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Abstract

Tool learning aims to augment large language001
models (LLMs) with diverse tools, enabling002
them to act as agents for solving practical tasks.003
Due to the limited context length of tool-using004
LLMs, adopting information retrieval (IR) mod-005
els to select useful tools from large toolsets006
is a critical initial step. However, the perfor-007
mance of IR models in tool retrieval tasks re-008
mains underexplored and unclear. Most tool-009
use benchmarks simplify this step by manually010
pre-annotating a small set of relevant tools for011
each task, which is far from the real-world sce-012
narios. In this paper, we propose TOOLRET, a013
heterogeneous tool retrieval benchmark com-014
prising 7.6k diverse retrieval tasks, and a corpus015
of 43k tools, collected from existing datasets.016
We benchmark six types of models on TOOL-017
RET. Surprisingly, even the models with strong018
performance in conventional IR benchmarks,019
exhibit poor performance on TOOLRET. This020
low retrieval quality degrades the task pass rate021
of tool-use LLMs. As a further step, we con-022
tribute a large-scale training dataset with over023
200k instances, which substantially optimizes024
the tool retrieval ability of IR models.1025

1 Introduction026

Large language models (LLMs) have demonstrated027

remarkable progress across various natural lan-028

guage processing (NLP) tasks, such as text sum-029

marization (Chang et al., 2023). However, they030

suffer from inherent inabilities to interact with the031

physical world and access vast, up-to-date knowl-032

edge (Qin et al., 2024). To alleviate these draw-033

backs, tool learning is proposed to equip LLMs034

with external tools, augmenting them as agents035

to manipulate tools for practical task-solving (Qu036

et al., 2025b; Wang et al., 2024e).037

In practical applications, retrieving useful tools038

from toolsets for LLM agents typically serves as039

1Code is available on Anonymous GitHub.
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Figure 1: Correlation between the tool retrieval perfor-
mance (e.g., Recall@10) of IR models and the end-to-
end task pass rate of tool-use agents.

the initial step (Wang et al., 2024c; Xu et al., 2024; 040

Song et al., 2023). This step becomes particularly 041

critical in real-world scenarios where the candidate 042

tools are usually large-scale and many of them are 043

similar in functionality (Qu et al., 2024a). How- 044

ever, most existing work (Guo et al., 2024; Qian 045

et al., 2023) simplifies this retrieval process by man- 046

ually pre-selecting a small set of 10-20 relevant 047

tools for each evaluation task. For example, the 048

ToolACE (Liu et al., 2024a) and ToolBench (Qin 049

et al., 2023) annotate about 10 tools per task. While 050

recent information retrieval (IR) techniques such 051

as semantic matching (Qu et al., 2024a; Xu et al., 052

2024), can assist with tool retrieval, they are of- 053

ten trained on ad-hoc tool-use datasets, lacking 054

comprehensive evaluation on diverse scenarios, es- 055

pecially for unseen tasks. To further explore the 056

importance of tool retrieval, we conduct a pilot 057

experiment on ToolBench (Qin et al., 2023). As 058

shown in Figure 1, we observe that (i) the agent’s 059

performance substantially drops when replacing the 060

officially annotated toolset with the retrieved tools; 061

and (ii) even strong retrievers like colbertv2 (San- 062

thanam et al., 2021a), struggle to retrieve target 063

tools effectively. These findings highlight the ne- 064

cessity to (i) systematically evaluate IR models on 065

diverse tool retrieval tasks; and (ii) analyze the 066

impact of retrieval on the end-to-end task pass rate. 067

In this work, we introduce TOOLRET, the first 068
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large-scale tool retrieval benchmark comprising069

7.6k diverse retrieval tasks and a corpus of 43k070

tools, which comprehensively evaluates IR mod-071

els across diverse retrieval scenarios. Specifically,072

we collect query-tool datasets from the following073

sources: (i) Tool-use agent benchmarks from pub-074

lished research papers in AI conferences, such075

as ACL and NeurIPS; (ii) Related conference re-076

sources such as AppBench in EMNLP and Tool-077

Lens in CIKM; and (iii) Other publicly available078

datasets from the open-source community, e.g.,079

HuggingFace. The collected data is carefully cu-080

rated to cover a wide range of practical tool require-081

ments, comprising diverse types of tool documen-082

tation, domains, and varying query lengths. Then,083

we standardize the format of all the collected tasks,084

aligning them with retrieval tasks similar to the for-085

mat in MTEB, where each retrieval task contains a086

query and target tools (e.g., labels). To support the087

instructional retrieval (Weller et al., 2024) setting088

of our benchmark, we also introduce a target-aware089

strategy to supplement each query with an instruc-090

tion using the powerful LLMs (i.e., gpt-4o).091

We systematically evaluate five types of IR mod-092

els such as embedding models and LLM re-ranking,093

under various experimental settings. Our results re-094

veal that even the best model (i.e., NV-embedd-v1)095

that demonstrates strong performance in conven-096

tional IR benchmarks, achieves an nDCG@10 of097

only 33.83 in our benchmark. This highlights the098

challenges of the tool retrieval tasks. We identify099

two key factors contributing to this performance100

gap: (i) Lower term overlap between queries and101

target tools in tool retrieval tasks, which demands102

higher representation abilities for IR models to ac-103

curately match query intent with the correct tools;104

and (ii) Task shift from conventional information-105

seeking tasks (e.g., document retrieval) to tool re-106

trieval, leading to suboptimal performance of IR107

models that are not explicitly optimized.108

To enhance the retrieval performance and enable109

IR models to augment tool-use agents, we further110

propose the TOOLRET-train, a large-scale train-111

ing dataset containing more than 200k retrieval112

tasks. We extend our data collection process from113

TOOLRET to include the training set of three main-114

stream tool-use datasets, including ToolACE (Liu115

et al., 2024a), APIGen (Liu et al., 2024b) and Tool-116

Bench (Qin et al., 2023). To enable the training, we117

pair each retrieval task with 10 negative tools re-118

trieved by the NV-embed-v1. Finally, each training119

example contains the query, an generated instruc-120

tion, the target tools, and the negative tools. Results 121

show that the IR models trained over TOOLRET- 122

train, exhibit significant improvements in the re- 123

trieval process, leading to a higher end-to-end task 124

pass rate when integrated with tool-use LLMs. 125

Our contributions are summarized as follows: (i) 126

We introduce TOOLRET, the first evaluation bench- 127

mark for tool retrieval tasks. (ii) We evaluate the 128

tool retrieval performance of various IR models 129

and analyze the impact of retrieval on the end-to- 130

end task pass rate of tool-use LLMs; and (iii) We 131

contribute to a large-scale training dataset that en- 132

hances the performance of IR models, improving 133

their ability to augment tool-use LLMs effectively. 134

2 Related work 135

Tool learning with foundation models. Tool learn- 136

ing aims to equip LLMs with tools, such as web 137

API (Song et al., 2023) and python packages (Wang 138

et al., 2024d), expanding their utility (Qin et al., 139

2023). Existing work teaching LLMs to use tools 140

can be broadly classified into tuning-free (Lu et al., 141

2023) and tuning-based methods (Gao et al., 2024). 142

The former prepends the description of candidate 143

tools in the LLMs’ context, prompting them to se- 144

lect and invoke tools (Huang et al., 2023). The 145

latter enables LLMs to learn the usage of each tool 146

through training on synthetic data (Liu et al., 2024a; 147

Gao et al., 2024). However, both two paradigms 148

struggle when facing the large-scale toolset in prac- 149

tice (Qu et al., 2024b; Liu et al., 2024b). First, 150

real-world toolsets are typically massive, making 151

it less possible to incorporate all tools within the 152

limited context of LLMs. For example, the Rapi- 153

dAPI platform contains more than 52k tools while 154

the PyPI2 hosts over 600k frequently updated pack- 155

ages. Second, since tools are frequently updated, 156

it is cost-intensive to re-train the LLMs to memo- 157

rize all tools (Qu et al., 2025a). Although recent 158

studies address this challenge using semantic re- 159

trievers (Qin et al., 2023; Wang et al., 2024c), these 160

solutions are typically ad-hoc and lack systematic 161

evaluation across diverse tool retrieval scenarios. 162

To fill this gap, we present the first comprehensive 163

tool retrieval benchmark with systematic analysis. 164

Information retrieval benchmark. Conventional 165

information retrieval (IR) benchmarks are typically 166

designed for information-seeking tasks, such as 167

Nature Question (Kwiat kowski et al., 2019) for 168

question answering and MS-MARCO (Nguyen 169

2https://pypi.org/
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et al., 2016) for passage re-ranking. Recent work170

also explores the IR technique in various down-171

stream tasks, such as table retrieval (Chen et al.,172

2024b; Zhang and Balog, 2020) and scientific re-173

trieval (Ajith et al., 2024), which substantially aug-174

ments the downstream models. However, tool re-175

trieval, a crucial step for tool-use agents, remains176

underexplored. Compared with traditional IR tasks,177

retrieving useful tools is more challenging since178

solving a task typically requires the combination179

of multiple tools (Qu et al., 2024b). Most exist-180

ing benchmarks simplify this retrieval process by181

manually annotating a small set of tools that fit the182

LLMs’ context, which is far from reality with a183

large toolset. In this work, we evaluate IR models184

on diverse tool retrieval tasks and contribute over185

200k training data to facilitate future research.186

3 Benchmark construction187

3.1 Data collection188

To build a comprehensive benchmark for tool re-189

trieval evaluation, we collect data from the follow-190

ing well-known sources: (i) Tool-use LLM bench-191

marks: A wide range of benchmarks published in192

leading AI conferences such as ACL and NeurIPS;193

(ii) Conference Resources: Datasets from resource194

tracks in IR and NLP conferences (e.g., CIKM and195

EMNLP); and (iii) Other high-quality dataset: We196

identify related datasets released on open-source197

platforms like HuggingFace and their technique re-198

ports can be found in public submissions like arXiv.199

We include them to enrich TOOLRET.200

Given the rapid development of benchmarks201

from these sources, we collect datasets released202

between the August 2023 to December 2024 in this203

version.3 We download these data from official204

channels based on their usage requirements and205

totally collect more than 30 datasets. Since the data206

sources are diverse and their original formats vary207

substantially, we perform necessary data cleaning208

operations such as deduplication and text normal-209

ization to ensure consistency and quality.210

We observe that most of the collected datasets211

are originally designed to evaluate the tool-use ca-212

pability of LLMs, where the LLM is required to cor-213

rectly call a sequence of target tools given an input214

query. To facilitate retrieval evaluation in TOOL-215

RET, we align the format of all collected tasks with216

the well-established IR benchmark like BEIR and217

MTEB. Specifically, each task consists of a query as218

3Our team will maintain and update the benchmark.

input and target tools as label (a.k.a, ground truth), 219

where a tool is identified by a unique identifier and 220

paired with detailed documentation to describe its 221

functionality. Endpoints of the collected datasets 222

and concrete examples of our formatted dataset are 223

provided in Appendix B. 224

3.2 Data sampling 225

After collecting the datasets, we observe data size 226

imbalances across different datasets. Besides, some 227

datasets are extremely large with substantial redun- 228

dant content, making comprehensive model evalu- 229

ation both inefficient and unnecessary. Therefore, 230

we streamline them through effective data sampling 231

while maintaining its evaluation integrity. 232

Task sampling. For each collected dataset, we 233

encode the tasks using the embedding model, i.e., 234

NV-embedd-v1, and apply the K-means clustering 235

algorithm on the text embeddings. We set the num- 236

ber of clusters to the size of the corresponding 237

toolset and randomly sample one task from each 238

cluster. If the toolset size exceeds the number of 239

queries, we retain all queries. For example, the orig- 240

inal ToolEyes (Ye et al., 2024a) dataset contains 241

500 queries and 95 tools; Thus, we set the cluster 242

number as min(500, 95) = 95 for clustering. 243

Toolset sampling. To eliminate redundancy, we 244

manually review the documentation of each raw 245

dataset to identify and merge identical toolsets. For 246

example, since the COLT (Qu et al., 2024a) toolset 247

overlaps with the Toolbench (Qin et al., 2023) , 248

we merge their intersecting tools. Ultimately, we 249

merge all toolsets from the 34 datasets to form the 250

final corpus, resulting in a total of 43k tools. Each 251

tool is assigned a unique identifier. 252

After sampling, we obtain 7.6k retrieval tasks 253

and a corpus of 43k tools. 254

3.3 Instruction construction 255

Instructional information retrieval (Sun et al., 2024; 256

Weller et al., 2024) is an active research area, where 257

an additional instruction is paired with the input 258

query to guide IR models in retrieving target in- 259

formation. This instruction-following capability is 260

especially critical in tool retrieval, as IR models 261

are often used to augment LLM agents and receive 262

additional context from the agents beyond the input 263

query. To support this instructional IR scenario, we 264

construct the instructions as part of TOOLRET. 265

Considering manually writing instructions is 266

cost-intensive and challenging to scale, we intro- 267

duce a target-aware strategy using powerful LLMs 268

3



Statistic

# size of retrieval task 7,615
- # of web API retrieval task 4,916
- # of code function retrieval task 950
- # of customized app retrieval task 1,749

# size of tool 43,215
- # of web API 36,978
- # of code function 3,794
- # of customized app 2,443

avg. query / instruction length (tokens) 46.87 / 43.43
avg. tool documentation length (token) 174.56

Table 1: Basic statistics of our benchmark TOOLRET.

