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ABSTRACT

Models fusing multiple modalities receive more information and can outperform
their uni-modal counterparts. However, existing multi-modal training approaches
often suffer from learning insufficient representations of each modality. We theo-
retically analyze this phenomenon and prove that with more modalities, the mod-
els quickly saturate and ignore the features that are hard-to-learn but important.
We name this problem of multi-modal training, Modality Laziness. The solution
to this problem depends on a notion called paired feature. If there exist no paired
features in the data, one may simply run independent training on each modal-
ity. Otherwise, we propose Uni-Modal Teacher (UMT), which distills the pre-
trained uni-modal features to the corresponding parts in multi-modal models, as a
pushing force to tackle the laziness problem. We empirically verify that we can
achieve competitive performance on various multi-modal datasets in light of this
dichotomy.

1 INTRODUCTION

Multi-modal signals, e.g., vision, sound, text, are ubiquitous in our daily life, allowing us to perceive
the world through multiple sensory systems. Inspired by the crucial role that multi-modalities play
in human perception and decision (Smith & Gasser, 2005), substantial efforts have been made to
build effective and reliable multi-modal systems in fields like multimedia computing (Aytar et al.,
2016; Zhao et al., 2018; Wang et al., 2020; Xiao et al., 2020), representation learning (Arandjelovic
& Zisserman, 2017; Owens & Efros, 2018; Radford et al., 2021) and robotics (Chen et al., 2020a).

However, existing multi-modal training methods often suffer from learning insufficient representa-
tions of each modality, which we term as Modality Laziness. Consider a commonly used late-fusion
multi-modal network. Different modalities are encoded by their corresponding encoders, and then
modern fusion strategies and methods are applied. We follow a standard protocol in self-supervised
learning, linear evaluation (Chen et al., 2020c), to assess the feature extraction ability of the en-
coders. As shown in Table 1 and Figure 2, all encoders from multi-modal training are worse than
their uni-modal counterparts, and the strong baseline method, Gradient Blending (Wang et al., 2020),
is also no exception.

What results in Modality Laziness? When exposed to more modalities, the model can see more
powerful features from different modalities and quickly saturates (the training error becomes zero).
As a result, no modality cares about the features that are hard-to-learn but still important, “every-
body’s business becomes nobody’s business”. We theoretically characterize this phenomenon and
rigorously prove that existing multi-modal training approaches indeed learn fewer features of each
modality than uni-modal training, as shown in Figure 1.

We divide the features of multi-modal data into two categories: 1, self-standing features, which
can be learned in both uni-modal and multi-modal learning; 2, paired features, which can only
be learned in multi-modal joint learning. The solution to the laziness problem depends on paired
features. When the paired features are rare, simply running independent training over uni-modal
data and then combining the uni-modal models performs well. Otherwise, we propose Uni-Modal
Teacher (UMT), which distills the pre-trained uni-modal features to the corresponding parts in multi-
modal models while performing multi-modal joint training, as a pushing force to tackle the laziness
problem.
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Figure 1: Overview of Modality Laziness. We divide the features of multi-modal data into 1) self-
standing features, which can be learned in both uni-modal and multi-modal learning, and 2) paired
features, which can only be learned in multi-modal joint learning. Although joint training provides
the opportunity to learn paired features, multi-modal models are easier to see more powerful features
from different modalities and quickly saturate and ignore the features that hard-to-learn but still
important. As a result, “everybody’s business becomes nobody’s business.”

In practice, we demonstrate that UMT can effectively improve multi-modal late-fusion learning on
datasets like VGG-Sound (Chen et al., 2020b) and UCF101 (Soomro et al., 2012), and it also im-
proves middle-fusion learning in segmentation tasks on NYU Depth V2 dataset (Silberman et al.,
2012). We also compare the multi-modal model’s performance with that of uni-modal model at the
class level, aiming to measure the importance of paired features in different multi-modal datasets
(see Table 6). We demonstrate that joint training is important for datasets with more paired fea-
tures (e.g., VGG-Sound); as for datasets that paired features are rare (e.g., UCF101), combining the
individual trained uni-modal models can get competitive results (see Table 7).

We summarize our contributions as follows:

• We introduce linear evaluation to multi-modal late-fusion training and identify an optimiza-
tion problem in existing methods called Modality Laziness, where encoders from multi-
modal training suffer from learning insufficient representations of each modality.

• We theoretically characterize Modality Laziness phenomenon from various aspects. We
prove that with multi-modal data as inputs, the model is easier to saturate since it can see
more powerful features from different modalities and ignores the features that are hard-to-
learn but still important.

• We illustrate the essential roles of the paired feature, which is unique to multi-modal data.
When the paired features are rare, simply running independent training over uni-modal
data and then combining the uni-modal models performs well. Otherwise, we propose
Uni-Modal Teacher (UMT), which employs modality-wise distillation as a pushing force
to tackle the laziness problem. And we empirically demonstrate the effectiveness of this
dichotomy on various multi-modal datasets.

2 RELATED WORK

Multi-modal training approaches aim to train a multi-modal model by using all modalities si-
multaneously (Park et al., 2017; Zhao et al., 2018; Hu et al., 2019; Wang et al., 2020; Seichter
et al., 2020). While sometimes naively training a multi-modal model even cannot outperform the
uni-modal model because of different overfitting rates, Gradient Blending (Wang et al., 2020) in-
troduced adaptive loss weighting to overcome this problem. However, our experimental evidence
shows Gradient Blending still suffers from Modality Laziness.

Uni-modal pre-training approaches aim to combine two independent trained uni-modal mod-
els (Fayek & Kumar, 2020; Simonyan & Zisserman, 2014; Feichtenhofer et al., 2016). Strong
uni-modal models for each modality can be built individually. Although each model can be suffi-
ciently trained on a modality, lacking of joint training would make the approaches fail in multi-modal
datasets with many paired features.
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Table 1: Top 1 test accuracy (in %) of linear classifiers trained on frozen encoders from various
multi-modal late-fusion training methods with uni-modal training on VGG-Sound and UCF101.
See §4 for more details.

Method VGG-Sound UCF101
Video Encoder Audio Encoder Flow Encoder RGB Encoder

Linear-Fusion 15.56 43.44 48.08 75.66
MLP-Fusion 14.52 40.01 51.89 75.65

Attention-Fusion 13.31 43.97 7.72 74.84
Gradient Blending 17.69 43.90 44.49 74.91

Uni-Video (Flow) Training 23.17 / 74.99 /
Uni-Audio (RGB) Training / 45.15 / 77.08

Multi-modal learning theory. The research on multi-modal learning theory is still at an early
age. A line of work focuses on understanding multi-view tasks (Amini et al., 2009; Xu et al., 2013;
Arora et al., 2016; Allen-Zhu & Li, 2020), and our assumption on the data structure partially stems
from Allen-Zhu & Li (2020). Different from the multi-view approaches, when considering multi-
modality, one needs to consider the relationship between modalities (i.e., paired feature) beyond
multi-view. A representative work on multi-modal learning theory by Huang et al. (2021) provides a
theoretical guarantee that learning with multiple modalities achieves a smaller population risk than
only using its subset of modalities. Our paper, instead, focuses on the potential negative aspects of
multi-modal training (i.e., Modality Laziness).

