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ABSTRACT

Visual context is versatile and hard to describe or label precisely. We aim to
leverage the densely labeled task, image parsing, a.k.a panoptic segmentation, to
learn a model that encodes and discovers object-centric context. Most existing
approaches based on deep learning tackle image parsing via fusion of pixel-wise
classification and instance masks from two sub-networks. Such approaches isolate
things from stuff and fuse the semantic and instance masks in the later stage. To
encode object-centric context inherently, we propose a metric learning framework,
Panoptic Segment Sorting, that is directly trained with stuff and things jointly. Our
key insight is to make the panoptic embeddings separate every instance so that the
model automatically learns to leverage visual context as many instances across
different images appear similar. We show that the context of our model’s retrieved
instances is more consistent relatively by 13.7%, further demonstrating its ability
to discover novel context unsupervisedly. Our overall framework also achieves
competitive performance across standard panoptic segmentation metrics amongst
the state-of-the-art methods on two large datasets, Cityscapes and PASCAL VOC.
These promising results suggest that pixel-wise embeddings can not only inject
new understanding into panoptic segmentation but potentially serve for other tasks
such as modeling instance relationships.

1 INTRODUCTION

Visual context is versatile and hard to describe or label precisely, yet it is critical for humans (Medin
& Schaffer, 1978) to recognize objects quickly. More importantly, objects in different contexts carry
different meanings. For example, pedestrians walking in crosswalks should receive more attention
than on sidewalks to a driver. However, it is almost impossible to categorize objects with different
contexts as the change can be subtile yet dramatic: A pedestrian is more likely in danger if walking
in front of a car than by a car, where both a person and a car appear together. We are thus motivated
to propose a model that automatically encodes and discovers object visual context by leveraging a
densely labeled task, panoptic segmentation.

Panoptic segmentation (Kirillov et al., 2019b), a.k.a., image parsing (Tu et al., 2005), is to segment
an image into its constituent visual patterns with both semantic and instance labels. The major
challenge lies in delineating different instances while associating them with semantic categories.
For example, one has to segment two side-by-side cars apart while still being able to classify them
as the same category. Most existing approaches (Kirillov et al., 2019a; Xiong et al., 2019; Yang et al.,
2019; Cheng et al., 2020; Li et al., 2020) tackle these two aspects via two sub-networks, instance and
semantic segmentation branches. The advantage of such approaches is that each branch can cater to
one aspect and achieves high performance. Additional modules for integrating things and stuff are
needed to resolve the disagreements between two branches. Yet for object visual context, things and
stuff are two integral parts. Hence, we aim to propose a framework that unifies these two seemingly
competing aspects and thus encodes visual context inherently.

Our framework is inspired by the perceptual organization view (Biederman, 1987): Humans perceive
a scene by breaking it down into visual groups and structures; repeated structures are then associated
for cognitive recognition. Our key insight is to separate everything first and group visually similar
components later. The grouping takes place within an image and across images. Within an image,

1



Under review as a conference paper at ICLR 2021

Figure 1: Top row from left to right: input image, panoptic embeddings, panoptic predictions, and panoptic
labels. We overlay panoptic embeddings with the resultant over-segmentation boundaries. Middle row: After
extracting panoptic embeddings from a CNN and the resultant over-segmentation, we use the segment prototype
features to find nearest neighbors, within the image (middle) or across images (right), of each query segment (in
red). These retrieval results probe what’s learned in the embedding space. Bottom row: an example of contex
specific instance retrieval results, where pedestrians crossing an intersection are discovered unsupervisedly.

visually similar segments are merged to form instances; across images, visually familiar segments
are associated to create semantics, as illustrated in Fig. 1.

We carry out this idea by building an end-to-end trained pixel-wise embedding framework. Each
pixel in an image is mapped via a CNN to a feature in latent space, and nearby features indicate pixels
belonging to the same instance. This framework is therefore a non-parametric model at the segment
and instance levels as its complexity scales with number of segments and instances, i.e., exemplars.
Particularly, by forcing all the instances to separate, the model has to utilize all the possible visual
and semantic information. The model thus learns to separate instances by not only their appearances
but also their surroundings, or visual context. A major difference between our model and others
is the metric learning perspective: Our model trains with a contrastive loss that captures pixel-
to-segment relationships while others trains with pixel-wise classification that predicts category or
instance directly. As a result, the learned panoptic embeddings can discover instances under similar
context, as in Figure 1 bottom row.