Ours NQ MSMARCO HotpotQA MTEB

# Average number of tar-
gets for an input query. 2.17 1.00 1.00 2.00 2.57

# ROUGE-L overlap be-
tween query and targets. 0.06 0.31 0.34 0.11 0.27

Table 2: Comparison with conventional IR benchmarks.

to automate this process. Specifically, we first in-269

vite three human experts with strong NLP and270

IR backgrounds to manually craft 100 seed in-271

structions. In line with the well-defined format272

from Asai et al., our instruction outlines the rel-273

evance criteria by bridging the query intent and274

the functionality of the target tools. For example,275

for the transcribing the audio to text task, the in-276

struction is presented as “retrieve tools that process277

audio inputs to produce accurate textual transcrip-278

tions aligned with the user requirements”. Next,279

we employ a powerful LLM, i.e., GPT-4o, as an280

automatic instruction generator and guide it to gen-281

erate instruction for each task through in-context282

learning. To enhance the diversity, we randomly283

sample in-context examples from the pool of both284

the generated and handcrafted instructions. A de-285

tailed pseudo algorithm is provided in Appendix B.286

After the above three processes, we obtain287

TOOLRET, which consists of 7.6k tasks, each288

paired with an instruction, and a corpus of 43k289

diverse tools, providing a comprehensive testbed290

and supporting various evaluation settings.291

4 Benchmark statistic292

Table 1 provides the basic statics of TOOLRET. We293

observe that there are three mainstream formats of294

tool documentation: (i) Code, which is a function-295

level snippet in programming language; (ii) Web296

API, which elaborates the tool usage in structured297

JSON format following the Web OpenAPI specifi-298

cation; (iii) Customized application, which directly299

describes the tool functionality in free-form nature300

language. Based on these formats, we categorize301
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Figure 2: ROUGE-L overlap between the query (input)
and the target tools (label).

Figure 3: Length distribution of our benchmark.

TOOLRET into three subsets accordingly and di- 302

vide the TOOLRET into Code Function, Web API, 303

and Customized App subsets. Below, we report a 304

more detailed analysis of TOOLRET. 305

4.1 Complexity 306

In tool learning, previous studies have highlighted 307

the necessity of combining multiple tools for 308

task solving (Shi et al., 2024). Thus, we ana- 309

lyze the complexity of our retrieval benchmark 310

from two aspects. First, we calculate the av- 311

erage number of target tools for each retrieval 312

task and compare it with well-known IR bench- 313

marks such as HotpotQA (Yang et al., 2018) and 314

MTEB (Muenni ghoff et al., 2022). As shown in 315

Table 2, TOOLRET requires models to recall more 316

targets, posing a challenge in comprehensive re- 317

trieval. Second, we compute the lexical overlap, 318

i.e., ROUGE-L, between the input query and cor- 319

responding retrieval targets (tool documentation in 320

TOOLRET and passage in IR benchmarks). We find 321

that this overlap is substantially lower in TOOLRET. 322

It indicates that, for neural IR models, TOOLRET 323

requires more heavily on the semantic representa- 324

tion rather than simple lexical matching. Therefore, 325

the retrieval task in TOOLRET is more challenging. 326
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Quality Review Question Yes or No %

Whether the instruction is relevant to the orig-
inal input query?

90.1% / 9.9%

Whether the instruction describes the feature
of target tools

92.3% / 8.7%

Whether the instruction comprehensively de-
scribe the feature of all target tools

89.2% / 10.8%

Whether the instruction contains hallucination
about the target tools or input query? 5.9% / 94.1%

Table 3: The quality review for our generated instruc-
tions, which is conducted by five human experts with
0.743 Kappa statistics.

4.2 Length statistics327

Figure 3 illustrates the length distribution of the328

query, instruction, and tool documentation in329

TOOLRET.4 We find that most queries are concise,330

typically containing fewer than 60 tokens (about 25331

words), which aligns with real-world user behavior,332

as users tend to input brief queries with minimal333

effort. Additionally, most tool documentation is334

under 200 tokens, which is similar to the chunk335

length in standard IR document retrieval corpus,336

such as Wikipedia dump (Karpukhin et al., 2020).337

4.3 Quality338

So far, we have demonstrated the complexity and339

quantity of our benchmark while the quality of the340

LLM-generated instructions remains uncertain. To341

investigate this, we ask 5 human experts to label342

the quality based on four aspects listed in Table 3.343

Our evaluation reveals that 89.2% of the generated344

instructions correctly cover the feature of the target345

tools and are faithfully grounded on the original346

queries. For the remaining 10.8% instructions that347

mismatch the query or the target tools, we ask ex-348

perts to revise them. This re-check mechanism349

ensures the high quality of instructions in TOOL-350

RET, making it a reliable evaluation benchmark. To351

explain more intuitively, we list a number of seed352

instructions, high-quality and low-quality instruc-353

tions in Table 8. Annotation guidance is also pro-354

vided in Appendix B to promote our transparency.355

4.4 Instruction diversity356

We further analyze how the generated instructions357

differ from the seed instructions used to prompt358

the generation. For each generated instruction, we359

compute its highest ROUGE-L overlap with the360

100 seed instructions. We plot the distribution of361

these ROUGE-L scores in Figure 4. The results362

4We use the tokenizer from gpt-3.5-turbo in this work.
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Figure 4: ROUGE-L overlap between the handcrafted
seed instructions and model-generated instructions.

indicate a decent number of new instructions are 363

generated, which have low overlap with the seeds. 364

5 Benchmark evaluation setup 365

5.1 Evaluation protocol 366

We use three widely used IR metrics to evaluate 367

the retrieval performance: (i) NDCG@K (N@K): 368

evaluates ranking quality based on the relevance of 369

retrieved tools; (ii) Recall@K (R@K): evaluates 370

the proportion of target tools successfully retrieved 371

within the top-K results; and (iii) Precision@K 372

(P@K): evaluates the accuracy of the retrieved tools 373

within the top-K results. We also use Complete- 374

ness@K (C@K) from COLT (Qu et al., 2024b), 375

which specifically evaluates the retrieval complete- 376

ness in tool retrieval tasks. The C@K is 1 if all 377

target tools are included in the top-k retrieved tools; 378

otherwise, it is 0. 379

We mainly evaluate IR models under two set- 380

tings: (i) w/o inst.: The model take the query alone 381

as input; and (ii) w/ inst.: The model takes the con- 382

catenation of the query and instruction as input to 383

retrieve. This allows us to analyze the impact of 384

instructions on retrieval performance. 385

5.2 Model to Evaluate 386

We comprehensively evaluate the following main- 387

stream IR models on our benchmark. 388

Sparse retrieval. These methods measure the simi- 389

larity between query and tool documentation based 390

on lexical overlap. We evaluate BM25s (Lù, 2024). 391

Single-task dense retrieval. These methods 392

use dual-encoder models trained on conven- 393

tional IR datasets. We evaluate gtr (Ni et al., 394

2021a), contriever (Izacard et al., 2021a), and col- 395

bertv2.0 (Santhanam et al., 2021a), all trained on 396

MS-MARCO (Nguyen et al., 2016). We also eval- 397

uate COLT (Qu et al., 2024a), a recently proposed 398

model trained on ad-hoc tool retrieval datasets. 399

Multi-task embedding Models. These methods 400

5



Model TOOLRET-Web TOOLRET-Code TOOLRET-Customized Average

N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 C@10

BM25s 18.98 4.64 24.62 15.20 21.20 3.37 28.23 26.96 26.76 5.86 32.39 24.40 22.32 22.19
COLT 15.43 2.63 21.11 20.04 20.69 5.12 28.07 18.53 21.63 4.72 29.19 22.40 19.25 20.32
Colbert 22.40 5.37 27.41 15.45 16.43 2.65 22.54 21.65 19.54 3.65 23.72 18.97 19.46 18.69
contriever-msmarco 21.15 5.83 27.19 14.70 14.56 2.40 19.28 17.71 17.72 3.31 22.77 18.31 17.81 16.91
gtr-t5-base 17.36 4.25 24.17 15.95 16.47 2.71 22.27 21.16 23.47 5.09 28.93 22.49 19.10 19.87
gtr-t5-large 22.45 5.42 29.75 18.72 18.25 2.89 24.12 23.08 26.30 5.76 31.86 24.45 22.34 22.09

all-MiniLM-L6-v2 11.66 3.07 16.36 10.15 14.44 2.50 19.50 18.11 22.80 5.21 29.10 20.25 16.30 16.17
e5-small-v2 19.89 5.08 26.46 16.26 15.48 2.39 19.26 18.05 24.60 5.56 29.67 20.76 19.99 18.36
e5-base-v2 19.75 5.04 25.89 15.37 14.43 2.47 19.19 18.00 22.68 5.11 29.13 22.25 18.95 18.54
e5-large-v2 18.99 4.90 25.97 16.27 17.09 2.68 21.87 20.70 26.42 6.07 32.19 23.17 20.83 20.05
gte-base-en-v1.5 23.55 6.28 32.03 19.15 17.43 2.87 23.71 22.48 21.62 4.76 29.03 23.17 20.86 21.60
gte-large-en-v1.5 22.41 5.91 30.14 18.44 16.66 2.87 23.64 22.39 20.62 5.19 26.75 17.67 19.90 19.50
bge-base-en-v1.5 22.50 6.02 29.96 17.30 17.78 2.92 23.66 22.27 25.99 5.71 32.17 24.26 22.09 21.27
bge-large-en-v1.5 24.45 6.66 32.93 19.30 18.90 3.12 25.76 24.47 25.72 5.54 32.18 24.79 23.02 22.85
gte-Qwen2-1.5B-inst.♠ 29.17 7.93 38.05 21.49 21.66 3.41 28.89 27.67 36.04 7.89 44.51 35.55 28.96 26.04
e5-mistral-7b♠ 26.76 7.25 34.39 21.05 20.01 3.44 28.31 27.10 31.41 6.68 38.47 29.24 26.06 25.80
GritLM-7B♠ 25.74 6.85 34.27 21.28 22.02 3.72 30.41 28.87 42.31 8.71 49.34 38.17 30.02 29.44
NV-Embed-v1♠ 31.30 8.35 39.15 23.05 29.64 4.72 40.45 38.88 40.54 8.25 45.93 34.44 33.83 32.12

mxbai-rerank-large-v1 22.99 5.61 30.32 18.38 24.76 3.88 34.86 33.22 26.76 5.91 34.53 26.03 24.84 25.88
monot5-base-msmarco 28.92 7.70 36.44 19.97 21.61 3.62 30.06 27.88 36.22 7.54 45.11 36.41 28.92 28.09
bge-reranker-v2-m3 32.92 8.73 41.88 25.63 24.28 3.80 32.71 30.94 30.51 7.00 36.03 26.74 29.24 27.77
jina-reranker-v2-base 35.38 9.25 44.65 26.98 26.47 4.15 35.20 33.94 38.94 8.14 46.06 35.42 33.60 32.11
bge-reranker-v2-gemma 36.72 9.69 45.94 27.85 29.89 4.42 38.23 36.82 39.93 9.06 49.43 37.75 35.51 34.14

Mixtral-8x22B 28.21 8.31 34.13 25.42 27.41 3.14 34.13 36.98 30.76 5.40 34.12 28.65 28.80 30.35
gpt-3.5-turbo-0125 30.29 8.01 36.00 24.22 28.69 4.27 36.25 35.64 29.80 6.39 35.01 28.70 29.60 29.52
gpt-3.5-turbo-1106 31.01 7.86 35.82 23.76 28.95 4.44 38.16 38.45 32.30 6.89 38.31 30.84 30.75 31.01

Table 4: Experiment results in w/o inst. setting (§ 5), where the model takes the query as input to retrieve. We mark
the baselines pre-trained on instructional datasets with ♠. We highlight the best performance in each type of model.