3 MODALITY LAZINESS IN MULTI-MODAL TRAINING

3.1 OBSERVATIONS OF MODALITY LAZINESS

Modality Laziness in multi-modal training. We shall illustrate the existing multi-modal late-
fusion training methods suffer from learning insufficient representations of each modality. We call
this phenomenon Modality Laziness, where the modality with more hard-to-learn features, is sig-
nificantly under-trained, even when the training of the multi-modal model has already converged.
Below we present the experimental evidences in detail (noting that the experimental details can be
found in §4.2.):

• As Table 1 shows, video encoder in VGG-Sound from various multi-modal training meth-
ods achieves less than 18% accuracy over the testing data in linear evaluation (Chen et al.,
2020c), which are significantly lower than 23%, the performance of the video encoder
trained over uni-modal data. A similar phenomenon also appears in the flow encoder in
UCF101. Even the strong baseline method, Gradient Blending (Wang et al., 2020), cannot
avoid insufficient training.

• As Figure 2 shows, throughout the training process, the two selected encoders cannot
achieve comparable performance to their uni-modal counterparts. Besides, it is worth not-
ing that the attention head gives more attention to the modality with more easy-to-learn
features, which makes the other modality lazier (e.g., video in VGG-Sound and flow in
UCF101).

• As shown in Table 2, the depth encoder from ESANet (a multi-modal segmentation
method) is also worse than its uni-modal counterpart, which shows that insufficient fea-
ture learning phenomenon also exists in multi-modal semantic segmentation tasks with
middle-fusion.

To further understand Modality Laziness phenomenon, we give the theoretical explanation in the
following subsection.
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(a) Video encoder evaluation on VGG-Sound. (b) Optical flow encoder evaluation on UCF101.

Figure 2: Linear evaluation on encoders from different multi-modal late-fusion methods. Specifi-
cally, we build a linear layer on top of each encoder to receive its detached features. After optimizing
the linear layer towards labels, we use the output accuracy of the linear layer as a metric of the corre-
sponding encoder. Here we show the training dynamics of the video encoder in VGG-Sound and the
optical flow encoder in UCF101. Other encoder evaluation results can be found in Appendix A.3.

3.2 THEORETICAL CHARACTERIZATION

The above experiments illustrate that multi-modal training approaches indeed suffer from Modality
Laziness issues and learning insufficient representations of each modality. This section characterizes
the phenomenon from a theoretical perspective.

Before diving into the technical details, we first provide some intuition behind the proof. Our goal
is to show the Modality Laziness issues in multi-modal training approaches, meaning that the model
cannot extract sufficient features with limited training samples. We refer to Figure 3 as an illus-
tration1. During the training process, learning those easy-to-learn features suffices to reach zero
training error (see Figure 3(a), point A). However, the model is not fully trained at point A, and
the zero-training-error region (blue) stops us from further training. As a comparison, uni-modal
pre-training approaches can break the barrier and achieve point B, which outperforms point A con-
cerning the test error (see Figure 3(b)).

We next prove the modality laziness phenomenon under a simple but effective regime, which char-
acterizes the basic properties of multi-modality learning. We mainly consider cases with two modal-
ities xm1 and xm2 , although similar techniques can be directly generalized to the cases with more
modalities.

Data distribution. We formalize the data distribution describing how the features are generated. We
simplify the data generation process since the multi-modal learning process can be highly complex
and hard to characterize. We emphasize that such simplification is still self-contained to describe
the differences between self-standing features and paired features.

We highlight that except the self-standing features (defined in Definition 1, learned in both uni-modal
approaches and multi-modal training approaches), there exist paired features defined in Definition 2
which can only be learned in multi-modal training approaches. Without loss of generality, consider
the binary classification regime where the label y has a uniform distribution over {−1, 1}. The
self-standing features and paired features are generated based on the following two definitions.

Definition 1 (Self-standing features) The i-th self-standing feature (fi(xm1)) in modality xm1 is
generated as:

with probability p(fi), yfi(xm1) > 0;

with probability 1− p(fi)− ε(fi), yfi(xm1) = 0;

with probability ε(fi), yfi(xm1) < 0.

1We omit the effect of paired features to illustrate the modality laziness phenomenon better.
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Figure 3: Illustrate for multi-modal training approaches (Point A) and uni-modal pre-training ap-
proaches (Point B) under training procedure and test procedure, where the x-axis represents the
feature set learned by xm2 , and the y-axis represents the feature set learned by xm1 . The feature set
becomes larger along the positive direction of the x-axis, and the training error in the blue region
is zero. For uni-modal approaches, xm1 modality learns feature set F1 while xm2 modality learns
feature set F2 (the intersection between blue region and axis.). In Figure 3(a), multi-modal training
approaches learns less features in each modality (F ′1 instead of F1, F ′2 instead of F2). In Fig-
ure 3(b) where the test error decreases from bottom left to top right, point B (uni-modal pre-training
approaches) outperforms point A (multi-modal training approaches).

The i-th self-standing feature (gi(xm2)) in modality xm2 is similarly generated with p(gi) and ε(gi).

Definition 2 (Paired features) The j-th paired feature2 hj is generated as:

with probability p(hj), yhj(xm1)hj(x
m2) > 0;

with probability 1− p(hj)− ε(hj), yhj(xm1)hj(x
m2) = 0;

with probability ε(hj), yhj(xm1)hj(x
m2) < 0.

We note that if only one of the paired feature (e.g., hj(xm1) without hj(xm2)) is used in the model,
the predicting ability is relatively low. Therefore, although uni-modal approaches can accidentally
learn paired features we do not discuss such rare cases for simplicity.

Remark. The concrete forms in Definition 1 and Definition 2 are not the key points. For exam-
ple, the XOR form hj(x

m1)hj(x
m2) in Definition 2 can be replaced by any other reasonable terms.

However, self-standing features must be generated on one modality while paired features are gener-
ated on both modalities.

When the context is clear, we abuse the notation ri to represent either fi (self-standing feature in
modality xm1 ), gi (self-standing feature in modality xm2 ), or hi (paired feature). We name p(ri)
as the predicting probability of feature ri. When ri is present (meaning that ri 6= 0), we use
I(ri > 0)− I(ri < 0) to predict y. Otherwise (ri = 0), we random guess y uniformly over {−1, 1}.
To simplify the discussion, we always assume ε(fi) = p(fi)/c, where c > 1 is a fixed constant. For
the ease of notations, we define the empty feature in Definition 3.

Definition 3 (Empty Feature) Empty feature ei is a kind of self-standing feature (or paired feature)
with p(ei) = ε(ei) = 0.

Training Procedure. We revisit the two types of training: (a.) multi-modal training approaches,
which directly train the model using both modality xm1 and modality xm2 ; (b.) uni-modal pre-
training approaches, which first train the features via uni-modal approaches (xm1 and xm2 sepa-
rately), and then combine the xm1 -learned features and xm2 -learned features. We aim to show that
multi-modal training approaches are easier to suffer from insufficient training issues.

During the training process, to simplify the theoretical analysis, we first initialize all the features with
empty features ei. The models then learn the features in descending order of predicting probability,

2We abuse the notation h to simplify the notations where h(xm1) and h(xm2) can have different forms.
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meaning that the powerful features (with large predicting probability) are learned first3. Our goal is
to minimize the training error to zero4.