Specifically, we adapt the Segment Sorting approach (Hwang et al., 2019b) to panoptic segmentation
by sorting segments according to both of its semantic and instance labels, hence dubbed Panoptic
Segment Sorting (PSS). Such trained pixel-wise embeddings thus encode both semantic and instance
information. We then predict each segment’s semantic label by simply mapping and classifying its
prototype feature with a softmax classifier. We also propose a corresponding clustering algorithm
to merge segments into instances with a nearest neighbor criterion (Sarfraz et al., 2019). To al-
leviate the problem of instances with various scales, we further equip our framework with hybrid
scale exemplars during training and dynamic partitioning during inference. Finally, we facilitate the
merging process with a seeding branch that predicts the center of each instance.

As a result, we demonstrate that the contexts of instances retrieved by our panoptic embeddings are
more consistent relatively by 13.7% while achieving competitive performance amongst the state-
of-the-art on two datasets, Cityscapes (Cordts et al., 2016) and PASCAL VOC (Everingham et al.).
These promising results suggest that Panoptic Segment Sorting or pixel-wise embeddings can not
only inject new understanding into panoptic segmentation but potentially serve as a foundation for
other tasks such as discovering novel contexts or modeling instance relationships.

2 RELATED WORK

Image parsing and panoptic segmentation. The task of image parsing is first introduced in Tu
et al. (2005), where they formulate the solution in a Bayesian framework and construct a parsing
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graph as output. Since then, a lot of work has attempted to solve holistic scene understanding
(Zhu & Mumford (2007); Malisiewicz & Efros (2008); Tighe & Lazebnik (2013); Rabinovich et al.
(2007); Yao et al. (2012)). Recently, Kirillov et al. (2019b) reintroduce image parsing in the context
of deep learning with large-scale datasets and new evaluation metric, renaming the task as panoptic
segmentation as to unify the well-developed semantic and instance segmentation. Many research
efforts (Li et al., 2018b; Kirillov et al., 2019a; Xiong et al., 2019; Porzi et al., 2019; Yang et al., 2019;
Liu et al., 2019; Li et al., 2019; 2018a; Gao et al., 2019; Chen et al., 2020; Wu et al., 2020; Wang
et al., 2020; Li et al., 2020) have followed quickly. The common approaches embrace the concept
of unifying instance and semantic segmentation by integrating the time-tested object proposal and
segmentation framework popularized by Mask R-CNN (He et al., 2017).

Instance segmentation. This task is generally approached by two camps of solutions: top-down or
bottom-up. The top-down approaches (Dai et al., 2016; Li et al., 2017; Dai et al., 2017; He et al.,
2017; Chen et al., 2018a; Liu et al., 2018a) adopt a two-stage framework where the bounding boxes
are proposed by a detection network (Ren et al., 2015) and the segmentation masks are produced by
an add-on head. The bottom-up approaches (Carreira & Sminchisescu, 2011; Arbeláez et al., 2014;
Pinheiro et al., 2015; 2016; Bai & Urtasun, 2017; Liu et al., 2017a; Kirillov et al., 2017; Newell
et al., 2017; Fathi et al., 2017; Kendall et al., 2018; Liu et al., 2018b; Papandreou et al., 2018; Zhou
et al., 2019) predict and encode pair-wise relationships in various forms and segment the instance
accordingly.

Instance context. Instance contexts and relationships are explored mainly to enhance the detection
performance. Earlier work (Malisiewicz & Efros, 2009) models the appearances and 2D spatial con-
text as a graph. Recently, researchers integrate graphs (Chen et al., 2018c) or spatial memory (Chen
& Gupta, 2017) into the deep learning framework. The distinction of our work is that our model
does not explicitly model contexts yet is able to discovers novel contexts automatically.

Semantic segmentation. Current state-of-the-art semantic segmentation approaches develop from
fully convolutional networks (Long et al., 2015; Chen et al., 2016), with various innovations. In-
corporating contextual information (Ronneberger et al., 2015; Yu & Koltun, 2016; Xie et al., 2016;
Zhao et al., 2017; Chen et al., 2017; 2018b), and encoding pair-wise relationships (Zheng et al.,
2015; Bertasius et al., 2016; Liu et al., 2017b; Bertasius et al., 2017; Maire et al., 2016; Mostajabi
et al., 2018; Kong & Fowlkes, 2018; Ke et al., 2018; Hwang et al., 2019a;b) are the two major
research lines.

Non-parametric segmentation. Prior to deep learning’s emergence, non-parametric models (Rus-
sell et al., 2009; Tighe & Lazebnik, 2010; Liu et al., 2011) usually use hand-craft features with sta-
tistical models or graphical models to segment images with pixel-wise labels. Deep metric learning
methods (Fathi et al., 2017; Neven et al., 2019) for instance segmentation emphasize the simplicity
and fast computation. More recently, inspired by non-parametric models (Wu et al., 2018b;a) for
image recognition, SegSort (Hwang et al., 2019b), upon which our work is built, captures pixel-to-
segment relationships via pixel-wise embeddings, proposing the first deep non-parametric semantic
segmentation in both supervised and unsupervised settings.