utilize transformer encoders trained on various IR401

datasets. We evaluate all-MiniLM-L6-v2, gte (Li402

et al., 2023c), bge (Xiao et al., 2023a) and e5 (Wang403

et al., 2022), covering a wide range of sizes.404

Cross-encoder re-rankers. These models re-405

rank the initially retrieved documents based406

on the query-passage relevance. We evaluate:407

MonoT5 (Nogueira et al., 2020), mxbai-rerank-408

large, jina-reranker-v2-base, and bge-reranker.409

LLM agents. These methods leverage general-410

purpose LLM agents for re-ranking tasks in a zero-411

shot setting, simulating the tool selection process412

of tool-use agents. We evaluate the widely used413

LLM re-ranking framework, i.e., RankGPT (Sun414

et al., 2023), with various LLMs as backbone.415

Initial tools for LLM agent and Re-ranking base-416

lines are retrieved by Nv-embedd-v1 model. De-417

tails of these baselines are provided in Appendix D.418

6 Experiment result419

6.1 Tool retrieval performance420

Existing retrievers struggle. As shown in Ta-421

ble 9, the tool retrieval tasks in TOOLRET raise422

significant challenges for existing retriever mod-423

els. Specifically, all retrievers in our experiments424

achieve less than 35% in Completeness@10 and425

under 52% in recall@10. Notably, retrieval meth-426

ods that demonstrate strong performance in con-427
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Figure 5: Correlation between the score on our bench-
mark and MTEB (retrieval subset).

ventional information retrieval (IR) tasks, such as 428

ColBERT, even underperform compared to sim- 429

ple lexical-based matching approaches like BM25. 430

Similarly, other embedding-based models, even the 431

NV-Embed-v1 with 7B parameter, achieve less than 432

45% in completeness@10, exhibiting limitations. 433

We identify two potential reasons for the above 434

performance degradation: (i) Tool retrieval tasks 435

require intensive reasoning over the input query 436

to align user intentions with candidate tools, as 437

the lexical overlap between the query and targets 438

is low. (ii) There exists a domain shift between 439

the conventional training corpora used for retrieval 440

models and the specific tool retrieval tasks, which 441

current models are not explicitly optimized for. 442

Re-ranking technique has limited improvement. 443

As shown in Table 9, commonly used re-ranking 444
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Model TOOLRET-Web TOOLRET-Code TOOLRET-Customized Average

N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 C@10

BM25s 26.33 6.10 34.22 22.79 41.90 6.20 56.49 55.39 41.16 8.39 48.60 38.90 36.46 39.03
COLT 28.91 4.61 40.64 38.83 20.06 4.71 27.78 18.84 31.29 6.05 42.19 34.01 26.75 30.56
Colbert 16.67 3.12 21.14 14.94 30.35 4.37 41.38 40.28 24.35 4.56 30.97 24.87 23.79 26.70
contriever-msmarco 23.48 5.29 30.21 19.69 31.61 4.84 43.01 41.74 21.93 3.85 27.28 23.04 25.67 28.16
gtr-t5-base 20.38 4.49 27.53 19.24 33.59 4.90 43.18 41.88 41.84 7.66 48.35 39.28 31.94 33.46
gtr-t5-large 24.37 5.27 31.64 21.26 36.76 5.33 47.42 45.92 42.04 8.48 50.84 40.00 34.39 35.73

all-MiniLM-L6-v2 12.77 3.26 19.38 13.33 31.59 5.06 43.86 42.25 32.24 7.14 43.55 32.34 25.53 29.31
e5-small-v2 26.42 6.20 34.44 21.39 32.36 4.84 42.38 41.11 34.62 6.90 42.29 32.58 31.14 31.69
e5-base-v2 24.71 5.78 33.45 21.94 31.40 5.01 42.83 41.38 38.06 7.54 46.84 36.43 31.39 33.25
e5-large-v2 23.62 5.52 32.19 21.80 34.27 5.05 44.42 43.19 43.32 8.51 52.30 41.42 33.73 35.47
gte-base-en-v1.5 30.75 7.00 39.44 25.88 41.68 6.20 53.96 51.64 37.95 6.96 46.57 38.10 36.79 38.54
gte-large-en-v1.5 28.06 6.55 36.32 22.57 35.77 5.75 49.56 47.71 37.27 7.88 47.98 35.84 33.70 35.37
bge-base-en-v1.5 25.95 6.16 35.12 23.40 35.15 5.22 45.74 44.32 43.20 8.82 53.54 42.29 34.77 36.67
bge-large-en-v1.5 30.03 7.01 39.28 25.63 41.53 6.00 52.76 51.18 43.90 8.31 51.79 42.24 38.49 39.68
e5-mistral-7b♠ 31.07 7.65 41.30 27.04 44.97 6.66 58.95 56.79 40.88 7.91 49.35 38.35 38.97 40.73
NV-Embed-v1♠ 31.51 7.74 40.52 26.74 47.92 7.10 62.07 59.60 48.70 10.07 57.69 43.88 42.71 43.41
gte-Qwen2-1.5B-inst.♠ 37.53 9.31 48.31 30.95 47.38 7.29 61.12 59.55 52.98 10.63 59.47 45.68 45.96 45.39
GritLM-7B♠ 36.58 9.34 46.01 27.65 41.26 6.17 53.81 52.07 45.55 9.74 54.01 41.40 41.13 40.37

mxbai-rerank-large-v1 17.53 4.05 25.82 17.95 33.86 5.05 47.84 46.47 26.83 6.71 37.61 28.60 26.08 31.01
monoT5-base-msmarco 23.33 5.88 30.70 18.13 31.39 5.27 45.18 42.51 37.77 6.76 46.63 39.70 30.83 33.45
bge-reranker-v2-m3 34.83 8.54 45.23 31.73 50.86 7.64 67.26 64.78 42.35 9.52 53.75 39.90 42.68 45.47
jina-reranker-v2-base 42.35 10.11 51.21 34.23 53.21 7.66 66.03 63.94 45.94 10.36 57.96 45.41 47.17 47.86
bge-reranker-v2-gemma 34.73 8.09 45.08 32.29 55.85 8.22 70.53 68.76 51.97 11.04 61.20 45.65 47.52 48.90

Mixtral-8x22B 35.31 7.56 38.63 34.60 33.27 5.77 39.60 38.53 34.40 6.44 39.72 38.20 34.33 37.11
gpt-3.5-turbo-0125 37.22 8.97 40.82 35.22 35.42 6.22 41.16 42.64 37.29 8.24 41.34 39.70 29.60 29.52
gpt-3.5-turbo-1106 38.31 9.02 41.29 35.76 38.69 7.27 42.57 42.81 39.30 7.89 43.31 37.31 38.77 38.63

Table 5: Experiment results in w/ inst. setting (§ 5), where the model takes the query and instruction as input to
retrieval. ♠ indicates the model is pre-trained on instructional datasets. We highlight the best performance.

methods provide limited and even negative im-445

provements for the tool retrieval task. When us-446

ing MonoT5 to re-rank the tools retrieved by NV-447

Embed-v1, the average NDCG@10 decreases from448

33.83 to 28.92. A similar trend is observed with the449

mxbai-rerank. Other advanced models such as bge-450

ranker-v2-gemma only have 4.7% improvement in451

the Completeness@10 metric. These results further452

indicate the challenging nature of tool retrieval.453

6.2 Substantial gains from instruction454

Besides the evaluation results under w/o inst setting455

in Table 4, we also present the results under w/ inst456

setting in Table 5. We observe that all the IR model457

achieves better performance when an additional458

instruction is paired with the query as input. No-459

tably, the instruction-tuned embedding model like460

NV-embed-v1 or e5-mistral has the most obvious461

improvement, which potentially benefits from its462

powerful instruction-following capability. These463

results illustrate the advantages of the instruction464

and instruction tuning in tool retrieval tasks.465

6.3 Compare with conventional IR tasks466

To further explore the complexity of tool retrieval467

tasks, we compare the models’ performance on468

TOOLRET and conventional IR task benchmark,469

i.e., MTEB, showing their relationship in Figure 5.470

First, we can see that the two benchmarks share a471

similar trend (Pearson’s coefficient β = 0.790), but 472

the score in TOOLRET is lower. This indicates that 473

the task in TOOLRET has a correlation with conven- 474

tional IR tasks but is more challenging. Second, we 475

also observe that conventional IR models trained 476

with relevance-oriented criteria such as contriever 477

perform poorly on TOOLRET, which indicates that 478

TOOLRET requires more target-aware reasoning 479

ability. This is also illustrated in § 4.1. 480

7 Retrieval affect downstream task 481

In this section, we qualitatively analyze the impact 482

of retrieval performance on downstream tool-use 483

agents. We conduct end-to-end evaluations on Tool- 484

Bench (Qin et al., 2023) dataset using the official 485

Pass Rate metric that evaluates whether the model 486

successfully calls target tools to complete a task. 487

7.1 Poor retrieval leads to poor tool-use agents 488

For each task in ToolBench, we replace the offi- 489

cially pre-annotated toolset (oracle) with tools re- 490

trieved by IR models. As shown in Figure 6, the 491

tool-use LLMs, when equipped with the retrieved 492

tools, exhibit substantially lower performance com- 493

pared to their oracle counterparts. For example, 494

in ToolBench-G1, GPT-3.5 achieves a pass rate of 495

50.60 using tools retrieved by bge-large, decreas- 496

ing by 11.40. This indicates that tool retrieval is 497

a crucial step to build better tool-use LLMs and 498
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vertical axis corresponds to the end-to-end pass rate of tool-use LLMs using the tools retrieved by these IR models.

improve their task-solving performance.499

7.2 Towards better retrieval500

The analysis in § 6.2 highlights the advantage of501

instruction-tuning in improving tool retrieval. How-502

ever, to the best of our knowledge, there is no large-503

scale instructional IR dataset for tool retrieval tasks.504

We propose the TOOLRET-train to fill this gap.505

Large-scale training data We extend the data506

collection process from TOOLRET to include the507

training sets of three mainstream tool-use datasets:508

ToolACE (Liu et al., 2024a), ToolBench (Qin et al.,509

2023) and APIGen (Liu et al., 2024b). Ultimately,510

we collect over 200k training instances, each com-511

prising a query q and a set of target tools T . We512

also pair each query q with an instruction I using513

our target-aware strategy (See Appendix D).514

Learning objective To train a IR model (denoted515

as θ), we first use it to retrieved top-K negative516

tools, denoted as T̂ = {t̂j | j ∈ [K] , t̂j /∈ T }.517

The model θ is then optimized by maximizing the518

log-likelihood of the target tools. The loss function519

L is formulated as:520

− 1

|T |
∑
ti∈T

log
esim(I⊕q,ti)

esim(I⊕q,ti) +
∑
t̂j∈T̂

esim(I⊕q,t̂j)
.521

The I ⊕ q indicates concatenation of instruction522

and query with a special token. During the training,523

we set the K to 10 and the learning rate to 5e-5.524

Improvement from retrieval. As shown in Fig-525

ure 6, all IR models trained on TOOLRET-train526

achieve substantial improvement in NDCG@10527

metric. We further evaluate the task pass rate of528

two tool-use LLMs: GPT-3.5 and ToolLlama (Qin529

et al., 2023). When equipped with the improved530

IR models, both LLMs exhibit substantial gains in 531

pass rate, confirming the critical role of retrieval 532

in downstream tasks. As part of future work, we 533

suggest adapting the IR models to better augment 534

the tool-use LLMs, which offers a efficient plug- 535

and-play solution compared with training LLMs. 536

We further conduct an ablation study by remov- 537

ing the instruction I from the loss function L. The 538

results show that this variant shows improvements 539

compared with the non-tuned counterparts, but un- 540

derperforms compared with their instruction-tuned 541

counterparts (See Appendix D). These validate the 542

effectiveness of our instructional training data in 543

enhancing tool retrieval performance. 544

8 Conclusion 545

In this work, we introduce TOOLRET, the first di- 546

verse tool retrieval benchmark comprising 7.6k 547

queries, each paired with an instruction, and a 548

corpus of 43k tools. TOOLRET is a heteroge- 549

neous benchmark, constructed by aggregating ex- 550

isting tool-use datasets and aligning them into a 551

unified format, similar to conventional IR bench- 552

marks such as MTEB. We evaluate state-of-the-art 553

IR models on TOOLRET and uncover a surpris- 554

ing finding: even models with strong performance 555

on conventional IR benchmarks struggle in tool 556

retrieval. This low retrieval quality significantly 557

degrades the end-to-end task pass rate of tool-use 558

LLMs. Inspired by this, we further propose TOOL- 559

RET-train, a large-scale training set containing over 560

200k retrieval tasks. Results show that IR models 561

trained on TOOLRET-train exhibit substantial im- 562

provement and also enhance the pass rate of tool- 563

use LLMs by 10%-20%. In the future, we plan to 564

extend the TOOLRET into multimodal scenarios. 565
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Limitation566