Evaluation Procedure. We abuse ri to denote the learned features. For each data point, we random
guess ŷ on {−1, 1} uniformly when

∑
i I(ri > 0) =

∑
i I(ri < 0). Otherwise, we predict the label

by ŷ = 2I(
∑

i I(ri > 0) >
∑

i I(ri < 0))− 1. We define the error as
∑

i I(yri < 0)−
∑

i I(yri >
0).

Based on the above definitions, we have the following theorem, demonstrating that multi-modal
training approaches indeed suffer from insufficient training. Concretely, multi-modal training ap-
proaches learn fewer features compared to uni-modal pre-training approaches.

Theorem 1 Assume that in uni-modal pre-training approaches, the number of features learned
in modality xm1 is b1 and the number of features learned in modality xm2 is b2. We order
the probability of self-standing features (both xm1 and xm2 ) in decreasing order of p, namely,
p[1], . . . , p[i]. Assume that multi-modal training approaches learn k1 self-standing features in modal-
ity xm1 , k2 self-standing features in modality xm2 , and k3 paired features with predicting probability
p(h1), . . . , p(hk3

). Then the following statements hold:

(a. ) Quantity Laziness: k1 + k2 + k3 ≤ min{b1, b2}.

(b. ) Uni-modal Laziness: Each modality in multi-modal training approaches performs worse
than uni-modal approaches.

(c.) Performance Laziness: Consider a new testing point, for every δ > 0, if
∑

i∈[k3]
p(hi) ≤∑

i∈[b1+1,b1+b2]
p[i]+

√
8(k3 + b1 − k1 + b2 − k2) log(1/δ), then uni-modal pre-training

approaches outperform multi-modal training approaches concerning the loss on the testing
point with probability at least 1− δ, where the probability is taken over the randomness of
the testing point.

In theorem 1, we describe the modality laziness in three aspects: Quantity Laziness introduces
the modality laziness from the feature number perspective, indicating that the number of features
learned in multi-modal training approaches is less than any of that in uni-modal approaches. Uni-
modal Laziness comes from the performance of each modality, showing that multi-modal training
approaches in each modality perform worse than any of the modality in uni-modal approaches.
Performance Laziness compares the performance of multi-modal training approaches and uni-
modal pre-training approaches, demonstrating that with rare paired feature, uni-modal pre-training
approaches outperforms multi-modal training approaches, resulting from the modality laziness.

The theory meets the experimental results in Section 3.1 perfectly well, indicating that the assump-
tions and the models used in Theorem 1 indeed characterize the reality. We defer the complete proof
to Appendix B.1 due to limited space. Besides, we give a concrete example in Appendix B.3 to bet-
ter illustrate Theorem 1. We remark that uni-modal pre-training approaches are still not perfect since
uni-modal pre-training approaches cannot extract the information of paired features. This inspires
us to explore more when there exists numerous paired features in Section 3.3.

3.3 FIGHTING AGAINST MODALITY LAZINESS

Based on the discussion in Section 3.2, to solve the modality laziness issues, we need to categorize
the problem according to the paired features. When paired features are rare, uni-modal pre-training
approaches can already act as a pushing force (see Figure 2 and Performance laziness in Theorem 1),
which helps break the laziness barrier. However, when there exist numerous paired features, uni-
modal pre-training approaches cannot fully take advantage of the multi-modality since they cannot
learn the paired features explicitly. This forces us to reconsider the training process with multi-
modalities and introduce a new pushing force on multi-modal training approaches.

Distillation can act as the pushing force, where we first train the teacher models using uni-modal
approaches and then apply multi-modal training approaches with distillation on the teacher mod-

3We note that recent works have demonstrated that neural networks indeed prefer easy-to-learn features
(Shah et al., 2020; Pezeshki et al., 2020).

4We always assume that the training error can be minimized to zero.
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Algorithm 1 Uni-Modal Teacher (UMT) Framework

Input: Uni-modal pre-trained models f1, f2, initialized multi-modal model fm, iteration number
N , loss weight λtask, λdistill1 , λdistill2
for 0 to N do

Sample a batch multi-modal data {(Xm1
, Xm2

, Y } ∼ D
Compute the uni-modal target features f target1 , f target2 from uni-modal pre-trained models
Compute the uni-modal feature and the prediction from the multi-modal model f1, f2, Yhat
Compute the loss between Yhat, f1, f2 and Y, f target1 , f target2 and multiply by the
λtask, λdistill1 , λdistill2 , respectively.
Update the multi-modal model by SGD or its variant.

end for
Return: A trained multi-modal model

els (Uni-Modal Teacher, UMT). The advantages of distillation to help overcome modality laziness
can be divided into two folds. Firstly, distillation changes the learning priority since models prefer
to learn the distilled features. During the analysis, we formulate such changes as a boosting on the
surrogate predicting probability, which only changes the training priority but does not change the
actual predicting ability (See Example 2 as an example). Secondly, even if the training error is zero,
the distillation loss is still non-zero and forces the training process to continue. We provide the
algorithm details of UMT in Algorithm 1 and empirically validate the algorithm in Section 4.3. We
next prove that UMT outperforms uni-modal pre-training approaches in Theorem 2.

Theorem 2 Denote the paired features by h1, . . . hL with corresponding predicting probability
p(h1), . . . , p(hL). Assume that distillation can boost the training priority by p0 > 0. If there
exists paired feature whose predicting probability exceeds the boosting probability p0, namely, the
set S is not empty:

S = {hi : p(hi) > p0} 6= φ.

Then UMT can learn paired feature which cannot be learned by uni-modal pre-training approaches,
namely, UMT outperforms uni-modal pre-training approaches.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In this subsection, we describe the datasets and the backbone models used.

Table 2: Depth encoder evaluation on RGB-Depth se-
mantic segmentation setting. “Initialization” indicates
how weights are initialized for the network, “Uni-Depth”
represents end-to-end training with a depth-only segmen-
tation network, and “from RGB+depth” refers to freezing
the depth encoder (ResNet-34) from ESANet (Seichter
et al., 2020) then fine-tuning with a new decoder.

Initialization Training Setting
Uni-Depth from ESANet

From Scratch 32.69 28.53 (-4.16)
ImageNet Pre-train 39.45 34.73 (-4.72)

VGG-Sound (Chen et al., 2020b) is an
audio-visual classification dataset which
contains over 200k video clips for 309
different sound classes.

UCF101 (Soomro et al., 2012) is an ac-
tion recognition dataset with 101 action
categories, including 7k videos for train-
ing and 3k for testing. And we use the
rgb and optical flow provided by (Fe-
ichtenhofer et al., 2016).

NYU Depth V2 (Silberman et al., 2012)
contains 1449 indoor RGB-Depth data
in total and we use the 40-class label
setting. The number of training set and
testing set is 795 and 654 respectively.

Backbone architectures. In classifica-
tion on VGG-Sound and UCF101, we use ResNet as our backbone, all with 18 layers (noting that
3D CNN is used for visual data of VGG-Sound). We experiment with different heads for fusion,
including linear head, MLP head and attention head. For semantic segmentation on NYU Depth
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V2, we use a U-Net like encoder-decoder architecture based on ESANet (we choose ResNet-34 as
the encoder), a state-of-the-art multi-modal segmentation method, and more details can be found
in Seichter et al. (2020).