3 METHOD

Our end-to-end framework consists of a major SegSort branch and a seeding branch, both of which
share one backbone network that generates multi-scale pixel-wise features. The SegSort branch out-
puts pixel-wise panoptic embeddings, which encode both semantic and instance information and are
thus used to discover instance-centric context. The over-segmentations induced by the embeddings
are then merged into instances and segments are classified by a softmax classifier. The seeding
branch predicts the center of instances, which guide the merging process to reduce false positives.
The overall framework is illustrated in Figure 2.

This section is organized as follows. We first briefly review the Segment Sorting framework for
semantic segmentation in Sec. 3.1. We then describe how to extend it for panoptic segmentation in
Sec. 3.2. In Sec. 3.3, we further develop a dynamic partitioning mechanism to alleviate the problem
of varying scales of instances. Finally, we briefly describe the seeding branch in Sec. 3.4 that helps
decide the ownership of boundaries.
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Figure 2: The overall end-to-end diagram of our proposed Panoptic Segment Sorting (PSS). We first over-
segment an image with pixel-wise embeddings, extracted from a CNN. Each segment is represented by a
prototype feature (average of pixel embeddings), which is then used for classifying segments (semantic predic-
tions) and/or merging segments into an instance (instance predictions), whose features from the embeddings
automatically encode object-centric context. An extra center seeding branch can faciliate the merging pro-
cess by designating seed segments. The overall losses include (1) the SegSort loss (Hwang et al., 2019b) for
embeddings, (2) the cross-entropy softmax loss for classification, and (3) the regression loss for seed locations.

3.1 SEGMENT SORTING

We briefly review the Segment Sorting (SegSort) approach proposed by Hwang et al. (2019b). Seg-
Sort is an end-to-end optimization framework for non-parametric semantic segmentation. It pro-
duces pixel-wise semantic embeddings and their corresponding over-segmentation, each segment of
which is then, during inference, assigned a semantic category via K-Nearest Neighbor search.

The basic idea of SegSort is assuming independent normal distributions (or von Mises-Fisher dis-
tributions for normalized embeddings) for individual segments, and seeking a maximum likelihood
estimation of the feature mapping, so that the feature induced partitioning in the image and cluster-
ing across images provide maximum discrimination among segments. SegSort can be summarized
as two components: spherical k-means clustering (Banerjee et al., 2005) and a maximum likelihood
loss formulation with soft nighborhood assignments (Goldberger et al., 2005).

The spherical k-means clustering (Banerjee et al., 2005) alternates the expectation (E) and maxi-
mization (M) steps to partition the unit-length pixel-wise embeddings vvv of an image into K regions
(RRR1, . . . ,RRRK). The M-step calculates the mean embedding direction of each region, or the proto-

type µµµk =
∑

i∈RRRk
vvvi

||
∑

i∈RRRk
vvvi|| . The E-step assigns each pixel embedding vvvi to a region RRRk with nearest

corresponding prototype µµµk, or zi = arg maxk µµµ
>
k vvvi, where zi is the segment index that the pixel i

is assigned. Note that the dot product on the right hand side is equivalent to cosine similarity as both
vvv and µµµ are of unit length. By alternating E- and M-steps, we over-segment an image.

After over-segmentation, one can derive a maximum likelihood loss with soft neighborhood assign-
ments (Goldberger et al., 2005) to train the deep neural networks end-to-end. Interested readers are
referred to the SegSort paper (Hwang et al., 2019b) for detailed derivation. The principle is to con-
nect each pixel with one of its same-class segments, excluding its own segment, and to push away
all the other segments in different classes. We define the corresponding probabilities given semantic
segmentation ground truth labels as follows.

p(zi = c+ | vvvi,Θ) =
exp(κµµµ>

c+vvvi)∑
l 6=c exp(κµµµ>

l vvvi)
; p(zi = c | vvvi,Θ) = 0, (1)

where κ is the concentration (around µ) hyper-parameter in the von Mises-Fisher distributions, c
denotes the segment index to which the pixel i is assigned, and c+ denotes the segment index of
any other same-class segment across all images in a batch. The final SegSort loss is therefore the
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negative log-likelihood of a pixel i selecting a same-class prototype as its neighbor:

LiSegSort = − log
∑
s∈C+

i

p′φ(zi = s | vvvi,Θ) = − log

∑
s∈C+

i
exp(κµµµ>

s vvvi)∑
l 6=c exp(κµµµ>

l vvvi)
, (2)

where C+
i denotes the set of c+ segment indices w.r.t. the pixel i, which is selected by the semantic

segmentation ground truth labels. Minimizing this loss is equivalent to maximizing the expected
number of pixels correctly classified by voting of their nearest neighbor prototypes.

