
Under review as submission to TMLR

TabKDE: Simple and Scalable Tabular Data Generation with
Kernel Density Estimates

Anonymous authors
Paper under double-blind review

Abstract

Tabular data generation considers a large table with multiple columns – each column
comprised of numerical, categorical, or sometimes ordinal values. The goal is to produce new
rows for the table that replicate the distribution of rows from the original data – without just
copying those initial rows. The last 3 years have seen enormous progress on this problem,
mostly using computational expensive methods that employ one-hot encoding, VAEs, and
diffusion.
This paper describes a new approach to the problem of tabular data generation. By employing
copula transformations and modeling the distribution as a kernel density estimate we can
nearly match the accuracy and privacy-preservation achievements of the previous methods,
but with almost no training time. Our method is very scalable, and can be run on data sets
orders of magnitude larger than prior state-of-the-art on a simple laptop. Moreover, because
we employ kernel density estimates, we can store the model as a coreset of the original data –
we believe the first for generative modeling – and as a result, require significantly less space
as well. Our code is available here: http://github.com/tabkde/tabkde-main

1 Introduction

Tabular data is a fundamental format in many domains, including finance, healthcare, and social sciences, and
has seen much recent attention (Fonseca & Bacao, 2023; Assefa et al., 2021; Hernandez et al., 2022; Ouyang
et al., 2023), focusing on challenges in scalability and accuracy in its diverse structural characteristics (Xu
et al., 2019; Borisov et al., 2023; Liu et al., 2023). Unlike image or text data, which follow well-defined
spatial or sequential relationships, tabular data consists of mixture of varied features that may be numerical,
categorical, or ordinal. This heterogeneity poses difficulties in modeling feature dependencies and joint
distributions effectively. Traditional generative approaches, such as GANs and VAEs, have been applied
with mixed success, and may need to be paired with careful preprocessing and one-hot encoding, which
can lead to an explosion in dimensionality and loss of information (Xu et al., 2019; Zhang et al., 2024).
Moreover, adversarial training in GANs can be unstable (Arjovsky & Bottou, 2017), while VAEs may struggle
to generate realistic samples due to overly simplistic latent space assumptions (Dai & Wipf, 2019).

Copula-based data generators (Patki et al., 2016; Majdara & Nooshabadi, 2020) provide another approach
towards transforming differently structured and scaled columns into common format. The synthetic data
vault (SDV) (Patki et al., 2016) includes generative modeling through a variety of approaches including
low-rank modeling, GANs, and vine-copula (Meyer et al., 2021). This framework can achieve improved
fidelity, but sometimes at a heavy computational expense.

Diffusion models have recently emerged as powerful generative frameworks, demonstrating impressive perfor-
mance in domains such as image synthesis and molecular generation (Ho et al., 2020; Rombach et al., 2022;
Dhariwal & Nichol, 2021; Morehead & Cheng, 2024; Luo et al., 2024). These models operate by progressively
transforming noise into structured data through a learned denoising process. Recent advances, such as
TabDDPM (Kotelnikov et al., 2023), TabSYN (Zhang et al., 2024), and TabDiff (Shi et al., 2025) have
made significant progress in adapting diffusion to the tabular setting. TabDDPM (Kotelnikov et al., 2023)
applies a diffusion model directly to tabular data, effectively capturing complex distributions but requiring a

1

http://github.com/tabkde/tabkde-main


Under review as submission to TMLR

high number of sampling steps. TabSYN (Zhang et al., 2024) introduced a latent-space diffusion approach
(similar to stable diffusion model approach (Rombach et al., 2022)): it first encodes categorical features with
a one-hot encoding, then invokes a VAE to map to a structured representation before applying a diffusion
model. This approach has demonstrated remarkable improvements in synthetic data quality, outperforming
previous methods in terms of statistical fidelity. TabDiff (Shi et al., 2025) extends this by applying a
discrete state-space diffusion for the categorical features.

Challenges with the synthetic tabular data generation. Ultimately, effective tabular data generation
needs to overcome three challenges. First, it should achieve high accuracy in how the distribution of
data it generates aligns with heldout data along marginal, pairwise correlations, and full joint distributional
measurements. Most prior methods without diffusion are not able to hit high levels of accuracy. Second, it
should preserve privacy of the test data; it cannot just generate synthetic data too similar to the data it
was trained on. For instance, smote (Chawla et al., 2002) while successful in other metrics, often re-generates
training data, or very close to it. Third, it should be scalable and efficient; that is, it should be able
to easily handle very large training sets, and – more challengingly – data with many categories. Methods
based on one-hot encoding like TabSYN can run out of memory with large numbers of categories, and
diffusion-based approaches can be relatively slow to train. No prior method achieves all three desiderata; see
Table 1.

1.1 Our Contribution

We propose a new approach to tabular data generation, TabKDE, that achieves all three desiderata; see
Table 1. Notably, it only uses classic tools (carefully assembled): copula transformation, covariance estimation,
kernel density estimation. We argue this simplicity improves the interpretability, and we demonstrate (in
Section 3) that while nearly-matching SOTA accuracy and privacy it significantly reduces the computational
cost in training and generation. It has the following specific advantages.

• Scalability. It is more scalable and efficient than methods (like TABDDPM (Kotelnikov et al., 2023)
and TabSYN (Zhang et al., 2024)) which rely on one-hot encoding and need to train an expensive
diffusion model. These falter by running out of memory on datasets with many categories.

• Preserving Privacy. TabKDE preserves privacy while not requiring extensive training. In contrast
smote (Chawla et al., 2002), which also does not have a training step, often generates data too close
to the data it was trained on.

• Coreset for Tabular Data Generation. For the first time, we construct a coreset for tabular
data generation. By mapping data into a space where kernel density estimates are applicable, we can
apply coresets for KDEs which compactly (and sub-linearly in training size) represents the generative
process.

To better contextualize Table 1, note that low-fidelity generators can misleadingly shift results in favor of
DCR, creating the illusion of strong privacy, simply because their synthetic data deviates sharply from the
real distribution. For example, CoDi and STaSy exhibit substantially larger marginal and pairwise errors, as
well as markedly lower C2ST scores than TabSYN and TabKDE (see Tables 17, 19, and 24), underscoring
their poor accuracy. Their apparent DCR advantage (Table 27) thus reflects this low fidelity rather than
genuinely stronger privacy.

Overview of our approach: TabKDE. We follow the general three step paradigm of (Rombach et al.,
2022), applied to tabular data. (1) Encoding converts the input into a standardized continuous representation.
After this step each of categorical, ordinal, and numerical features are then represented in the same continuous
format. (2) Embedding into a Distance-Aware Latent Space uses a continuous mapping into another
continuous space where now Euclidean distance between objects is representative of how similar they are. (3)
Generative Modeling maps the discrete distribution of training data in the latent space to a continuous
distribution from which we can sample from. The samples are then made in the latent space, inverted to the
encoded format, and decoded to be in the format of the input table.

2



Under review as submission to TMLR

Table 1: Comparison of popular tabular data synthesis methods across key criteria.

Method citation Scalable Accurate Private
smote (Chawla et al., 2002) ✓ ✓ x
GReaT (Borisov et al., 2023) x x x
GOGGLE (Liu et al., 2023) x x x
CoDi (Lee et al., 2023) x x x
STaSy (Kim et al., 2023) x x x
TabDDPM (Kotelnikov et al., 2023) x ✓ ✓
TabSYN (Zhang et al., 2024) x ✓ ✓

CoreTabKDE coreset variant ✓ ✓ ✓
TabKDE main contribution ✓ ✓ ✓

(0,0,0)

(0,1,0)

(1,0,0)

(0,0,1)

(1,1,1)

!!

!"

(0,0,0)

(0,1,0)

(1,0,0)

(1,1,1)

!
!̅

!
#

Copula TransformEncoding

Decoding Inverse Copula

Fits Tabular Rules

T 𝐸 𝑍Euclidean Representation

Calibrated

sa
m
pl
e

SalaryEducationAge
> 50kHigh school50

<= 50kCollege23
………

Numerical CategoricalOrdinal

SalaryEducationAge
> 50kBachelor35
> 50k10th53

………

Numerical CategoricalOrdinal

Age Education Salary
!! ( 50,        12,        -0.3 )
!" ( 23,        10,         1.9 )
!# (  …,     …,             … )

Age Education Salary
!! ( 35,         13,        -0.3)
!" ( 53,           6,        -0.3)
!# (  …,     …,           … )

Figure 1: An overview of the proposed TabKDE.

Figure 1 illustrates how we implement the general framework; notably we avoid one-hot encoding (which
can blow up memory requirements), VAEs and diffusion (which can be slow to train), to achieve a scalable
method which can still achieve high accuracy and retain privacy.

Our method TabKDE first converts all features—numerical, ordinal, and categorical—into a unified numerical
format; importantly, it does so in a careful way, so each column in the table is represented as a single numerical
value. This is followed by a copula-based transformation that maps the data into a unit hypercube for easier
(marginal) density estimation. Here its covariance is also calibrated. Then the generative process uses Kernel
Density Estimation (KDE) modeling to represent and sample from a distribution. The only training is in
learning the shape of the kernel to match the distance to closest record. Note that sampling from a KDE is
simple, in that it needs only to choose a data point, a (covariance scaled) direction, and an offset distance.
Then generated samples are mapped back by inverting the copula transform, and decoded. One key additional
step is performed to ensure all samples are within the margins identified by the copula, otherwise partial
resampling is performed.

2 TabKDE Algorithm

We consider a tabular dataset T = {X1, X2, . . . , Xm}, where each row Xi represents an independent and
identically distributed (i.i.d.) sample from an unknown joint distribution P (X). Each row Xi = (x1, x2, . . . , xd)
is a d-dimensional vector where each feature xj belongs to one of three categories: Numerical (Num), Ordinal
(Ord), and Categorical (Cat). Each numerical is in R, but both categorical and ordinal features come from a
discrete domain; the difference being that ordinal features have a specified ordering (e.g., grades A > B > C).

3



Under review as submission to TMLR

The key innovation of TabKDE is in the careful combination of copula mapping to latent space and the
KDE-based generative modeling approach.

Copula Latent Space Mapping: It uses a copula-based transformation of the tabular dataset T into
a latent representation Z that lies within the continuous [0, 1]d, allowing precise control over the domain
of the marginal distributions. This dimension and margin preservation critically leverages principal vector
guided encoding of categorical features. Then the covariance Σ of data in this space allows for modeling the
directional variation of the data within these bounds.

KDE Generative Modeling: Here we use a KDE model to allow for a non-parametric complex distributional
model. We simply sample by choosing a training data point in the latent space z ∼ Unif(Z), and then choose
a random direction u proportional to the covariance Σ. Then generate:

z′ ← z + ur

where r is a scalar controlling the amount of deviation from the training data. In particular, we select r at
random from a learned distribution from the training data estimating the distance to the closest point. One
more idea is needed, we disallow points outside [0, 1]d to respect the original column marginals. To handle
this, we keep coordinates within [0, 1]d, and regenerate the others iteratively.

Pipeline overview. Putting the pieces together, TabKDE proceeds as follows:

1. Encode each table row into a d-dimensional numeric representation E with one scalar per original
column (Section 2.1);

2. Apply a per-coordinate copula transform (empirical CDF) to map into a bounded latent space
Z ⊂ [0, 1]d that preserves marginal support and is invertible (Section 2.2);

3. Compute the latent covariance Σ and estimate a distance-to-closest-record radius distribution f in
this copula space (Section 2.3);

4. Now we can generate a latent sample by choosing a seed point zi ∈ Z, drawing a covariance-aligned
direction u, drawing a radius r ∼ f , proposing z′ = zi + ru, enforcing z′ ∈ [0, 1]d via boundary-aware
resampling, and finally decoding back to the original tabular domain via the inverse copula map
(Section 2.4).

2.1 Encoding of Tabular Features: T → E

For tabular data T = {X1, . . . , Xn} with d coordinates, we first encode each row Xi into a space E ⊂ Rd.
Importantly the space E has one dimension for each column in T . Numerical values are left as they are, and
ordinal values are assigned values 1, 2, 3, . . . for the rank of the ordinal category.

For categorical data we avoid one-hot encoding, and instead apply PrincipalGuidedEncoding (PGE). It
first computes a vector v ∈ Rd′ , the top principal vector of the d′ ≤ d numerical features matrix Z ∈ Rn×d1

(z-score normalized); this captures the largest mode of variation among the numerical data. It then performs
a one-dimensional reduction by projecting Z onto this top principal direction v, yielding u = Zv ∈ Rn, where
u denotes the first principal component scores (PC1 scores). Then for each categorical dimension j ∈ Cat
with category set Cj , it uses u to numerically encode each category. That is, for each category c ∈ Cj it
considers all row indices whose jth coordinate equals c; call this set Ij,c = {i ∈ [n] | (Xi)j = c}. Then it
assigns the category c the average first principal component score among those rows; that is

vj,c = 1
|Ij,c|

∑
i∈Ij,c

ui.

The discrete category c is replaced with that average value vj,c in the space E. Intuitively, this uses the first
principal component scores as a one-dimensional “ruler”: categories that co-occur with similar numerical
profiles tend to receive nearby codes, enabling a single-coordinate representation that can preserve cat–num
structure without increasing dimensionality. These categorical dimension can be detokenized by randomly
rounding to one of the two nearest values proportional to how close it is. Additional diagnostics and ablation

4



Under review as submission to TMLR

studies for PGE are provided in Section 3.2, where we compare it against standard scalar encodings that
map each categorical value to a single number.

To the best of our knowledge, this is a new method in this context of generative modeling of tabular data,
but is also folklore with similar ideas appearing in applied work (c.f. (Saukani & Ismail, 2019)).

2.2 Map to Numerical Latent Space: E → Z

Next we map to a latent space Z where the distances measure closeness between objects. Our representation
will have two aspects. First we will ensure Z = [0, 1]d, so each coordinate is continuous value between 0 and
1. We do this with a copula transform (Patki et al., 2016) where among the encoded training data Ei ∈ E,
each coordinate Ei,j is assigned its value in the empirical CDF. So Zi,j is the fraction of Ei′,j ≤ Ei,j . We
store the sorted order of the values Ei,j so we can invert this.

Second, after have built Z via a copula map in each coordinate, we then compute sample covariance Σ of Z.
This induces a Mahalanobis distance, and Σ will be important for generative sampling.

2.3 Learning Distance to Closest Record (DCR)

In generative sampling, one often computes the distance to closest record (DCR) (Mateo-Sanz et al., 2004;
Steier et al., 2025) to evaluate how similar a synthetic record s is to a real one from a set Z.

DCR(s, Z) = min
z∈Z
∥s− z∥

A DCR of 0 may indicate an identical match, posing a significant privacy risk. We can compare DCR
values from synthetic data to both training ZT and holdout ZH datasets. Ideally, for synthetic data S, DCR
distributions {DCR(s, ZT )}s∈S and {DCR(s, ZH)}s∈S should heavily overlap, showing that synthetic data
reflects general patterns rather than replicating specific records.

As part of our generative process, we learn this distribution {DCR(s, Z)}s∈S where Z is the training data
in the copula space. Then we can generate synthetic data to mirror this scale of variation. We repeatedly
randomly split the training data, and compute the DCR distribution between the two splits. Then we fit a
simple mixture of k Gaussians f to this distribution; choosing k (from 1, . . . , 10) using Bayesian Information
Criterion. We use the learned DCR distribution f as the perturbation-radius prior in the KDE sampler
(Alg. 2). Estimating f by computing DCRs between two random halves of the training set yields an empirical
model of the nearest-neighbor spacing expected from independent draws from the same underlying data
distribution at finite sample size. Drawing radii r ∼ f therefore calibrates the typical displacement of a
synthetic point from its seed zi: radii that are too small tend to collapse toward memorization (unusually low
DCR to training points), whereas radii that are too large push samples out of distribution. By matching this
characteristic radius scale, TabKDE can generate high-fidelity samples while avoiding overly close replicas of
the training data.

2.4 Tabular Kernel Density Estimation: Z → Sample

A kernel density estimation (KDE) is a continuous estimate of a probability density function built by
smoothing finite data samples with a kernel function K (often Gaussian) and bandwidth h. For n data
points X = {x1, . . . , xn} ∼ P , if we appropriately adjust h as n grows, then the KDE defined kdeX(x) =
1
n

∑n
i=1 K((x−xi)/h) will converge to P (Silverman, 1986; Scott, 2015). Moreover, we can generate synthetic

data (in a manner that approaches the unknown distribution P ) by drawing a random point xi and then
adding an offset defined by K and h.

Sampling from KDE with DCR kernel. In our TabKDE method we adapt this sampling from a
KDE of the data in a few subtle ways. First, instead of a Gaussian, we use a kernel with offset radius r
matching a learned DCR distribution. Second, instead of selecting the offset direction u uniformly, we draw
it proportional to the learned covariance Σ. These two modifications are sketched in Algorithm 1 with a
single sample in latent space generated via Algorithm 2.

5



Under review as submission to TMLR

Algorithm 1 SimpleKDE(T )

1: Z ∈ [0, 1]n×d ⇐ Copula-Transform(T )
2: Σ← Covariance(Z)
3: Estimate empirical DCR distribution f
4: for i = 1, . . . , m:
5: z′

i = SampleKDE(Z, f, Σ)
6: yj ← InverseCopula(z′

j)
7: return Y = {y1, . . . , ym}

Algorithm 2 SampleKDE(Z, f, Σ)
1: Uniformly sample zi ∈ Z
2: Sample radius r > 0 from f
3: Sample v ∼ N (0, Σ), set u = v

∥v∥
4: return z′ ← zi + r · u

However, the SimpleKDE algorithm does not explicitly control the support of the marginals, which is critical
for tabular data generation. The copula-transformed representation, however, embeds the data within the
unit hypercube, which allows us to control how far a perturbed sampled point x can deviate without violating
marginal support. We now introduce a more refined rejection-sampling heuristic (Alg. 3: TabKDE) that
effectively enforces these boundary constraints.