The data preprocessing, training hyper-parameters, optimizer, and other details can be found in the
Appendix A.1 and A.2.

4.2 ENCODER EVALUATION IN MULTI-MODAL TRAINING

Linear evaluation is a commonly used technique to evaluate the encoder in self-supervised learn-
ing (Chen et al., 2020c). Specifically, we train an initialized linear classifier on the trained frozen
encoder. By checking the top-1 test accuracy of the classifier, we can know the encoder’s feature
extraction ability. As Table 1 shows, all encoders from multi-modal training get worse top-1 test
accuracy in linear evaluation compared to its corresponding uni-modal counterparts, especially the
video encoder in VGG-Sound and the optical flow encoder in UCF101. Besides, we build a linear
classifier on each encoder to monitor the encoders’ dynamic in the training process. This classifier
receives the detached feature from its corresponding encoder and is optimized towards labels in each
iteration without affecting the encoder. As shown in Figure 2, throughout the training process, the
two selected encoders cannot achieve comparable performance to their uni-modal counterparts.

Evaluate the segmentation encoder. Different from classification, in multi-modal middle-fusion
segmentation task, the depth feature maps are fused to the RGB backbone in the middle of the
encoders (Seichter et al., 2020), which means we cannot compare the RGB encoder from the multi-
modal architecture with the uni-RGB model’s. Hence we perform evaluation only on the depth
encoder. As shown in Table 2, Modality Laziness also emerges in segmentation. Noting that in
segmentation task, we train a new decoder (the same as the decoder used in Seichter et al. (2020))
over the trained encoder for pixel-wise prediction.

4.3 UNI-MODAL TEACHER IS AN EFFECTIVE PUSHING FORCE IN MULTI-MODAL TRAINING

In this subsection, we compare UMT with other multi-modal training methods. Noting that the
implementation details of UMT in multi-modal classification and segmentation can be found in
Alg 1 and Appendix A.5.

Table 3: Results of different multi-modal train-
ing methods. See §4.3 for details.

Method VGG-Sound UCF101
Linear-Head 49.46 82.32
MLP-Head 44.76 79.96
Attension-Head 49.80 74.15
Aux-CELoss 49.86 81.34
G-Blending 50.39 83.03

UMT 53.46 83.71

Table 4: Results of Self-Distillation and UMT.
See §4.3 for more details.

Method VGG-Sound
Naive Baseline 49.46
Self-Distill (label) 49.67
Self-Distill (feature) 49.86

UMT (Contrastive) 52.10
UMT (L1 loss) 52.80
UMT (MSE loss) 53.46

Table 5: Model performance comparison under UMT and
ESANet on NYU-DepthV2 RGB-Depth semantic seg-
mentation task.

Initialization Training Setting
ESANet UMT

From Scratch 38.59 40.45 (+1.86)
ImageNet Pre-train 48.48 49.39 (+0.91)

For classification. The late-fusion ar-
chitecture is used for the classification
task. The features are extracted from
different modalities by the correspond-
ing encoders and then mapped to the
output space by the head layers. Specif-
ically, we use the linear layer, MLP, and
attention layer as the head, respectively.
Auxiliary-CEloss means adding extra
linear heads to receive the correspond-
ing uni-modal features and then gen-
erating additional cross entropy losses.
Auxiliary-CEloss gives all losses equal weights, while Gradient-Blending reweights the losses
mainly according to the overfitting-to-generalization-ratio (OGR) (Wang et al., 2020). As shown in
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Table 6: Top-1 test accuracy of different models on selected classes of VGG-Sound. It appears that
the multi-modal naive fusion model outperforms other uni-modal models in these classes, and even
exceeding the sum of the accuracy of the uni-audio model and uni-video model. However, we do not
find any classes like those in UCF101, meaning VGG-Sound contains more paired features. More
details can be found in Appendix A.10

Class ID 164 303 33 255 91 4 152 127 68 155
Uni-Audio 30% 7% 34% 10% 43% 50% 18% 0 53% 32%
Uni-Video 3% 2% 4% 3% 4% 12% 2% 0 15% 5%
Naive Fusion 43% 18% 48% 22% 55% 67% 26% 4% 72% 40%

Table 3, UMT outperforms other methods and does improve multi-modal learning in VGG-Sound
and UCF101.

For segmentation. In contrast to the late-fusion classification task, the RGB-Depth semantic seg-
mentation employs middle-fusion architecture. For depth distillation, since features generated by
each layer matter, we distill multi-scale depth feature maps using the MSE loss from uni-modal pre-
trained depth model to the corresponding parts in multi-modal model. For feature maps from the
RGB encoder, however, since they are generated by fusing RGB and depth modalities, we cannot
distill RGB feature maps directly like depth feature maps. To mitigate this effect, we curate predic-
tors, namely 2 layers CNNs, aiming to facilitate the fused feature maps to predict the RGB feature
maps from uni-RGB trained model. As shown in Table 5, UMT can also improve multi-modal
segmentation whether the encoder is pre-trained on ImageNet or not.

Ablation on knowledge distillation. To further verify that the improvement brought by UMT is
due to the solving of Modality Laziness, not knowledge distillation, we conduct self-distillation
on soft label (Hinton et al., 2015) and feature (Romero et al., 2014), respectively, and compare it
with UMT (we also test different objectives for UMT, including L1Loss, MSELoss and Contrastive
loss Tian et al. (2019)). As Table 4 shows, naive distillation can only bring limited improvement,
which implies Modality Laziness is the most pressing issue.

4.4 MULTI-MODAL TRAINING vs. UNI-MODAL PRE-TRAINING

Table 7: Comparison of multi-modal training with
uni-modal pre-training approaches.

Method VGG-Sound UCF101
Uni-Audio (RGB) 45.15 77.08
Uni-Video (Flow) 23.17 74.99
Avg Prediction 46.10 86.78
Linear Classifier 50.95 84.43

UMT 53.46 83.72

In this subsection, we compare UMT with
two uni-modal pre-training approaches, e.g., di-
rectly averaging uni-modal models’ predictions
and training a multi-modal linear classifier on
the uni-modal pre-trained encoders. As Ta-
ble 7 shows, UMT outperforms uni-modal pre-
training approaches in VGG-Sound, while di-
rectly averaging uni-modal models’ predictions
in UCF101 gets better accuracy. It is consistent
with our findings that VGG-Sound owns more
paired features than UCF101: as shown in Ta-
ble 6, in the selected 10 classes of VGG-Sound,
naive joint training can achieve better test accu-
racy than the sum of the two uni-modal models. While in UCF101, there is no one class like those.
This also tallies with the motivation of curating VGG-Sound dataset – as much audio-visual syn-
chronization as possible.

5 CONCLUSION

In this paper, we theoretically analyze the modality laziness problem in multi-modal learning, and
propose Uni-Modal Teacher (UMT), a distillation-based training approach to remedy this problem.
We further conclude that when paired features are rare, combining two individually trained uni-
modal models gives good results; otherwise, UMT can achieve competitive results, serving as a
pushing force to tackle laziness problem in multi-modal joint training. We hope our findings will
shed new light on multi-modal learning research.
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A EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

A.1 DATASETS

Here, we describe the preprocessing of VGG-Sound, UCF101 and NYU Depth V2 in detail.