The limitations of this work include the lack of567

exploration in multilingual retrieval settings. Cur-568

rently, our benchmark is confined to the English569

language and focuses exclusively on text retrieval.570

To address this limitation, we plan to expand our571

research to encompass multilingual information572

retrieval (IR) scenarios in the future. Addition-573

ally, another limitation lies in the insufficient in-574

vestigation of prompt sensitivity. Given that large575

language models (LLMs) are highly sensitive to576

prompt wording, we aim to annotate a broader577

range of instructions in the future to examine how578

variations in prompt phrasing influence LLM per-579

formance.580

Building upon TOOLRET, we suggest the fol-581

lowing directions for future work: (i) Investigat-582

ing sensitivity to instructions: Conduct a compre-583

hensive study on how LLM performance varies584

with different prompt formulations and instruction585

styles. (ii) Enhancing IR models for improved re-586

trieval accuracy: Further optimize IR models to587

achieve higher retrieval precision, leveraging these588

improvements to augment tool-use LLMs and, con-589

sequently, enhance end-to-end task performance.590

Ethics Statement591

We acknowledge the importance of the ACM Code592

of Ethics and fully agree with it. We ensure that this593

work is compatible with the provided code in terms594

of publicly accessible datasets and models. Risks595

and harms associated with large language models596

include the generation of harmful, offensive, or597

biased content. The new benchmark is composed of598

various previous datasets and is therefore licensed599

under their respective data licenses.600

In this research, we prioritize reproducibility601

by not only utilizing state-of-the-art commercial602

LLMs but also experimenting extensively with603

open-source LLMs. Throughout the study, we604

have strictly followed ethical standards to main-605

tain the integrity and validity of our work. All606

tools and resources used in this research were ob-607

tained from publicly available platforms, ensuring608

transparency and reproducibility in our experimen-609

tal procedures. Furthermore, we have made every610

effort to ensure that our research does not harm611

individuals or groups, nor does it involve any form612

of deception or potential misuse of information.613
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A Data Card 950

Following previous work (Bender and Friedman, 2018; Gebru et al., 2021; Zhuo et al., 2024), we provide 951

the datacard for TOOLRET, where we tend to summarize and centralize all information that might be 952

relevant for the benchmark analysis. 953

(i) The purpose of this benchmark: This benchmark is proposed to comprehensively evaluate the 954

information retrieval (IR) models on tool retrieval tasks. On top of TOOLRET, we find that existing 955

IR models, despite achieving strong performance in conventional IR benchmarks such as MTEB and 956

BEIR, still suffer from substantial challenges in tool retrieval tasks. The poor retrieval quality further 957

degrades the end-to-end task pass rate of tool-use LLMs. Thus, we believe that the TOOLRET reveals 958

the importance of tool retrieval in building better tool-use LLMs, and can be used as a comprehensive 959

and fair benchmark in facilitating the development of tool retrieval models. 960

(ii) How will the dataset be distributed (e.g., Tarball on Website or Github)? The proposed benchmark 961

TOOLRET will be released to the public, and hosted on GitHub and Hugging Face. The TOOLRET 962

will be managed and maintained by our research team. 963

(iii) Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? 964

Yes. If we include more tasks or find any errors, we will correct the dataset hosted on Hugging Face 965

and GitHub and update the results in the leaderboard accordingly. It will be updated on our website. 966

(iv) Will the training dataset TOOLRET-train will be released publicly. Yes, the proposed training dataset 967

TOOLRET-train will be released to the public, and hosted on GitHub and Hugging Face. 968

B Details of Benchmark 969

B.1 Dataset collections 970

TOOLRET is a heterogeneous benchmark that integrates a wide range of well-established tool-use datasets 971

and aligns them into a unified format, similar to standard information retrieval (IR) benchmarks such as 972

BEIR and MTEB, to facilitate tool retrieval evaluation. In tool learning, we observe that previous work 973

primarily focuses on three mainstream types of tools: 974

(i) Web APIs: These tools are encapsulated in the OpenAPI format (standard JSON documentation) 975

and can be directly invoked via HTTP requests. Web APIs are typically used to access, manipulate 976

(e.g., add, delete, edit, or query), or retrieve private data or information from specialized databases, 977

covering a wide range of domains such as movies, music, and sports. 978

(ii) Code Functions: These tools are represented by source code containing function signatures and im- 979

plementation details. Code functions primarily focus on low-level computations or atomic operations, 980

such as tensor calculations, calling Hugging Face models, or utilizing PyTorch libraries. 981

(iii) Customized Apps: These tools are paired with free-form natural language descriptions. They are 982

typically user-oriented or personalized, enabling tasks such as sending emails or other custom 983

applications. 984

These tool types differ in functionality and documentation format, reflecting diverse scenarios for tool-use 985

LLMs. For IR models, retrieving different types of tools may present varying levels of difficulty. Therefore, 986

we categorize the collected datasets into these three types based on their paired toolset formats, resulting 987

in three subsets of TOOLRET: TOOLRET-web, TOOLRET-code, and TOOLRET-customized. During 988

evaluation, we report the performance of IR models on each subset to provide a fine-grained analysis. 989

Below, we list the datasets included in each subset and provide detailed descriptions. 990
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B.2 TOOLRET-Web991

The TOOLRET-Web subset is constructed by integrating the following datasets, which contain tools in the992

form of Web APIs:993

• AutoTools-Food (Shi et al., 2024): Contains APIs related to food recipes, where LLMs must retrieve994

specific food-related tools to answer user queries.995

• RestGPT-TMDB (Song et al., 2023) and AutoTools-Movie (Shi et al., 2024): Includes web APIs996

from the TMDB platform, a movie database. Evaluation tasks require LLMs to retrieve tools to find997

relevant information about movies or celebrities and extract key evidence to answer given queries.998

• AutoTools-Weather (Shi et al., 2024): Features web APIs from a weather database. LLMs must999

invoke these APIs and gather responses to answer weather-related queries.1000

• RestGPT-Spotify and AutoTools-Music (Shi et al., 2024): Contains web APIs from a music1001

platform. Evaluation tasks require LLMs to retrieve tools for searching songs or albums based on1002

user queries.1003

• ToolBench (Qin et al., 2023): Comprises over 16,000 web APIs crawled from RapidAPI. Queries1004

are generated by LLMs, with ground truth tools labeled for each query.1005

• ToolLens (Qu et al., 2024a): A subset of ToolBench, where queries are annotated to evaluate tool1006

functionality.1007

• APIbank (Li et al., 2023b): Contains web APIs for daily personalized applications, such as alarm1008

booking and database login.1009

• MetaTool (ToolE) (Huang et al., 2023): Designed to evaluate whether LLMs are aware of tool usage1010

and can correctly select tools.1011

• Mnms (Ma et al., 2024): Evaluates LLM-based agents’ tool-use abilities for multi-step, multi-1012

modal tasks involving tools that process visual information. Since TOOLRET focuses on text-based1013

IR models, images are represented using their URLs.1014

• Reverse-Chain (Zhang et al., 2023): Contains diverse multi-step tasks requiring LLMs to invoke1015

relevant tools sequentially.1016

• ToolEyes (Ye et al., 2024a): Includes tools across various domains, such as advice, entertainment,1017

and art, providing a broad evaluation of tool-use LLMs in practical scenarios.1018

• UltraTool (Huang et al., 2024): A benchmark designed to improve and evaluate LLMs’ tool1019

utilization abilities in real-world scenarios, focusing on the entire process of planning, creating, and1020

applying tools in complex tasks.1021

• T-Eval (Chen et al., 2023): A fine-grained benchmark assessing tool-use LLMs across multiple1022

evaluation aspects, including instruction following, planning, reasoning, retrieval, understanding,1023

and review.1024

B.3 TOOLRET-Code1025

The TOOLRET-code subset is constructed by integrating the following datasets, which contain tools in the1026

form of code functions:1027

• Gorilla-PyTorch (Patil et al., 2023): Contains various PyTorch functions (code snippets) as tools,1028

evaluating LLMs’ ability to correctly combine PyTorch functions for solving deep learning tasks.1029

The functions in this dataset are collected from the Python Torch package.1030

14



Dataset Endpoint Query size Tool size Task type
Web APIs

GTA (Wang et al., 2024b) https://github.com/open-compass/GTA 14 14
Gorilla (Patil et al., 2023) https://github.com/ShishirPatil/gorilla 598 1,005
- gorilla-pytorch subset https://github.com/ShishirPatil/gorilla/tree/main/data 43 43
- gorilla-tensor subset https://github.com/ShishirPatil/gorilla/tree/main/data 55 55
- gorilla-huggingface subset https://github.com/ShishirPatil/gorilla/tree/main/data 500 907
CRAFT (Yuan et al., 2023) https://github.com/lifan-yuan/CRAFT 654 985
- craft-Tabmwp subset https://github.com/lifan-yuan/CRAFT/tree/main/tab_and_math/TabMWP 174 180
- craft-Vqa subset https://github.com/lifan-yuan/CRAFT/tree/main/vqa 200 525
- craft-algebra subset https://github.com/lifan-yuan/CRAFT/tree/main/tab_and_math/MATH 280 280
AutoTools (Shi et al., 2024) https://github.com/mangopy/AutoTools 159 159
- AutoTools-Food subset https://github.com/mangopy/AutoTools/tree/main/data 22 22
- AutoTools-Weather subset https://github.com/mangopy/AutoTools/tree/main/data 11 11
- AutoTools-Movie subset https://github.com/mangopy/AutoTools/tree/main/data 54 54
- AutoTools-music subset https://github.com/mangopy/AutoTools/tree/main/data 72 72
APIGen (Liu et al., 2024b) https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k 1,000 3,605
APIbank (Li et al., 2023b) https://github.com/AlibabaResearch/DAMO-ConvAI 101 101
Appbench (Wang et al., 2024a) https://github.com/ruleGreen/AppBench 32 32
Mms (Ma et al., 2024) https://github.com/RAIVNLab/mnms 33 33
Metatool (a.k.a., ToolE) (Huang et al., 2023) https://github.com/HowieHwong/MetaTool 200 200
Reverse Chain (Zhang et al., 2023) https://github.com/ASK-03/Reverse-Chain 200 783
RestGPT (Song et al., 2023) https://github.com/Yifan-Song793/RestGPT 94 94
- RestGPT-TMDB subset https://github.com/Yifan-Song793/RestGPT/datasets/tmdb.json 54 54
- RestGPT-Spotify subset https://github.com/Yifan-Song793/RestGPT/datasets/spotify.json 40 40
Toolbench (Qin et al., 2023) https://github.com/OpenBMB/ToolBench 1,100 16,000
- G1-instruction subset https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J 200 16,072
- G1-Tool subset https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J 200 16,072
- G1-category subset https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J 200 16,072
- G2-instruction subset https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J 200 16,072
- G2-instruction subset https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J 200 16,072
- G3-instruction subset https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J 100 16,072
ToolLens (Qu et al., 2024a) https://github.com/quchangle1/COLT 314 314
Tooleyes (Ye et al., 2024a) https://github.com/Junjie-Ye/ToolEyes 95 95
ToolACE (Liu et al., 2024a) https://huggingface.co/datasets/Team-ACE/ToolACE/ 1,000 16,072
GPT4tools (Yang et al., 2024) https://github.com/AILab-CVC/GPT4Tools 32 32
Rotbench (Ye et al., 2024b) https://github.com/Junjie-Ye/RoTBench 550 919
T-eval (Chen et al., 2023) https://github.com/open-compass/T-Eval 100 100
- T-eval-step level subset https://huggingface.co/datasets/lovesnowbest/T-Eval 50 50
- T-eval-dialogue level subset https://huggingface.co/datasets/lovesnowbest/T-Eval 50 50
Taskbench (Shen et al., 2023) https://github.com/microsoft/JARVIS 103 103
- TaskBench-multimedia subset https://github.com/microsoft/JARVIS/taskbench/multimedia 40 40
- TaskBench-daily subset https://github.com/microsoft/JARVIS/taskbench/dailylifeapis 40 40
- TaskBench-DL subset https://github.com/microsoft/JARVIS/taskbench/huggingface 23 23
ToolAlpaca (Tang et al., 2023) https://github.com/tangqiaoyu/ToolAlpaca 94 1,937
Toolbench-sam (Xu et al., 2023) https://github.com/sambanova/toolbench 197 197
ToolEmu (Ruan et al., 2023) https://github.com/ryoungj/ToolEmu 38 38
TooLink (Qian et al., 2023) https://github.com/qiancheng0/Toolink 497 1,804
UltraTool (Huang et al., 2024) https://github.com/JoeYing1019/UltraTool 500 1,171

Table 6: The detailed statistics about the each collected dataset in TOOLRET. We highlight that the subsets of
ToolBench share a same toolsets containing 16,000+ tools. Besides, the TOOLRET combine and deduplicate the
toolsets from the above datasets to build the final tool retrieval corpus.