Algorithm 3 TabKDE(T )

1: Z ∈ [0, 1]n×d ⇐ Copula-Transform(T )
2: Σ← Covariance(Z)
3: Estimate empirical DCR distribution f
4: for i = 1, . . . , m:
5: z′

i = SampleKDE-iterative(Z, f, Σ)
6: yj ← InverseCopula(z′

j)
7: return Y = {y1, . . . , ym}

Algorithm 4 SampleKDE-iterative(Z, f, Σ)
1: Uniformly sample zi ∈ Z
2: Sample radius r > 0 from f
3: Sample v ∼ N (0, Σ), set u = v

∥v∥
4: z′ ← zi + r · u
5: While {j : z′

j /∈ [0, 1]} ≠ ∅:
6: J ← {j : z′

j /∈ [0, 1]}
7: Sample v′ ∼ N (0, Σ), set w = v′

∥v′∥

8: s← ∥(uk)k∈J ∥
∥(wk)k∈J ∥

9: uj ← s · wj for each j ∈ J
10: z′ ← zi + r · u
11: return z′

TabKDE differs from SimpleKDE only in line 5, where it uses the boundary-aware SampleKDE-iterative
(Alg 4) instead of the simpler SampleKDE. This modified sampler checks for violations of the unit hypercube
boundaries and regenerates out-of-bound coordinates. If a valid point cannot be obtained after a fixed number
of attempts, the sample is discarded, and the process restarts. This mechanism guarantees that all accepted
samples lie within the latent space [0, 1]d. Note that a naive KDE perturbation z′ = zi + ru frequently
proposes points with some coordinates < 0 or > 1, especially for seeds near the boundary. Simple fixes such
as clipping out-of-range coordinates to 0/1 or rejecting and resampling entire proposals can noticeably distort
the distribution: clipping creates artificial probability mass at the boundaries and yields visible marginal
artifacts (spikes/heavy tails), while full rejection biases samples away from boundary regions and can disrupt
correlations. Our boundary aware sampler prevents this by only resampling the offending coordinates until
all coordinates lie in [0, 1]d, preserving the intended radius scale r and the covariance-aligned geometry on
the remaining coordinates. This avoids the boundary accumulation and out-of-support marginal behavior
observed in the non-boundary-aware variant (see Appendix G.1 and Figure 14 for an illustrative marginal
failure case). Appendix G.2 presents an ablation analysis illustrating how often the boundary aware sampler
corrects a sample across different datasets.

2.5 Coresets for Generative Tabular Data Modeling

A coreset (Phillips, 2016) is a compact, weighted set of points that provides a close approximation to the full
dataset for a specific downstream task. In the context of KDEs, a coreset serves to approximate the full KDE
using significantly fewer, strategically chosen, representative points.

Our proposed TabKDE framework employs the full kdeZ to generate samples from the Copula latent
representation Z ⊂ [0, 1]n×d of the tabular data T . To approximate kdeZ(·) using a coreset, we define ˜kdeΘ(·)
with Θ comprised of a small set of learnable coreset points Q = {q1, . . . , qm} and their corresponding non-

6



Under review as submission to TMLR

Table 2: Runtime comparison of Tabsyn, TabKDE, and SMOTE models across individual datasets on laptop.
The IBM dataset is excluded from the average row.

Dataset TabSYN smote TabKDE

VAE Train Diff. Train Total Train Sample Train+Sample Train Sample

Adult 6h 35m 43s 2h 6m 31s 8h 43m 19s 1m 5s 4s 44s 20s
Default 6h 32m 3s 2h 2m 16s 8h 34m 59s 40s 2s 59s 17s
Shoppers 3h 57m 42s 0h 55m 32s 4h 53m 32s 18s 3s 17s 5s
Magic 3h 51m 7s 1h 21m 27s 5h 13m 0s 26s 5s 19s 7s
Beijing 5h 31m 57s 1h 57m 44s 7h 30m 35s 54s 2s 35s 16s
News 14h 34m 15s 2h 8m 59s 16h 44m 11s 57s 4s 6m 2s 54s

Average 6h 50m 27s 1h 45m 24s 8h 36m 36s 43s 3s 1m 29s 19s

IBM OOM OOM OOM OOM OOM 10m 21s 6m 4s

negative weights W = {ω1, . . . , ωm}, constrained such that
∑m

i=1 ωi = 1. The approximated density function is

˜kdeΘ(z) =
m∑

i=1
ωiK

(
z − qi

h

)
. It is known (Joshi et al., 2011) that a sample Q ∼ Z of m = O((d/ε2) log(1/δ))

points, and uniform weights already ensures a strong L∞ coreset approximation that ∥kdeZ − kdeQ∥∞ ≤ ε
with probability at least 1 − δ. This results holds for kernels where the super-level set (function domain
points with function value above a threshold) have VC-dimension O(d); that holds for these Gaussian kernels
(super-level sets are balls), and by kernels clipped at the [0, 1]d boundary as we will ultimately use, since that
only increases the VC-dimension by O(d).

Moreover, this can be used as a starting point for an optimized coreset, over the locations Q and their
weights W to minimize the empirical L2 via SGD as Ez∼Unif([0,1]d)

[
( ˜kdeΘ(z)− kdeZ(z))2

]
. This optimized

version can potentially better preserve key distributional features, such as modes, spread, and overall shape.
Moreover, because we are not replicating the training data, it can reduce the risk of overfitting to the data or
leaking its private attributes. We call this method CoreTabKDE; and RandCoreTabKDE only samples
but does not optimize. We use coresets of size m = 5000.

3 Experimental Results

Our experiments are conducted on the six tabular datasets from UCI Machine Learning Repository1 (Adult,
Default, Shoppers, Magic, Beijing, News) with between 12K and 49K rows and a mixture of 11 and 48
dimensions, a mixture of mostly numerical and categorical. We also use an IBM dataset2 which is significantly
larger; it has about 176K rows and 14 dimensions, with 5 ordinal ones, and a total of over 37K total categories.
See Appendix B.1 for more detail.

Baselines. We compare our proposed TabKDE method with several popular baselines, including
SMOTE (Chawla et al., 2002), GReaT (Borisov et al., 2023), CoDi (Lee et al., 2023), TabDDPM (Kotelnikov
et al., 2023), TabSYN (Zhang et al., 2024), and TabDiff (Shi et al., 2025); some comparisons and other
methods are deferred to Appendix B.2 for space. We also consider several hybrid models that mix elements
of TabKDE with the encoding choices. Notably, in CopulaDiff we first use our CopulaMapping to
embed data into a latent space, train a diffusion model there. Broader comparisons with other copula-based
methods are in Appendix H.

3.1 Scalability and Efficiency

1https://archive.ics.uci.edu/datasets
2https://www.kaggle.com/code/yichenzhang1226/ibm-credit-card-fraud-detection-eda-random-forest

7

https://archive.ics.uci.edu/datasets
https://www.kaggle.com/code/yichenzhang1226/ibm-credit-card-fraud-detection-eda-random-forest/input?select=credit_card_transactions-ibm_v2.csv


Under review as submission to TMLR

Table 3: Average GPU timing

Method Train (s) Sample (s)
GReaT 17112.4 251.2
CoDi 18487.6 11.8
TabDDPM 2771.4 70.8
TabSYN 1297.8 8.4
TabKDE 39.2 39.0

We measure the scalability and efficiency on both the training time, as
well as the sample generation time; sample generation measures time for
the full synthetic set – the same size as training set. A key motivating
factor for generative modeling of tabular data is for making sensitive
datasets available for development teams that want to use the build
models without worrying about leaking specific datum. Since these
models vary based on the source of the data, regions, and time periods
relevant for the analysis, there are frequent retraining on different parts
of the full sensitive dataset. In this setting, each retraining needs to generate one data set that can be used
as proxy.

We first compare against TabSYN and smote on a laptop using only CPU (2021 Apple 14" MacBook Pro;
M1 Pro chip). Table 2 shows that the simple smote algorithm is faster than TabKDE, but the training time
of TabKDE is orders of magnitude faster than TabSYN (about 90 seconds to about 8.5 hours). Appendix
C shows other baselines have run times in the ballpark of TabSYN. Moreover, both TabSYN and smote
run out of memory on the IBM data set since they try to one-hot encode 37K categories, while TabKDE
still completes in under 20 minutes.

We compare GPU runtime (NVIDIA RTX A5000; 24GB memory; max power 230W) in Table 3 over the
average training and sampling time on Adult, Default, Shoppers, and Magic datasets. TabKDE is still
orders of magnitude faster in training, and while other methods can improve upon TabKDE (our code not
optimized for GPU) in sampling, this cost is dominated by the training time. We note that TabSYN requires
3.5 hours of GPU training and 1 minute for sampling on IBM, whereas TabKDE trains in 8 seconds and
takes more than 7 minutes (433 seconds) to sample.

In addition to TabKDE, we consider coreset-based variants (CoreTabKDE and RandCoreTabKDE) that
reduce storage and can improve privacy. RandCoreTabKDE has runtime comparable to TabKDE, whereas
CoreTabKDE incurs an additional optimization step, requiring approximately 55 minutes of training time
on CPU on average across Adult, Default, Shoppers, Magic, and Beijing (see Appendix F.1). While this
dominates the Train time in CoreTabKDE, it is still significantly less than TabSYN, which averages over 8
hours on a CPU, as seen in Table 2.

3.2 Accuracy

In this section, we evaluate the quality of the generated synthetic data using three criteria: (1) marginal
distribution alignment, (2) pairwise correlation matching, and (3) finally global alignment between synthetic
and hold-out distributions is compared by how well a classifier can separate the distributions.

Marginal distribution alignment. When evaluating synthetic tabular data, the marginal distribution
alignment score assesses how closely each individual column matches its real-data distribution represented
by train data. Following what was done in the TabSYN paper, we calculate the Kolmogorov–Smirnov
(KS) distance for numerical attributes in Num and the Total Variation distance for categorical and ordinal
attributes in Cat and Ord. Table 4 presents, for each dataset, the average marginal alignment errors across
all features for each method.

Figure 2 provides a visual comparison between some representative selected real marginal distributions and
those generated by TabSYN (orange) and TabKDE (green) against the real data distributions (blue). We
observe that TabKDE and TabSYN visually match the distributions well, both are about the same. In
particular, on numerical data TabKDE seems to do better on more uniform distributions whereas TabSYN
does better on spiky ones.
Pairwise correlation alignment. We next measure pairwise correlation between columns. For numerical-
numerical pairs, we can use standard Pearson correlations. For pairs that involve categorical or ordinal
feature (as in Zhang et al. (2024)) we use contingency-table total variation distances. In both metrics, smaller
error values indicate that the synthetic table is more faithful to the original data. Table 5 presents, for each
dataset, the average pairwise correlation alignment errors across all features for each method. A heatmap
visualization of the divergence between the pairwise correlations in the real and synthetic data is presented in

8



Under review as submission to TMLR

Table 4: Marginal distribution alignment error; lower is better. In parentheses denotes ratio relative to the
smallest value. Baseline values, unless stated otherwise, are taken from (Zhang et al., 2024); the remaining
scores (our methods) are obtained using their data split.

Method Adult Default Shoppers Magic Beijing News Average

smote (Our reproduced) 1.63 (2.55) 1.70 (1.49) 2.66 (2.16) 1.37 (1.93) 2.10 (1.62) 5.47 (3.18) 2.49 (1.75)
GReaT 12.12 (18.94) 19.94 (17.49) 14.51 (11.80) 16.16 (22.76) 8.25 (6.35) – 14.20 (10.00)
CoDi 21.38 (33.41) 15.77 (13.82) 31.84 (25.89) 11.56 (16.28) 16.94 (13.03) 32.27 (18.78) 21.63 (15.23)
TabDDPM 1.75 (2.73) 1.57 (1.38) 2.72 (2.21) 1.01 (1.42) 1.30 (1.00) 78.75 (45.83) 14.52 (10.23)
TabSYN (Our reproduced) 0.64 (1.00) 1.14 (1.00) 1.23 (1.00) 0.98 (1.38) 2.79 (2.15) 1.72 (1.00) 1.42 (1.00)
PGE-Tabsyn 11.21 (17.51) 7.66 (6.72) 12.98 (10.55) 1.36 (1.74) 2.65 (2.39) 18.65 (10.84) 9.08 (6.39)
CopulaDiff 2.01 (3.14) 1.47 (1.29) 2.47 (2.01) 0.94 (1.32) 2.13 (1.64) 2.44 (1.42) 1.91 (1.35)
RandCoreTabKDE 1.61 (2.52) 1.76 (1.54) 2.54 (2.07) 1.01 (1.42) 1.70 (1.31) 2.59 (1.51) 1.87 (3.48)
CoreTabKDE 3.63 (5.67) 3.29 (2.89) 3.23 (2.63) 1.08 (1.52) 3.20 (2.46) 2.87 (1.67) 2.88 (2.03)
TabKDE 1.56 (2.44) 1.55 (1.36) 2.44 (1.98) 0.78 (1.1) 1.37 (1.05) 2.52 (1.47) 1.70 (1.2)

Figure 2: Marginals comparison between real data (blue), TabKDE (green), and TabSYN (orange).
Representative numerical and categorical data from News dataset.

Figure 3; see more in Appendix D.2. We observe that TabKDE has better pairwise correlation alignment
than all methods except TabSYN, and is comparable to SMOTE; both TabKDE and SMOTE have about
2× the correlation discrepancy as TabSYN.
We also compare against some variants on the larger IBM dataset (See Appendix B.1 for more detail). Recall
that on our laptop CPU, neither TabSYN or smote can run on this data set – they both run out of memory.
Instead we compare TabKDE against our baselines including CopulaDiff and PGE-Tabsyn. Also, note
that we apply a modeling trick with Zip / Merchant State / Merchant City and with MCC / Merchant Name
with TabKDE but not PGE-Tabsyn and TabSYN (on GPU). Recall also that TabKDE (about 10 minutes
training time on CPU; 40 seconds on GPU) was much faster than either of CopulaDiff (about 15 hours on
CPU), PGE-Tabsyn (over 40 hours on CPU) or TabSYN (OOM on CPU, about 20 minutes on GPU). The
average pairwise correlation alignment error for TabSYN and PGE-Tabsyn (without modeling trick) are
40.42% and 30.53%, respectively, while for TabKDE and CopulaDiff (with modeling trick), are is 25.29%
and 22.59%; see Table 6. Indeed as shown in Figure 4 of pairwise correlation plots, the methods work largely

9



Under review as submission to TMLR

Figure 3: Representative Pairwise correlation divergence heatmaps for Magic and Beijing datasets.

Figure 4: Pairwise correlation Divergence plots for IBM dataset and methods: TabSYN (without mod-
eling trick), PGE-Tabsyn (without modeling trick), CopulaDiff (with and without modeling trick),
CoreTabKDE, TabKDE (with and without modeling trick). For CoreTabKDE, the size of coreset and
the bandwidth are 5,000 and 0.15, respectively. Models that use the reduced modeling trick are indicated by
“with trick” in parentheses.

10



Under review as submission to TMLR

Table 5: Pairwise correlation alignment error; Lower values is better. In parentheses is the ratio relative
to the smallest value. Baseline values, unless stated otherwise, are taken from (Zhang et al., 2024); the
remaining scores (our methods) are obtained using their data split.

Method Adult Default Shoppers Magic Beijing News Average

smote(our reproduction) 4.3 (2.67) 11.54 (5.11) 3.68 (1.47) 1.88 (2.29) 3.3 (1.22) 1.67 (1.25) 4.39 (1.99)
GReaT 17.59 (10.93) 70.02 (30.98) 45.16 (18.06) 10.23 (12.48) 59.6 (21.99) – 40.52 (18.33)
CoDi 22.49 (13.98) 68.41 (30.27) 17.78 (7.11) 6.53 (7.97) 7.07 (2.61) 11.1 (8.28) 22.23 (10.06)
TabDDPM 3.01 (1.87) 4.89 (2.16) 6.61 (2.64) 1.7 (2.07) 2.71 (1.00) 13.16 (9.82) 5.34 (2.42)
TabSYN (our reproduction) 1.61 (1.00) 2.26 (1.00) 2.5 (1.00) 0.82 (1.00) 4.7 (1.73) 1.34 (1.00) 2.21 (1.00)
PGE-Tabsyn 7.14 (4.43) 15.19 (6.72) 7.56 (3.02) 2.67 (2.76) 3.49 (1.29) 4.60 (3.42) 6.78 (3.07)
CopulaDiff 4.61 (2.86) 3.29 (1.46) 5.3 (2.12) 1.72 (2.10) 4.5 (1.66) 2.1 (1.57) 3.59 (1.62)
RandCoreTabKDE 3.93 (2.44) 13.66 (6.04) 4.27 (1.71) 4.76 (5.80) 4.05 (1.49) 2.61 (1.95) 5.46 (2.47)
CoreTabKDE 6.3 (3.91) 9.91 (4.39) 5.77 (2.31) 2.18 (2.66) 5.86 (2.16) 2.82 (2.10) 5.47 (2.48)
TabKDE 4.51 (2.80) 9.93 (4.40) 4.31 (1.72) 2.72 (3.32) 3.74 (1.38) 2.83 (2.11) 4.67 (2.11)

Table 6: Error on IBM. Results below the line have the dimension reduced by a modeling trick to functionally-
related coordinates.