VGG-Sound dataset (Chen et al., 2020b), which contains over 200k video clips for 309 different
sound classes, is used for evaluating our method. It is an audio-visual dataset in the wild where each
object that emits sound is also visible in the corresponding video clip, making it suitable for scene
classification tasks. Please note that some clips in the dataset are no longer available on YouTube,
and we actually use about 175k videos for training and 15k for testing, but the number of classes
remains the same. We design a preprocessing paradigm to improve training efficiency as follows: (1)
each video is interpolated to 256×256 and saved as stacked images; (2) each audio is first converted
to 16 kHz and 32-bit precision in the floating-point PCM format, then randomly cropped or tiled
to a fixed duration of 10s. For video input, 32 frames are uniformly sampled from each clip before
feeding to the video encoder. While for the audio input, a 1024-point discrete Fourier transform is
performed using nnAudio (Cheuk et al., 2020), with 64 ms frame length and 32 ms frame-shift. And
we only feed the magnitude spectrogram to the audio encoder.

UCF101 dataset (Soomro et al., 2012) is an action recognition dataset with 101 action categories,
including 7k videos for training and 3k for testing. And we use the rgb and flow provided by (Fe-
ichtenhofer et al., 2016). For RGB, we use one image of (3 ∗ 224 ∗ 224) as the input; while for flow,
we use a stack of optical flow images which contained 10 x-channel and 10 y-channel images, So
its input shape is (20 ∗ 224 ∗ 224). During training, we perform random crop and random horizontal
flip as the data augmentation; while testing, we resize the image to 224 and do not perform data
augmentation operations.

NYU Depth V2 dataset (Silberman et al., 2012) contains 1449 indoor RGB-Depth data totally and
we use 40-class label setting. The number of training set and testing set is 795 and 654 respectively.
All perprocessing operations are following Seichter et al. (2020).

A.2 TRAINING HYPERPARAMETERS

In this subsection, we show the hyperparameters in our experiments in Table 8. For additional losses
in Auxiliary-CELoss and Gradient Blending, we use a linear layer to receive the uni-modal features
in multi-modal training and generate the losses as the regularizers.

Table 8: The Hyperparameters used in our experiments. Noting that NYU Depth V2’s hyperparam-
eters can be found in Seichter et al. (2020) and we use ResNet34 as the backbone.

Hyperparameter Value (VGG-Sound) Value (UCF101)

Encoder ResNet3D (Video), 2D (Audio) ResNet2D(Both Modalities)
Linear Head (1024, 309) (1024, 101)
MLP Head (1024, 1024) (1024, 1024)

ReLU ReLU
(1024, 309) (1024, 101)

Attension Head Attension Layer (without new parameters) + a linear layer
Training Epoches 20 20
LR 1e-3 1e-2
Batch Size 24 64
Optimizer Adam SGD
Scheduler StepLR (step=10, gamma=0.1) ReduceLROnPlateau (patience=1)
Loss Fusion Cross Entropy for task, MSE for distillation

A.3 ENCODER EVALUATION IN THE WHOLE TRAINING PROCESS

In this subsection, we show the evaluation of audio encoder on VGG-Sound and RGB encoder on
UCF101 in the whole training process. As we can see in Figure 4, all encoders from multi-modal
training are bounded by their uni-modal training counterparts.
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(a) Audio Encoder Evaluation on VGG-
Sound

(b) RGB Encoder Evaluation on UCF101

Figure 4: The evaluation of audio encoder on VGG-Sound and RGB encoder on UCF101 in the
whole training process.

A.4 CLASS-LEVEL MODALITY LAZINESS

As Figure 5 shows, among the classes in which the audio network trained over uni-modal data
can achieve good accuracy on VGG-Sound, the video encoder trained by the multi-modal training
methods falls behind its uni-modal counterpart. Specifically, the mean accuracy on these classes of
three types (Naive Fusion, Gradient Blending, Uni-Video Training) of video encoder are 33.79%,
36.92%, and 49.05% respectively, where the gap between Gradient Blending video and uni-video is
12.13%.

Figure 5: We first select the top 20 test accuracy classes of uni-audio model on VGG-Sound, and
then evaluate different video encoders on these classes. It can be seen that the video encoder in
multi-modal training setting (linear-head and Gradient Blending) is worse than that in uni-video
setting over about 15 classes, indicating that modality laziness occurs in multi-modal training.

A.5 UMT IN DIFFERENT TASKS

In this subsection, we describe how Uni-Molda Teacher (UMT) applies on different multi-modal
tasks.

UMT in late-fusion classification. In multi-modal late-fusion architecture, modalities are first en-
coded by the corresponding encoders and then mapped to the output space (Figure 6 left). Uni-
modal Teacher distills the pre-trained uni-modal features to the corresponding parts in multi-modal
networks in multi-modal training (Figure 6 right).

UMT in multi-modal middle-fusion segmentation. In contrast to the late fusion classification
task, the RGB-Depth semantic segmentation belongs to middle fusion. The main encoder receives
RGB inputs, and the depth inputs are fed into the depth encoder. At each intermediate layer, the
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Figure 6: Model architecture of naive late fusion (left) and Uni-Modal Teacher (UMT) (right).

main encoder fuses its own intermediate outputs and the depth features obtained from the depth
encoder, which makes it a mid-fusion task (Seichter et al., 2020). Since features generated by
each layer matter, we distill multi-scale depth feature maps using the MSE loss. For feature maps
from the RGB encoder, however, since they are generated by fusing RGB and depth modalities,
we cannot distill RGB feature maps directly like depth feature maps. To mitigate this effect, we
curate predictors, namely 2 layers CNNs, aiming to facilitate the fused feature maps to predict the
RGB feature maps trained by the RGB modality before distillation. The full schematic diagram is
presented in Figure 7.

UMT’s weights. For VGG-Sound, we use 50 (both audio feature distillation and video feature
distillation) as the distillation loss’s weight; for NYU Depth V2, we use 1 as the distillation weight
(both RGB and Depth), and multiply it by 0.1 every 100 epochs. Because the amount of data in
UCF101 is small, it is more sensitive to the weights, and we set 20 as the rgb distillation weight and
0.1 as the flow distillation weight.

Predictor

Fused RGB
Feature Maps

Predicted RGB
Feature Maps

Pre-trained RGB
Feature Maps

ℒdistill

Depth
Feature Maps

Pre-trained Depth
Feature Maps

ℒdistill

Figure 7: Distillation details of UMT for RGB (left) and depth (right) modalities in multi-modal
semantic segmentation (based on ESANet).

A.6 FINETUNING THE UNI-MODAL PRE-TRAINED ENCODERS IN MULTI-MODAL TRAINING

Uni-modal pre-training approaches aim to combine two trained uni-modal encoders without updat-
ing the parameters of them. Here, we use the uni-modal pre-trained encoders’ parameters as the
initialized weights in multi-modal training and jointly fine-tune the encoders and a new multi-modal
linear classifier on VGG-Sound. We set the classifier’s learning rate as 1e − 3. As Figure 8 and
Table ?? show, using the uni-modal pre-trained weights in multi-modal training and then fine-tuning
the encoders cannot bring significant improvement. When the learning rate is large, the encoders
forget some abilities to extract self-standing features (see Table ??).

A.7 CAN MID-FUSION TACKLE MODALITY LAZINESS?