• Gorilla-Tensor (Patil et al., 2023): Includes TensorFlow functions as tools, collected from Tensor- 1031

Flow Hub, to assess LLMs’ tool selection capabilities in deep learning scenarios. 1032

• Gorilla-HuggingFace (Patil et al., 2023): Treats specific downstream models from the Hugging 1033

Face platform as tools. This dataset evaluates LLMs’ performance in correctly calling Hugging Face 1034

models based on user queries. 1035

• CRAFT-TabMWP (Yuan et al., 2023): Evaluates LLMs’ ability to use functions for table process- 1036

ing. The functions in this dataset are first generated by GPT-4 and subsequently verified. 1037

• CRAFT-VQA (Yuan et al., 2023): Provides evaluation cases for visual question answering (VQA), 1038

where LLMs must call image processing functions such as image capture and object detection. 1039

• CRAFT-Math-Algebra (Yuan et al., 2023): Assesses LLMs’ ability to invoke algebra functions 1040

for solving complex mathematical problems. 1041

B.4 TOOLRET-Customized 1042

Besides Web APIs and code functions, we also collect datasets that contain customized apps. Unlike Web 1043

APIs and code functions, customized apps are described using free-form natural language documentation 1044
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Algorithm 1: The pseudo algorithm for our target-aware strategy in automatically constructing
instructions for evaluation tasks.
Input: A set of N seed instructions S = {si | i ∈ [N ]} manually crafted by human experts; A

powerful LLMM (e.g., GPT-4o); Collected tasks T = {ti|i ∈ [|T |]}
Initialize an instruction pool I ← S;
for i ∈ |T | do

Sample k examples {s′1, s′2, ..., s′k} from I;
// Generate a new instruction si using M through in-context learning:
si ←M(prompt with {s′1, s′2, ..., s′k});
//Append new instruction to pool:
I = I ∪ {si} ;

Apply heuristic filtering to remove low-quality instructions from I;
Output: A set of high-quality instructions I = {s1, s2, ..., s|T |}

rather than structured formats. Specifically, we include the following datasets: ToolACE (Liu et al.,1045

2024a), GPT4Tools (Yang et al., 2024), TaskBench (Shen et al., 2023), ToolAlpaca, ToolBench-sam (Xu1046

et al., 2023), ToolEmu (Ruan et al., 2023), and TooLink (Qian et al., 2023).1047

B.5 Task format1048

The final benchmark, TOOLRET, integrates the above datasets and reformats all test cases into a unified1049

format, similar to conventional IR benchmarks such as BEIR and MTEB, to evaluate IR models in tool1050

retrieval tasks. Each reformatted task consists of: an input query, an instruction, and the corresponding1051

target tools (e.g., labels). Each tool is assigned a unique identifier and is paired with detailed documentation1052

describing its functionality. Below, we present a concrete example from TOOLRET.1053
1054

# An example of an evaluation task in our proposed benchmark1055
1056

- Query: I need to find a grocery store near 123 Main Street , Downtown District that1057
has a good selection of limes for my Easter celebration.1058

- ID: toolLens_query_71059
- Target tools (labels): toolLens_tool_20 , toolLens_tool_50 , toolLens_tool_21060
- Instruction: Given a `local grocery search` task , retrieve tools that can locate1061
grocery stores based on the user 's specified location and criteria , such as the1062
availability of specific items like limes , to meet the query 's requirements.1063

1064
1065

# Examples of tool documentation1066
1067

- toolLens_tool_20: {" category_name ": "Food", "required_parameters ": [{" name": "1068
ingredient", "type": "STRING", "description ": "", "default ": "strawberry "}], "1069
optional_parameters ": [], "method ": "GET", "template_response ": {"name": "str", "1070
ingredients ": ["list of str with length 9"], "instructions ": ["list of str with1071
length 7"]}, "name": "pastry/ingredient", "description ": "This API endpoint allows1072
users to retrieve a random pastry recipe that contains a specific ingredient. Users1073
can make a GET request to the endpoint with the name of the ingredient as a query1074
parameter , and the API will return a JSON response with the given recipe , including1075
the name , list of ingredients , and instructions ."}1076

1077
- toolLens_tool_50: {" category_name ": "Health_and_Fitness", "required_parameters ":1078
[], "optional_parameters ": [{" name": "limit", "type": "NUMBER", "description ": "1079
limit the length of response", "default ": "10"}] , "method ": "GET", "1080
template_response ": {"count": "int", "food": [{"_id": "str", "food_name ": "str", "1081
quantity ": "str", "calories ": "int", "uri": "str", "type": "str", "type_uri ": "str",1082
"core": "str", "core_uri ": "str", "food_nutrition ": [{" nutrient_name ": "str", "1083

value": "float", "unit": "str", "_list_length ": 3}], "_list_length ": 10}]}, "name":1084
"View All Food Items", "description ": "The request allows clients to retrieve a1085
comprehensive list of all available food items.\n\nAPI request sent to [https ://1086
indnutrientsapi.tech/food](https :// indnutrientsapi.tech/food)"}1087

1088
- toolLens_tool_2: {" category_name ": "Food", "required_parameters ": [{" name": "1089
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grocery", "type": "string", "description ": "", "default ": ""}], "optional_parameters 1090
": [], "method ": "GET", "template_response ": {" message ": "str"}, "name": "Search a 1091
Grocery", "description ": "Search a specific grocery "} 10921093

B.6 Details of instruction construction 1094

In TOOLRET, each task is paired with an instruction using a target-aware strategy, where GPT-4o acts 1095

as an automatic expert through in-context learning. Specifically, we follow these steps. We first invite 1096

three human experts with strong backgrounds in NLP and IR to manually craft seed instructions. These 1097

expert-crafted instructions form an initial example pool. For each task, we randomly sample a set of 1098

instructions from this pool as in-context learning examples. Using these examples, GPT-4o generates a 1099

new instruction tailored to the given task. The newly generated instruction is then appended back to the 1100

instruction pool to enhance instruction diversity. The detailed pseudo algorithm is provided in Alg. 1. 1101

Below, we provide a concrete example of the GPT-4o prompt used in our instruction construction 1102

process. The example of seed instructions and the generated instructions is provided in Table 8. 1103
1104

# The prompt for GPT -4o. 1105
1106

Given a query , you need to design an instruction about 20 words that clearly 1107
indicates this is a task to retrieve tools capable of solving the query based on its 1108
content. The instruction should emphasize the task requirements and target outcomes 1109
of the query while incorporating the functional characteristics of the tools to 1110

help the system accurately match the appropriate tools. 1111
1112

Below , I have provided the target tools (i.e., the labels for the query). Please 1113
analyze the key aspects of the query and the tool descriptions. Your instruction 1114
should implicitly highlight the task requirements and the characteristics of the 1115
target tools relevant to the query. 1116

1117
Here is an output template that your should follow. Please note that the instruction 1118
should be concise. 1119

1120
Query: I would like to generate a video presenting a text -based discussion on the 1121
topic of 'The Benefits of Exercise ' 1122
Labels: [1] {'id ': 'taskbench_data_huggingface_tool_5 ', 'doc ': {'input -type ': ['text 1123
'], 'output -type ': ['text '], 'name ': 'Text Generation ', 'description ': 'Generating 1124
text is the task of producing new text. These models can , for example , fill in 1125
incomplete text or paraphrase .'}} 1126
Instruction: Given a `text -to-video` task , retrieve tools that process text inputs 1127
to generate coherent textual outputs aligned with the query 's topic and requirements 1128
. 1129

1130
Query: I have an audio file 'example.wav ' which is difficult to understand. I would 1131
like you to help me transcribe the audio to text 1132
Labels: [1] {'id ': 'taskbench_data_huggingface_tool_19 ', 'doc ': {'input -type ': [' 1133
audio '], 'output -type ': ['text '], 'name ': 'Automatic Speech Recognition ', ' 1134
description ': 'Automatic Speech Recognition (ASR), also known as Speech to Text (STT 1135
), is the task of transcribing a given audio to text. It has many applications , such 1136
as voice user interfaces.'}, 'relevance ': 1} 1137

Instruction: Given a `audio transcription` task , retrieve tools that process audio 1138
inputs to produce accurate textual transcriptions aligned with the query 's 1139
requirements. 1140

1141
Query: Conduct a two -sample independent t-test with two samples , sample1 =[1, 2, 3, 1142
4, 5] and sample2 =[6, 7, 8, 9, 10], and a significance level of 0.05. 1143
Labels: [1] {'id ': 'tool_id_693 ', 'doc ': {'name ': 'independent_samples_t_test ', ' 1144
description ': 'Conducts a two -sample independent t-test and returns the t-statistic , 1145
p-value , and conclusion.', 'parameters ': {'sample1 ': {'description ': 'The first 1146

sample of observations.', 'type ': 'List[float]', 'default ': 0.05}, 'sample2 ': {' 1147
description ': 'The second sample of observations.', 'type ': 'List[float]', 'default 1148
': 0.05}, 'alpha ': {'description ': 'The significance level of the test. Defaults to 1149
0.05.', 'type ': 'float , optional '}}}, 'relevance ': 1} 1150
Instruction: Given a `significance test` task , retrieve tools that perform 1151
statistical tests , specifically a two -sample independent t-test , by processing 1152
numerical inputs and returning the t-statistic , p-value. 1153

1154
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Query: Can I get a list of all boards and their attributes on page number two with a1155
page size of seven?1156

Labels: [1] {'id ': 'ToolEyes_tool_34 ', 'doc ': {'name ': 'get_boards ', 'description ':1157
'A list of all boards and their attributes.', 'parameters ': {'type ': 'object ', '1158
properties ': {'page ': {'type ': 'string ', 'description ': 'Get the items on a specific1159
page. 0( default) is the first page.'}, 'page_size ': {'type ': 'string ', 'description1160

': 'Get the number of boards on a specific page. Default: 5.'}}, 'required ': []}}}1161
Instruction: Given a `pagination query` task , retrieve tools that can list boards1162
and their attributes by processing parameters such as page number and page size to1163
return the requested information.11641165

B.7 Human annotation1166

To ensure the quality of the generated instructions, we conduct human annotation to review them based1167

on four key aspects listed in Table 3. For instructions deemed low-quality, human annotators manually1168

revise them to improve accuracy and clarity. For a clear illustration, we provide concrete examples of1169

handcrafted instructions, high-quality generated instructions, and low-quality generated instructions in1170

Table 8. Below, we also provide the detailed human annotation guidelines used in our review process for1171

reproducibility and transparency.1172
1173

# Human guidance for instruction quality annotation1174
1175

We ask you to evaluate the quality of the generated instructions based on the1176
following four aspects. Please carefully assess each instruction and provide your1177
judgment:1178

1179
## Aspects for annotation1180

1181
1. Hallucination Check: Does the instruction contain any incorrect or fabricated1182
information about the target tools or the input query? (Are there any details in1183
the instruction that do not align with the actual features of the target tools or1184
the content of the input query?)1185

1186
2. Comprehensiveness of Tool Features: Does the instruction fully and accurately1187
describe the features of all target tools mentioned in the query? (Are there any1188
important features of the target tools that are missing or inadequately described in1189
the instruction ?)1190

1191
3. Accuracy of Tool Feature Description: Does the instruction correctly describe the1192
features of the target tools? (Key question to ask: Are the descriptions of the1193

target tools technically accurate and consistent with their actual functionality ?)1194
1195

4. Relevance to Input Query: Is the instruction directly relevant to the original1196
input query? (Key question to ask: Does the instruction address the specific needs1197
or context provided in the input query , or does it deviate from the query 's intent ?)1198

1199
## Detailed annotation Process1200

1201
For each instruction , evaluate it based on the four aspects above.1202
1. If the instruction meets all criteria (no hallucination , comprehensive , accurate ,1203
and relevant), mark it as correct.1204

2. If the instruction fails to meet any of the criteria , mark it as incorrect and1205
provide a brief explanation of the issue (e.g., "contains hallucination ," "missing1206
key tool features ," or "irrelevant to query").1207