Method Marginal Pairwise Reduced
TabSYN 16.99 40.42 no
PGE-Tabsyn 9.29 30.53 no
CopulaDiff 6.81 29.42 no
TabKDE 4.36 27.56 no
CopulaDiff 3.59 22.59 yes
CoreTabKDE 5.25 23.93 yes
TabKDE 3.58 25.29 yes

similar except on the highly correlated pairs where we employ the modeling trick. For fairness, we report the
results with and without this reduction.

We also compare against some variants on the larger IBM dataset in Table 6 and Figure 4. Recall that on
our laptop CPU, neither TabSYN or SMOTE can run on this data set – they both run out of memory. For
TabKDE we apply a data reduction modeling by first reducing out 3 strongly correlated categories (i.e.,
state and city depend on zipcode), then inferring them in the decoding step; details in Appendix B.1.

Recall also that TabKDE (about 10 minutes training time on CPU; 40 seconds on GPU) was much faster
than either of CopulaDiff (about 15 hours on CPU), or TabSYN (OOM on CPU, about 20 minutes on
GPU). The average pairwise correlation alignment error for TabSYN (no reduction) is 40.42%, while for
TabKDE and CopulaDiff (with reduction) is 25.29% and 22.59%.

Ablation: different categorical encodings. A defining design choice of TabKDE is that the intermediate
representation E ∈ Rn×d (and thus the copula space Z ⊆ [0, 1]d) has one coordinate per original table column.
This fixed per-column structure makes the copula mapping invertible column-wise and keeps KDE sampling
scalable for mixed data types. As a result, TabKDE must map each categorical column to a single real-
valued coordinate (i.e., a continuous code per category) rather than using one-hot expansion. Our default
is Principal-Guided Encoding (PGE), though the pipeline is modular: any single-scalar encoding can be
substituted, potentially at the cost of fidelity.

To isolate the effect of PGE, we re-run TabKDE and TabSYN with standard single-scalar alternatives,
including uniform and frequency-based encodings. Uniform encoding assigns each category a sub-interval
of [0, 1] with width proportional to its marginal frequency and samples within that interval, yielding an
approximately uniform transformed column. Frequency-based encoding also uses only marginal frequencies,
but typically maps each category to a fixed scalar derived from its frequency (or a related interval statistic).
Tables 7 and 8 report marginal and pairwise alignment errors. We observe that all TabKDE variants perform
significantly better (about 1.5 − 1.7) than TabSYN (about 8.5 − 10) in marginal error, with still clear
but less dramatic improvements in pairwise correlation error. Overall, PGE and Frequency achieve the

11



Under review as submission to TMLR

lowest average pairwise alignment errors (4.67 and 4.74; Average column of Table 8), indicating the most
consistent cross-type fidelity among single-scalar encodings as a key contributor to TabKDE’s performance
without one-hot expansion. Figure 5 further illustrates correlation divergence for Magic and Beijing via
heatmaps, showing how the encoding choice affects the correlation structure. Ultimately, we conclude that
Frequency-based encoding could probably replace PGE-encoding without considerable change to the efficacy.

Table 7: Marginal distribution alignment error (lower is better) across different categorical encodings that
map each category to a single scalar.

Method Adult Default Shoppers Magic Beijing News Average
Freq-Tabsyn 12.12 5.53 10.02 1.62 3.82 17.99 8.52
Uni-Tabsyn 10.74 5.56 10.33 1.47 1.40 22.41 8.65
PGE-Tabsyn 11.21 7.66 12.98 1.36 2.65 22.24 9.68
Freq-TabKDE 1.19 1.34 2.52 0.86 1.33 2.49 1.62
Uni-TabKDE 1.58 1.01 2.07 0.75 1.44 2.48 1.56
TabKDE 1.56 1.55 2.44 0.78 1.37 2.52 1.70

Table 8: Pairwise correlation alignment error (lower is better) across different categorical encodings that map
each category to a single scalar.

Method Adult Default Shoppers Magic Beijing News Average
Freq-Tabsyn 11.03 11.66 6.38 3.25 5.76 5.07 7.19
Uni-Tabsyn 9.18 12.48 6.62 3.36 4.10 7.08 7.14
PGE-Tabsyn 7.14 15.19 7.56 2.67 3.49 7.12 7.20
Freq-TabKDE 3.94 10.62 4.05 2.51 4.51 2.80 4.74
Uni-TabKDE 6.28 15.03 4.39 3.65 5.78 2.91 6.34
TabKDE 4.51 9.93 4.31 2.72 3.74 2.83 4.67

Global Distribution Alignment. Synthetic data should be able to take the place of real data, letting us
train models on it for downstream prediction tasks and have indistinguishable performance. We assess by
building a classifier to attempt to distinguish between the synthetic data and a split of data held out from
the training process. We use logistic regression in Table 9 and XGBoost in Appendix D. We quantify this as
a classifier two-sample test (C2ST) as provided by SDMetrics; larger values closer to 1 are better.

We observe that TabKDE is roughly the same as SMOTE with 0.93 and only bested by TabSYN which has
about 0.97. Other baselines achieve 0.79 (TabDDPM) or below 0.66.

Table 9: C2ST Scores; larger is better. Baseline values, unless stated otherwise, are taken from (Zhang et al.,
2024); the remaining scores (our methods) are obtained using their data split.

Method Adult Default Shoppers Magic Beijing News Average

smote(Our reproduction) 0.9212 0.9332 0.9107 0.9803 0.9972 0.8633 0.9334
GReaT 0.5376 0.4710 0.4285 0.4326 0.6893 — 0.5118
CoDi 0.2077 0.4595 0.2784 0.7206 0.7177 0.0201 0.4007
TabDDPM 0.9755 0.9712 0.8349 0.9998 0.9513 0.0002 0.7888
TabSYN(Our reproduction) 0.9949 0.9804 0.9699 0.9893 0.9268 0.9584 0.9699
PGE-Tabsyn 0.9240 0.9039 0.7679 0.9859 0.8629 0.8060 0.8751
CopulaDiff 0.8557 0.9798 0.8665 0.9914 0.9576 0.9793 0.9384
RandCoreTabKDE 0.9215 0.9570 0.8757 0.9921 0.9503 0.8901 0.9311
CoreTabKDE 0.8254 0.8730 0.8462 0.9864 0.8924 0.8643 0.8813
TabKDE 0.9219 0.9579 0.9161 1.0000 0.9514 0.8819 0.9382

12



Under review as submission to TMLR

Figure 5: Representative pairwise correlation divergence heatmaps for the Magic and Beijing datasets using
TabKDE with different categorical encodings.

Marginal and pairwise statistics do not uniquely determine the joint distribution, and they may miss higher-
order dependencies or rare categorical conjunctions. In addition to these metrics and C2ST, we also report
machine learning efficiency (MLE) (Train-on-Synthetic, Test-on-Real) (Appendix D.3, Table 22), which
depends on multi-way feature interactions and therefore serves as an additional higher-order check. We note
TabSYN provides the best error, and TabKDE is nearly as good – almost within the natural variation in
TabSYN’s performance. Perhaps surprisingly, the simple method smote also performs on par with TabSYN
and TabKDE.

3.3 Privacy

Finally, we evaluate how well we can preserve the privacy of the training set in synthetic data generation
through DCR. For each synthetic data point generated, we compute the distance to training and held-out
data. Ideally these distributions should be indistinguishable.

First in Table 10 we calculate the DCR score, which is the percentage of synthetic data closer to training data
than held-out; we would like this to be close to 50%. This was proposed for TabDiff (Shi et al., 2025), and
we show their results in the top half of the table, and also show smote, TabSYN, and our methods following
their code below the line. We see most diffusion methods (including our CopulaDiff) can consistently
achieve below 52%. Our main method TabKDE obtains an average DCR score of about 58%, which is
servicable. smote has an average DCR score of 95% indicating that it reveals significant information (if not
replicating) the training data.

The DCR score is an imperfect measure of privacy, since there may be heldout data nearly as close as the
training data to a synthetic point. Indeed TabKDE is inspired by differential privacy, and the accepted
comparison is the ratio of likelihoods, not the count of which one is maximum. So another, albeit less
quantitative, evaluation considers the DCR distribution of synthetic data measured to training versus heldout
data. Figure 6 shows distribution to training (blue) versus to heldout (red) for representative data on

13



Under review as submission to TMLR

Table 10: The DCR score for synthetic data sample comparing training to held-out data. A value nearer to
50% is ideal. In parentheses is the ratio relative to the smallest value in each column. Baseline values, unless
stated otherwise, are taken from (Zhang et al., 2024); the remaining scores (our methods) are obtained using
their data split.

Method Adult Default Shoppers Beijing News Average

smote(Our reproduction) 91.18 (1.83) 91.46 (1.79) 96.76 (1.93) 100.00 (1.99) 99.00 (1.96) 95.68 (1.89)

CoDi 49.92 (1.00) 51.82 (1.02) 51.06 (1.02) 50.87 (1.01) 50.79 (1.01) 50.89 (1.01)

TabDDPM 51.14 (1.02) 52.15 (1.02) 63.23 (1.26) 80.11 (1.59) 79.31 (1.57) 65.19 (1.29)

TabDiff 50.10 (1.00) 51.11 (1.00) 50.24 (1.00) 50.50 (1.00) 51.04 (1.01) 50.60 (1.00)

TabSYN(Our reproduction) 51.33 (1.03) 51.61 (1.01) 51.99 (1.03) 53.20 (1.06) 50.76 (1.01) 51.65 (1.02)

PGE-Tabsyn 50.38 (1.01) 51.33 (1.01) 51.81 (1.03) 50.67 (1.01) 50.48 (1.00) 50.94 (1.01)

CopulaDiff 50.34 (1.01) 50.96 (1.00) 50.72 (1.01) 50.29 (1.00) 53.00 (1.05) 51.06 (1.01)

RandCoreTabKDE 62.30 (1.25) 63.09 (1.24) 58.91 (1.17) 63.50 (1.26) 55.59 (1.10) 60.68 (1.20)

CoreTabKDE 52.59 (1.05) 54.11 (1.06) 55.04 (1.10) 51.17 (1.02) 52.00 (1.03) 52.98 (1.05)

TabKDE 62.23 (1.25) 63.46 (1.25) 58.80 (1.17) 54.24 (1.08) 54.54 (1.08) 58.55 (1.16)

Beijing and News; more in Appendix E. If a generator concentrates probability mass near training examples
(memorization), the blue distribution exhibits a systematic left-shift toward zero relative to red, indicating
that synthetic samples preferentially occupy “training neighborhoods” across distance scales. Conversely,
strong overlap between the two distributions indicates that synthetic samples lie in neighborhoods that are
similarly populated by unseen held-out records, suggesting little geometry-driven membership advantage
over a range of neighborhood radii. We observe that for TabKDE, TabSYN, and CoreTabKDE these
distributions are multi-modal, but still match almost perfectly. On the other hand smote has a very different
distribution, and the synthetic to train (blue) is always much smaller (typically very close to 0), indicating it
may often reproduce the training data. Results for all datasets are provided in Figure 11 in the Appendix.

smote TabSYN CoreTabKDE TabKDE

Figure 6: Privacy comparison based on DCR distributions for synthetic to training data (blue) and synthetic
to held-out data (red). First row Beijing and second row News.

DCR as an implicit linkage and membership advantage. The DCR score p is the fraction of synthetic
points that lie closer (under a fixed distance metric) to the training set than to the held-out set. For
interpretability, we map p to odds,

odds = p

100− p
,

which quantifies the strength of this proximity bias (e.g., p = 58% yields 1.38× odds, while p = 95% yields
19× odds). Viewed this way, DCR is not intended to characterize a fully informed attacker; rather, it provides
a conservative, geometry-driven diagnostic of whether the released synthetic data systematically clusters
around training records in a manner that could facilitate downstream linkage.

14



Under review as submission to TMLR

Table 11: DCR expressed as nearest-neighbor attacker odds. If the DCR score is p (in %), odds are p
100−p .

Method Adult Default Shoppers Beijing News Average

smote(Our reproduction) 10.34× 10.71× 29.86× ∞ 99.00× 22.15×
CoDi 1.00× 1.08× 1.04× 1.04× 1.03× 1.04×
TabDDPM 1.05× 1.09× 1.72× 4.03× 3.83× 1.87×
TabDiff 1.00× 1.05× 1.01× 1.02× 1.04× 1.02×
TabSYN(Our reproduction) 1.05× 1.07× 1.08× 1.14× 1.03× 1.07×
PGE-Tabsyn 1.02× 1.05× 1.08× 1.03× 1.02× 1.04×
CopulaDiff 1.01× 1.04× 1.03× 1.01× 1.13× 1.04×
RandCoreTabKDE 1.65× 1.71× 1.43× 1.74× 1.25× 1.54×
CoreTabKDE 1.11× 1.18× 1.22× 1.05× 1.08× 1.13×
TabKDE 1.65× 1.74× 1.43× 1.19× 1.20× 1.41×

Table 11 reports DCR as nearest-neighbor attacker odds, where values near 1× indicate that synthetic samples
are not systematically closer to the training set than to a held-out set (and thus exhibit little geometric
“membership advantage”). Under this lens, TabKDE and its coreset variants remain comparatively benign.
In particular, CoreTabKDE attains near-unity odds across all datasets (average 1.13×), indicating only
a low preference for training neighborhoods. Even the full TabKDE while higher (averages 1.41×), stay
far below methods that exhibit strong training-set attraction and are orders of magnitude smaller than the
extreme nearest-neighbor leakage observed for smote.

Coreset methods. The coreset methods CoreTabKDE and RandCoreTabKDE work nearly as well as
TabKDE in terms of accuracy, and use a fraction of the space. Surprisingly, RandCoreTabKDE often has
better accuracy than CoreTabKDE and is of course faster since it does not require the optimization step.
However, notably, CoreTabKDE has a much improved DCR score for privacy (of about 53%), so provides a
way to address that measure within the TabKDE framework. See Appendix F for a longer discussion.

3.4 Conclusion and Limitations

We introduce a new approach for tabular data generation, built with a careful combination of only classic
techniques like copula transforms and KDEs. It is the first to demonstrate high scalability, accuracy, and
privacy. While its DCR privacy score is not quite as strong as other methods, this can be improved with
slight accuracy trade-offs through coresets. It handles, but also requires, a mix of numerical and categorical
features as is common in tabular data.

LLM Disclosure. In this paper, the use of LLMs is restricted to enhancing grammar and making partial
rewording adjustments.

Reproducibility Statement. We clearly describe the full TabKDE algorithm and the other hybrid
models, including encoding, copula transformation, KDE sampling, and coreset construction (Sections 2 and
Appendix A). Section3 outlines the datasets used, evaluation metrics, and experimental setups, while Tables 2
and 3 include compute resources and runtime information. Additional implementation details are provided in
AppendicesB–F. Together, these components enable reproduction of the key results, even independently of
the code. Our code is also anonymously available here: http://github.com/tabkde/tabkde-main

References
Martin Arjovsky and Leon Bottou. Towards principled methods for training generative adversarial networks.

In International Conference on Learning Representations, 2017. URL https://openreview.net/forum?
id=Hk4_qw5xe.

Samuel A. Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E. Tillman, Prashant Reddy, and Manuela
Veloso. Generating synthetic data in finance: opportunities, challenges and pitfalls. In Proceedings

15

http://github.com/tabkde/tabkde-main
https://openreview.net/forum?id=Hk4_qw5xe
https://openreview.net/forum?id=Hk4_qw5xe


Under review as submission to TMLR

of the First ACM International Conference on AI in Finance, ICAIF ’20, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450375849. doi: 10.1145/3383455.3422554. URL
https://doi.org/10.1145/3383455.3422554.

Randall Balestriero, Jerome Pesenti, and Yann LeCun. Learning in high dimension always amounts to
extrapolation. arXiv preprint arXiv:2110.09485, 2021.

Vadim Borisov, Kathrin Sessler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Language models
are realistic tabular data generators. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=cEygmQNOeI.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. J. Artif. Int. Res., 16(1):321–357, June 2002. ISSN 1076-9757.

Bin Dai and David Wipf. Diagnosing and enhancing VAE models. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=B1e0X3C9tQ.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=AAWuCvzaVt.

Joao Fonseca and Fernando Bacao. Tabular and latent space synthetic data generation: a literature review.
Journal of Big Data, 10(1):115, 2023. doi: 10.1186/s40537-023-00792-7. URL https://doi.org/10.1186/
s40537-023-00792-7.

Sébastien Gambs, Frédéric Ladouceur, Antoine Laurent, and Alexandre Roy-Gaumond. Growing synthetic
data through differentially-private vine copulas. Proceedings on Privacy Enhancing Technologies, 2021:122
– 141, 2021. URL https://api.semanticscholar.org/CorpusID:232352028.

Mikel Hernandez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic data generation
for tabular health records: A systematic review. Neurocomputing, 493:28–45, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020.

Sarang Joshi, Raj Varma Kommaraji, Jeff M. Phillips, and Suresh Venkatasubramanian. Comparing
distributions and shapes using the kernel distance. In Proceedings of the Twenty-Seventh Annual Symposium
on Computational Geometry, SoCG ’11, pp. 47–56, New York, NY, USA, 2011. Association for Computing
Machinery. ISBN 9781450306829. doi: 10.1145/1998196.1998204. URL https://doi.org/10.1145/
1998196.1998204.

Jayoung Kim, Chaejeong Lee, and Noseong Park. STasy: Score-based tabular data synthesis. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
1mNssCWt_v.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: modelling tabular
data with diffusion models. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Chaejeong Lee, Jayoung Kim, and Noseong Park. Codi: co-evolving contrastive diffusion models for mixed-
type tabular synthesis. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Tennison Liu, Zhaozhi Qian, Jeroen Berrevoets, and Mihaela van der Schaar. GOGGLE: Generative modelling
for tabular data by learning relational structure. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=fPVRcJqspu.