3.2 PANOPTIC SEGMENT SORTING

Since the SegSort loss does not require a fixed number of classes as opposed to the conventional
cross-entropy softmax loss, a way to extend it for instance discrimination is by changing the defini-
tion of ground truth labels and its corresponding selections of neighbor prototypes. In other words,
we instead consider c+ as the segment index of any other ‘same-instance’ segment. For stuff cat-
egories without instances, we consider all the segments in that class have the same instance label.
With this modification, the SegSort loss in Eqn. 2 can be used to train panoptic embeddings.

Such trained embeddings, therefore, group each instance against all the other instances, regardless
of their semantic categories. Still, since this loss pushes all the instances as far away as possible, vi-
sually similar instances are forced to stay closer on the hypersphere. We thus hypothesize two kinds
of additional information are encoded: (1) The embeddings encode the semantic labels inherently
as instances of the same class appear similar. To extract such information, we then stack two 1 × 1
convolutional layers on top of segment prototypes, followed by a softmax classifier to predict the
semantic class of each segment. Note that no conflict between semantic and instance segmentations
is introduced in this setting as they are built on the same over-segmentation. (2) The embeddings
also encode object-centric context. This is because many instances (especially common objects like
cars, persons, bikes, etc. ) across different images appear similar so the model has to leverage all
possible information to push away all the instances of the same class.

Given the panoptic embeddings and the resultant over-segmentations, the challenge is to group seg-
ments into instances correctly during inference. We need two criteria: 1) how to merge segments,
and 2) when to stop the merging. To align with the formulation of the SegSort loss, we adopt a
nearest neighbor clustering criterion (Sarfraz et al., 2019) to greedily merge two segments RRRm,RRRn
with nearest prototypes, and stop the merging if the distance between two prototypes µµµm,µµµn is
greater than a threshold, or their dot product is less than a threshold TP . The merging criteria can be
summarized as:

RRR = {RRRm,RRRn} if
(
N (µm) = n or N (µn) = m

)
and µµµ>

mµµµn ≥ TP , (3)

where {·, ·} denotes merging segments, N (·) denotes the index of the nearest neighbor prototype.
We sort all the pairs of distances (dot products) of the prototypes in an image and consider merging
greedily from the closest pair. We also update the new prototype after merging.

3.3 DYNAMIC PARTITIONING FOR HYBRID SCALE EXEMPLARS

The vanilla SegSort partitions an image into a fixed number of regions regardlessly. For semantic
segmentation, this setting is reasonable as the number and sizes of homogeneous regions do not
vary a lot from an image to another. However in instance segmentation, scales of objects can change
drastically from 100 to 100K pixels. Oftentimes cluttered small instances will fall into one single
segment, or even worse be included in another big instance. To alleviate this scale problem, we
propose a hybrid scale setting for training and dynamic partitioning for inference accordingly. The
illustrations can be found in Appendix.

During training, we consider regular embeddings vvv and their upscaled embeddings vvv(u) by bilinear
interpolation. The idea is to use the upscaled embeddings for small instances so that the gradient
flows are finer. After the spherical k-mean clustering, we calculate segment prototypes using em-
beddings in different scales according to the instance sizes. Note that there is still only one prototype
for each segment in the SegSort loss, be it either regular or upscaled.

During inference, the sizes of instances are unknown and have to be inferred. We notice that if a
segment contains multiple small instances or multiple parts from a big instance, the corresponding
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pixel embeddings are usually noisy, resulting in a low concentration. Therefore, we define an ap-

proximated concentration κ̃k of a segmentRRRk as κ̃k =
||
∑

i∈RRRk
vvvi||

|RRRk| ∈ [0, 1], where |RRRk| denotes the
number of pixels in the segment. If this value for a segment falls below a certain threshold TS , we
again partition this segment using the same spherical k-means (here k = 4 usually).

3.4 SEEDING BRANCH

We notice the boundaries between objects sometimes form their own segments, causing false posi-
tive instances. To remedy this issue, we build a second branch for predicting instance seeds, which
are used for guiding the merging process, described in Sec. 3.2. We define seeds as the centers of in-
stances and mark the segments that cover seeds as seed segments. For building this seeding branch,
we follow closely the instance proposal branch in He et al. (2017); Xiong et al. (2019) and use the
centers of the predicted bounding boxes as the seeds.

Once we predict the seeds and the corresponding seed segments, we perform a seeding variant of
merging. The only modification of the merging of {RRRm,RRRn} (in Eqn. 3) is that the segments to
mergeRRRm&RRRn are restricted to one seed segment and one non-seed segment; the merged segments
are then marked as seed segments. Note that the merging only happens between same class seg-
ments. After this modification, all the boundary segments are then forced to be merged into one of
the seed segments. The visualization of the merging processes can be found in the supplementary.

