TuckBox,” “Bookshelf” represents another limiting case for curating data with
quality metrics [23]. However, it also presents an additional challenge for methods that seek to curate data using online
experience [7]. Namely, we highlight that attending to differences in states between successful and failed policy rollouts may be
susceptible to spurious correlations in the rollout data. Consider the simple case: if we were to observe successful rollouts when
the target book is shelved alone and failed rollouts when another book is stacked above the target, then training a classifier
(i.e., as in Demo-SCORE [7]) to distinguish successful from failed states may wrongly attribute failures to the presence of the
stacked book. Curating demonstrations with such a classifier would, in turn, worsen the spurious correlation in the training
data. Beyond this simple case, we posit that handling more challenging instances in real-world settings requires methods that
causally attribute the outcomes of observed test-time experiences to the training data, such as CUPID.

D. Baseline Details

DemInf: We use the official implementation4 provided by Hejna et al. [23]. We note that DemInf curates data offline—that
is, without using any policy rollouts—and is at present only applicable to the demonstration filtering setting (i.e., filter-k, as
defined in Task 1).

Demo-SCORE: We construct our own implementation based on the description provided by the authors [7]. Given our
assumed fixed budget of m=100 rollouts for RoboMimic experiments (§V), we collect 25 rollouts from C=4 policy checkpoints
throughout training. We train three-layer MLP classifiers with hidden dimensions [16,16,16] on the first three rollout sets, and
select the best classifier via cross-validation on the last 25 rollouts, as described in [7]. Since we reduce the rollout budget to
m=25 rollouts for hardware experiments (§V), we collect 25 rollouts from the last C=1 policy checkpoint. We then train a

4DemInf open-source implementation: https://github.com/jhejna/demonstration-information.

https://github.com/jhejna/demonstration-information


single ResNet-18 encoder and three-layer classification head with hidden dimensions [32,32,32] on 20 of the rollouts, leaving
5 validation rollouts to monitor for overfitting. We train all classifiers with a heavy dropout of 0.3 and an AdamW weight
decay of 0.1 to prevent overfitting, in alignment with [7]. Although Chen et al. [7] only test Demo-SCORE for demonstration
filtering, we extend its use for demonstration selection (i.e., select-k, as defined in Task 2).

Success Similarity: We design a custom robot data curation algorithm that, similar to Demo-SCORE, valuates demonstrations
based on a heuristic measure of similarity w.r.t. successful policy rollouts. Instead of training classifiers, Success Similarity
measures the average state-embedding similarity of a demonstration w.r.t. all successful rollouts as

S(ξ;Dτ )=−
∑
τ∈Dτ

[
1(R(τ)=1)· 1

H2

∑
s′∈τ

∑
s∈ξ

D
(
ϕ(s′),ϕ(s)

)]
,

where the indicator function 1 evaluates to 1 if rollout τ is successful and 0 otherwise, H is the assumed length of all
demonstrations ξ∈D and rollouts τ ∈Dτ for notational simplicity, ϕ is the state embedding function, and D is a specified
distance function over state embeddings [51], such as the Mahalanobis, L2, or cosine distance. For image-based states, we
experimented with various embedding functions ϕ, including ResNet [21], DINOv2 [45], and the policy’s vision encoder [1],
and ultimately found the policy’s vision encoder to work best in RoboMimic. The embedding function is set to identity for
low-dimensional states (i.e., ϕ(s)=s). Lastly, the distance function D is chosen for compatibility with ϕ: e.g., L2 distance for
policy encoder embeddings and cosine distance for DINOv2 embeddings.

Comparison to Performance Influence (CUPID): One can interpret Success Similarity as replacing the action influence
Ψa-inf((s

′,a′),(s,a)) (Eq. 2) with a state-based proxy −D(ϕ(s′),ϕ(s)) in an attempt to estimate the performance contribution
of a demonstration (Eq. 3). In our RoboMimic experiments (Fig. 3), this approach performs comparably to Demo-SCORE
and, in some cases, even outperforms it—without requiring the training of any additional models. However, Success Similarity
performs consistently worse than CUPID across all tasks, supporting prior findings that influence functions offer a substantially
stronger causal signal than heuristic measures of similarity [47].