Yanchen Luo, Junfeng Fang, Sihang Li, Zhiyuan Liu, Jiancan Wu, An Zhang, Wenjie Du, and Xiang Wang.
Text-guided small molecule generation via diffusion model. iScience, 27(11):110992, 2024.

16

https://doi.org/10.1145/3383455.3422554
https://openreview.net/forum?id=cEygmQNOeI
https://openreview.net/forum?id=B1e0X3C9tQ
https://openreview.net/forum?id=AAWuCvzaVt
https://doi.org/10.1186/s40537-023-00792-7
https://doi.org/10.1186/s40537-023-00792-7
https://api.semanticscholar.org/CorpusID:232352028
https://doi.org/10.1145/1998196.1998204
https://doi.org/10.1145/1998196.1998204
https://openreview.net/forum?id=1mNssCWt_v
https://openreview.net/forum?id=1mNssCWt_v
https://openreview.net/forum?id=fPVRcJqspu


Under review as submission to TMLR

Aref Majdara and Saeid Nooshabadi. Nonparametric density estimation using copula transform, bayesian
sequential partitioning, and diffusion-based kernel estimator. IEEE Transactions on Knowledge and Data
Engineering, 32(4):821–826, 2020. doi: 10.1109/TKDE.2019.2930052.

Josep Maria Mateo-Sanz, Francesc Sebé, and Josep Domingo-Ferrer. Outlier protection in continuous
microdata masking. In Josep Domingo-Ferrer and Vicenç Torra (eds.), Privacy in Statistical Databases, pp.
201–215, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-25955-8.

D. Meyer, T. Nagler, and R. J. Hogan. Copula-based synthetic data augmentation for machine-learning
emulators. Geoscientific Model Development, 14(8):5205–5215, 2021. doi: 10.5194/gmd-14-5205-2021. URL
https://gmd.copernicus.org/articles/14/5205/2021/.

Alex Morehead and Jianlin Cheng. Geometry-complete diffusion for 3d molecule generation and optimization.
Communications Chemistry, 7(1):150, 2024.

Yidong Ouyang, Liyan Xie, Chongxuan Li, and Guang Cheng. Missdiff: Training diffusion models on tabular
data with missing values. In ICML 2023 Workshop on Structured Probabilistic Inference & Generative
Modeling, 2023. URL https://openreview.net/forum?id=S435pkeAdT.

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In 2016 IEEE International
Conference on Data Science and Advanced Analytics (DSAA), pp. 399–410, 2016. doi: 10.1109/DSAA.
2016.49.

Jeff M. Phillips. Coresets and sketches. In Handbook of Discrete and Computational Geometry, chapter 49.
CRC Press, 2016.

Jeff M. Phillips and Wai Ming Tai. Near-optimal coresets of kernel density estimates. Discrete & Computational
Geometry, 63(4):867–887, 2020. doi: 10.1007/s00454-019-00134-6. URL https://doi.org/10.1007/
s00454-019-00134-6.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-Resolution
Image Synthesis with Latent Diffusion Models . In 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 10674–10685, Los Alamitos, CA, USA, June 2022. IEEE Computer
Society. doi: 10.1109/CVPR52688.2022.01042. URL https://doi.ieeecomputersociety.org/10.1109/
CVPR52688.2022.01042.

Nasir Saukani and Noor Azina Ismail. Identifying the components of social capital by categorical principal
component analysis (catpca). Social Indicators Research, 141(2):631–655, 2019.

D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization. 2015.

Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. Tabdiff: a
mixed-type diffusion model for tabular data generation. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=swvURjrt8z.

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall, London, 1986.

Amy Steier, Lipika Ramaswamy, Andre Manoel, and Alexa Haushalter. Synthetic data privacy metrics, 2025.
URL https://arxiv.org/abs/2501.03941.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular data
using conditional GAN. Curran Associates Inc., Red Hook, NY, USA, 2019.

Hengrui Zhang, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Xiao Qin, Christos Faloutsos,
Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with score-based diffusion
in latent space. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=4Ay23yeuz0.

17

https://gmd.copernicus.org/articles/14/5205/2021/
https://openreview.net/forum?id=S435pkeAdT
https://doi.org/10.1007/s00454-019-00134-6
https://doi.org/10.1007/s00454-019-00134-6
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01042
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01042
https://openreview.net/forum?id=swvURjrt8z
https://arxiv.org/abs/2501.03941
https://openreview.net/forum?id=4Ay23yeuz0


Under review as submission to TMLR

A TabKDE Algorithm

The TabKDE algorithm is a simple, scalable, and privacy-aware method for generating high-fidelity synthetic
tabular data. It implements the general framework (see Section 1) for tabular generation; the key innovation
is in the mapping to latent space and generative modeling sets. These steps are simple and efficient while
satisfying our desiderata. We overview them here:

TabKDE Latent Space Mapping: This is accomplished in two parts. The first step is a copula-based
transformation of the tabular dataset T into a latent representation Z that lies within the continuous space
[0, 1]d, allowing precise control over the domain of the marginal distributions. Second is estimating the
covariance Σ of data in this space, implicitly defining a Mahalanobis distance which captures the similarity
within this latent domain.

TabKDE Generative Modeling: Here we use a KDE model to allow for a non-parametric complex
distributional model. We simply sample by choosing a training data point in the latent space z ∼ Unif(Z),
and then chose a random direction u scaled by the covariance Σ. Then we generate a new point

z′ ← z + ur

where r is a scalar amount controlling the amount of deviation from the training data. In particular, we
select r at random from a learned distribution from the training data estimating the distance to the closest
point. One more idea is needed, we want to disallow points outside [0, 1]d to respect the original column
marginals. To handle this, we keep coordinates in [0, 1]d, and regenerate the others iteratively.

We next describe all aspects in more detail.

A.1 Encoding of Tabular Features: T → E

Let T = {X1, . . . , Xn} be a real data set. Before transforming tabular data into a latent space, it is essential
to convert all feature types into a unified numerical format T 7→ E ∈ Rn×d, suitable for further processing.
Note that the new representation E has n rows (one for each row of the table T ), and more importantly d
columns (one for each column of the table T ). This means, do not use one-hot-encoding, and this will be
essential for our representation and sampling from the latent space to ensure marginal properties of each
data column.

In this section, we describe how we handle numerical, ordinal, and categorical features through encod-
ing strategies designed to preserve basic structural relationships and facilitate meaningful downstream
transformations.

Numerical and Ordinal Mapping. All numerical columns are z-score normalized (parameters fit on the
training data, saved, and used to de-normalize synthetic outputs back to the original units), so values are
reported on the original scale. Ordinal features are simply converted to consecutive integers 1, 2, . . . , that
preserve their inherent order. This ensures that the ordinal relationships between categories are preserved
while converting them into numerical representations.

Categorical Mapping. For categorical features, we use a data-driven approach to map each unique
category to a continuous space based on the statistical properties of the numerical features in the data.

Recall that Cat = {d2 + 1, . . . , d} denotes the set of indices corresponding to categorical features. Additionally,
assume that for each j ∈ Cat, the number of unique categories in the j-th feature is given by |Cj | = kj .
Define Z ∈ Rn×d1 as the matrix obtained by selecting only the numerical features from the dataset, and let u
represent its first principal component scores (PC1 scores) obtained using Principal Component Analysis
(PCA) (u = Zv where v is top principal vector of Z). Let j ∈ Cat be an arbitrary categorical feature with
unique category set Cj = {c1, . . . , ckj}. For each category c ∈ Cj , we identify the corresponding row indices
in D, defined as

Ij,c = {i ∈ [n] | (Xi)j = c}.

18



Under review as submission to TMLR

We then assign each category c the value

vj,c = 1
|Ij,c|

∑
i∈Ij,c

ui,

This value represents the average of the first principal component scores ui for all instances where the j-th
categorical feature takes the value c. This process is summarized in the following algorithm.

Algorithm 5 PrincipalGuidedEncoding(T , Cat, Num)
1: Compute u as the first principal component scores of XNum; which contains only numerical features in T .
2: for each category c ∈ Cj , in each categorical feature j ∈ Cat:

vj,c ←
1
|Ij,c|

∑
i∈Ij,c

ui, where Ic = {i ∈ [n] | (Xi)j = c}

3: for each data (Xi)j = c ∈ Cj , for each categorical feature j ∈ Cat: (Ei)j ← vj,c

PGE can be interpreted as using the leading principal component scores of the numerical block as a one-
dimensional “ruler”: each category is embedded as a scalar given by the mean PCA score of the rows in
which it appears. When categorical semantics are mediated through numerical covariates, this construction
tends to place categories with similar co-occurring numerical profiles nearby along that dominant direction,
yielding a continuous embedding that preserves meaningful neighborhood relations. Because the code for
each category is learned from the numerical block, PGE helps retain cat–num dependence and can also reflect
cat–cat structure that is induced via shared numerical correlates. In contrast, column-wise encodings such as
uniform or frequency mappings depend only on the marginal distribution of the categorical column, and thus
cannot incorporate cross-type associations by construction. See Section 3.2 for some related ablation study.

A.2 Map to Numerical Latent Space: E → Z

Notably, after the initial encoding step (Subsection A.1), all features in the dataset are converted into
numerical values, resulting in a representation that lies in a subset of Rd. Our goal is to further transform
this representation into a continuous latent space within the unit hypercube [0, 1]d, where the dependencies
between features are preserved, and the data is appropriately normalized to ensure that all numerical features
contribute equally, making it well-suited for downstream tasks such as sampling and density estimation.

The algorithm outlined below–MapToLatentSpace–provides a high-level overview of this transformation
process. It combines ordinal encoding, a structure-aware encoding of categorical features, and a copula-based
normalization of all features. While this procedure is presented here in full, each of its core components will
be introduced and discussed in detail in the subsequent sections.

Algorithm 6 MapToLatentSpace(T , Num, Cat, Ord)
1: Mapped each ordinal feature to integers reflecting its natural order.
2: Encoded categorical features by PrincipalGuidedEncoding(T , Cat, Num)
3: Concatenate numerical and the transformed ordinal and encoded categorical features to obtain E
4: Convert the encoded data E into Z = CopulaMapping(E) ∈ [0, 1]n×d.
5: return Z

Before exploring the details of this mapping, we first introduce foundational concepts from the copula
method—a well-established statistical technique that separates marginal distributions from the dependency
structure in multivariate data.

Introduction to Copula Transformation. In many real-world datasets, variables exhibit complex
dependencies, making it challenging to model their joint distribution directly. Copula method provides a

19



Under review as submission to TMLR

powerful statistical tool to decouple the dependency structure from the marginal distributions, allowing for
more flexible data transformations. The copula method invertibly transforms a dataset E ∈ Rn×d, consisting
of d-dimensional features, into a new representation Z ∈ [0, 1]n×d and as a result, each individual record in Z
lies in [0, 1]d, and the marginal distributions of Z are uniform over the interval [0, 1]. We next examine the
underlying mechanism by which this transformation is achieved.

1. Copula Forward Transformation (Mapping E to Z): For each dimension j (where j = 1, . . . , d),
we compute the empirical cumulative distribution function (ECDF) of the j-th feature:

F̂j(x) = Pr(value of j-th coordinate ≤ x)

= 1
n

n∑
i=1

I(xij ≤ x)

where I(xij ≤ x) is an indicator function that equals 1 if xij ≤ x, and 0 otherwise. In summary,
F̂j(x) represents the proportion of observations in the dataset whose j-th coordinates are less than
or equal to x. Each coordinate value xij is then transformed into a uniform representation:

zij = F̂j(xij) (1)

This ensures that each feature is uniformly mapped into the interval [0, 1], producing a dataset Z that
follows a uniform distribution for each of its marginals while maintaining the dependency structure
of X.

Algorithm 7 CopulaMapping(E)

1: For each feature j, compute empirical CDF value F̂j(xi,j) for Dj = {x1j , . . . , xnj}.
2: Set zi = (zi,1, . . . , zi,d), where zi,j = F̂j(xi,j)
3: return Z = {z1, . . . , zn}

Using the Copula transformation, we effectively standardize the data set into a unit hypercube, making
it more suitable for density estimation, sampling, and synthetic data generation. Furthermore, this
method allows for dependency-preserving transformations, ensuring that the statistical relationships
between variables are retained even when synthetic data is produced.

2. Copula Inverse Transformation (Mapping Z back to E): It is key that we store the ECDF
F̂ , because we need to be able to invert it. Its inverse cumulative distribution function (quantile
function) F̂ −1 is defined as

F̂ −1(q) = inf{x | F̂ (x) ≥ q} for any value q ∈ [0, 1].

Given z = (z1, . . . , zd) ∈ [0, 1]d, each feature j can be mapped back to its initial numerical represen-
tation using the inverse cumulative distribution function F̂ −1

j (·).

Decoding. We can also decode the output E to the structure in the table. For an ordinal or
categorical feature j, we apply probabilistic rounding to the two nearest categories (in the initial
numerical embedding), with the probabilities proportional to their distance to pj . Also, for numerical
features, the value is reconstructed (up to the appropriate precision) by interpolating between the
two closest values (in the original distribution) to pj , with the interpolation weights determined by
their distance from pj . This step ensures that the generated samples maintain the same marginal
distributions as the original dataset.

20



Under review as submission to TMLR

Algorithm 8 InverseECDF(z = (p1, . . . , pd), {F̂i : i ∈ [d]})
1: for each j ∈ [d]:
2: if min({zij}n

i=1) ≥ pj or max({zij}n
i=1) ≤ pj then

3: Return min({xij}n
i=1) or max({xij}n

i=1) respectively
4: Let zi1 < zi2 be consecutively ordered points so that p ∈ [zi1 , zi2 ]
5: if j ∈ Ord or j ∈ Cat, then
6: Return xj = xi1 with probability |pj−zi1 |

|zi1 −zi2 | and otherwise xi2 .
7: elseif j ∈ Num, then
8: Return

x = xi2 + |pj − zi2 |
|zi1 − zi2 |

(xi1 − xi2) (2)

A.3 Sensitivity Analysis of the Encoding–Decoding Pipeline

PGE represents each category c by scalar vj,c: the mean of first principal component scores u (PC1 scores)
restricting to value c in column j. It is computed from the z-score normalized numerical block, making
it insensitive to affine rescaling of the raw numerical columns. TabKDE then applies a per-coordinate
empirical-copula transform (ECDF), which depends only on ranks of these scalars and therefore further
reduces sensitivity to monotone re-parameterizations of each coordinate. Note that statistically this is almost
impossible to different categories c ̸= c′ receive same value vj,c = vj,c′ . During decoding, categorical and
ordinal coordinates are recovered via probabilistic rounding to the two nearest embedded codes using the
inverse ECDF (which is computed on ranks), so categories become indistinguishable only in the presence of
exact ties in their learned codes. Finally, as shown in Section 3.2, TabKDE is robust to replacing PGE with
alternative single-scalar encodings like frequency or uniform.

A.4 Learning Distance to Closest Record (DCR)

A central use of synthetic data is as a proxy for private personal data. So it is paramount to ensure that the
synthetic data process is not leaking too much information about the original data. A common measurement
of this is Distance to Closest Record (DCR) (Mateo-Sanz et al., 2004; Steier et al., 2025) which evaluates
how similar a synthetic record xs is to a real one from a set D. It is formally defined for an appropriate
distance metric d as:

DCR(xs, D) = min
xr∈D

d(xs, xr) (3)

A DCR of 0 indicates an identical match, posing a significant privacy risk. Comparing DCR values between
synthetic data and both training DT and holdout DH datasets helps assess privacy. If synthetic records are
much closer to the training data, it suggests the model may be memorizing real data. Ideally, for synthetic
data S, DCR distributions {DCR(xs, DT )}xs∈S and {DCR(xs, DH)}xs∈S should heavily overlap, showing
that synthetic data reflects general patterns rather than replicating specific records.

As part of our generative process, we learn this distribution in the copula latent embedding Z using Euclidean
distance. Then we can generate synthetic data to mirror this scale of variation. We repeatedly randomly
split the training data Z, and compute the DCR distribution between the two splits (see EmpiricalDCR;
Alg. 9). Then it fits a simple mixture of Gaussians model to this distribution; using Bayesian Information
Criterion (BIC)3, we select the best model for k = 1, . . . , 10 as the number of components.

3https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.
GaussianMixture.bic

21

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html##sklearn.mixture.GaussianMixture.bic
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html##sklearn.mixture.GaussianMixture.bic


Under review as submission to TMLR

Algorithm 9 EmpiricalDCR(Z): Estimating the Empirical DCR Distribution
1: Initialize L = []
2: for i = 1, . . . , T do
3: Partition Z into two random equal-sized subsets Z1 and Z2.
4: for each z2 ∈ Z2 do
5: Compute the minimum distance between z2 and the records in Z1.
6: Add this distance to L.
7: Fit a mixture of k Gaussian components to L.

A.5 Tabular Kernel Density Estimation: Z → Sample

KDE (Kernel Density Estimation) is a non-parametric method used to estimate the probability density
function (PDF) of a continuous random variable by smoothing finite data points with a kernel function
(typically Gaussian). Its accuracy depends on bandwidth selection and data availability (Silverman, 1986;
Scott, 2015). It can also be used to generate synthetic data by fitting a KDE model to the existing dataset
and drawing samples from it. We now formally define KDE.

Assuming that X = {x1, x2, . . . , xn} is a dataset in Rd, the Kernel Density Estimation (KDE) is given by:

f̂(x) ∝ 1
n

n∑
i=1

K

(
x− xi

h

)
where:

- f̂(x) is the estimated likelihood at point x,

- K(·) is a centrally-symmetric kernel function (e.g., Gaussian kernel),

- h > 0 is the bandwidth parameter controlling smoothness.