4 EXPERIMENTS

In this section, we demonstrate the efficacy of our framework through extensive experiments and
analysis. We first describe the experimental setup in Sec. 4.1. We present the context specific in-
stance retrieval results in Sec. 4.2. Finally in Sec. 4.3, we present the panoptic segmentation results.
Hyper-parameters, ablation study, and more visual results such as panoptic predictions, context re-
trieval, and t-SNE (Maaten & Hinton, 2008) feature analysis, can be found in the Appendix.

4.1 EXPERIMENTAL SETUP

Datasets. We carry out experiments mainly on two datasets: Cityscapes and PASCAL VOC 2012.

Cityscapes (Cordts et al., 2016) is a dataset for semantic urban street scene understanding. 5, 000
high quality pixel-level finely annotated images are divided into training, validation, and testing sets
with 2, 975 / 500 / 1, 525 images, respectively. It defines 19 semantic categories containing flat,
human, vehicle, construction, object, nature, etc. , of which 8 categories have instance labels.

PASCAL VOC 2012 (Everingham et al.) segmentation dataset contains 20 object categories and
one background class. The augmented dataset contains 10, 582 (train) / 1, 449 (val) / 1, 456 (test)
images. All the semantic classes, except for backgrounds, have instance labels.

Network architecture. We use the Feature Pyramid Networks (FPN) (Lin et al., 2017), with
ResNet-50 (He et al., 2016) backbone pretrained on ImageNet, to provide the multi-scale pixel-wise
features. For each of the seeding and panoptic embedding branch, we follow Xiong et al. (2019)
by building three layers of deformable convolutional layers (Dai et al., 2017) (with shared weights
across different scales) on top of each scale of FPN features. We then concatenate the multi-scale
features, followed by a final fusion 1 × 1 convolutional layer. On top of the panoptic embeddings,
we stack two 1× 1 convolutional layers for the segment softmax classifier.

4.2 CONTEXT SPECIFIC INSTANCE RETRIEVAL

In this section, we experimentally verify our panoptic embeddings encode the object-centric context
automatically.

Discovery of novel context. We retrieve the nearest neighbors of query instances on the Cityscapes
validation set using their averaged embeddings. We notice that the retrieved instances are usually in
similar context as the query. We showcase five interesting examples in the Appendix, i.e., pedestrians
crossing an intersecion (also in Figure 1) or walking next to cars, riders riding bikes together or next
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Figure 3: Illustration for evaluating the context similarity between two instaces by comparing their semantic
distributions in 8 extended regions. From left to right: whole image, instance of interest, semantic distribution
of the middle right extended region. We calculate the symmetric KL-divergence between semantic distributions
from corresponding regions as the context error.

to cars, and cluttered parked motorbikes. Note that these contexts are not given in the ground truth
labels, yet our PSS can discover them unsupervisedly. We believe these examples are relevant in
street scene understanding, especially for self-driving vehicles.

Quantitative evaluation. We wonder if such phenomena can be measured quantitatively. The chal-
lenge lies in the complicated scenarios and the lack of a complete label set. For example, crosswalks,
which are labeled as roads, are visually similar as yet functionally different from roads. Furthermore,
riding motorbikes next to cars is dangerous but difficult to describe precisely for annotating tasks.

We notice that the semantic category distribution of a larger patch captures some of such cases.
For example, if there are multiple pedestrians nearby with cars around them, the chance of them
walking on a crosswalk is higher. Such motivated, we propose to evaluate the context similarity
between query and retrieval instances by comparing their semantic categories in 8 extended regions,
as illustrated in Fig. 3.

To be specific, we denote the 8 neighbor regions (with the same size as the instance) as Bj for
j = 1, . . . , 8. We calculate the semantic distribution in each region by the occupancy ratio of each
class and denote it as PBj

. That is, for each class, given a semantic label mask SP , then P cBj
=

1
|Bj |

∑
Bj [SP=c] for each category c, where |Bj | denotes the area of region Bj . We then compare

the semantic context distribution of the query P (q)
Bj

against its i-th retrieval P (ri)
Bj

by calculating the
symmetric KL divergence between the two, or

CE =
1

8K

8∑
j=1

K∑
i=1

(
DKL(P

(q)
Bj
, P

(ri)
Bj

) +DKL(P
(ri)
Bj

, P
(q)
Bj

)
)
, (4)

where CE is our proposed metric, Context Error, andK is the number of retrievals per query instace.
If the reference probability is 0, the KL divergence will be invalid; in this case, we use a small
probability 0.1 instead. We set K to 20 nearest neighbors.