Oracle: For each task, the Oracle method represents a best attempt to curate data assuming privileged access to ground-truth
demonstration labels. For the RoboMimic and “Figure-8” tasks, the Oracle ranks demonstrations in descending order of quality,
choosing high-quality demonstrations before low-quality demonstrations. For the “TuckBox” task, the Oracle first chooses all
demonstrations exhibiting the more robust pick-and-place strategy before any demonstration exhibiting the more brittle sliding
strategy. Lastly, for the “Bookshelf” task, the Oracle chooses demonstrations to minimize the effect of the known spurious
correlation (i.e., horizontal pulling motion in the presence of a white background), resulting in a more balanced curated dataset.
These definitions of the Oracle apply identically to the filter-k (Task 1) and select-k (Task 2) curation tasks studied throughout
this work.

Additional baselines: We implement a number of additional custom baselines that one might try in practice, such as
curating data based on policy loss, policy uncertainty, state diversity, and action diversity. However, we exclude them from our
experiments given their relatively poor performance.

E. Evaluation Protocol

We study the filter-k (Task 1) and select-k (Task 2) curation tasks wherever applicable. For statistical significance, we start
filter-k and select-k from random ∼2/3 and ∼1/3 subsets in RoboMimic (300 demonstrations total), and random ∼9/10 and
∼4/10 subsets on Franka tasks (120-160 demonstrations total), respectively. We use the official convolutional-based diffusion
policy implementation [8] for all tasks to measure the effect of curation on a state-of-the-art policy architecture. For details on
influence function computation for diffusion models, please see the Appendix. We also consider the official π0 implementation
for real-world tasks [5]. To reflect practical constraints, we limit the rollout budget (i.e., the number of rollouts in Dτ ={τ i}mi=1

a curation algorithm may use, as described in §III) to m=100 and m=25 for simulated and real-world tasks, respectively. We
report policy success rates over 500 rollouts averaged over the last 10 policy checkpoints for simulated tasks, and 25 rollouts
performed with the last checkpoint for real-world tasks.

APPENDIX D
ADDITIONAL RESULTS & ANALYSIS

This section contains the results of our simulation experiments on the RoboMimic benchmark suite (Fig. 3), along with
additional results and ablations for RoboMimic and π0 (Fig. 1, Right) that were cut from the main text due to space constraints.

A. Simulation Results: RoboMimic Benchmark Suite

Fig. 3 presents the RoboMimic benchmark results: the top row shows data quality trends for filter-k and select-k across
varying k, while the bottom row reports success rates of diffusion policies trained on the corresponding curated datasets. As
expected, we first observe that DemInf—which targets demonstration quality—curates datasets of the highest overall quality by



RoboMimic’s ground-truth labels for filter-k (top row, Fig. 3). However, policies trained on data curated by CUPID consistently
match or outperform those of DemInf (bottom row, Fig. 3). This indicates that human perception of data quality does not
necessarily correspond to the data that maximizes downstream policy success. Second, we find that state-based proxies for
influence employed by Demo-SCORE [7] and Success Similarity are insufficient in challenging mixed-quality regimes, where
successful and failed rollouts contain similar states. Lastly, CUPID-QUALITY, which evenly balances demonstration quality
and downstream performance impact (§IV-C), attains the highest policy success rates—surpassing the Oracle in 3/5 cases, and
achieving an even higher success rate than the official diffusion policy [8] on “Transport MH” while using fewer than (a) 33%
of the original 300 demonstrations and (b) 10% of the model parameters.
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Fig. 3: RoboMimic mixed-quality curation results. Top: Data Quality. Baselines often prioritize demonstration quality (e.g., DemInf [23]),
but highest demonstration quality does always translate to highest policy success rates. In contrast, CUPID targets demonstrations that most
strongly contribute to downstream policy performance. Bottom: Policy Performance. Diffusion policies trained on data curated by CUPID
achieve higher success rates than baselines, despite using demonstrations of perceived lower quality. Although combining performance and
quality measures (CUPID-QUALITY) yields the best policies on mixed-quality datasets, quality measures can degrade performance in other
settings (see Fig. 1). Results are averaged over 3 random seeds (500 policies trained across settings). Success rates are computed over 50
rollouts from the last 10 checkpoints (500 rollouts total).

Discussion: How is curation performance affected by properties of the data and the task?