Sampling from KDE. To sample from a KDEX , we simply sample a point x ∈ X, and then sample a
point nearby proportional to the kernel likelihood. For example, with a isotropic Gaussian kernel, using
this approach, a synthetic data point is generated as x ∼ N (xi,

h
2 I); xi ∼ X. However, we do not use a

Gaussian kernel, as this is not adaptive to the DCR distribution – which may be multi-modal. So we use our
EmpiricalDCR(Z) estimate to define our kernel. Still, this approach may raise a couple of concerns:

• At first glance, one may worry that this approach does not guarantee preservation of DCR, since it
might use our kernel K(xi, ·) to generate a point nearby xi that lands too close to another x′ ∈ X.
However, this is not observed to be an issue, as generation in high-dimensional space makes it highly
unlikely to produce points close to other points in the training data (see Subsection 2.3).

• Second, the sampled point x may fall outside the convex hull of the dataset X, potentially resulting
in unrealistic data generation. We address this by using the sample covariance Σ to guide the
perturbation direction. And moreover, some form of extrapolation in this sense is probably necessary
and unavoidable (Balestriero et al., 2021), and we believe desirable. Yet, violating the marginals
associated with individual table columns, we find, can distort distributions (see Subsection G.1).
This issue is addressed by generalizing SimpleKDE to a more advanced method, TabKDE, which
controls for this.

To resolve the first issue, we estimate the DCR distribution using Algorithm 9 (EmpiricalDCR) and
leverage it to strategically perturb the sampled point xi. We summarize this approach by the following
algorithms: Algorithm 10 SimpleKDE(T ), which iteratively calls Algorithm 11 SampleKDE(Z, f, Σ) using
the copula-transformed data Z, its estimated DCR distribution f , and its estimated covariance Σ.

22



Under review as submission to TMLR

Algorithm 10 SimpleKDE(T )

1: Transform table T into Z ∈ [0, 1]n×d as Z ← CopulaTransform(T , Num, Cat, Ord)
2: Σ← Covariance(Z)
3: Estimate empirical DCR distribution f = EmpiricalDCR(Z)
4: for i = 1, . . . , m:
5: z′

i = SampleKDE(Z, f, Σ)
6: yj ← InverseECDF(z′

j , j-th feature type, Fj)
7: return Y = {y1, . . . , ym}

Algorithm 11 SampleKDE(Z, f, Σ)
1: Uniformly sample zi ∈ Z
2: Sample radius r > 0 from f
3: Sample v ∼ N (0, Σ), set u = v

∥v∥
4: return z′ ← zi + r · u

As discussed in Subsection G.1, the SimpleKDE algorithm does not explicitly control the support of the
marginals and, in particular, does not fully address the second challenge outlined earlier. The copula-
transformed representation, however, embeds the data within the unit hypercube, which allows us to control
how far a perturbed sampled point x can deviate without violating marginal support. We now introduce
a more refined rejection-sampling heuristic (Alg. 12: TabKDE) that effectively enforces these boundary
constraints.

Algorithm 12 TabKDE(X)

1: Transform table T into Z ∈ [0, 1]n×d as Z ← CopulaTransform(T , Num, Cat, Ord)
2: Σ← Covariance(Z)
3: Estimate empirical DCR distribution f = EmpiricalDCR(Z)
4: for i = 1, . . . , m:
5: z′

i = SampleKDE-iterative(Z, f, Σ)
6: yi = InverseCopula(z′

i)
7: return Y = {y1, . . . , ym}

TabKDE differs from SimpleKDE only in the sampling step at line 5, where it uses the boundary-aware
SampleKDE-iterative instead of the simpler SampleKDE. This modified sampler actively checks for
violations of the unit hypercube boundaries and iteratively adjusts any out-of-bound coordinates. If a valid
point cannot be obtained after a fixed number of attempts, the sample is discarded, and the process restarts.
This mechanism guarantees that all accepted samples lie within the latent space [0, 1]d.

23



Under review as submission to TMLR

Algorithm 13 SampleKDE-iterative(Z)
1: Uniformly sample zi ∈ Z
2: Sample radius r > 0 from f
3: Sample v ∼ N (0, Σ), set u = v

∥v∥
4: z′ ← zi + r · u
5: While {j : z′

j /∈ [0, 1]} ≠ ∅:
6: J ← {j : z′

j /∈ [0, 1]}
7: Sample v′ ∼ N (0, Σ), set w = v′

∥v′∥

8: s← ∥(uk)k∈J ∥
∥(wk)k∈J ∥

9: uj ← s · wj for each j ∈ J
10: z′ ← zi + r · u
11: return z′

B Experimental Setup and Data

B.1 Datasets

Our experiments are conducted on the six tabular datasets from UCI Machine Learning Repository4 (Adult,
Default, Shoppers, Magic, Beijing, News ) used in TabSYN (Zhang et al., 2024), along with the IBM dataset5

which is significantly larger. In all they covering a wide range of domains for tabular data. These datasets
include a mix of numerical and categorical features and vary in the number of points, feature types, and task
types (classification or regression), making them well-suited for evaluating the generalizability of synthetic
data generation methods. A few of the categorical features can be interpreted as ordinal; but outside the
IBM dataset, we simply treat them as categorical. We summarize their traits in Table 12.

Table 12: Dataset statistics. Num denotes the number of numerical columns, Cat the number of categorical
columns, Ord the number of ordinal features, and Sum Cat the total number of unique categories across
all categorical and ordinal columns. Ordinal features can be treated as categorical features by disregarding
their inherent order; note (∗) that we do this for the Adult and Default datasets. For the IBM dataset, we
randomly select two 200k subsamples to serve as the training and testing sets; we ensured that the test set
contains no categorical values unseen in the training set. In IBM data, we treat “Year”, “Month”, “Day”,
“Time”, “Zip” features as ordinal. (†) In TabKDE, simple-KDE, CopulaDiff and CoreTabKDE, for
Beijing dataset, we treat the features “Is”, “Ir”, and “Iws” as categorical, and for the Shoppers dataset, we
apply the same treatment to the features “SpecialDay”, “ProductRelated”, and “Informational”. For all of
these features, the ratio of unique values in the training set to the total number of data points is very low,
with the majority of occurrences concentrated on a single value.

Dataset Total Train Test Num Cat Ord Sum Cat Task
Adult 48,842 32,561 16,281 6 7 2∗ 120 Classification
Default 30,000 27,000 3,000 14 9 1∗ 79 Classification
Shoppers† 12,330 11,097 1,233 10 8 0 67 Classification
Magic 19,019 17,117 1,902 10 1 0 2 Classification
Beijing† 41,757 37,581 4,176 7 5 0 76 Regression
News 39,644 35,679 3,965 46 2 0 13 Regression
IBM 341,675 176,221 165,454 1 8 5 37,721 Classification

Split of the Data. We consider two ways to split data into test and train set. The numbers in Table 12
reflects the splits done by TabSYN, which we maintain for direct comparison. This split was not even in size,
partially to ensure there were no categories in the Test split which were not present in the Train split. When
we do not directly compare to results in the (Zhang et al., 2024), we use a different random and even split.

4https://archive.ics.uci.edu/datasets
5https://www.kaggle.com/code/yichenzhang1226/ibm-credit-card-fraud-detection-eda-random-forest

24

https://archive.ics.uci.edu/datasets
https://www.kaggle.com/code/yichenzhang1226/ibm-credit-card-fraud-detection-eda-random-forest/input?select=credit_card_transactions-ibm_v2.csv


Under review as submission to TMLR

Again, following the TabSYN paper (Zhang et al., 2024), the target column is treated as either numerical or
categorical based on the task type: it is considered categorical for classification tasks and numerical otherwise.
For the Machine Learning Efficiency experiments, each dataset is divided into training, validation, and testing
sets. For the Adult dataset, we use its official testing set, while the original training set is further split into
training and validation sets with an 8:1 ratio. All other datasets are split into training, validation, and testing
sets using an 8:1:1 ratio with a fixed random seed.

To get the IBM dataset to run, we needed to leverage the ordinal representation in variables Year, Month,
Day, Time, and Zip. We also identify that the Merchant State and Merchant City are very strongly correlated
with Zip (the zip code), and since these categories are often quite rare, we applied another modeling (called
reduced modeling) to improve the generation. We put Zip in the generative model, but not Merchant City or
Merchant State. Then once we generate a Zip, we predict the the Merchant City and Merchant State. We
use the same process with the correlated MCC and Merchant Name; we put MCC in the generative model,
and use the outcome to predict Merchant Name. For transparency, we however report results both with and
without this reduced modeling trick (see Table 21 and Figure 10).

B.2 Baselines

We compare our proposed TabKDE method with several popular baselines, including SMOTE (Chawla
et al., 2002), CTGAN(Xu et al., 2019), TVAE (Xu et al., 2019), GReaT (Borisov et al., 2023), GOGGLE (Liu
et al., 2023), CoDi (Lee et al., 2023), STaSy (Kim et al., 2023), TabDDPM (Kotelnikov et al., 2023),
TabSYN (Zhang et al., 2024), and TabDiff (Shi et al., 2025)6. Through this comparison, we demonstrate
that TabKDE provides a simpler, faster, and more scalable alternative for generating realistic synthetic
tabular data, without significantly compromising on quality or privacy.

By abstracting to the general framework (outlined in Section 1 ) we are able to also consider several hybrid
models that mix elements of TabKDE with the encoding choices, the VAE method, or the diffusion-driven
generation made popular through TabSYN and others. We specifically consider

• CopulaDiff: We first use our CopulaMapping (Alg. 7) to embed data into a latent space, train a
Diffusion model there, and then map the generated samples back to the original space.

• VAETabKDE: This model trains a VAE to embed data into numerical space (as in TabSYN),
then applies the Copula and KDE methods to generate samples, which are then mapped back to the
original tabular format.

• VAESimpleKDE: VAESimpleKDE differs from VAETabKDE only in the sampling step, analo-
gous to how TabKDE differs from simple-KDE.

• PGE-Tabsyn: In the method we replace one-hot encoding with the encoding outlined in Subsec-
tion A.1 (see the first three steps in MapToLatentSpace Alg. 6), which tokenizes the tabular data
into the space E before applying VAE and Diffusion models.

B.3 Evaluation

To evaluate our synthetic data generation method, we focus on three main objectives including 1) Scalability,
2) Accuracy, and 3) Privacy. In terms of Efficiency, we measure and compare the training and sampling
time required by each model across various datasets. For Accuracy, we assess how well the synthetic data
captures (1) the ground truth marginals for each column individually, (2) correlations for pairs of columns,
(3) the entire distribution using machine learning efficiency, and (4) the balance between fidelity and coverage
using α-Precision and β-Recall. For Privacy, we use the Distance to Closest Records (DCR) metric to assess
privacy protection by measuring how similar the synthetic data is to the training/test data sets.

6We have not yet been able to reproduce all results for TabDiff, but they report (Shi et al., 2025) very similar performance
to TabSYN in terms of accuracy, efficiency, and privacy – although with small, but noticeable improvement on categorical data.
This follows since they build directly on most of the framework of TabSYN except for using a discrete diffusion on the categorical
parts. For the comparison to TabKDE and its relatives, TabSYN’s performance should serve as a good empirical representative.

25



Under review as submission to TMLR

C Scalability and Efficiency

We measure the scalability and efficiency on both the training time, as well as the sample generation time;
this second part is the generation of a sample the same size as the training set. As shown in Tables 13 and
14, we see in most existing methods the time is almost entirely dominated by the training aspect. However,
TabKDE the training and sampling are more comparable because the training time is so much lower.

All our experiments, unless otherwise specified, were conducted using only the CPU of a 2021 Apple MacBook
Pro (14-inch), equipped with an Apple M1 Pro chip. This device features an 8-core CPU (comprising 6
performance cores and 2 efficiency cores) and 16 GB of unified memory. Table 13 presents a comparison of
the training times between TabSYN and SMOTE against our proposed TabKDE, demonstrating that our
method is highly computationally efficient and can be effectively executed on a standard consumer-grade
laptop. TabSYN and SMOTE both run out of memory on the IBM data set, this is primarily because it has
a huge number of categories, and these methods rely on one-hot encoding, which blows up the dimensionality
into a 37,733-dimensional space. The memory inefficient one-hot encoding is standard in many modern
models. SMOTE requires this dimensionality to identify the k nearest neighbors, which becomes highly
inefficient in such a high-dimensional space (see Table 12 for dataset details).

In contrast, our proposed tokenization method, PrincipalGuidedEncoding (Algorithm 5), transforms
tabular data into a numerical format with a fixed dimensionality equal to the original number of features (14
in this case, compared to 37722 with one-hot encoding), providing a far more efficient representation.

Table 13: Runtime comparison of Tabsyn, TabKDE, and SMOTE models across individual datasets on laptop.
The IBM dataset is excluded from the average row.

Dataset TabSYN smote TabKDE
VAE Train Diff. Train Total Train Sample Train+Sample Train Sample

Adult 6h 35m 43s 2h 6m 31s 8h 43m 19s 1m 5s 4s 44s 20s
Default 6h 32m 3s 2h 2m 16s 8h 34m 59s 40s 2s 59s 17s
Shoppers 3h 57m 42s 0h 55m 32s 4h 53m 32s 18s 3s 17s 5s
Magic 3h 51m 7s 1h 21m 27s 5h 13m 0s 26s 5s 19s 7s
Beijing 5h 31m 57s 1h 57m 44s 7h 30m 35s 54s 2s 35s 16s
News 14h 34m 15s 2h 8m 59s 16h 44m 11s 57s 4s 6m 2s 54s
Average 6h 50m 27s 1h 45m 24s 8h 36m 36s 43s 3s 1m 29s 19s
IBM OOM OOM OOM OOM OOM 10m 21s 6m 4s

The baseline methods in the TabSYN (Zhang et al., 2024) paper were evaluated on the Adult dataset using an
NVIDIA RTX 4090 GPU with 24 GB of memory, as shown in Table 14. In contrast, our experiments—including
those for TabSYN and the proposed TabKDE—were conducted entirely on significantly less powerful
hardware. Despite this substantial difference in computational resources, TabKDE demonstrates superior
efficiency. As shown in Table 13, it achieves an average training time of only 1 minute and 29 seconds, and a
sampling time of just 19 seconds across six benchmark datasets. This is considerably faster than the TabSYN
model, which requires more than 8.5 hours of training on average. These results highlight that TabKDE not
only nearly matches the performance of more complex models (see Section D) but also does so at a fraction
of the computational cost, making it highly suitable for deployment on standard consumer-grade machines
without the need for specialized accelerators.

As previously noted, running TabSYN on the IBM dataset is infeasible given our standard computational
resources. This limitation arises mainly due to using one-hot encoding—results in a 37,733-dimensional
feature space. However, we can alternatively use encoding scheme introduced in the preprocessing steps
of TabKDE. Accordingly, we apply both CopulaDiff and PGE-Tabsyn to the IBM dataset. Training
CopulaDiff requires 15 hours and 7 minutes, while PGE-Tabsyn demands over 40 hours in total—25
hours and 56 minutes for the VAE and 14 hours and 39 minutes for the diffusion stage. As shown in Table

26



Under review as submission to TMLR

Table 14: Training and sampling times for baseline methods on the Adult dataset, evaluated using an NVIDIA
RTX 4090 GPU with 24 GB of memory (adapted from the TabSYN (Zhang et al., 2024) paper).

Method Training Time Sampling Time
CTGAN 17 min 10 s 0.86 s
TVAE 5 min 53 s 0.51 s
GOGGLE 1 h 34 min 5.34 s
GReaT 2 h 27 min 2 min 19 s
STaSy 38 min 3 s 8.94 s
CoDi 2 h 56 min 4.62 s
TabDDPM 17 min 11 s 28.92 s
TabSYN 40 min 22 s 1.78 s

13, TabKDE only takes about 10 minutes of training time. This comparison further highlights TabKDE ’s
advantage in scalability over more resource-intensive methods.

For a direct comparison, we evaluate TabKDE alongside the baselines TabSYN, TabDDPM, CoDi, and
GReat on the Adult, Default, Shoppers, and Magic datasets, using an NVIDIA RTX A5000 GPU with 24GB
of memory and a maximum power draw of 230W, under the same experimental settings as TabSYN. See
Tables 15 and 16 and Figure 7 for details. TabKDE is orders of magnitude faster in training, but on par
with others in sampling time – we generate samples sequentially, and did not optimize for the GPU.

(a) Training time (b) Sampling time

Figure 7: Average training and sampling time over Adult, Default, Shoppers, and Magic for different methods.

Table 15: Average training and sampling time for each method.

Method Train Time (s) Sample Time (s)
Great 17112.4 251.2
Codi 18487.6 11.8
TabDDPM 2771.4 70.8
TabSYN 1297.8 8.4
TabKDE 39.2 39.0

D Accuracy Evaluation

In this section, we evaluate the quality of the generated synthetic data using three criteria: (1) marginal
distribution alignment, (2) pairwise correlation matching, and (3) finally global alignment between synthetic
and hold-out distributions is compared by how well a classifier can separate the distributions.

27



Under review as submission to TMLR

Table 16: Average training and sampling times (in seconds)± standard deviation for each dataset using the
TabKDE model. Values are reported as mean and standard deviation over 10 repeated runs.

Dataset Train Time (s) Sample Time (s)
Adult 51.50±1.08 50.30±0.67
Default 45.00±0.67 55.10±0.99
Shoppers 21.50±0.53 18.20±0.42
Magic 33.00±0.67 21.00±0.67
Beijing 63.00±0.47 51.80±0.79
News 64.30±1.16 166.80±1.32

Average 46.38±0.29 60.53±0.42

D.1 Marginal distribution alignment

When evaluating synthetic tabular data, marginal distribution alignment score assesses how closely each
individual column matches its real-data distribution represented by train data. Following what was done in
the TabSYN paper, we calculate the Kolmogorov–Smirnov (KS) distance for numerical attributes in Num
and the Total Variation Distance for categorical and ordinal attributes in Cat and Ord. Table 17 presents, for
each dataset, the average marginal alignment errors across all features for each method. Table 18 presents
the performance of the TabKDE model in aligning marginal distributions, averaged over 10 runs.