1208
For incorrect instructions , ``revise`` them to ensure they meet all quality criteria1209
. The goal of this annotation process is to ensure that all instructions in our1210
benchmark are of high quality and faithfully grounded in the original queries and1211
target tools.12121213

C Large-scaling training dataset: TOOLRET-train1214

We extend the data collection process from TOOLRET to incorporate the training sets of three mainstream1215

tool-use datasets: ToolACE (Liu et al., 2024a), ToolBench (Qin et al., 2023), and APIGen (Liu et al.,1216
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2024b). These datasets are selected for their diversity in task types, tool categories, and query complexity, 1217

ensuring a comprehensive representation of real-world tool-use scenarios. 1218

After collecting and preprocessing the data, we ultimately collect over 200k training instances. Each 1219

instance consists of a query and a corresponding set of target tools. Next, we further pair each query with 1220

an instruction using our target-aware strategy (§ 3.3). This strategy generates instructions that explicitly 1221

guide the retrieval process by incorporating task-specific context and tool functionality descriptions. 1222

We report the basic statistics of TOOLRET-train in Table 7. We also show a training example of our 1223

TOOLRET-train. 1224
1225
1226

# Query: Is 'https ://www.apple.com ' available in the Wayback Machine on September 9, 1227
2015? 1228

1229
# Instruction: Given a `URL availability` task , retrieve tools that check if a given 1230
URL is archived and accessible on a specific date in the Wayback Machine. 1231

1232
# Target tools (labels): ['{'name ': 'availability ', 'description ': 'Checks if a 1233
given URL is archived and currently accessible in the Wayback Machine.', 'parameters 1234
': {'url ': {'description ': 'The URL to check for availability in the Wayback Machine 1235
.', 'type ': 'str ', 'de...}}} '] 1236

1237
# Negative tools: [ 1238

{'name ': 'top_grossing_mac_apps ', 'description ': 'Fetches a list of the top - 1239
grossing Mac apps from the App Store.', 'parameters ': {'category ': {'description 1240
': "The category ID for the apps to be fetched. Defaults to '6016' (general 1241
category).", 'type ': 'str ', 'default ': '6016'}, 'country ': {'descript ...}, 1242
{'name ': 'top_paid_mac_apps ', 'description ': 'Retrieves a list of the top paid 1243
Mac apps from the App Store.', 'parameters ': {'category ': {'description '...}, 1244
... 1245
{'name ': 'exact_url_non_english ', 'description ': 'Retrieves the backlinks of a 1246
specific non -English URL using the RapidAPI service ...} 1247

] 12481249

Statistic

# size of retrieval task 205,826
# Average token length of the input query 52.87
# Average token length of the paired iinstruction 46.72
# Average token length of the tool documentation 163.52
# Number of negative tools per input query 5
# Number of target tools (labels) per input query 2.31

Table 7: Basic statistics of the collected large-scaling training set TOOLRET-train. We use the tokenizer from
gpt-3.5-turbo in this work.

D More experiment details 1250

D.1 Baselines 1251

We comprehensively evaluate the following mainstream retrieval models on our benchmark, including: 1252

• Sparse Retrieval. These methods measure the similarity between tasks and tool documentation 1253

based on lexical overlap. We evaluate BM25s (Lù, 2024). 1254

• Single-task dense retrieval. These methods employ dual-encoder architecture models trained on 1255

conventional IR datasets. We evaluate gtr (Ni et al., 2021a), contriever (Izacard et al., 2021a), 1256

and colbertv2.0 (Santhanam et al., 2021a), all trained on MS-MARCO (Nguyen et al., 2016) with 1257

relevance criteria. We also evaluate the COLT (Qu et al., 2024a) which is a recently proposed model 1258

trained on an ad-hoc tool retrieval dataset. 1259
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Example of our seed instructions (handcrafted instruction
# Query: I would like to generate a video presenting a text-based discussion on the topic of ’The Benefits of Exercise’.
# Instruction: Given a "text-to-video" task, retrieve tools that process text inputs to generate coherent textual outputs
aligned with the query’s topic and requirements.

# Query: I have an audio file ’example.wav’ which is difficult to understand. I would like you to help me transcribe the
audio to text.
# Instruction: Given a "audio transcription" task, retrieve tools that process audio inputs to produce accurate textual
transcriptions aligned with the query’s requirements.

# Query: Conduct a two-sample independent t-test with two samples, sample1=[1, 2, 3, 4, 5] and sample2=[6, 7, 8, 9,
10], and a significance level of 0.05.
# Instruction: Given a "significance test" task, retrieve tools that perform statistical tests, specifically a two-sample
independent t-test, by processing numerical inputs and returning the t-statistic, p-value.

# Query: Can you cancel a timer for my smart device?
# Instruction: Given a "timer cancellation" task, retrieve tools that handle smart device operations by processing device
ID and switch time inputs to cancel a scheduled action and return the status of the operation.

# Query: Find cruise tickets from Fontana to Santa Rosa on date 2023-07-04.
# Instruction: Given a "ticket booking" task, retrieve tools that support booking cruise tickets by processing travel
details such as departure location, destination, date, and time.

Example of our generated instructions (high-quality instructions)
# Query: Suppose that f(x) = 4x+ 5. What is f−1(f−1(9))?
# Instruction: Given a "inverse function calculation" task, retrieve tools that calculate the value of the repeated inverse
for a linear function by processing coefficients, constants, and target values to determine the result.

# Query: Identify an function that can classify images and works with spiking neural networks.
# Instruction: Given an "image classification" task, retrieve tools that execute image classification by using spiking
neural network models and processing image inputs.

# Query: I need to find a grocery store near 123 Main Street, Downtown District that has a good selection of limes for
my Easter celebration.
# Instruction": "Given a "local grocery search" task, retrieve tools that can locate grocery stores based on the user’s
specified location and criteria, such as the availability of specific items like limes, to meet the query’s requirements.

# Query: Please help me find a recipe with no more than 40 grams of carbohydrates per gram and at least 5 grams of
protein per gram.
# Instruction: "Given a "nutritional recipe search" task, retrieve tools that can find recipes based on specific nutritional
criteria such as carbohydrate and protein content.

# Query: What is 64277 times 38142?
# Instruction: Given a "multiplication" task, retrieve tools that compute the product of two numbers by processing
numerical inputs and returning the result.

# Query: Can I get a list of all boards and their attributes on page number two with a page size of seven?
# Instruction: Given a "pagination query" task, retrieve tools that can list boards and their attributes by processing
parameters such as page number and page size to return the requested information.

Example of our generated instructions (low-quality instructions)
# Query: I would like to generate a video presenting a text-based discussion on the topic of ’The Benefits of Exercise’
# Instruction: Given a text-to-video task, please retrieve relevant tools to generate video about exercise.
// Too general to cover the key features.
# Revised version: Given a ‘text-to-video‘ task, retrieve tools related to general video scripting, exercise video libraries
or tools process text data. // More specific to the query and target tools.

# Query: Can you assist me in finding a 1-bedroom townhouse or condo in Little Rock with max rent 1541000? I want
it on the sixth floor with 7 balconies.
# Instruction: Please retrieve tools find 1-bedroom or condo in Little Rock. // Too general and miss the point of floor
# Revised version: Given a property search task, retrieve tools that can find rental properties based on location, property
type, rent budget, and specific features or requirements. // Cover all key points and related to tools functionality.

Table 8: Example of the instruction in TOOLRET. We show the handcrafted instruction by human experts, the high-
quality instruction and low-quality instruction generated by GPT-4o, respectively. We also show the revised version
of the low-quality instruction paired with the reason for revision.
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Name Public Link of Endpoint
Conventional sparse and dense models

BM25S (Lù, 2024) https://github.com/xhluca/bm25s
contriever (Izacard et al., 2021b) https://huggingface.co/facebook/contriever-msmarco
ColBERTv2 (Santhanam et al., 2021b) https://github.com/stanford-futuredata/ColBERT
gtr-t5-base (Ni et al., 2021b) https://huggingface.co/sentence-transformers/gtr-t5-base
gtr-t5-large (Ni et al., 2021b) https://huggingface.co/sentence-transformers/gtr-t5-large

Multi-task embedding models
all-MiniLM-L6-v2 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
e5-small-v2 (Wang et al., 2022) https://huggingface.co/intfloat/e5-small-v2
e5-base-v2 (Wang et al., 2022) https://huggingface.co/intfloat/e5-base-v2
e5-large-v2 (Wang et al., 2022) https://huggingface.co/intfloat/e5-large-v2
bge-base-en-v1.5 (Xiao et al., 2023b) https://huggingface.co/BAAI/bge-base-en-v1.5
bge-large-en-v1.5 (Xiao et al., 2023b) https://huggingface.co/BAAI/bge-large-en-v1.5

gte-Qwen2-1.5B-inst. (Li et al., 2023c) https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct
e5-mistral-7b (Wang et al., 2023) https://huggingface.co/intfloat/e5-mistral-7b-instruct
GritLM-7B (Muennighoff et al., 2024) https://huggingface.co/GritLM/GritLM-7B
NV-Embed-v1 (Lee et al., 2024) https://huggingface.co/nvidia/NV-Embed-v1

Cross-encoder re-ranking
mxbai-rerank-large-v1 https://huggingface.co/mixedbread-ai/mxbai-rerank-large-v1
monot5-base (Nogueira et al., 2020) https://huggingface.co/castorini/monot5-base-med-msmarco
bge-reranker-v2-m3 (Li et al., 2023a; Chen et al., 2024a) https://huggingface.co/BAAI/bge-reranker-v2-m3
jina-reranker-v2 https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual
bge-reranker-v2-gemma (Li et al., 2023a; Chen et al., 2024a) https://huggingface.co/BAAI/bge-reranker-v2-gemma

LLM agent
RankGPT https://github.com/sunnweiwei/RankGPT
- Mixtral-8x22B https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
- GPT-3.5-turbo-1106 https://openai.com/chatgpt/overview/
- GPT-3.5-turbo-0125 https://openai.com/chatgpt/overview/

Table 9: The public link or endpoint of the baselines in our experiments.

• Multi-task Embedding Models. These methods utilize transformer encoders trained on various 1260

annotated IR datasets. We evaluate gte (Li et al., 2023c), bge (Xiao et al., 2023a), and e5 (Wang et al., 1261

2022), covering a wide range of parameter sizes. Additionally, we evaluate all-MiniLM-L6-v25 from 1262

the Sentence Transformers platform. 1263

• Cross-encoder Re-rankers. These models re-rank the initially retrieved documents based on the 1264

query-passage relevance using bidirectional or unidirectional transformers. We evaluate MonoT5- 1265

Base and three re-rankers trained on diverse tasks: (i) mxbai-rerank-large-v16, (ii) jina-reranker-v2- 1266

base7, and (iii) BGE-reranker. 1267

• LLM Agents. These methods leverage general-purpose LLM agents for re-ranking tasks in a zero- 1268

shot setting, simulating the tool selection process of tool-use agents. We evaluate the widely used 1269

LLM re-ranking framework, i.e., RankGPT (Sun et al., 2023), with various LLMs as backbone. 1270

We highlight that the initial tools for LLM agent and Re-ranking baselines are retrieved by 1271

NV-embedd-v1 model. Details about these baselines are provided in Table 9. 1272

D.2 Compare with conventional IR tasks 1273

To further investigate the complexity of tool retrieval tasks, we conducted a comparative analysis of model 1274

performance between our proposed benchmark (TOOLRET) and the conventional Information Retrieval 1275

(IR) task benchmark, specifically the Massive Text Embedding Benchmark (MTEB). The relationship 1276

between these two benchmarks is visually presented in Figure 7. Our analysis reveals two significant 1277

findings. 1278

First , we observe a strong positive correlation between the two benchmarks, as evidenced by a Pearson’s 1279

correlation coefficient of β = 0.790, indicating a similar performance trend across models. However, 1280

we observe that the absolute performance scores in TOOLRET are consistently lower than those in the 1281

5huggingface.co/all-MiniLM-L6-v2
6huggingface.co/mxbai-rerank-large-v1
7huggingface.co/jina-reranker-v2-base-multilingual
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Model REST API Code Function Customized tool Avg.