Performance versus Data Quality: A key finding we emphasize is that the performance of a state-of-the-art policy does not
necessarily correlate with the perceived quality of its training data. Factors such as redundancy, balance, and coverage of the
dataset all play a role in determining the final performance of a policy. This is illustrated in the Oracle filter-k results (left
three plots of Fig. 3). While the top row shows a monotonic increase in average dataset quality as lower-quality demonstrations
are filtered out, the bottom row reveals (1) a consistent performance drop for diffusion policies on 2 out of 3 tasks, and (2) as
expected, performance degradation when too many demonstrations are removed. Similar analysis applies to the select-k setting.
These results highlight two important points: First, the impact of dataset curation should not be judged by quality labels alone,
but by the downstream performance of models trained on curated datasets. Second, determining how much data to curate (i.e.,
the k in filter-k and select-k) remains another key challenge for effective data curation in practice.

Performance versus Task Complexity: We further study how curation performance varies with task complexity by evaluating
three RoboMimic tasks of increasing difficulty—“Lift MH,” “Square MH,” and “Transport MH.” As shown in the bottom row
of Fig. 3, diffusion policies achieve 100% success on the easiest task, “Lift MH,” even when trained on all demonstrations,
indicating that low-quality demonstrations have little to no impact5. Consequently, many demonstrations can be filtered without
affecting policy performance. We see a similar trend for the moderately difficult “Square MH” task, where the policy benefits
from access to all demonstrations regardless of their quality. However, performance degrades more quickly as demonstrations are
filtered, suggesting increased sensitivity to data quantity due to the task’s higher complexity relative to “Lift MH.” Finally, for

5Note that Fig. 3 does not include select-k curation results for “Lift MH” because the base policy already achieves a 100% success rate, leaving no further
room for improvement by selecting additional demonstrations.



the most challenging task, “Transport MH,” which requires precise bi-manual coordination, both CUPID and CUPID-QUALITY
yield clear performance gains over the base policy. In sum, these results suggest that curation of mixed-quality datasets is most
beneficial for complex, precision-critical tasks, where low-quality demonstrations are more likely to degrade policy performance.

Ablation: How do CUPID’s influence estimates vary with the number of policy rollouts?

We conduct an ablation study in RoboMimic evaluating the quality of datasets curated by CUPID and CUPID-QUALITY
under varying numbers of rollouts, m∈{1,5,10,25,50,100}. The results for state-based and image-based diffusion policies are
shown in Fig. 4 and Fig. 5, respectively. For the “Lift MH” and “Square MH” tasks, performance influences (Eq. 3) stabilize
around m ∈ [25,50], yielding quality trends similar to those obtained with m= 100. In contrast, for the more challenging
“Transport MH” task, quality trends continue to evolve with increasing rollouts, suggesting that more rollouts are required to
obtain reliable influence estimates in complex task settings, where curation matters most.
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Fig. 4: RoboMimic state ablation: Data quality trends under varying number of rollouts. Performance influences (Eq. 3) appear to converge
around m∈ [25,50] rollouts for “Lift MH” and “Square MH” (yielding similar quality trends), but continue to evolve with more rollouts for
“Transport MH.” Curation performed on state-based diffusion policies. Results are averaged over 3 random seeds. Errors bars represent the
standard error.
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Fig. 5: RoboMimic image ablation: Data quality trends under varying number of rollouts. Performance influences (Eq. 3) appear to converge
around m∈ [25,50] rollouts for “Lift MH” and “Square MH” (yielding similar quality trends), but continue to evolve with more rollouts for
“Transport MH.” Curation performed on image-based diffusion policies. Results are averaged over 3 random seeds. Errors bars represent the
standard error.

Additional results: RoboMimic data quality

We provide full data quality results in RoboMimic. Fig. 6 is identical to the top row of Fig. 3, but also includes data quality
trends for select-k curation on “Lift MH.” Fig. 7 shows data quality results for image-based diffusion policies. Note that we
do not retrain image-based policies on curated datasets (as in the bottom row of Fig. 3) due to the substantial computational
resources required.
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Fig. 6: RoboMimic state data quality results. Curation performed on state-based diffusion policies. Results are averaged over 3 random seeds.
Errors bars represent the standard error.
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Fig. 7: RoboMimic image data quality results. Curation performed on image-based diffusion policies. Results are averaged over 3 random
seeds. Errors bars represent the standard error.
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Fig. 8: Data curated by single-task diffusion policies improves π0 [5] post-training performance. As in Fig. 1, quality measures (CUPID-
QUALITY) may degrade performance when higher-quality demonstrations induce brittle strategies at test time (TuckBox), whereas curating
based on performance (CUPID) remains robust across settings.