Table 17: Performance comparison on marginal distribution alignment (Error rate %). Lower values indicate
better performance. The values in parentheses denote the ratio relative to the smallest value. Baseline values,
unless stated otherwise, are taken from (Zhang et al., 2024); the remaining scores (our methods) are obtained
using their data split.

Method Adult Default Shoppers Magic Beijing News Average

SMOTE (our reproduction) 1.63 (2.55) 1.70 (1.49) 2.66 (2.16) 1.37 (1.93) 2.10 (1.62) 5.47 (3.18) 2.49 (1.75)
CTGAN 16.84 (26.31) 16.83 (14.76) 21.15 (17.20) 9.81 (13.82) 21.39 (16.45) 16.09 (9.35) 17.02 (11.99)
TVAE 14.22 (22.22) 10.17 (8.92) 24.51 (19.93) 8.25 (11.62) 19.16 (14.74) 16.62 (9.66) 15.49 (10.91)
GOGGLE 16.97 (26.52) 17.02 (14.93) 22.33 (18.15) 1.90 (2.68) 16.93 (13.02) 25.32 (14.72) 16.74 (11.79)
GReaT 12.12 (18.94) 19.94 (17.49) 14.51 (11.80) 16.16 (22.76) 8.25 (6.35) – 14.20 (10.00)
STaSy 11.29 (17.64) 5.77 (5.06) 9.37 (7.62) 6.29 (8.86) 6.71 (5.16) 6.89 (4.01) 7.72 (5.44)
CoDi 21.38 (33.41) 15.77 (13.82) 31.84 (25.89) 11.56 (16.28) 16.94 (13.03) 32.27 (18.78) 21.63 (15.23)
TabDDPM 1.75 (2.73) 1.57 (1.38) 2.72 (2.21) 1.01 (1.42) 1.30 (1.00) 78.75 (45.83) 14.52 (10.23)
TabSYN (Our reproduction) 0.64 (1.00) 1.14 (1.00) 1.23 (1.00) 0.98 (1.38) 2.79 (2.15) 1.72 (1.00) 1.42 (1.00)
PGE-Tabsyn 11.21 (17.51) 7.66 (6.72) 12.98 (10.55) 1.36 (1.74) 2.65 (2.39) 18.65 (10.84) 9.08 (6.39)
CopulaDiff 2.01 (3.14) 1.47 (1.29) 2.47 (2.01) 0.94 (1.32) 2.13 (1.64) 2.44 (1.42) 1.91 (1.35)
VAESimpleKDE 3.23 (5.05) 7.72 (6.77) 6.78 (5.51) 3.12 (4.39) 7.12 (5.48) 10.03 (5.83) 6.33 (4.46)
VAETabKDE 3.80 (5.94) 5.84 (5.12) 6.31 (5.13) 0.71 (1.0) 4.94 (3.80) 4.45 (2.59) 4.34 (3.06)
simple-KDE 1.92 (3.00) 3.33 (2.92) 3.12 (2.54) 3.59 (5.06) 10.32 (7.94) 7.36 (4.28) 4.94 (3.48)
RandCoreTabKDE 1.61 (2.52) 1.76 (1.54) 2.54 (2.07) 1.01 (1.42) 1.70 (1.31) 2.59 (1.51) 1.87 (3.48)
CoreTabKDE 3.63 (5.67) 3.29 (2.89) 3.23 (2.63) 1.08 (1.52) 3.20 (2.46) 2.87 (1.67) 2.88 (2.03)
TabKDE 1.56 (2.44) 1.55 (1.36) 2.44 (1.98) 0.78 (1.1) 1.37 (1.05) 2.52 (1.47) 1.70 (1.2)

Table 18: Performance comparison on marginal distribution alignment (Error rate %) for each dataset using
TabKDE model. Values are reported as mean and standard deviation over 10 repeated runs.

Metric Adult Default Shoppers Magic Beijing News Average
Marginal alignment error 1.54 ± 0.03 1.53 ± 0.05 2.46 ± 0.09 0.80 ± 0.08 1.40 ± 0.04 2.53 ± 0.04 1.71 ± 0.05

Figure 8 provides a visual comparison between some representative selected real marginal distributions and
those generated by TabSYN (orange) and TabKDE (green) against the real data distributions (blue). Each
row shows 4 columns from a data set. For IBM data set (bottom row) we use CopulaDiff (orange) instead
of TabSYN since it cannot scale to this large data set. It is apparent that TabKDE usually does as well and
better than TabSYN. In particular, on numerical data (where continuous distributions are shown), TabKDE

28



Under review as submission to TMLR

appears to match the real data much closer, but on categorical data, and when there are spikes in numerical
data, TabKDE can have a bit more error. Since the KS distance is a worst case, it is very unforgiving for
such errors on discrete data, and explains why TabKDE and TabSYN appear comparable in these marginal
plots, but TabSYN has consistently smaller scores in Table 17. An average error measure on on numerical
data should show an advantage for TabKDE.

Figure 8: Marginals comparison between real data (blue), TabKDE (green), and TabSYN (orange). Each
row is a data set, and sample column marginals are shown for each; some categorical and some numerical.
For IBM data set (last row), TabSYN is replaced with PGE-Tabsyn since TabSYN runs out of memory.

29



Under review as submission to TMLR

D.2 Pairwise correlation alignment

We next measure pairwise correlation between columns. For numerical-numerical pairs, we can use standard
Pearson correlations. However for pairs that involve categorical (and to align with measures in the TabSYN
paper, we treat ordinal as categorical), we use contingency-table Total Variation Distances. In both metrics,
smaller error values indicate that the synthetic table is more faithful to the original data. Table 19 presents,
for each dataset, the average pairwise correlation alignment errors, computed as (1− score), across all features
for each method. A heatmap visualization of the divergence between the pairwise correlations in the real
and synthetic data is presented in Figure 9. Table 20 presents the performance of the TabKDE model in
Pairwise correlation alignment error (Error rate %), averaged over 10 runs.

We observe that TabKDE has better pairwise correlation alignment than all methods except TabSYN,
and is comparable to SMOTE; both TabKDE and SMOTE have about 2.5 the correlation discrepancy as
TabSYN. The main poor correlation for TabKDE appears in Default data set, and with ‘BILL_AMT3’ and
‘BILL_AMT4’ variables which have similar but less challenges for TabSYN, as well as GreaT and CoDi.

Table 19: Performance comparison of tabular data synthesis methods based on Pairwise correlation alignment
error (Error rate %). Lower values indicate better performance. The values in parentheses denote the ratio
relative to the smallest value. Baseline values, unless stated otherwise, are taken from (Zhang et al., 2024);
the remaining scores (our methods) are obtained using their data split.

Method Adult Default Shoppers Magic Beijing News Average

SMOTE (Our reproduction) 4.3 (2.67) 11.54 (5.11) 3.68 (1.47) 1.88 (2.29) 3.3 (1.22) 1.67 (1.25) 4.39 (1.99)
CTGAN 20.23 (12.57) 26.95 (11.92) 13.08 (5.23) 7.0 (8.54) 22.95 (8.47) 5.37 (4.01) 15.93 (7.21)
TVAE 14.15 (8.79) 19.5 (8.63) 18.67 (7.47) 5.82 (7.10) 18.01 (6.65) 6.17 (4.60) 13.72 (6.21)
GOGGLE 45.29 (28.13) 21.94 (9.71) 23.9 (9.56) 9.47 (11.55) 45.94 (16.95) 23.19 (17.31) 28.29 (12.8)
GReaT 17.59 (10.93) 70.02 (30.98) 45.16 (18.06) 10.23 (12.48) 59.6 (21.99) – 40.52 (18.33)
STaSy 14.51 (9.01) 5.96 (2.64) 8.49 (3.39) 6.61 (8.05) 8.0 (2.96) 3.07 (2.29) 7.77 (3.52)
CoDi 22.49 (13.98) 68.41 (30.27) 17.78 (7.11) 6.53 (7.97) 7.07 (2.61) 11.1 (8.28) 22.23 (10.06)
TabDDPM 3.01 (1.87) 4.89 (2.16) 6.61 (2.64) 1.7 (2.07) 2.71 (1.00) 13.16 (9.82) 5.34 (2.42)
TabSYN(Our reproduction) 1.61 (1.00) 2.26 (1.00) 2.5 (1.00) 0.82 (1.00) 4.7 (1.73) 1.34 (1.00) 2.21 (1.00)
PGE-Tabsyn 7.14 (4.43) 15.19 (6.72) 7.56 (3.02) 2.67 (2.76) 3.49 (1.29) 4.60 (3.42) 6.78 (3.07)
CopulaDiff 4.61 (2.86) 3.29 (1.46) 5.3 (2.12) 1.72 (2.10) 4.5 (1.66) 2.1 (1.57) 3.59 (1.62)
VAESimpleKDE 9.86 (6.12) 12.88 (5.70) 9.51 (3.80) 3.12 (3.80) 11.51 (4.25) 4.05 (3.02) 8.49 (3.84)
VAETabKDE 7.23 (4.49) 12.71 (5.62) 9.68 (3.87) 3.95 (4.82) 9.87 (3.64) 3.67 (2.74) 7.85 (3.55)
simple-KDE 4.64 (2.88) 5.16 (2.28) 5.26 (2.10) 3.3 (4.02) 4.72 (1.74) 2.96 (2.21) 4.34 (1.96)
RandCoreTabKDE 3.93 (2.44) 13.66 (6.04) 4.27 (1.71) 4.76 (5.80) 4.05 (1.49) 2.61 (1.95) 5.46 (2.47)
CoreTabKDE 6.3 (3.91) 9.91 (4.39) 5.77 (2.31) 2.18 (2.66) 5.86 (2.16) 2.82 (2.10) 5.47 (2.48)
TabKDE 4.51 (2.80) 9.93 (4.40) 4.31 (1.72) 2.72 (3.32) 3.74 (1.38) 2.83 (2.11) 4.67 (2.11)

Table 20: Performance comparison on pairwise correlation alignment (Error rate %) for each dataset using
TabKDE model. Values are reported as mean and standard deviation over 10 repeated runs.

Metric Adult Default Shoppers Magic Beijing News Average
Pairwise Corr. Error 4.05 ± 0.27 11.33 ± 1.49 4.39 ± 0.16 2.80 ± 0.68 3.80 ± 0.22 2.95 ± 0.17 4.89 ± 0.47

We also compare against some variants on the larger IBM dataset. Recall that on our laptop CPU,
neither TabSYN or SMOTE can run on this data set – they both run out of memory. Instead we
compare TabKDE against our baselines including CopulaDiff and PGE-Tabsyn. Also, note that we
apply a modeling trick with Zip / Merchant State / Merchant City and with MCC / Merchant Name with
TabKDE but not PGE-Tabsyn and TabSYN (on GPU). Recall also that TabKDE (about 10 minutes
training time on CPU; 40 seconds on GPU) was much faster than either of CopulaDiff (about 15 hours
on CPU), PGE-Tabsyn (over 40 hours on CPU) or TabSYN (OOM on CPU, about 20 minutes on GPU).
The average pairwise correlation alignment error for TabSYN and PGE-Tabsyn (without modeling trick)
are %40.42 and %30.53, respectively, while for TabKDE and CopulaDiff (with modeling trick), are is
%25.29 and %22.59; see Table 21. Indeed as shown in Figure 10 of pairwise correlation plots, the methods
work largely similar except on the highly correlated pairs where we employ the modeling trick.It is moved
to main part

30



Under review as submission to TMLR

Figure 9: Pairwise correlation Divergence plots for each dataset and methods.

Figure 10: Pairwise correlation Divergence plots for IBM dataset and methods: TabSYN (without
modeling trick), PGE-Tabsyn (without modeling trick), CopulaDiff (with and without modeling trick),
CoreTabKDE, TabKDE (with and without modeling trick). For CoreTabKDE, the size of coreset and
the bandwidth are 5,000 and .15, respectively. Models that use the reduced modeling trick are indicated by
“with trick” in parentheses. It is moved to main part

31



Under review as submission to TMLR

Table 21: Marginal and Pairwise accuracy on IBM dataset. See the last paragraph of Subsection B.1 for
reduced modeling explanation. It is moved to main part

Method Marginal Alig. Error Pairwise Corr. Error Reduced Modeling
TabSYN 16.99 40.42 no
PGE-Tabsyn 9.29 30.53 no
CopulaDiff 6.81 29.42 no
TabKDE 5.36 27.56 no
CopulaDiff 3.59 22.59 yes
CoreTabKDE 5.25 23.93 yes
TabKDE 3.58 25.29 yes

D.3 Global Distribution Alignment

High-quality synthetic data should be able to take the place of real data, letting us train models on it
for downstream tasks like classification or regression and have indistinguishable performance (and without
revealing private information). We assess by building a classifier to attempt to distinguish between the
synthetic data and a split of data holdout from the training process. We consider two standard classifiers:
XGBoost () and logistic regression.

First, following standard practice, we use XGBoost to build a classifier on the synthetic data, and measure
the AUC for classification tasks, and RMSE for regression tasks. This is referred to as machine learning
efficiency. The results in Table 22 on baselines from the TabSYN paper, as well as SMOTE, and other
baselines in our model. Note that TabSYN appears twice in this table (as well as in Tables 24 and 27), to
include the value recorded in Zhang et al. (2024) and then our reproduction of the result. The Real row in
Table 22 shows the ideal performance, using true training data to train the classifier or regression models.
The Average Gap column indicates the percentage drop in performance when synthetic data is used to train
the classifier or regression models. Table 23 presents the mean and standard deviation of machine learning
efficiency (MLE) over 10 runs, indicating that the TabKDE model demonstrates strong robustness with
respect to this metric.

Again TabSYN provides the best error, and TabKDE is nearly as good – almost within the natural variation
in TabSYN’s performance. Perhaps surprisingly, the simple method smote also performs on par with
TabSYN and TabKDE.

Second, we use a logistic regression classifier. Follow standard practice we now use this to try to separate the
synthetic data from the heldout data. We quantify this as a classifier two-sample test (C2ST) as provided by
SDMetrics; larger values closer to 1 are better. Table 24 shows both a comparison drawn directly from the
TabSYN paper against a variety of recent baselines; below the line we reproduce results on TabSYN, show
results for smote, and variants of our method TabKDE.

As before, TabKDE is roughly the same as SMOTE with 0.93 and only bested by TabSYN which has about
0.97. Other baselines achieve 0.79 (TabDDPM) or below 0.66.

D.4 Precision and Recall

α-Precision and β-Recall are two complementary metrics used to assess the quality of synthetic tabular data,
as used in the TabSYN paper (Zhang et al., 2024). α-Precision measures the fidelity of the synthetic data to
the real data, indicating how well the synthetic samples preserve fine-grained details and local structures. A
higher α-Precision score reflects greater similarity to the original data. In contrast, β-Recall evaluates the
extent to which the synthetic data covers the real data distribution, with higher scores indicating broader and
more diverse coverage of the feature space. An ideal generative model should balance both metrics—achieving
high α-Precision while also maintaining strong β-Recall—thus producing synthetic data that is both accurate
and representative of the true distribution. Tables 25 and 26 summarize α-Precision and β-Recall scores.

32



Under review as submission to TMLR

Table 22: Machine learning efficiency performance comparison across datasets. Unless noted otherwise, scores
above the line are taken from Zhang et al. (2024); the remaining scores (our methods) are obtained using their
data split. To compute the Average Gap, we take the average across all datasets of the relative difference
between the performance of a model trained on synthetic data (si) and the performance of the same model
trained on real data (ri); Average Gap = 1

N

∑N
i=1

(
|si−ri|

ri

)
× 100.

Methods Adult Default Shoppers Magic Beijing News Average Gap
(AUC↑) (AUC↑) (AUC↑) (AUC↑) (RMSE↓) (RMSE↓) (%)

Real 0.927 0.770 0.926 0.946 0.423 0.842 0%
SMOTE 0.899 0.741 0.911 0.934 0.593 0.897 9.39%
CTGAN 0.886 0.696 0.875 0.855 0.902 0.880 24.5%
TVAE 0.878 0.724 0.871 0.887 .770 1.01 20.9%
GOGGLE 0.778 0.584 0.658 0.654 1.09 0.877 43.6%
GReaT 0.913 0.755 0.902 0.888 0.653 OOM 13.3%
STaSy 0.906 0.752 0.914 0.934 0.656 0.871 10.9%
CoDi 0.871 0.525 0.865 0.932 0.818 1.21 30.5%
TabDDPM 0.907 0.758 0.918 0.935 0.592 4.86 9.14%
TabSYN(Our reproduction) 0.911 0.760 0.913 0.942 0.663 0.820 10.70%

PGE-Tabsyn 0.910 0.740 0.913 0.939 0.642 2.240 37.61%
CopulaDiff 0.901 0.763 0.912 0.939 0.667 0.921 12.18%
VAESimpleKDE 0.896 0.733 0.874 0.912 0.777 1.037 20.70%
VAETabKDE 0.890 0.747 0.871 0.913 0.649 0.860 11.20%
simple-KDE 0.901 0.730 0.913 0.931 0.756 1.167 21.39%
RandCoreTabKDE 0.883 0.730 0.911 0.929 0.713 0.881 14.42%
CoreTabKDE 0.881 0.712 0.919 0.928 0.744 0.877 15.86%
TabKDE 0.906 0.745 0.917 0.934 0.675 0.869 11.76%

Table 23: Machine learning efficiency comparison across datasets for the TabKDE model, reporting accuracy
as mean ± standard deviation over 10 runs.