N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 C@10
Conventional sparse and dense models
BM25s 62.09 15.68 72.98 58.06 56.98 8.24 73.95 72.81 68.48 14.78 80.51 69.55 62.51 66.81
ColBERT 56.73 14.59 67.86 47.87 53.56 7.82 71.66 70.09 64.49 13.05 76.35 64.85 58.26 60.94
contriever-msmarco 57.81 15.33 70.77 50.87 49.66 7.29 65.99 64.56 68.86 14.67 83.05 73.45 58.77 62.96
gtr-t5-base 57.06 14.54 68.26 49.75 49.38 7.29 65.76 64.09 70.48 14.29 81.60 70.96 58.97 61.60
gtr-t5-large 60.32 15.27 72.05 54.03 52.79 7.41 67.28 65.79 72.03 14.69 84.39 73.95 61.72 64.59
Embedding models
all-MiniLM-L6-v2 53.92 14.47 66.77 48.64 50.14 7.58 68.39 66.74 68.31 14.20 81.57 71.14 57.46 62.17
e5-small-v2 61.95 15.84 72.91 53.34 51.45 7.76 68.16 65.46 69.13 14.24 79.69 68.33 60.85 62.38
e5-base-v2 62.90 15.90 73.98 53.83 55.81 8.44 74.17 72.53 69.96 14.98 83.63 73.94 62.89 66.77
e5-large-v2 61.72 15.90 73.27 52.84 56.21 8.42 75.25 73.14 69.88 15.01 81.13 71.30 62.60 65.76
gte-base-en-v1.5 64.35 16.55 75.80 57.38 59.18 8.77 76.95 74.45 71.79 14.53 81.90 70.07 65.11 67.30
gte-large-en-v1.5 60.67 15.46 72.30 52.41 54.11 8.22 73.35 71.37 68.59 14.36 80.41 69.82 61.12 64.53
bge-base-en-v1.5 65.05 16.37 75.72 57.30 54.55 7.72 69.22 67.48 71.21 14.71 83.13 72.53 63.60 65.77
bge-large-en-v1.5 66.25 16.48 75.84 57.75 58.61 8.41 74.91 72.74 71.19 14.20 80.44 69.27 65.35 66.59

gte-Qwen2-1.5B-inst. 67.57 16.93 78.14 60.81 58.12 8.51 75.41 73.39 71.73 15.34 83.03 73.39 65.81 69.19
e5-mistral-7b 69.51 17.37 79.34 62.48 58.15 8.37 75.12 72.79 72.52 14.68 81.79 71.49 66.73 68.92
GritLM-7B 69.43 17.25 78.97 61.67 62.78 9.22 78.74 77.59 76.04 15.44 85.55 74.35 69.42 71.21
NV-Embed-v1 66.04 16.88 77.19 59.06 63.46 9.40 81.79 79.82 75.39 15.75 88.48 78.37 68.30 72.42
Cross-encoder re-ranking models
mxbai-rerank-large-v1 57.48 14.60 68.65 49.54 50.37 7.75 69.59 67.88 62.24 13.32 73.26 61.24 56.70 59.55
monot5-base-msmarco 54.57 14.23 64.38 46.12 50.00 8.05 68.76 66.80 64.50 13.28 75.80 67.84 56.36 60.25
bge-reranker-v2-m3 70.42 17.75 80.33 65.49 64.22 9.37 80.60 79.48 75.70 16.15 88.87 78.65 70.11 74.54
bge-reranker-v2-gemma 75.67 18.63 84.07 71.00 69.59 9.78 84.18 83.47 77.17 16.55 88.34 79.80 74.14 78.09

Table 10: Results of control experiment where each IR models is evaluated from the toolset of each integrated
dataset in w/ inst. setting.
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Figure 7: Correlation between the score on our benchmark and MTEB (retrieval subset).

conventional IR benchmark. This discrepancy suggests that while our benchmark shares fundamental1282

characteristics with conventional IR tasks, it presents additional challenges that make it more demanding1283

for existing models.1284

Second , our experimental results demonstrate that state-of-the-art IR models, particularly those trained1285

with relevance-oriented optimization criteria (e.g., Contriever), exhibit substantially degraded performance1286

on TOOLRET. This performance gap underscores the necessity for target-aware reasoning capabilities in1287

our benchmark, which goes beyond traditional relevance matching. The unique challenges of TOOLRET1288

are further elaborated in § 4.1, where we identify two key distinguishing factors: (1) the presence of1289
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Model TOOLRET-Web TOOLRET-Code TOOLRET-Customized Avg.

N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 C@10
Conventional sparse and dense models
BM25S 51.79 13.78 63.35 45.46 38.74 5.87 52.65 51.39 59.72 13.55 71.83 60.38 50.08 52.41
ColBERT 51.70 13.56 61.92 41.01 38.60 6.05 55.07 54.05 53.91 12.10 66.85 55.29 48.07 50.11
contriever-msmarco 53.23 14.55 65.96 46.59 35.97 5.79 52.32 50.84 56.94 13.21 72.11 61.17 48.71 52.87
gtr-t5-base 51.65 14.13 64.55 44.56 33.98 5.51 48.88 47.77 54.28 13.24 70.95 60.82 46.64 51.05
gtr-t5-large 56.62 15.06 69.77 50.26 37.40 5.85 52.41 51.27 56.24 13.31 71.25 61.40 50.09 54.31
Embedding models
all-MiniLM-L6-v2 48.49 13.54 62.35 43.63 34.40 5.62 50.15 48.71 58.08 13.22 72.72 62.17 46.99 51.50
e5-small-v2 54.40 14.60 66.47 46.76 35.18 5.67 50.70 49.19 56.85 13.45 73.43 60.86 48.81 52.27
e5-base-v2 55.42 14.92 67.90 48.10 38.35 6.23 56.08 54.90 59.96 14.18 76.18 66.55 51.24 56.52
e5-large-v2 54.32 14.81 67.69 47.89 40.24 6.23 56.33 54.85 59.40 13.79 72.96 60.37 51.32 54.37
gte-base-en-v1.5 56.48 15.40 70.07 50.96 39.46 6.27 56.58 55.24 64.00 14.23 78.03 66.93 53.31 57.71
gte-large-en-v1.5 55.39 14.89 68.33 48.98 38.23 6.22 56.16 54.95 57.88 13.86 75.12 65.15 50.50 56.36
bge-base-en-v1.5 56.17 14.86 68.30 49.05 38.71 6.05 54.35 53.08 59.40 13.93 75.38 64.81 51.43 55.65
bge-large-en-v1.5 58.20 15.33 69.83 50.20 40.39 6.13 55.03 53.67 61.40 13.83 77.27 66.71 53.33 56.86

gte-Qwen2-1.5B-inst.♠ 60.28 15.64 72.60 53.82 44.06 6.56 59.29 57.78 65.57 14.79 80.33 70.59 56.64 60.73
e5-mistral-7b♠ 60.78 15.93 73.12 55.60 44.20 6.77 61.18 59.79 60.56 13.80 74.47 63.38 55.18 59.59
GritLM-7B♠ 62.54 16.07 73.82 54.46 46.80 6.98 62.89 61.35 67.61 14.93 80.04 68.41 58.98 61.41
NV-Embed-v1♠ 61.76 16.02 73.86 55.96 50.38 7.54 67.93 66.03 67.01 14.61 79.70 69.74 59.72 63.91
Cross-encoder re-ranking models
mxbai-rerank-large-v1 56.45 14.51 67.51 49.02 42.55 6.28 57.85 55.96 54.63 13.03 72.68 60.20 51.21 55.06
monot5-base-msmarco 56.10 14.82 65.29 47.12 41.05 6.31 57.20 55.14 64.60 13.91 75.79 65.76 53.92 56.01
bge-reranker-v2-m3 61.78 15.94 72.35 55.61 45.15 6.74 61.03 59.56 62.45 14.86 79.65 68.68 56.46 61.28
jina-reranker-v2-base 65.86 17.14 77.54 62.33 47.23 7.01 63.50 62.24 69.10 15.38 81.29 69.63 60.73 64.73
bge-reranker-v2-gemma 65.80 16.87 76.85 61.40 52.49 7.60 68.14 65.94 67.87 15.63 81.98 72.24 62.05 66.53

Table 11: Results of control experiment where each IR models is evaluated from the toolset of each integrated
dataset in w/o inst. setting.

multiple potential target tools for each query, and (2) significantly lower term overlap between input 1290

queries and relevant tools compared to conventional IR scenarios. These characteristics collectively 1291

contribute to a more complex retrieval environment that requires advanced reasoning and understanding 1292

capabilities from retrieval models. 1293

D.3 Results of controlled experiment 1294

Since TOOLRET integrates multiple datasets, we also conduct controlled experiments where IR models 1295

retrieve tools exclusively within the toolset of each individual dataset instead of the overall tool corpus. 1296

Table 11 presents the results under the setting that the IR models only take the query to retrieve, i.e., the 1297

w/o inst setting. Table 10 presents the results under the setting that the IR models take the query and 1298

additional instruction to retrieve, i.e., the w/ inst setting. 1299

D.4 Results of in-subset retrieval 1300

TOOLRET contains three subsets, including TOOLRET-web, TOOLRET-code and TOOLRET-customized. 1301

The tool in each subset diverges by its documentation format, domain, and functionality. For a compre- 1302

hensive evaluation, we also conduct an in-subset retrieval experiment, where IR models retrieve tools 1303

exclusively within the toolset of each subset instead of the overall tool corpus. Table 13 presents the 1304

results under the setting that the IR models only take the query to retrieve, i.e., the w/o inst setting. 1305

Table 12 presents the results under the setting that the IR models take the query and additional instruction 1306

to retrieve, i.e., the w/ inst setting. 1307

D.5 Results of trained IR mdels 1308

Experimental results on TOOLRET reveal that even IR models with strong performance on conventional 1309

IR benchmarks such as MTEB and BEIR struggle significantly in tool retrieval tasks. A key factor 1310

contributing to this performance degradation is the lack of a large-scale training dataset specifically 1311

tailored for tool retrieval. To address this gap, we introduce TOOLRET-train, a diverse training dataset 1312

comprising more than 200k tool retrieval tasks. Each example in TOOLRET-train consists of an input 1313

query, an instruction generated using our target-aware strategy, the corresponding target tools, and a set of 1314
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Model TOOLRET-Web TOOLRET-Code TOOLRET-Customized Average

N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 C@10
Sparse and dense models
bm25 49.01 7.17 64.96 63.68 28.92 6.78 37.09 24.44 51.28 10.66 60.70 48.40 43.07 45.51
COLT 36.58 5.74 50.84 49.04 21.98 5.12 29.68 20.03 46.02 9.12 58.02 45.27 34.86 38.12
Colbert 43.80 6.40 58.02 56.28 16.60 3.05 20.85 14.95 31.18 5.86 39.40 32.10 30.53 34.44
contriever-msmarco 35.78 5.31 47.17 46.07 25.19 5.67 31.95 20.56 44.37 9.35 57.53 46.80 35.11 37.81
gtr-t5-base 37.45 5.50 48.78 47.44 22.54 4.93 29.64 20.60 51.02 10.28 61.08 49.06 37.00 39.03
gtr-t5-large 42.14 5.98 53.59 52.19 26.60 5.71 33.68 22.38 53.95 11.17 66.08 52.21 40.90 42.26
Embedding models
all-MiniLM-L6-v2 36.93 5.65 49.54 47.92 15.89 3.89 22.68 15.24 43.09 9.29 56.84 43.96 31.97 35.71
e5-small-v2 38.22 5.55 49.34 48.07 28.97 6.81 36.96 23.45 47.59 9.78 58.19 45.31 38.26 38.94
e5-base-v2 40.69 6.51 55.38 54.01 28.43 6.59 37.14 23.67 47.89 9.48 59.01 46.91 39.00 41.53
e5-large-v2 40.14 5.87 52.23 50.80 26.88 6.16 35.65 24.31 51.40 10.65 61.45 48.28 39.47 41.13
gte-base-en-v1.5 48.25 7.16 61.96 59.17 33.28 7.57 41.99 27.20 50.33 9.70 62.05 50.09 43.95 45.49
gte-large-en-v1.5♠ 40.48 6.46 56.34 54.52 30.58 7.00 38.79 24.78 49.24 9.98 59.13 47.20 40.10 42.17
bge-base-en-v1.5 43.74 6.43 57.33 55.85 29.83 6.96 38.86 25.67 52.41 10.75 63.84 51.19 41.99 44.24
bge-large-en-v1.5 44.07 6.44 56.78 55.22 33.88 7.90 43.11 28.62 53.48 10.53 63.66 52.00 43.81 45.28

gte-Qwen2-1.5B-inst.♠ 47.29 7.10 61.89 59.98 39.30 9.90 48.58 29.51 55.56 11.67 65.55 51.75 47.38 47.08
e5-mistral-7b♠ 48.76 7.16 63.57 61.40 33.06 8.14 43.56 28.49 57.16 11.43 67.28 52.62 46.32 47.51
GritLM-7B 53.69 8.13 68.70 67.26 41.59 10.06 51.69 33.87 60.14 11.63 68.93 54.60 51.81 51.91
NV-Embed-v1♠ 51.95 7.62 66.58 64.21 34.42 8.40 43.66 29.65 57.93 12.34 71.14 57.47 48.10 50.44
Cross-encoder re-ranking models
mxbai-rerank-large-v1 33.39 5.09 46.75 45.11 24.90 5.95 32.20 19.52 35.62 7.35 43.96 34.14 31.30 32.92
monot5-base-msmarco 29.95 5.20 42.47 40.36 30.20 7.84 37.94 21.43 46.99 9.26 57.10 46.48 35.71 36.09
bge-reranker-v2-m3 56.49 8.42 72.26 70.67 38.09 9.25 48.14 33.48 54.66 12.46 70.79 56.17 49.75 53.44
jina-reranker-v2-base 35.24 5.48 47.70 46.31 36.23 9.21 45.59 29.26 54.12 11.92 65.09 51.18 41.86 42.25
bge-reranker-v2-gemma 62.84 8.87 76.24 74.86 37.13 8.62 47.23 33.45 64.33 13.72 77.37 62.08 54.76 56.79