In this subsection, we test a different multi-modal fusion approach, middle fusion. Specifically, we
use the average pool on the third block’s outputs of the video encoder (VGG-Sound), and then tile
them to get the same shape as audio feature maps. Noting that the audio feature maps are also
the output of third block in the audio encoder. Then we concatenate two groups of feature maps
before the last block and the output layer, which is similar to Owens & Efros (2018). As Table 10
shows, middle fusion is significantly worse than UMT, which implies that middle fusion approach
also suffer from Modality Laziness.
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Figure 8: Finetuning Process

Encoder LR Top-1 Acc Encoder Eval
Audio Video

1e-3 50.98 43.98 21.86
1e-4 49.37 44.71 21.97
1e-5 50.45 45.28 23.13
1e-6 50.86 45.29 23.27

0 50.95 45.15 23.17

Table 9: Finetuning Results on VGG-Sound

Table 10: Middle Fusion vs Late Fusion (VGG-Sound)

Method Late Fusion Middle Fusion UMT (based on Late Fusion)
Top-1 Accuracy 49.46 49.87 53.46

A.8 CAN DROPOUT TACKLE MODALITY LAZINESS?

Here we consider the common regularizer, dropout (Srivastava et al., 2014), and a variant of it,
namely modality-wise dropout, which randomly drops (with probability 1/3) the feature from one
modality in every iteration. Modality dropout is akin to the ModDrop in Neverova et al. (2015).
As Table 11 shows, modality-wise dropout is significantly better than dropout, which implies that
modality-wise laziness is serious and modality-wise dropout is effective.

Table 11: Dropout in multi-modal training (VGG-Sound)

Method Naive Fusion Dropout Modality Dropout UMT
Top-1 Accuracy 49.46 49.83 51.37 53.46

A.9 SENSITIVITY ANALYSIS ON DISTILLATION WEIGHTS

Here we test different distillation weights on VGG-Sound. As shown in Table 12, if the weight is too
small, the model will lack of strength to fight against Modality Laziness; on the other hand, if the
weight is too large, the weight of multi-modal cross entropy loss would be relatively small, which
hinders joint multi-modal feature learning.

A.10 PAIRED FEATURE ON VGG-SOUND AND UCF101

As we can see in Table 6, the multi-modal naive fusion model outperforms other uni-modal models
in some selected classes, and even exceeding the sum of the accuracy of the uni-audio model and
uni-video model, which implies the importance of paired features in VGG-Sound. Although there
are some classes that naive fusion outperforms uni-modal models on UCF101, we cannot find any
classes that naive fusion can exceed the sum of the accuracy of the uni-RGB model and uni-flow
model and the improvement brought by naive fusion is also limited, as shown in Table 13.

The results show that VGG-Sound has a larger proportion of paired features than UCF101.

The correspondence between id and name of the selected class in VGG-Sound is: 164: People
Sniggering, 303: Wood Thrush Calling, 33: Cat Meowing, 255: Sea Waves, 91: Footsteps On
Snow, 4: Alligators Crocodiles Hissing, 152: People Gargling, 127: Mynah Bird Singing, 68: Door
Slamming, 155: People Humming.
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Table 12: Different distillation weights of UMT on VGG-Sound

Weights 0 1 10 20 50 100
Top-1 Accuracy 49.46 49.51 51.31 51.51 53.46 53.11

Table 13: Top-1 test accuracy of different models on selected classes of UCF101. We select the
top-10 classes according to the gap of accuracy between the multi-modal and uni-modal models.

Class ID 54 0 13 12 48 50 6 80 22 34
Uni-RGB 70% 95% 91% 76% 78% 72% 74% 73% 61% 45%
Uni-Flow 38% 68% 69% 58% 64% 54% 60% 53% 47% 24%
Naive Fusion 73% 100% 100% 87% 92% 79% 86% 78% 72% 48%

B PROOF

B.1 PROOF OF THEOREM 1

Theorem 1 Assume that in uni-modal pre-training approaches, the number of features learned
in modality xm1 is b1 and the number of features learned in modality xm2 is b2. We order
the probability of self-standing features (both xm1 and xm2 ) in decreasing order of p, namely,
p[1], . . . , p[i]. Assume that multi-modal training approaches learn k1 self-standing features in modal-
ity xm1 , k2 self-standing features in modality xm2 , and k3 paired features with predicting probability
p(h1), . . . , p(hk3). Then the following statements hold:

(a. ) Quantity Laziness: k1 + k2 + k3 ≤ min{b1, b2}.

(b. ) Uni-modal Laziness: Each modality in multi-modal training approaches performs worse
than uni-modal approaches.

(c.) Performance Laziness: Consider a new testing point, for every δ > 0, if
∑

i∈[k3]
p(hi) ≤∑

i∈[b1+1,b1+b2]
p[i]+

√
8(k3 + b1 − k1 + b2 − k2) log(1/δ), then uni-modal pre-training

approaches outperform multi-modal training approaches concerning the loss on the testing
point with probability at least 1− δ, where the probability is taken over the randomness of
the testing point.

We prove the next theorem, which shows that multi-modal training approaches indeed suffers
from overfitting issues, meaning that it learns less features compared to uni-modal pre-training ap-
proaches.
Proof: We first introduce some additional notations used in the proof. We define the features
trained in xm1 -uni-modal training as f1(xm1), . . . , fb1(x

m1), define the features trained in xm1 -uni-
modal training as g1(xm2), . . . , gb2(x

m2). Therefore, there are in total b1 + b2 features learned in
uni-modal pre-training approaches, namely, f1(xm1), . . . , fb1(x

m1), g1(x
m2), . . . , gb2(x

m2). Be-
sides, We define the features trained in multi-modal training approaches as f1(xm1), . . . , fk1(x

m1),
g1(x

m2), . . . , gk2
(xm2), h1(xm1 , xm2), . . . , hk3

(xm1 , xm2). When the context is clear, we omit the
dependency of xm1 , xm2 and denote them as fi, gi, hi for simplicity. When the context is clear, we
abuse the notation r to represent arbitrary f , g or h. The corresponding predicting probability of
feature ri is denoted as p(ri). To summary, there are b1 + b2 features in uni-modal pre-training
approaches, k1 + k2 + k3 features in multi-modal training approaches.

We first prove statement (a.), which claims that the number of features learned in multi-modal train-
ing approaches are provably less than any of the number of features learned in uni-modal training.
The proof depends on the following Lemma 1.

Lemma 1 Assume there exists T features ri, i = 1, . . . , T . If we replace one of the T features (with-
out loss of generality, rT ) with a more powerful feature r′, where p(r′) > p(rT ), then the predicting
probability for each data point increases (where the probability is taken over the randomness of the
training data).
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We next provide the proof of statements (a.): based on Lemma 1. We shall prove k1 + k2 + k3 <
b1 without loss of generality. Start from the features f1(xm1), . . . , fk1

(xm1) which are common
features in both multi-modal training approaches and Uni-modal training. Next step, we add feature
fk1+1 in uni-modal approachesand g1 in multi-modal training approaches. Obviously, p(g1) >
p(fk1+1) due to the training priority (or multi-modal training approaches should learn fk1+1 instead
of g1). Therefore, the predicting probability of multi-modal training approaches is larger than uni-
modal approaches.