B. Additional results & Analysis: π0 Policy Performance

Fig. 8 contains the full results of our π0 ablation (Fig. 1, Right), including the performance of π0 [5] trained on datasets
curated by CUPID and CUPID-QUALITY for both the “Figure-8” and “TuckBox” tasks.

In this experiment, we investigate two questions: (1) Can datasets curated with one policy architecture result in increased
performance when used to train another policy with a different architecture? (2) How influential is curation for policies that
have been pre-trained on large-scale multi-task datasets?

Curation Transfer: Towards the first question, Fig. 8 shows that datasets curated using diffusion policies significantly increase
the performance of fine-tuned π0 policies relative to fine-tuning on the base, uncurated datasets. We attribute these results to two
causes: First, we find that both the diffusion policy and π0 have sufficient capacity to accurately fit the training data distribution,
and thus, they should learn a similar behavior distribution from the training data. This implies that the observed performance
gains in Fig. 8 result from curation transfer between policies. Second, as the “TuckBox” experiment shows in Fig. 1(b), our
method is able to effectively identify behaviors in the demonstration data that are not robust. While on-policy evaluations
(i.e., rollouts) are necessary to identify such brittle behaviors, these are purely properties of the training demonstration data.
Therefore, filtering out poor behaviors will increase the performance of any policy. Similarly, on the high-precision “Figure-8”
task, filtering out more noisy, low-quality demonstrations is likely to improve performance for any policy.

VLA Robustness: Towards the second question, we find that even when the base policy is pre-trained on a large, diverse,
multi-task dataset, curation is still essential to yield strong fine-tuned performance. As shown in Fig. 8, π0 policies trained on
the base demonstration datasets are unable to reliably complete our tasks. In contrast, policies trained on curated datasets attain
significantly higher success rates. As such, our results indicate that simply training VLM-based policies on more data and more
tasks does not strictly result in pre-conditioned policies that use their generalist knowledge to “ignore” low-quality behaviors or
brittle strategies in demonstration data—i.e., data curation still appears essential.

Concluding Remarks: Overall, these results indicate that using smaller, single-task policies to curate individual datasets, which
may then benefit a larger, multi-task policy is a promising direction to alleviate the computational cost of applying our method
to generalist policies. Still, we emphasize that datasets curated using our method are not completely model agnostic, as the
same demonstrations may influence different models in different ways. As such, while π0 achieves a higher base performance
than the diffusion policy, the π0 policies trained on curated datasets perform similarly to or slightly worse than the diffusion
policies (for which those datasets were curated).



APPENDIX E
DERIVATIONS

A. Proof of Proposition 1

Proof: As presented in §II, applying the basic derivation of the influence function1 in [32] gives us that

Ψπ-inf(ξ) :=
dJ(πθ)

dϵ

∣∣∣∣
ϵ=0

=−∇θJ(πθ)
⊤∇2

θLbc(θ;D)−1∇θℓtraj(ξ;πθ).

Next, note that the standard log-derivative trick underlying policy gradient methods [54, 57] tells us that

∇θJ(πθ)=Eτ∼p(τ |πθ)

[
R(τ)

∑
(s′,a′)∈τ

∇θlogπθ(a
′|s′)

]
.

Therefore, since Lbc and ℓtraj are deterministic functions of θ, ξ, and D, it holds that

Ψπ-inf(ξ)=Eτ∼p(τ |πθ)

[
R(τ)

∑
(s′,a′)∈τ

−∇θlogπθ(a
′|s′)⊤H−1

bc ∇θℓtraj(ξ;πθ)
]

by linearity of expectation. Finally, by simply noting that ℓtraj(ξ;πθ)=
1
H

∑
(s,a)∈ξℓ(s,a;θ) and applying the definition of Ψa-inf ,

we have the result:

Ψπ-inf(ξ)=Eτ∼p(τ |πθ)

[
R(τ)

H

∑
(s′,a′)∈τ

∑
(s,a)∈ξ

Ψa-inf
(
(s′,a′),(s,a)

)]
.