We compute Context Error (CE) for each instance category, i.e., , we restrict both query and retrieval
to be a certain instance category. The final CE is the average errors of all instance categories. We
compare our PSS against state-of-the-art UPSNet (Xiong et al., 2019) and summarize the results in
Tab. 1. We observe PSS performs better in every category and reduces 13.7% relative context errors.

method person rider car truck bus train mbike bike mean CE
UPSNet (Xiong et al., 2019) 1.15 1.21 0.88 1.20 1.08 1.33 1.23 1.21 1.16
PSS 0.96 1.01 0.65 1.12 1.04 1.27 1.11 1.05 1.02 (-13.7%)

Table 1: Context Errors (CE) on the Cityscapes (Cordts et al., 2016) validation set. We observe PSS performs
better in every category and reduces 13.7% relative context errors.
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Figure 4: Visual comparison for context specific instance retrieval. We show 3 query examples (left) and their
top retrieval results by our PSS (middle) and UPSNet (Xiong et al., 2019) (right), respectively. We observe that
retrieved instances by PSS are usually in similar context or sometimes even from the same training image.

method backbone PQ PQTh PQSt

Li et al. (2018b) ResNet-101 47.3 39.6 52.9
DeeperLab (Yang et al., 2019) Xception-71 56.5 - -
AUNet (Li et al., 2019) ResNet-50 56.4 52.7 59.0
SSAP (Gao et al., 2019) ResNet-50 56.6 49.2 -
Panoptic FPN (Kirillov et al., 2019a) ResNet-50 57.7 51.6 62.2
UPSNet (Xiong et al., 2019) ResNet-50 59.3 54.6 62.7
UPSNet* (Xiong et al., 2019) ResNet-50 59.1 54.2 62.6
PSS ResNet-50 58.7 51.7 63.7

Table 2: Experimental results on the Cityscapes validation set. Our proposed framework PSS achieves com-
petitive performance in PQ and outperforms all the other methods in PQSt. * denotes retraining the model using
released code; other results are copied from the published papers and ‘-’ denotes missing metrics.

Visual Comparison. Next, we present the visual comparison in Fig 4 between our PSS and UPSNet
using three query instances from the same validation image and display 3 retrieved instances for each
network in the training set. We observe that our retrieved instances are usually in a similar context
and are sometimes even from the same training image. It indicates that PSS encodes not only the
appearances of an instance but also its nearby environment.

Visual Context Cluster Analysis We conduct visual context cluster analysis and visualize the re-
sults in Fig. 5. We first collect all the pedestrian prototypes in the Cityscapes training set. We plot
their surrounding ground truth mask at their t-SNE feature locations and the aggregated density map.
We observe interesting clusters such as pedestrians next to a car (center) and pedestrians alone on
sidewalks (top left). We also notice some rare contexts on the middle left by examining the density
map: a pedestrian is behind a clutter of a motorbike and a bike, which could lead to collision.

4.3 PANOPTIC SEGMENTATION

Main results on Cityscapes. We summarize the main results on the Cityscapes validation set
and compare with the state-of-the-art in Table 2. Our PSS achieves competitive performance in PQ
(Panoptic Quality, explained in Appendix) and outperforms all the other methods in PQSt. Notably,
our framework performs particularly well in semantic segmentation related benchmarks.

method backbone PQ
Li et al. (2018b) ResNet-101 62.7
PSS ResNet-50 64.8

Table 3: Experimental results on
Pascal VOC 2012 validation set.

Main results on PASCAL VOC. We summarize the main results
on the PASCAL VOC validation set and compare with the state-of-
the-art in Table 3. We show that PSS outperforms Li et al. (2018b)
by 2% PQ even with a weaker backbone (ResNet-50 vs 101).
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Figure 5: Pedestrian-centric visual context cluster visualization (best viewed with zoom-in). We first collect
all the pedestrian prototypes in the Cityscapes training set. We plot their surrounding ground truth mask at their
t-SNE feature locations and the aggregated density map (bottom left). We observe interesting clusters such
as pedestrians next to a car (center) and pedestrians alone on sidewalks (top left). We also notice some rare
contexts on the middle left by examining the density map: a pedestrian is behind a clutter of a motorbike and a
bike, which could possibly lead to collision.

5 SUMMARY

We presented the Panoptic Segment Sorting (PSS) framework for contextual image parsing. We
aimed to encode and discover object-centric context automatically by unifying semantic and instance
segmentation in the pixel-wise panoptic embeddings. We experimentally demonstrated such trained
embeddings automatically encode object-centric context for better instance discrimination. PSS also
achieved competitive performance amongst the state-of-the-art when equipped with hybrid scale
exemplars, dynamic partitioning, and instance seeding. One future direction is to study how to
explicitly disentangle the representations for instance appearances and contexts.
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A APPENDIX

We provide a metric learning approach to contextual image parsing. It is not only a unified approach
to semantic segmentation and instance segmentation, but most excitingly also the first segmentation
method that produces a learned feature representation directly applicable for more powerful context-
specific image retrieval. Here we include more details on the following aspects:

• We present the visual results of novel context discovery in Section A.1.