Repeating the procedure by comparing gi with fk1+i and comparing hj with fk1+k2+j , the predict-
ing probability of multi-modal training approaches is always larger than uni-modal approaches. Note
that b1 should be always larger than k1 + k2, or the predicting probability of uni-modal approaches
would be smaller than multi-modal training approaches. At the end of the comparison, the predict-
ing probability of multi-modal training approaches is still larger than uni-modal approaches. This
requires that uni-modal approaches should learn more features, which can be regarded as uni-modal
approacheslearns a features while multi-modal training approaches learns an empty feature. In con-
clusion, uni-modal approaches learns more features compared to multi-modal training approaches,
leading to b1 > k1 + k2 + k3.

We next prove the statement (b.). The proof of (b.) is based on (a.). We next only consider modal-
ity xm1 , the proof for modality xm2 is similar. Note that the since the number of features learned
in multi-modal training approaches is less than b1, the number of features learned in xm1 must be
less than b1 (Note that those features can be either paired feature or self-standing feature, namely,
f1, . . . , fk1 and h1, . . . , hk3 ). Therefore, multi-modal training approaches learns less features com-
pared to uni-modal approaches in modality xm1 . On the other hand, the predicting probability of
features learned in multi-modal training approaches (f1, . . . , fk1

and h1, . . . , hk3
, considering only

modality xm1 for the paired feature) is less than that learned in uni-modal approaches (f1, . . . , fb1 ),
because otherwise, uni-modal approaches will learn the features in h instead of f . In conclusion,
when considering only modality xm1 , the number of features learned in multi-modal training ap-
proaches is less and its corresponding predicting probability is small. Therefore, each modality in
multi-modal training approaches performs worse than uni-modal approaches.

We finally prove the statement (c.). Recall that the loss is −
∑

i u(ri) where u(ri) = I(yri >
0)− I(yri < 0). Note that E(u(ri)) = 1

2p(ri) and |u(ri)| ≤ 1. We derive that:

P

− ∑
i∈[k1]

u(fi)−
∑
i∈[k2]

u(gi)−
∑
i∈[k3]

u(hi) ≤ −
∑
i∈[b1]

u(fi)−
∑
i∈[b2]

u(gi)


=P

 ∑
k1<i≤b1

u(fi) +
∑

k2<i≤b2

u(gi)−
∑
i∈[k3]

u(hi) ≤ 0


=P

 ∑
k1<i≤b1

u(fi) +
∑

k2<i≤b2

u(gi)−
∑
i∈[k3]

u(hi) +
1

2
E ≤ 1

2
E

 ,

where E = −E(
∑

k1<i≤b1 u(fi) +
∑

k2<i≤b2 u(gi) −
∑

i∈[k3]
u(hi)) =

∑
i∈[k3]

p(hi) −∑
k1<i≤b1 p(fi)−

∑
k2<i≤b2 p(gi). Due to the training priority and the conclusion in (a.),∑

i∈[b1+1,b1+b2]

p[i] ≤
∑

k1<i≤b1

p(fi) +
∑

k2<i≤b2

p(gi).

Therefore, E ≤
∑

i∈[k3]
p(hi)−

∑
i∈[b1+1,b1+b2]

p[i] ≤
√

8(k3 + b1 − k1 + b2 − k2) log(1/δ). We
next apply Hoeffding inequality on Equation B.1 and derive that

P

− ∑
i∈[k1]

u(fi)−
∑
i∈[k2]

u(gi)−
∑
i∈[k3]

u(hi) < −
∑
i∈[b1]

u(fi)−
∑
i∈[b2]

u(gi)


≤ exp(−E2/8(k3 + b1 − k1 + b2 − k2))
≤δ
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To conclude, multi-modal training approaches outperform uni-modal pre-training approaches con-
cerning the testing loss with probability at least 1− δ.

Compared to uni-modal pre-training approaches, denote the additional paired feature are indexed by
c, and the additional self-standing feature in uni-modal pre-training approaches are indexed by v.
We have that:

P(
∑
i∈[c]

(I(fi(x) > 0)− I(fi(x) < 0))−
∑
j∈[v]

(I(fj(x) > 0)− I(fj(x) < 0)) > 0)

=P(
∑
i∈[c]

I(fi(x) > 0)−
∑
j∈[v]

I(fj(x) > 0)− 1

2
[
∑
i∈[c]

pi −
∑
j∈[v]

pj ] >
1

2
[
∑
j∈[v]

pj −
∑
i∈[c]

pi])

≤ exp(−(
∑
j∈[v]

pj −
∑
i∈[c]

pi)
2/8|c+ v|)

(1)

Therefore, if
∑

j∈[v] pj−
∑

i∈[c] pi ≥
√
8(c+ v) log(1/δ), the probability is done. Therefore, for a

new data point, uni-modal pre-training approaches can outperforms multi-modal training approaches
with high probability.

�
Proof:[Proof of Lemma 1] We define r[−T ] as the features r1, . . . , rT−1. The proof is divided
into two parts, depending on whether

∑
i∈[T−1] I(ri 6= 0) is even or odd. We regard the term∑

i∈[T−1] I(ri 6= 0) as the number of effective features in r[−T ]. To simplify the discussion, we
rescale r such that |yr| = 1 (when r 6= 0) or |yr| = 0 (when r = 0).

Case 1: When the number of effective features in r[−T ] is even. (a. ) If |
∑

i∈[T−1] yri| ≥ 2, adding
rT or r′ does not alter the predicting probability, namely

P

y
rT +

∑
i∈[T−1]

yri

 > 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2

+
1

2
P

y
rT +

∑
i∈[T−1]

yri

 = 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2


=P

y
r′ + ∑

i∈[T−1]

yri

 > 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2

+
1

2
P

y
r′ + ∑

i∈[T−1]

yri

 = 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2

 .

(b. ) When the number of effective features in r[−T ] is even, |
∑

i∈[T−1] yri| 6= 1.

(c. ) When |
∑

i∈[T−1] yri| = 0, due to the assumption that p(r′) > p(rT ) and ε(r) = p(r)/c,
adding r′ helps increase the predicting probability compared to rT , namely

P

y
rT +

∑
i∈[T−1]

yri

 > 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ = 0

+
1

2
P

y
rT +

∑
i∈[T−1]

yri

 = 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ = 0


>P

y
r′ + ∑

i∈[T−1]

yri

 > 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ = 0

+
1

2
P

y
r′ + ∑

i∈[T−1]

yri

 = 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ = 0

 .

The above inequality is derived based on the following equation:

P

y
rT +

∑
i∈[T−1]

yri

 > 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ = 0

+
1

2
P

y
rT +

∑
i∈[T−1]

yri

 = 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ = 0


=P

yrT > 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ = 0

+
1

2
P

yrT = 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ = 0


=p(rT ) +

1

2
[1− p(rT )− ε(rT )]

=
1

2
[1 + (1− 1/c)p(rT )] .

Since we assume c > 1, the probability increases with probability p(rT ).
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Therefore, under the three conditions, adding r′ increase the predicting probability more compared
to rT . In summary, under case 1 (a-c), adding r′ increase the predicting probability compared to rT .

Case 2: When the number of features in r[−T ] is odd. The discussion in (b.) can be a little bit more
complex compared to case 1.