B. Derivation of Performance Influence for Variable Length Trajectories

In §III and §IV, we assumed that all trajectories in the demonstration dataset D were of an equal length H for notational
simplicity. Here, we show that without loss of generality, our analysis extends to the case where the length of demonstration
trajectories vary. Suppose each demonstration ξi∈D has length Hi, so that the base policy πθ minimizes the average loss
across all samples in the demonstration data, i.e.,

θ=argmin
θ′

{L̃bc(θ
′;D) :=

1

(
∑n

i=1H
i)

∑
ξi∈D

∑
(s,a)∈ξi

ℓ(s,a;πθ′)}. (10)

Note that the objective in Eq. 10 is equivalent to an unweighted BC loss

L′
bc(θ

′;D) :=
∑
ξi∈D

∑
(s,a)∈ξi

ℓ(s,a;πθ′),

which decomposes into its unweighted trajectory losses ℓ′traj(ξ; πθ′) :=
∑

(s,a)∈ξ ℓ(s, a; πθ′), so that L′
bc(θ

′, D) =∑
ξi∈D ℓ′traj(ξ

i;πθ′). We can then derive an equivalent statement to Proposition 1 for the unweighted loss functions that
applies when the demonstrations have variable length.

Proposition 2. Assume that θ(D)= argminθ′L′
bc(θ

′;D), that L′
bc is twice differentiable in θ, and that Hbc ≻ 0 is positive

definite (i.e., θ(D) is not a saddle point)1. Then, it holds that

Ψπ-inf(ξ)=Eτ∼p(τ |πθ)

[
R(τ)

∑
(s′,a′)∈τ

∑
(s,a)∈ξ

Ψa-inf
(
(s′,a′),(s,a)

)]
. (11)
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Next, note that the standard log-derivative trick underlying policy gradient methods [54, 57] tells us that

∇θJ(πθ)=Eτ∼p(τ |πθ)

[
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∇θlogπθ(a
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]
.

Therefore, since L′
bc and ℓ′traj are deterministic functions of θ, ξ, and D, it holds that
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by linearity of expectation. Finally, by simply noting that ℓ′traj(ξ;πθ)=
∑

(s,a)∈ξℓ(s,a;θ) and applying the definition of Ψa-inf ,
we have the result:

Ψπ-inf(ξ)=Eτ∼p(τ |πθ)

[
R(τ)

∑
(s′,a′)∈τ

∑
(s,a)∈ξ

Ψa-inf
(
(s′,a′),(s,a)

)]
.

APPENDIX F
LIMITATIONS

Curation tasks. The curation tasks considered in this work (Task 1 and Task 2) aim to curate performance-maximizing
datasets for a specified filtering or selection quantity of demonstrations k. Determining the suitable quantity of demonstrations
to curate represents a possible point of extension.

Data properties. Critically, future work should further investigate how properties of the data dictate the extent to which
curation can improve policy performance.

Data explainability. Our methods focus on curating existing demonstrations as a first step. However, future work may seek
to interpret the properties of influential demonstrations to actively inform subsequent data collection efforts—for example, by
providing instructions to data collectors.

Selection methods. While the greedy selection procedures used in Eq. 4 and Eq. 5 are tractable to optimize and often
improve over quality- and similarity-based measures [12], they ignore the interactions between demonstrations in the curated
set [33, 27]. This can temper performance gains when the size of the curated set is large. Future work should investigate
higher-order approximations that consider the joint diversity of the curated dataset, as is common in the active learning literature
(e.g., [49, Sec. 4.3]).

Larger datasets. Estimating performance influences over the full demonstration dataset incurs a computational cost comparable
to that of policy training. Reducing this expense in large-scale settings is an important future direction. For example, one
could approximate group effects [33] via random sampling or limit influence estimation to smaller data subsets identified using
coarse-grained heuristics.

Estimator variance. Finally, although we observe stable performance from CUPID across curation settings, the use of the
REINFORCE estimator may result in high variance influence scores, e.g., when the number of policy rollouts is small. In such
settings, variance reduction techniques, such as those typically used in reinforcement learning [18], may further improve the
fidelity of our influence scores.
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