Adult Default Shoppers Magic Beijing News
MLE 0.904 ± 0.003 0.744 ± 0.012 0.916 ± 0.006 0.931 ± 0.004 0.678 ± 0.010 0.852 ± 0.021

TabSYN does the best on α-precision, but smote does better on β-recall. On α-precision TabKDE (95%)
nearly matches TabSYN (98.7%), and is better than any other method (including smote), except our variant
CopulaDiff which reaches (96%). On β-precision, TabKDE (42%) almost matches TabSYN (48%) as is
almost as good as any other method with GReaT and STaSy slightly better (43%); other than smote (78%).
But as we discuss next, this likely because smote generates data mirroring some of the training data.

E Privacy Preservation

Finally, we evaluate how well we can preserve the privacy of the training data in the synthetic data generation
process. We use the distance to closest record (DCR) function in the latent space to evaluate this. That is for
each synthetic data point generated, we both look at the distribution of distances to training or held-out data,
and also whether the closest record was from the held-out or training set. An ideal synthetic distribution
would match the distance distribution of the training data to the heldout data, and would be roughly equally
likely to be close to the heldout and training data.

First Table 27 we calculate the "DCR score" which is the percentage of synthetic data closer to training data
than held-out; ideally we would like this to be close to 50%. This was proposed by the recent TabDiff
paper (Shi et al., 2025), and we reproduce their results in the top half of the table, and show our methods
(and smote and TabSYN) below the line on an equal split. We see most diffusion methods (including our

33



Under review as submission to TMLR

Table 24: C2ST Scores of generative models on tabular datasets. Unless noted otherwise, scores above the
line are taken from Zhang et al. (2024); the remaining scores (our methods) are obtained using their data
split.

Method Adult Default Shoppers Magic Beijing News Average
smote(Our reproduction) 0.9212 0.9332 0.9107 0.9803 0.9972 0.8633 0.9334
CTGAN 0.5949 0.4875 0.7488 0.6728 0.7531 0.6947 0.6586
TVAE 0.6315 0.6547 0.2962 0.7706 0.8659 0.4076 0.6044
GOGGLE 0.1114 0.5163 0.1418 0.3262 0.4779 0.0745 0.2747
GReaT 0.5376 0.4710 0.4285 0.4326 0.6893 — 0.5118
STaSy 0.4054 0.6814 0.5482 0.6939 0.7922 0.5287 0.6083
CoDi 0.2077 0.4595 0.2784 0.7206 0.7177 0.0201 0.4007
TabDDPM 0.9755 0.9712 0.8349 0.9998 0.9513 0.0002 0.7888
TabSYN(Our reproduction) 0.9949 0.9804 0.9699 0.9893 0.9268 0.9584 0.9699
PGE-Tabsyn 0.9240 0.9039 0.7679 0.9859 0.8629 0.8060 0.8751
CopulaDiff 0.8557 0.9798 0.8665 0.9914 0.9576 0.9793 0.9384
VAESimpleKDE 0.7199 0.4082 0.6736 0.9665 0.7392 0.3782 0.6476
VAETabKDE 0.7483 0.4828 0.7242 0.9984 0.8022 0.8075 0.7606
simple-KDE 0.9196 0.8716 0.8110 0.9711 0.9497 0.4975 0.8368
RandCoreTabKDE 0.9215 0.9570 0.8757 0.9921 0.9503 0.8901 0.9311
CoreTabKDE 0.8254 0.873 0.8462 0.9864 0.8924 0.8643 0.8813
TabKDE 0.9219 0.9579 0.9161 1.0000 0.9514 0.8819 0.9382

Table 25: α-Precision scores for various methods on the 6 standard data sets. The last column shows the
average score and rank. Unless noted otherwise, scores above the line are taken from Zhang et al. (2024); the
remaining scores (our methods) are obtained using their data split.

Method Adult Default Shoppers Magic Beijing News Average Ranking
smote(Our reproduction) 92.83 98.40 92.60 96.76 98.64 87.93 94.52 6
CTGAN 77.74 62.08 76.97 86.90 96.27 96.96 82.82 12
TVAE 98.17 85.57 58.19 86.19 97.20 86.41 85.29 10
GOGGLE 50.68 68.89 86.95 90.88 88.81 86.41 78.77 15
GReaT 55.79 85.90 78.88 85.46 98.32 - 80.87 13
STaSy 82.87 90.48 89.65 86.56 89.16 94.76 88.91 8
CoDi 77.58 82.38 94.95 85.01 98.13 87.15 87.03 9
TabDDPM 96.36 97.59 88.55 98.59 97.93 0.00 79.83 14
TabSYN(Our reproduction) 99.19 98.79 97.57 99.69 98.85 97.04 98.52 1
CopulaDiff 98.09 98.99 95.43 98.43 97.33 93.98 97.04 2
VAESimpleKDE 88.21 80.90 82.46 7.03 75.56 19.29 72.24 16
VAETabKDE 98.39 91.71 97.36 98.50 93.29 84.86 94.02 7
simple-KDE 98.10 93.88 98.84 90.13 96.41 29.25 84.44 11
RandCoreTabKDE 95.67 4.62 91.64 98.68 98.11 96.68 95.90 3
CoreTabKDE 98.01 89.44 90.27 99.12 95.70 94.96 94.58 5
TabKDE 94.46 94.45 92.18 98.98 97.47 97.48 95.83 4

CopulaDiff) can consistently achieve below 52%. Our main method TabKDE obtains an average DCR
score of about 58%, which is servicable.

On the other hand, smote has an average DCR score of 95%. This indicates that it often nearly replicates
the training data. Its method chooses a training record, finds the k nearest neighbor, and selects a new point
in the convex combination of these points, then de-tokenizes back to the tabular format. Because it works

34



Under review as submission to TMLR

Table 26: β-Recall scores for various methods on the 6 standard data sets. The last column shows the
average score and rank. Unless noted otherwise, scores above the line are taken from Zhang et al. (2024); the
remaining scores (our methods) are obtained using their data split.

Method Adult Default Shoppers Magic Beijing News Average Ranking
smote(Our reproduction) 76.88 76.00 77.09 82.45 79.22 80.00 78.60 1
CTGAN 30.80 18.22 31.80 11.75 34.80 24.97 25.39 16
TVAE 38.87 23.13 19.78 32.44 28.45 29.66 28.72 15
GOGGLE 8.80 14.38 9.79 9.88 19.87 2.03 10.79 17
GReaT 49.12 42.04 44.90 34.91 43.34 OOM 42.86 6
STaSy 29.21 39.31 37.24 53.97 54.79 39.42 42.99 5
CoDi 9.20 19.94 20.82 50.56 52.19 34.40 31.19 13
TabDDPM 47.05 47.83 47.79 48.46 56.92 0.00 41.34 7
TabSYN(Our reproduction) 47.53 46.74 48.85 47.64 50.56 45.10 47.74 2
CopulaDiff 41,29 46.21 43.21 46.38 51.65 43.86 45.43 3
VAESimpleKDE 38.78 20.71 38.01 40.13 45.62 2.00 30.87 14
VAETabKDE 43.68 27.32 48.81 45.56 51.12 12.64 38.18 9
simple-KDE 45.90 36.60 43.12 44.78 52.68 3.90 37.83 11
RandCoreTabKDE 37.67 35.81 44.77 44.82 51.56 17.54 38.69 8
CoreTabKDE 27.46 20.86 39.40 40.35 48.30 13.01 31.56 12
TabKDE 48.54 43.05 47.22 48.80 54.39 17.82 43.30 4

with a one-hot encoding, probably most records map back to the same discrete values as the first record, and
it often failures to generate substantially new data, hence leaking the training data.

Table 27: The DCR score indicates the likelihood that a generated data sample resembles the training set
more than the test set. A value nearer to 50% is considered ideal. Ratios recomputed using the true minimum
in each column. Values above the line, unless stated otherwise, are taken from (Shi et al., 2025); the remaining
scores (our methods) are obtained using their data split.

Method Adult Default Shoppers Beijing News Average

smote(Our reproduction) 91.18 (1.83) 91.46 (1.82) 96.76 (1.93) 100.00 (1.99) 99.00 (1.96) 95.68 (1.89)

STaSy 50.33 (1.01) 50.23 (1.00) 51.53 (1.03) 50.59 (1.01) 50.59 (1.00) 50.65 (1.00)

CoDi 49.92 (1.00) 51.82 (1.03) 51.06 (1.02) 50.87 (1.01) 50.79 (1.00) 50.89 (1.01)

TabDDPM 51.14 (1.02) 52.15 (1.04) 63.23 (1.26) 80.11 (1.59) 79.31 (1.57) 65.19 (1.29)

TabSYN(Our reproduction) 51.33 (1.03) 51.61 (1.03) 51.99 (1.03) 53.20 (1.06) 50.76 (1.00) 51.78 (1.02)

TabDiff 50.10 (1.00) 51.11 (1.02) 50.24 (1.00) 50.50 (1.00) 51.04 (1.01) 50.60 (1.00)

PGE-Tabsyn 50.38 (1.01) 51.33 (1.01) 51.81 (1.03) 50.67 (1.01) 50.48 (1.00) 50.94 (1.01)

CopulaDiff 50.34 (1.01) 50.96 (1.01) 50.72 (1.01) 50.29 (1.00) 53.00 (1.05) 51.06 (1.01)

VAESimpleKDE 61.33 (1.23) 58.08 (1.16) 58.83 (1.17) 60.73 (1.21) 59.00 (1.17) 59.59 (1.18)

VAETabKDE 61.28 (1.23) 57.87 (1.15) 57.70 (1.15) 60.42 (1.20) 58.00 (1.15) 59.45 (1.17)

simple-KDE 63.32 (1.27) 63.49 (1.26) 58.18 (1.16) 55.42 (1.10) 56.12 (1.11) 59.71 (1.18)

RandCoreTabKDE 62.30 (1.25) 63.09 (1.26) 58.91 (1.17) 63.50 (1.26) 55.59 (1.10) 60.68 (1.20)

CoreTabKDE 52.59 (1.05) 54.11 (1.08) 55.04 (1.10) 51.17 (1.02) 52.00 (1.03) 52.98 (1.05)

TabKDE 62.23 (1.25) 63.46 (1.26) 58.80 (1.17) 54.24 (1.08) 54.54 (1.08) 58.55 (1.16)

If the closest record is from the training or heldout data is an imperfect measure of privacy, since there may
be heldout data nearly as close. One way to evaluate this is to consider the distribution of how close the
synthetic data to the heldout (red) matches the distribution of the synthetic data to the train (blue). We
show this in Figure 11 for TabKDE, TabSYN, and smote for the 6 standard datasets. We observe that for
TabKDE and TabSYN these distributions are multi-modal, but still match almost perfectly for each data
set. On the other hand smote has a very different distribution, and the synthetic to train (blue) is always

35



Under review as submission to TMLR

much smaller (almost always close to 0 for Adult, Default, Shopping, and Beijing), indicating it is too closely
just reproducing the training data.

smote TabSYN CoreTabKDE TabKDE

Figure 11: Privacy comparison based on DCR distributions for synthetic to training data (blue) and synthetic
to held-out data (red). Each row is a data set, the columns show results for smote, TabSYN, CoreTabKDE,
and TabKDE.

We note a practical limitation in computing DCR for datasets with high-cardinality categorical features. In
the IBM dataset, 13 categorical columns each have thousands of distinct values; under standard one-hot
encoding, this yields 37, 722 dimensions. At this scale, both memory usage and computational cost become
prohibitive and exceeded our available hardware, leading to out-of-memory failures during evaluation (even
with aggressive use of FAISS). While dimensionality reduction could mitigate the resource burden, it would

36



Under review as submission to TMLR

also alter the meaning of DCR by assessing proximity in a compressed space rather than the original feature
space. Accordingly, we report that DCR evaluation was not feasible for our highest-dimensional dataset
under our computational constraints.

F Coresets for Generative Tabular Data Modeling

A coreset (Phillips, 2016) is a compact, weighted set of points that provides a close approximation to the full
dataset for a specific downstream task. In the context of Kernel Density Estimation (KDE), a coreset serves
to approximate the full KDE using significantly fewer, yet strategically chosen, representative points. A weak
coreset is a coreset that the set is not necessarily a subset of the original point set. In this setting, the “weak”
aspect will turn out to be strategically advantageous.

Our proposed TabKDE framework employs the full KDE to generate samples from the Copula latent
representation Z ⊂ [0, 1]n×d of the tabular data T . The full KDE over Z is given by:

fZ(z) = 1
|Z|

∑
zi∈Z

K

(
z − zi

h

)
,

which we here consider it as the ground-truth likelihood function over z ∈ [0, 1]d. To approximate fZ(·) using
a weak coreset, we define a parameterized KDE f̃Θ(·) based on a small set of learnable coreset (support)
points Q = {q1, . . . , qm} and their corresponding non-negative weights W = {ω1, . . . , ωm}, constrained such
that

∑m
i=1 ωi = 1, where Θ = {Q, W}. The approximated density function is:

f̃Θ(z) =
m∑

i=1
ωiK

(
z − qi

h

)
,

with m ≪ n. It is known (Phillips & Tai, 2020) that a sample Q ∼ Z of m = O((1/ε2) log(1/δ)) points
already ensures a strong L∞ coresets approximation that ∥fZ − fQ∥∞ ≤ ε with probability at least 1− δ.
Note that for a fixed kernel K, this bound is independent of the dimension d. While we use this as a starting
point, we seek to improve it with a weak coreset.

In particular, the parameters Θ are optimized by minimizing the expected squared L2 deviation between
the full KDE and its coreset approximation, evaluated over samples drawn from the uniform distribution on
[0, 1]d:

Ez∼Unif([0,1]d)

[(
f̃Θ(z)− fZ(z)

)2]
.

By optimizing the positions and weights of the coreset points to minimize the discrepancy between the
coreset-based KDE and the full KDE, the method preserves key distributional features, such as modes, spread,
and overall shape. Moreover, because we use a weak coreset, we are not replicating the training data, and
this minimizes the risk of overfitting to the data or leaking its private attributes.

This objective can be optimized via stochastic gradient descent (SGD) with TrainCoresetKDE (Algorithm
14).

Algorithm 14 TrainCoresetKDE(Z, T )

1: Define fZ(z) = 1
|Z|

∑
zi∈Z K

(
z−zi

h

)
2: Initialize randomly the coreset points Q = {q1, . . . , qm} ⊂ Z
3: Initialize the weights W = {ω1, . . . , ωm} with ωi = 1/m
4: Define f̃Θ(z) =

∑m
i=1 ωiK

(
z−qi

h

)
5: For t = 1 to T :
6: Sample z ∼ Unif([0, 1]d)
7: Compute loss L(z) =

(
f̃Θ(z)− f(z)

)2

8: Update Θ via gradient descent to minimize L(z)
9: return Θ = {Q, W}

37



Under review as submission to TMLR

We employ the Gaussian kernel as K(v) = exp(−v2) in our formulation. Once trained, the learned weak
coreset {(qi, ωi)}m

i=1 replaces the full KDE sampling step in Algorithm 11. This modification constitutes the
only difference between TabKDE and CoresetTabKDE, and is detailed in the sampling procedure below.

Algorithm 15 SampleCoresetKDE-iterative(Q, W )
1: Q, W = TrainCoresetKDE(Z, T )
2: Sample qi ∈ Q with probability ωi ∈W
3: Sample radius r > 0 from f
4: Sample v ∼ N (0, Σ), set u = v

∥v∥
5: z′ ← zi + r · u
6: While {j : z′

j /∈ [0, 1]} ≠ ∅:
7: J ← {j : z′

j /∈ [0, 1]}
8: Sample v′ ∼ N (0, Σ), set w = v′

∥v′∥

9: s← ∥(uk)k∈J ∥
∥(wk)k∈J ∥

10: uj ← s · wj for each j ∈ J
11: z′ ← zi + r · u
12: return z′

We may also define a RandomCoresetTabKDE variant, in which the optimization step in Alg. 14 (Step
1) is omitted. Instead, a subset Q ⊂ Z of size m is sampled uniformly at random; then we simply invoke
SampleKDE-iterative(Q) (Alg 11) with Q instead of Z. As noted above, this simple approach of taking a
random sample Q ∼ Z has strong L∞ approximation guarantees on how well it approximates the KDE of Z;
and this does not depend on either the dimension d or the size n of Z – it only depends on the size |Q| = m
of the sample.

F.1 Empirical Evaluation of Coreset Methods

In this section, we empirically examine the advantages and limitations of the coreset approaches CoreTabKDE
and RandCoreTabKDE introduced in Subsection F. Across all the data sets, we set m = 5,000; as shown
in Figure 12, the marginal and pairwise correlation alignment scores look to plateau around that value. By
ablation study, we set h = 0.2 for data sets Adult, Default, Shoppers, Magic, Beijing, and News, we set
h = 0.2, 0.4, 0.2, 0.2, 0.2, 0.5, respectively. We consider bandwidths h ∈ {0.1, 0.2, . . . , 1.0} at 0.1 intervals,
and examine the loss function of the TrainCoresetKDE procedure run for T = 30 epochs. We select the
bandwidth h where the corresponding loss has the steepest descent towards zero. High values of h result in
negligible loss updates, while overly small values lead to premature convergence at suboptimal loss values. If
multiple consecutive bandwidths yield similar behavior, we take the smaller as the chosen value.

While the bandwidth selection is chosen based only on the loss function in the training data, we also validate
our selection on the test data. As shown on the Adult data set with m = 5000 in Figure 13, the alignment
error (both marginal and pairwise correlation; higher better) is fairly stable across choices of h in 0.1 to 1.0,
but has a local peak around h = 0.2. Moreover, the DCR score has a more noticeable drop for h ≤ 0.6; hence
h = 0.2 is confirmed as a good choice. While this KDE is built in [0, 1]d copula space for all data sets, the
dimension changes from 6 (for Adult) to 46 (for News), and the higher dimensional setting has more room to
spread points out, and prefers a larger bandwidth.