(a. ) If |
∑

i∈[T−1] yri| ≥ 2, similar to case 1, adding rT or r′ does not alter the predicting probabil-
ity, namely

P

y
rT +

∑
i∈[T−1]

yri

 > 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2

+
1

2
P

y
rT +

∑
i∈[T−1]

yri

 = 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2


=P

y
r′ + ∑

i∈[T−1]

yri

 > 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2

+
1

2
P

y
r′ + ∑

i∈[T−1]

yri

 = 0

∣∣∣∣
∣∣∣∣∣∣
∑

i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2

 .

(b. ) If |
∑

i∈[T−1] yri| = 1: (b.1 ) If
∑

i∈[T−1] yri = −1:

P

y
rT +

∑
i∈[T−1]

yri

 > 0

∣∣∣∣ ∑
i∈[T−1]

yri = −1

+
1

2
P

y
rT +

∑
i∈[T−1]

yri

 = 0

∣∣∣∣ ∑
i∈[T−1]

yri = −1


=P

yrT − 1 > 0

∣∣∣∣ ∑
i∈[T−1]

yri = −1

+
1

2
P

yrT − 1 = 0

∣∣∣∣ ∑
i∈[T−1]

yri = −1


=
1

2
P

yrT − 1 = 0

∣∣∣∣ ∑
i∈[T−1]

yri = −1


=
1

2
p(rT ).

(b.2 ) If
∑

i∈[T−1] yri = +1:

P

y
rT +

∑
i∈[T−1]

yri

 > 0

∣∣∣∣ ∑
i∈[T−1]

yri = 1

+
1

2
P

y
rT +

∑
i∈[T−1]

yri

 = 0

∣∣∣∣ ∑
i∈[T−1]

yri = 1


=P

yrT + 1 > 0

∣∣∣∣ ∑
i∈[T−1]

yri = 1

+
1

2
P

yrT + 1 = 0

∣∣∣∣ ∑
i∈[T−1]

yri = 1


=(1− ε(rT )) +

1

2
ε(rT )

=1− 1

2c
p(rT ).

Note that the probability of event (b.1) and the probability of event (b.2) satisfy the following equa-
tion by Lemma 2:

P

 ∑
i∈[T−1]

yri = 1

 = cP

 ∑
i∈[T−1]

yri = −1

 . (2)

Therefore, the total probability under case (b) is

1

2
p(rT )P

 ∑
i∈[T−1]

yri = −1

+ (1− 1

2c
p(rT ))P

 ∑
i∈[T−1]

yri = 1


=P

 ∑
i∈[T−1]

yri = 1
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which is independent of p(rT ). Therefore, adding rT or r′ share the same predicting probability.

(c. ) When the number of effective features in r[−T ] is odd, |
∑

i∈[T−1] yri| 6= 0.

In summary, under case 2 (a-c), adding r′ do not decrease the predicting probability compared to
rT .

The following lemmas are used during the proof.

Lemma 2 Consider T − 1 features r1, . . . , rT−1, the following equation holds:

P

 ∑
i∈[T−1]

yri = 1

 = cP

 ∑
i∈[T−1]

yri = −1

 . (3)

Proof: It can be proved to compare the eventsA = {
∑

i∈[T−1] yri = 1} andB = {
∑

i∈[T−1] yri =

−1}. Every event in A has a complementary event in B, namely,

yri = 1 in B if yri = −1 in A
yri = −1 in B if yri = 1 in A
yri = 0 in B if yri = 0 in A

Comparing each event in A with its complementary event in B leads to the conclusion. �

Combining case 1 and case 2 together leads to the final conclusion.

�

B.2 PROOF OF THEOREM 2

Theorem 2 Denote the paired features by h1, . . . hL with corresponding predicting probability
p(h1), . . . , p(hL). Assume that distillation can boost the training priority by p0 > 0. If there
exists paired feature whose predicting probability exceeds the boosting probability p0, namely, the
set S is not empty:

S = {hi : p(hi) > p0} 6= φ.

Then UMT can learn paired feature which cannot be learned by uni-modal pre-training approaches,
namely, UMT outperforms uni-modal pre-training approaches.

Proof: The core of Theorem 2 is to clarify the training priority. We revisit the notations of Theorem 1
as follows without further clarification. At the end of the training, uni-modal pre-training approaches
learn b1+ b2 useful features, namely, f1, . . . , fb1 , g1, . . . , gb2 . And multi-modal training approaches
learn k1 + k2 + k3 features: f1, . . . , fk1 , g1, . . . , gk2 , h1, . . . , hk3 . We note that there are still many
empty features ei in the model due to the initialization.

By distillation, the model learns the features according to the new priority. Since the set S is not
empty, there exists paired features that is learned before the empty features. By distillation, the
model would learn all the useful features that appear in uni-modal approaches, as well as those
features in set S. Therefore, UMT outperforms uni-modal pre-training approaches.

We additionally remark that UMT may lose some paired features compared to multi-modal training
approaches. However, multi-modal training approaches learn less self-standing features compared
to UMT due to modality laziness. �

B.3 A CONCRETE EXAMPLE TO ILLUSTRATE THEOREM 1

We next provide a concrete example to better illustrate the Modality Laziness issues. For Example 1,
we aim to show the Modality Laziness issues. For Example 2, we aim to show the role of the pushing
force.

Example 1 Consider modality xm1 with features f1, f2, f3 (corresponding prediction probability
p = 0.2, 0.1, 0.05), and modality xm2 with features g1, g2, g3 (corresponding prediction probability
p = 0.15, 0.08, 0.02). We show the dataset in Table 14 and aim to minimize the training loss to zero.
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f1 f2 f3 g1 g2 g3 h y
p 0.20 0.10 0.05 0.15 0.08 0.02 0.28 /
p′ 0.35(↑) 0.25(↑) 0.20(↑) 0.32(↑) 0.23(↑) 0.17(↑) 0.28 /

data a + + + + - + + +1
data b 0 + 0 + + - + +1
data c + + 0 - + + 0 -1
data d + - + + + 0 + -1

Table 14: Dataset used in Example 1. + means the feature is larger than zero and − means the
feature is less than zero. We denote the predicting probability by p and the rectified probability (due
to pushing force) by p′.

In uni-modal approaches, we learn features f1, f2 and f3 on modality xm1 (similarly, g1, g2, and
g3 on modality xm2 ). Therefore, we learn features f1, f2, f3, g1, g2, g3 in uni-modal pre-training
approaches. In multi-modal training approaches without paired feature, we can only learn three
features f1, f2, g2 due to the training priority f1 > g1 > f2 > g2 > f3 > g3 (decreasing order in
p). This phenomenon is caused by modality laziness.

We next consider another paired feature h with probability p = 0.28. Under the case, multi-modal
training approaches only learn two features h and f1. Therefore, when h is not powerful enough,
uni-modal pre-training approaches outperforms multi-modal training approaches.

Example 2 We follow the notations and dataset in Example 1. By applying the pushing force,
assume that each probability of self-standing feature boosts 0.15, which changes the training priority
to f1 > g1 > h > f2 > g2 > f3 > g3 (decreasing order in p′). Therefore, multi-modal training
approaches (with pushing force) learns f1, f2, h. As a comparison, multi-modal training approaches
(without pushing force) can only learn f1, h. Therefore, pushing force helps learn more features.
We additionally remark that we only consider the training error in this example, and there might be
other penalties in practice (e.g., distillation loss).
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