Table 12: Experiments are conducted under the w/ inst. setting, with retrieval performed within each subset
individually.

negative tools. IR models are trained to distinguish target tools from negative tools (§ 7). We evaluate1315

these trained IR models on TOOLRET and present the results in Table 14.1316

D.6 Improved IR enhances tool-use LLMs1317

We further investigate the impact of improved IR models on the end-to-end performance of tool-use LLMs.1318

Specifically, we evaluate tool-use LLMs on the ToolBench (Qin et al., 2023) dataset using the official1319

Pass Rate metric, which measures whether the model successfully invokes the correct tools to complete a1320

given task.1321

For each task in ToolBench, we replace the pre-annotated toolset (oracle) with tools retrieved by1322

IR models from TOOLRET’ tool corpus, which contains 43,000 tools. Since TOOLRET integrates the1323

ToolBench dataset, we can compute NDCG@10 for this retrieval step. For a comprehensive evaluation,1324

we assess two widely used tool-use LLMs, including GPT-3.5 and ToolLLaMA (Qin et al., 2023).1325

Table 15 presents the retrieval NDCG@10 scores alongside the corresponding pass rates on ToolBench.81326

Our results demonstrate that LLM agents equipped with improved IR models achieve substantial gains1327

in pass rate, highlighting the critical role of accurate tool retrieval in downstream task performance.1328

Furthermore, Figure 6 visually illustrates a positive correlation between improved IR performance and1329

higher task pass rate, suggesting that better retrieval directly leads to improved downstream outcomes.1330

Based on this analysis, we propose that future work could explore the following two directions: (i)1331

Further optimize IR models to enhance tool retrieval performance; or (ii) Adapt IR models by incorporating1332

feedback from end-to-end task performance, allowing them to better support tool-use LLMs. These1333

approaches provide a more efficient plug-and-play solution compared to fine-tuning LLMs, enabling1334

flexible integration into diverse tool-use systems.1335

8ToolBench consists of three subsets: ToolBench-G1, ToolBench-G2, and ToolBench-G3.
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Model TOOLRET-Web TOOLRET-Code TOOLRET-Customized Average

N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 C@10
Sparse and dense models
bm25 26.47 4.04 34.51 33.22 20.61 5.06 26.35 15.87 38.48 8.51 48.24 37.09 28.52 28.73
COLT 22.23 3.75 31.66 30.15 21.65 5.36 29.15 19.12 36.12 7.99 47.63 37.64 26.67 28.97
Colbert 23.58 3.84 32.64 31.19 23.50 5.70 28.82 16.03 33.71 6.64 40.85 32.01 26.93 26.41
contriever-msmarco 19.11 3.16 26.52 24.97 21.84 5.93 27.83 15.19 35.01 7.57 44.07 34.71 25.32 24.96
gtr-t5-base 21.19 3.48 29.05 27.90 18.18 4.45 25.09 16.32 35.95 8.10 45.77 36.50 25.11 26.91
gtr-t5-large 24.48 3.91 33.55 32.44 23.49 5.64 30.79 19.31 38.88 8.89 49.55 38.64 28.95 30.13
Embedding models
all-MiniLM-L6-v2 18.07 3.10 25.13 23.75 13.71 3.49 18.73 11.78 31.61 7.12 40.66 30.03 21.13 21.85
e5-small-v2 20.10 3.14 26.47 25.12 21.02 5.33 27.70 16.88 32.58 7.35 39.85 30.33 24.57 24.11
e5-base-v2 20.96 3.54 29.43 28.23 21.25 5.43 27.59 16.42 32.90 7.33 43.10 33.51 25.04 26.05
e5-large-v2 22.93 3.49 29.53 28.09 20.16 5.19 27.26 16.68 39.45 8.81 49.07 38.19 27.51 27.65
gte-base-en-v1.5 24.50 3.98 33.85 32.48 24.32 6.46 33.01 19.91 37.86 8.10 49.44 38.94 28.89 30.44
gte-large-en-v1.5♠ 23.00 3.90 33.07 31.93 23.84 6.19 31.38 19.15 35.34 8.24 45.43 35.28 27.39 28.79
bge-base-en-v1.5 23.44 3.86 32.79 31.47 24.17 6.37 31.80 18.68 36.59 8.47 47.44 36.87 28.07 29.01
bge-large-en-v1.5 23.12 3.76 31.93 30.67 27.14 7.24 35.77 21.16 35.51 7.82 45.71 36.39 28.59 29.40

gte-Qwen2-1.5B-inst.♠ 28.99 4.57 39.58 38.16 31.85 8.37 39.95 22.69 45.47 10.02 55.68 43.85 35.44 34.90
e5-mistral-7b 25.38 4.13 34.81 33.47 28.22 7.60 35.99 22.28 42.31 9.03 51.34 40.24 31.97 32.00
GritLM-7B♠ 29.67 4.82 41.30 39.77 30.86 8.18 39.99 25.25 48.92 10.31 59.01 46.55 36.48 37.19
NV-Embed-v1♠ 35.50 5.54 48.36 46.72 33.08 8.77 41.08 24.83 51.28 11.13 61.49 48.05 39.95 39.87
Cross-encoder re-ranking models
mxbai-rerank-large-v1 31.75 4.79 43.82 42.20 24.84 5.96 32.13 19.53 35.65 7.31 43.38 33.43 30.75 31.72
monot5-base-msmarco 26.91 4.32 37.16 35.03 30.43 8.11 38.04 20.45 46.32 9.15 56.53 46.36 34.56 33.95
bge-reranker-v2-m3 31.25 4.92 42.97 41.34 34.04 8.86 42.85 26.46 43.81 10.38 53.28 41.84 36.36 36.54
jina-reranker-v2-base 33.31 5.06 44.20 42.93 36.79 9.49 46.20 28.55 53.18 11.56 63.22 50.70 41.09 40.72
bge-reranker-v2-gemma 38.59 5.67 50.14 48.67 38.08 10.05 47.65 28.98 50.39 11.54 61.69 49.48 42.36 42.38

Table 13: Experiments are conducted under the w/ inst. setting, with retrieval performed within each subset
individually.

Model TOOLRET-Web TOOLRET-Code TOOLRET-Customized Avg.

N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 C@10

bge-large-en-v1.5‡ 25.07 3.94 33.52 31.85 32.05 7.98 41.03 26.11 41.72 8.80 49.26 37.99 32.95 31.98
bge-large-en-v1.5‡ 23.41 3.22 32.02 31.97 30.74 6.31 36.03 24.31 37.31 7.30 46.31 34.21 30.49 30.16
bge-large-en-v1.5 18.90 3.13 25.80 24.50 24.49 6.67 32.95 19.30 25.72 5.54 32.18 24.79 23.03 22.86

bge-base-en-v1.5‡ 20.35 3.41 28.19 26.77 30.69 7.70 39.16 24.95 37.01 8.53 47.21 36.40 29.35 29.37
bge-base-en-v1.5† 19.05 2.98 25.13 23.70 24.90 6.41 35.44 22.50 33.51 6.40 44.20 35.71 25.82 27.30
bge-base-en-v1.5 17.76 2.91 23.59 22.20 22.44 6.03 29.96 17.29 25.98 5.71 32.17 24.26 22.06 21.25

e5-large-v2‡ 23.15 3.74 31.41 29.94 33.05 7.79 40.42 26.97 34.33 6.60 42.08 34.26 30.18 30.39
e5-large-v2† 21.33 2.94 28.34 25.13 30.45 6.45 38.20 26.70 30.13 5.60 39.82 32.33 27.30 28.05
e5-large-v2 17.03 2.67 21.77 20.63 18.94 4.90 25.95 16.26 26.37 6.07 32.19 23.17 20.78 20.02

e5-base-v2‡ 19.97 3.33 27.67 26.36 26.45 5.92 32.71 22.24 31.03 6.06 38.42 30.92 25.81 26.51
e5-base-v2† 15.44 2.78 25.37 23.61 24.50 5.20 30.12 19.37 28.03 5.47 40.21 31.92 22.66 24.97
e5-base-v2 14.42 2.46 19.18 18.00 19.80 5.04 25.89 15.37 22.69 5.11 29.13 22.25 18.97 18.54

Table 14: Experimental results of IR models before and after training on our datasets. Models trained with the
concatenation of instruction and query are denoted by ‡. In contrast, the variants trained solely on the query as input
are marked with † (See the ablation study in § 7 for details).
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Dataset TOOLRET ToolBench-G1 ToolBench-G2 ToolBench-G3

NDCG@10 NDCG@10 Pass Rate NDCG@10 Pass Rate NDCG@10 Pass Rate
gpt-3.5-turbo as tool-use LLM

oracle - - 62.00 - 57.20 - 67.40

bge-large-en-v1.5 23.03 34.29 50.60 9.48 49.00 29.69 56.90
bge-large-en-v1.5 ♠ 32.95↑43.07% 71.11 ↑107.38% 59.50↑17.59% 18.11↑91.03% 58.40↑19.18% 67.87↑128.60% 59.20↑4.04%

bge-base-en-v1.5 22.06 36.89 50.60 9.28 51.20 33.02 57.70
bge-base-en-v1.5♠ 29.35↑33.05% 67.52↑83.03% 56.60↑11.86% 16.01↑72.52% 59.60↑16.41% 60.75↑83.98% 60.80↑5.37%

e5-large-v2 20.78 44.91 47.50 11.57 56.50 43.43 55.70
e5-large-v2♠ 30.18↑45.24% 70.08↑56.05% 57.00↑20.0% 17.71↑53.07% 62.10↑9.91% 66.09↑52.18% 58.00↑3.99%

e5-base-v2 18.97 38.66 49.60 9.87 54.10 37.35 54.20
e5-base-v2♠ 25.81↑36.06% 65.79↑70.18% 56.90↑14.72% 17.45↑76.80% 60.80↑12.38% 62.74↑67.98% 62.40↑15.13%

ToolLlama as tool-use LLM
oracle - - 53.6 - 50.8 - 49.1

bge-large-en-v1.5 23.03 34.29 37.60 9.48 41.30 29.69 37.20
bge-large-en-v1.5♠ 32.95↑43.07% 71.11 ↑107.38% 45.10↑19.95% 18.11↑91.03% 47.30↑14.53% 67.87↑128.60% 39.60↑6.45%

bge-base-en-v1.5 22.06 36.89 47.80 9.28 46.10 33.02 36.10
bge-base-en-v1.5♠ 29.35↑33.05% 67.52↑83.03% 50.60↑5.86% 16.01↑72.52% 49.80↑8.03% 60.75↑83.98% 45.70↑26.60%

e5-large-v2 20.78 44.91 41.50 11.57 46.60 43.43 40.20
e5-large-v2♠ 30.18↑45.24% 70.08↑56.05% 44.50↑7.23% 17.71↑53.07% 49.80↑4.72% 66.09↑52.18% 43.80↑4.50%

e5-base-v2 18.97 38.66 42.20 9.87 45.20 37.35 42.00
e5-base-v2♠ 25.81↑36.06% 65.79↑70.18% 49.10↑16.35% 17.45↑76.80% 48.30↑6.86% 62.74↑67.98% 44.70↑6.60%

Table 15: Experiment results of IR models before and after training. We also show the end-to-end task pass rate of
tool-use LLMs when equipped with the tools retrieved by the IR models on ToolBench dataset.
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