The accuracy scores are reported in the numerous tables above, and one can observe this method achieves
accuracy nearly as good as TabKDE, but often a bit worse; see for instance Tables 17 and 19. The scalability
of RandCoreTabKDE is also about the same on the data sets we consider as TabKDE (which is already
very efficient). However, now we require much less space to store the model; and the based on KDE-coreset
results (Phillips & Tai, 2020; Joshi et al., 2011), the accuracy for a fixed size coreset should not decrease as the
training data grows. However, the CoreTabKDE requires some optimization training time: approximately
55 minutes (on the laptop CPU) average across the five datasets: Adult, Default, Shoppers, Magic, and
Beijing.

38



Under review as submission to TMLR

What is more interesting is the effect on privacy in using CoreTabKDE. As shown in Table 27, CoreTabKDE
offers a notable improvement in privacy (under the unstable DCR score), with an average DCR score of about
53%. This is because the coreset no longer precisely stores the training data; rather it is storing a distribution
of data points Q which have a similar KDE as does the training data Z. Hence, when it generates synthetic
data, it is not using some training data point z ∈ Z as a starting point.

Figure 12: Left: Marginal distribution alignment error (%) and pairwise correlation alignment error (%) as
coreset size increases. Right: DCR score as coreset size increases.

Figure 13: Left: Marginal distribution alignment error (%) and pairwise correlation alignment error (%) as
bandwidth increases. Right: DCR score as bandwidth increases.

G Ablation Study on Variants of TabKDE

In this section we do a small ablation study to investigate the differences among variants of TabKDE. Most
data is presented in earlier tables in the main paper. The main take-a-ways are as follows.

The methods that use Diffusion or VAE are significantly slower, and less scalable. As discussed above some
of this can be ameliorated by avoiding one-hot encoding, but still the difference in runtime is very large
on the IBM data set. Second, none of the methods that take elements from TabSYN directly match it in
terms of accuracy, although CopulaDiff sometimes does nearly as well, and on average, they all also do not
outperform TabKDE. Third, on privacy, CopulaDiff achieves an average DCR score of 51%, so it does
quite well, improving upon TabKDE and CoreTabKDE.

We next provide analysis comparing to SimpleKDE. It should already have been apparent from the accuracy
evaluation where it performs a bit worse than TabKDE that it is not the preferred method. But next we
provide a more in depth discussion on the marginals, where the issue becomes even more clear why the
iterative element is required.

39



Under review as submission to TMLR

G.1 Motivation for TabKDE: Boundary Control Challenges in SimpleKDE

In our initial exploration, we employed SimpleKDE to generate synthetic samples by perturbing numerical
latent representation of the data points using a Kernel Density Estimation (KDE) model. While this approach
is intuitive and straightforward, it presents a critical limitation—lack of boundary control (see Figure 14).
The perturbed samples, generated by adding Gaussian noise to real points, often fall outside the convex
hull of the original dataset. This results in synthetic records that do not reflect the valid range or domain
constraints of the original data, leading to unrealistic samples that may violate the natural boundaries of the
feature space.

Figure 14: Marginals comparison: Simple KDE vs TabKDE

To address this issue, we developed TabKDE to better leverage the copula-transformed latent space, where
all features reside. We ensure effective boundary control during sampling, maintaining the generated samples
within valid limits. By resolving the boundary control problem, TabKDE produces synthetic data that more
accurately preserves the statistical structure and integrity of the original dataset (see Figure 14).

G.2 Statistic on boundary correction in TabKDE

40



Under review as submission to TMLR

As discussed in Section 2.4, we employ a boundary-aware sampler to avoid out-of-boundary samples. Table 28
reports an ablation of boundary correction behavior across datasets, including the average and maximum
number of coordinate resampling iterations, as well as the number of sampling failures, defined as cases
where some coordinates remain out of bounds after 10 × d resampling attempts. We refer the reader to
Appendix B.1 for a description of the IBM datasets with and without the modeling trick.

Across all datasets, boundary correction is rarely needed: the mean number of coordinate-resampling iterations
(denoted "Correction iterations" in Table 28) below 1 for every dataset except News, indicating that most
sampled coordinates fall within valid bounds on the first draw. Even when correction is required, it remains
modest–the maximum number of iterations is at most 9 across datasets (excluding 1 failure in News dataset
out of the 35679 samples we generate), suggesting fast convergence of the boundary-aware sampler. Sampling
failures are essentially absent: we observe zero failures on all datasets except News, which exhibits a single
failure under the 10× d resampling budget. For the IBM datasets, the modeling trick reduces the correction
burden (mean iterations 0.81 → 0.58 and max iterations 8 → 6) which is expected since the dimension is
decreased from 14 to 11 due to the modeling trick.

Table 28: Boundary-correction statistics for the boundary-aware sampler used in TabKDE. For each dataset,
we report the mean ± standard deviation of the number of coordinate-resampling iterations required to
obtain an in-bounds sample, the maximum number of iterations observed (for successful samples), and the
number of sampling failures (coordinates still out of bounds after 10× d resampling attempts).

Dataset Size Features Correction iterations Max iterations Failed

Adult 32561 15 0.30 ± 0.52 4 0
Default 27000 24 0.64 ± 0.74 9 0
Shoppers 11097 18 0.55 ± 0.65 5 0
Magic 17117 11 0.38 ± 0.64 7 0
Beijing 37581 12 0.36 ± 0.56 6 0
News 35679 48 1.74 ± 0.83 8 1
IBM(no trick) 176221 14 0.81 ± 0.69 8 0
IBM(w/ trick) 176221 11 0.58 ± 0.63 6 0

H Comparison with Copula/KDE Based generator Models

Copula-based models represent one of the earliest and most widely used approaches for synthetic tabular data
generation. These methods typically rely on two steps: (i) learning marginal distributions for each feature,
and (ii) coupling them via a copula function to capture dependencies across variables. Classic examples
include the GaussianCopulaSynthesizer (Patki et al., 2016), which estimates univariate marginals and applies
a Gaussian copula to model correlations, and its variants such as CopulaGAN and vine-copula GANs, which
map the copula-transformed data into a latent space before adversarial training (Xu et al., 2019). While
conceptually elegant, these methods often struggle with mixed-type tabular data. Categorical variables
are usually handled by simplistic encodings (e.g., one-hot encoding or UniformEncoder), which can distort
dependencies, and the Gaussian copula assumption may fail to capture higher-order interactions.

Recent research has extended this line of work. For example, (Meyer et al., 2021) applied vine and Gaussian
copulas to continuous weather data, while (Majdara & Nooshabadi, 2020) integrated copula transforms with
diffusion-based KDE for continuous density estimation. However, these methods are limited to continuous
domains and do not address challenges of mixed categorical-numerical data or scalability. Other work, such
as differentially private copula models (e.g., (Gambs et al., 2021)), explicitly aims to strengthen privacy at
the expense of accuracy and efficiency.

Against this backdrop, TabKDE can be viewed as both building on and diverging from the copula tradition.
Like classical copula generators, TabKDE maps data into a copula space (not the same as the classical
copula method), standardizing marginals into the unit hypercube. However, rather than imposing parametric
assumptions (e.g., Gaussian copula) or adversarial training, it employs a d-dimensional kernel density estimator
directly in copula space. This design introduces several key innovations absent from prior copula models:

41



Under review as submission to TMLR

• Principal-Guided Encoding (PGE) for categorical features, enabling faithful one-dimensional
embeddings without using one-hot encodings, which does not increase the dimension and avoids
sparsity.

• Covariance-aware geometry and boundary-respecting kernels, which allow KDE sampling
to preserve higher-order correlations and respect marginal supports.

• DCR-calibrated kernels, which explicitly align synthetic samples to the empirical distance-to-
closest-record distribution, thereby privacy protection.

• Coreset compression, which produces compact, scalable generative models, in contrast to copula
baselines that typically scale linearly with dataset size.

Empirical comparisons reinforce these differences. Across UCI benchmarks (Adult, Default, Magic,) and
a large IBM fraud dataset, TabKDE consistently achieves lower marginal and pairwise correlation errors
and substantially higher C2ST fidelity than GaussianCopulaSynthesizer, while also surpassing CopulaGAN
in distributional accuracy. GaussianCopulaSynthesizer maintains slightly stronger privacy under the DCR
metric (hovering near the ideal 50%), but this advantage stems largely from its poorer fidelity. In practice,
TabKDE achieves a more balanced tradeoff: reasonable privacy coupled with diffusion-level accuracy, while
retaining orders-of-magnitude efficiency gains, training in minutes compared to hours for deep copula-hybrids
like CopulaGAN.

To further contextualize our approach, we compare TabKDE against both the classical GaussianCopulaSyn-
thesizer and CopulaGANSynthesizer, in addition to our CopulaDiff variant. Table 29 reports averages
across Adult, Default, Shoppers, Beijing, and News, while Tables 30 provide per-dataset breakdowns for
Adult, Default, Magic, and Beijing.

Metric (↓ better except C2ST ↑) TabKDE CopulaDiff GaussianCopula
Average Marginal error (%) 1.70 1.91 14.9
Average Pairwise-corr error (%) 4.67 3.59 13.3
Average C2ST (↑) 0.94 0.94 0.22
DCR (ideal ≈ 50%) 58.6 51.06 49.8
Train / Sample time (s, CPU) 39.2 / 39.0 – 0.9 / 6.8

Table 29: Comparison of TabKDE and CopulaDiff against the GaussianCopulaSynthesizer. Averages are
computed over Adult, Default, Shoppers, Beijing, and News datasets.

Accuracy. TabKDE achieves 7–10× lower distribution-alignment errors and quadruples C2ST fidelity
compared to the GaussianCopulaSynthesizer. This indicates that our encoding of the copula transform
together with the KDE estimator drives the observed accuracy gains.

Speed. GaussianCopulaSynthesizer is milliseconds-fast on CPU, effectively functioning as a restricted
subset of TabKDE. Nonetheless, TabKDE remains far more efficient than deep generative models.

Privacy. GaussianCopulaSynthesizer yields DCR scores near the ideal 50%, reflecting strong privacy but
poor fidelity. TabKDE (58%) attains a more balanced trade-off, offering reasonable privacy while maintaining
high fidelity. Note that DCR is an imperfect metric: it only evaluates nearest-neighbor distances, and broader
distributional comparisons are more favorable for TabKDE.

Overall, TabKDE consistently outperforms both complex copula-based generators (e.g., CopulaGAN) and
the simpler GaussianCopula model in terms of fidelity, while remaining efficient and maintaining reasonable
privacy.

42



Under review as submission to TMLR

H.1 Extended Copula+KDE Baselines

We additionally benchmark TabKDE against several methods at the intersection of copulas and kernel density
estimation (KDE). These include existing implementations in SDV and baselines we constructed, along with
a differentially private Gaussian Copula model.

Copula+KDE Baselines. The comparison space includes a variety of copula-based and KDE-based
extensions. Tables 30 present results on the Adult, Default, Magic, and Beijing datasets.

CopulaGAN applies an empirical copula transform followed by GAN-based generation, while GaussianCopula
also relies on the copula transform but pairs it with Gaussian marginals. The GaussianKDECopulaSynthesizer,
implemented in SDV with default_distribution=“gaussian_kde”, fits Gaussian KDEs on marginals but
is extremely slow in practice, requiring about 2.5 hours compared to roughly one minute for TabKDE. We
also construct a CopulaKDE baseline, which uses an empirical copula transform followed by a d-dimensional
Gaussian KDE in latent space [0, 1]d with the bandwidth σ set to the median pairwise distance.

Below the lines in Tables 30 are our variants. CopulaDiff represents our diffusion-based variant applied after
a copula transform. SimpleKDE is a variant of TabKDE that incorporates a DCR-calibrated kernel and
covariance-aware directions, but omits boundary-aware sampling. Finally, TabKDE is our proposed method.

Three central observations arise from the experiments. In terms of accuracy, TabKDE consistently achieves the
best or near-best fidelity. While some competitors such as CopulaDiff, SimpleKDE, or GaussianKDECopula
perform strongly on C2ST, they typically fall short in marginal or pairwise errors. Regarding privacy, the
SDV copula models and the DP Gaussian Copula reach DCR values close to the ideal 50%, but they incur
substantially higher errors. As expected, stronger privacy guarantees correlate with reduced fidelity. TabKDE
offers a balanced tradeoff, maintaining high fidelity while still achieving moderate privacy with DCR around
58%. Finally, in terms of scalability, GaussianKDECopulaSynthesizer is prohibitively slow, taking several
hours compared to TabKDE’s single-minute runtime. TabKDE thus emerges as both more efficient and more
accurate.

H.2 Differentially Private Gaussian Copula

In addition to the above, we benchmark a differentially private (DP) Gaussian Copula model with a specified
privacy budget ϵ. Table 31 reports the results.

Note that while this achieves strong DCR score (as do similar copula methods without DP guarantees), there
is not a clear advantage as the ϵ parameter is decreased. However, the resulting Marginal Error (about 17%)
and Pairwise Correlation (about 28%) scores are significantly higher than most other baselines; TabKDE
achieves 1.56% and 4.51%. Also C2ST (about 0.35) is worse that most baselines; TabKDE achieves 0.92,
where higher is better.

So while this method does provide a DP guarantee, it appears to perform significantly worse in all accuracy
measures, even for very large ϵ values.

43



Under review as submission to TMLR

Adult Marginal Err. (↓) Pairwise Corr. (↓) DCR (→ 50) C2ST (↑)
CopulaGAN 8.53% 16.75% 49.58% 0.60
GaussianCopula 12.41% 19.24% 50.23% 0.18
CopulaKDE 7.39% 14.14% 53.00% 0.76
GaussianKDECopula (8,461s) 8.30% 8.84% 49.28% 0.89
CopulaDiff 2.10% 4.61% 50.34% 0.86
SimpleKDE 1.98% 4.64% 62.89% 0.90
TabKDE 1.56% 4.51% 62.23% 0.92

Default Marginal Err. (↓) Pairwise Corr. (↓) DCR (→ 50) C2ST (↑)
CopulaGAN 11.50% 21.13% 52.98% 0.74
GaussianCopula 12.33% 21.90% 49.59% 0.41
CopulaKDE 8.99% 12.48% 56.36% 0.58
GaussianKDECopula (9,239s) 7.02% 7.58% 50.41% 0.95
CopulaDiff 1.47% 3.29% 50.96% 0.98
SimpleKDE 3.33% 5.16% 66.05% 0.87
TabKDE 1.55% 9.93% 63.46% 0.96

Magic Marginal Err. (↓) Pairwise Corr. (↓) DCR (→ 50) C2ST (↑)
CopulaGAN 10.21% 9.03% 51.23% 0.66
GaussianCopula 11.19% 6.34% 50.10% 0.51
CopulaKDE 11.42% 7.20% 55.40% 0.73
GaussianKDECopula (1,477s) 2.30% 5.00% 50.22% 0.99
CopulaDiff 0.94% 1.72% 52.03% 0.94
SimpleKDE 3.12% 3.30% 62.62% 0.97
TabKDE 0.78% 2.72% 63.02% 0.94

Beijing Marginal Err. (↓) Pairwise Corr. (↓) DCR (→ 50) C2ST (↑)
CopulaGAN 7.79% 12.11% 50.89% 0.78
GaussianCopula 10.01% 6.00% 50.05% 0.11
CopulaKDE 12.04% 17.07% 53.94% 0.74
GaussianKDECopula (9,288s) 2.69% 6.56% 50.66% 0.99
CopulaDiff 2.13% 4.50% 50.29% 0.96
SimpleKDE 2.06% 4.68% 55.45% 0.94
TabKDE 1.37% 3.74% 54.24% 0.95

Table 30: TabKDE vs Copula+KDE Baselines.

DP Gaussian Copula (Adult) Marginal Err. (↓) Pairwise Corr. (↓) DCR (→ 50) C2ST (↑)
ϵ = 0.1 18.44% 32.56% 49.88% 0.37
ϵ = 1 16.72% 29.04% 50.12% 0.36
ϵ = 5 16.27% 28.69% 49.97% 0.37
ϵ = 10 16.92% 27.76% 49.75% 0.33
ϵ = 100 17.46% 29.80% 49.80% 0.29

Table 31: DP Gaussian Copula on Adult with different privacy budget ϵ (smaller implies stronger privacy).

44


	Introduction
	Our Contribution

	TabKDE Algorithm
	Encoding of Tabular Features: TE
	Map to Numerical Latent Space: E Z
	Learning Distance to Closest Record (DCR)
	Tabular Kernel Density Estimation: Z  Sample
	Coresets for Generative Tabular Data Modeling

	Experimental Results
	Scalability and Efficiency
	Accuracy
	Privacy
	Conclusion and Limitations

	TabKDE Algorithm
	Encoding of Tabular Features: TE
	Map to Numerical Latent Space: E Z
	Sensitivity Analysis of the Encoding–Decoding Pipeline
	Learning Distance to Closest Record (DCR)
	Tabular Kernel Density Estimation: Z  Sample

	Experimental Setup and Data
	Datasets
	Baselines
	Evaluation

	Scalability and Efficiency
	Accuracy Evaluation
	Marginal distribution alignment
	Pairwise correlation alignment
	Global Distribution Alignment
	Precision and Recall

	Privacy Preservation
	Coresets for Generative Tabular Data Modeling
	Empirical Evaluation of Coreset Methods

	Ablation Study on Variants of TabKDE
	Motivation for TabKDE: Boundary Control Challenges in SimpleKDE
	blueStatistic on boundary correction in TabKDE

	Comparison with Copula/KDE Based generator Models
	Extended Copula+KDE Baselines
	Differentially Private Gaussian Copula