• We present more interesting visual context comparisons in Section A.2.

• We present the visual results of our panoptic segmentation predictions on Cityscapes vali-
dation set in Section A.5.

• We visualize hybrid scale exemplars and merging processes with and without seeds, for
further insights into our algorithm in Section A.3 and A.4, respectively.

• We analyze the car instance embeddings using t-SNE visualization in Section A.6.

• We provide detailed description of our experimental setup regarding hyper-parameters and
ablation study in Section A.7.

A.1 VISUAL RESULTS OF NOVEL CONTEXT DISCOVERY

As discussed in Sec. 4.2, we retrieve the nearest neighbors of query instances on the Cityscapes
validation set using their averaged embeddings. Here, we showcase five interesting examples in
Fig. 6, i.e., pedestrians crossing an intersecion or walking next to cars, riders riding bikes together
or next to cars, and cluttered parked motorbikes. Note that these contexts are not given in the ground
truth labels, yet our PSS can discover them unsupervisedly. We believe these examples are relevant
in street scene understanding, especially for self-driving vehicles.

A.2 ADDITIONAL VISUAL COMPARISONS FOR CONTEXT SPECIFIC INSTANCE RETRIEVAL

We present more interesting visual comparisons for context specific instance retrieval in Fig. 7. It
can be observed that PSS captures more context when retrieving instances. For examples, riding
bikes along a sidewalk to its left, parked cars with a bike passing by, driving cars with pedestrians
nearby, riding motorbikes behind a car, etc.

A.3 ILLUSTRATION OF HYBRID SCALE EXEMPLARS

In Section 3.3 in the main paper, we describe the training process with hybrid scale exemplars. In
short, when we train the panoptic embeddings with the SegSort loss, we select segment prototypes
from embeddings of different scales, decided by their corresponding instance sizes. Particularly, we
use upscaled embeddings for prototypes of small instances. We illustrate this process in Fig. 8.

A.4 VISUALIZATION OF MERGING PROCESS

We describe the merging process (without and with seeds) in Section 3.2 and 3.4, respectively.
To facilitate the understanding, we visualize a few intermediate steps in Fig. 9. We observe that
once an instance composes of a single segment, its cosine similarity to its nearest prototype drops
significantly. It indicates this merging process with threshold works well with our training objective.
Also note that the merging usually grows from interior pixels towards boundaries.

A.5 PANOPTIC PREDICTIONS

We present the visual results of our panoptic segmentation predictions on the Cityscapes validation
set in Fig. 10. We observe that our semantic predictions capture well thin objects such as poles and
traffic signs, even if many of them are labeled ignore. Also, the far away cars (in example 3) and
pedestrians (in example 1) are also detected.
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Figure 6: Retrieved the K-Nearest Neighbors for query instances. The image and query are on the left, and
to their right are the retrieved instances (in the order of left to right, top to bottom). We demonstrate one kind
of contexts in each example: 1) Pedestrians crossing an intersection. 2) Pedestrians walking next to cars. 3)
Riders riding bikes together. 4) Riders riding motorbikes next to cars. 5) Parked motorbikes. Note that these
contexts are not given in the ground truth labels, yet our PSS can discover them automatically. We believe these
examples are relevant in street scene understanding, especially for self-driving vehicles.
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Figure 7: More visual comparisons for context specific instance retrieval between PSS (ours) and UPSNet. It
can be observed that PSS captures more context when retrieving instances. For examples, riding bikes along a
sidewalk to its left, parked cars with a bike passing by, driving cars with pedestrians nearby, riding motorbikes
behind a car, etc.

image normal embedding

upscaled embedding

normal instance

small instance

CNN
upscale

SegSort
loss

Figure 8: Illustration of SegSort training with hybrid scale exemplars in Section 3.3 in the main paper. The
embeddings are overlayed with the predicted over-segmentation (with gray boundaries). We emphasize here
one normal sized instance (outlined in red) and one small instance (outlined in purple), the prototypes of
segments of each are collected from corresponding embeddings.
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Figure 9: Visualization of the merging processes, without and with seeds, described in Section 3.2 and 3.4
in the main paper, respectively. On the left are the input images and approximated concentration per segment
(overlayed with oversegmentation boundaries). To their right are merging processes without seeds (first row)
and with seeds (second row). The red contours outline two segments to merge in this step. The viridis heat
maps indicate the cosine similarity between each segment and its nearest prototype. (The white segments are
seed segments.) The merging starts from the pair with the highest cosine similarity. We visualize a few steps
in the beginning. Note that once an instance composes of a single segment, its cosine similarity to its nearest
prototype drops significantly. It indicates this merging process with threshold works well with our training
objective.

image semantic label semantic prediction instance label instance prediction

Figure 10: The panoptic segmentation visual results on the Cityscapes validation set of our proposed frame-
work, Panoptic Segment Sorting. We observe that our semantic predictions capture well thin objects such as
poles and traffic signs, even if many of them are labeled ignore. Also, the far away cars (in example 3) and
pedestrians (in example 1) are also detected.
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Figure 11: We visualize the prototype features of cars on the Cityscapes training set using tSNE. We observe
that the features cluster certain parts or types of cars automatically. For example, front wheels appear on the
bottom left corner and red cars in the center. Best viewed with zoom-in.

A.6 T-SNE VISUALIZATION

We visualize the prototype features of cars on the Cityscapes training set using t-SNE in Fig. 11.
We observe that the features cluster certain parts or types of cars automatically. For example, front
wheels appear on the bottom left corner and red cars in the center.
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hybrid dynamic PQ PQS PQM PQL mIoU
51.5 5.5 32.4 67.4 75.60

X 52.4 7.3 31.5 67.1 76.16
X 52.2 8.4 33.8 67.2 75.16
X X 53.7 11.2 34.0 66.6 76.02

Table 4: Ablation study on hybrid scale exemplars
and dynamic partition. ‘Hybrid’ denotes enabling hy-
brid scale exemplars during training and ‘dynamic’
denotes enabling dynamic partition during inference.
The most significant gain is observed for small in-
stances where PQS increases by 5.7%. This verifies
our claim for alleviating the instance scale problem.

seeding classifier PQ PQS PQM PQL mIoU
44.0 9.3 25.4 55.6 61.66

X 45.5 8.2 27.0 56.6 61.62
X 50.9 12.9 33.4 63.6 75.52

X X 53.7 11.2 34.0 66.6 76.02

Table 5: Ablation study on seeds and segment soft-
max classifier. Two convolutional layers (and a soft-
max classifier) to map the features onto semantic la-
tent space are still necessary to produce good predic-
tions (+7% in PQ). We also observe the seed predic-
tions help the merging process and boost the perfor-
mance (+2% in PQ).

A.7 HYPER-PARAMETERS AND ABLATION STUDY

Hyper-parameters. We train the models on Cityscapes for 90k iterations. The batch size is set to 8,
and the crop size to 704. On VOC dataset, the training iteration is 60k, the batch size is 12 and crop
size is 512. We adopt the standard poly learning rate policy with the base learning rate, momentum,
and weight decay as 0.002, 0.9, and 0.0001, respectively.

For Panoptic Segment Sort, we set the hyper-parameters for all the experiments as follow. The
dimension of panoptic embedding is 64. The concentration is set as 8, and the iterations in K-Means
is 10. On Cityscapes, we use 196 clusters in K-Means for training. During inference, we set the
number of clusters as 500 and the threshold TS of dynamic partition as 0.99. On VOC dataset, the
number of cluster is 64. We perform dynamic partition with TS as 0.99 for inference. The small
instance area upper bound Ap is set to 2048 and 512 for Cityscapes and VOC dataset.

For the seeding branch, we generate the Gaussian heatmap by setting the radius to 16 pixels. We
train the pixels within the radius to predict the offsets. The overall loss weights for the SegSort loss,
cross-entropy softmax loss, L1 and L2 seed location loss are 1, 1, 0.1 and 1.

Post-processing. We perform minimal post-processing on the final predictions. For stuff categories,
we set the region with areas less than 2, 048 to void. For thing categories, if non-seed segments after
merging has area less than 4096, we set them to void as well.

Ablation study on hybrid scale exemplars and dynamic partition. The ablation study is summa-
rized in Table 4. We enable and/or disable the hybrid scale exemplars during training and dynamic
partition during inference. We train the network with only 30k iterations on Cityscapes for faster
experimentation. ‘Hybrid’ denotes enabling hybrid scale exemplars and ‘dynamic’ denotes enabling
dynamic partition. Each component will boost the performance by 0.7− 0.9% PQ and by 2.2% PQ
if both are enabled. The most significant gain is observed for small instances where PQS increases
by 5.7%. This ablation study verifies our claim for alleviating the instance scale problem.

Ablation study on seeds and segment softmax classifier. The ablation study is summarized in
Table 5. We train the network with only 30k iterations on Cityscapes. We enable and/or disable the
seeding branch and segment softmax classifier with two convolutional layers.

When the classifier is disabled, we perform K-Nearest Neighbor Search using the prototype features
from the panoptic embeddings directly. It shows that two convolutional layers (and a softmax classi-
fier) to map the features onto semantic latent space are still necessary to produce good classification
predictions (+7 ∼ 8% in PQ). Also, We observe the seed predictions help the merging process and
boost the performance by 1.5 ∼ 2.8% in PQ.
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