Under review as a conference paper at ICLR 2025

A GRADIENT DESCENT OPTIMIZER WITH AUTO-
CONTROLLED LARGE LEARNING RATES, DYNAMIC
BATCH SIZES AND WITHOUT MOMENTUM

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel, fast gradient based momentum-free optimizer algorithm with
dynamic learning rate and dynamic batch size. The main ideas are to exponentially
adapt the learning rate o by situational awareness, mainly striving for orthogonal
neighboring gradients, and to increase the batch size when the gradients become too
noisy, leading to random walks rather than gradient descent. The method has a high
success and fast convergence rate and relies only on few hyper-parameters, pro-
viding greater universality. It scales only linearly (of order O(n)) with dimension
and is rotation invariant, thereby overcoming known limitations. The optimization
method is termed ELRA (Exponential Learning Rate Adaption). The impressive
performance of ELRA is demonstrated by experiments on several benchmark data-
sets (ranging from MNIST to ImageNet) against common optimizers such as Adam,
Lion and SGD.

1 INTRODUCTION

Numerical optimization of functions f(x) relies on data obtained from the function landscape. One
key problem is that we are lacking meaningful global information about f(x), making it necessary to
rely on local information instead. Approaches based on local properties range from using the function
value in physics-inspired relaxation approaches (cf. Borysenko & Byshkin|(2021)), to algorithms
using the topographical structure of the function landscape directly, such as gradient descent-like
approaches, to biology inspired algorithms such as swarm optimization (cf.|Ab Wahab et al.|(2015)).
Among these, the gradient descent-like methods have the longest history and are (due to their linear
scaling with the problems dimension) the only practically applicable algorithms in high dimensional
problems (e.g. deep neural networks). In these approaches the gradient G = V f(x) of the function
f(x) is computed and thus also the best descent direction —G. However, while the idea of going
downhill is obviously reasonable, an optimal step-length A = « - ||G|| remains to be chosen cost-
efficiently. The parameter « is the learning rate (or step size). Most current gradient based algorithms
use a fixed learning rate «, which additionally may depend on time/steps . This holds in particular
for the Ada-family|'|of optimizers, widely used for training neural networks. To eliminate the initial
tuning of «, there are some modern approaches which adapt o dynamically, such as AdaDelta or
Prodigy (proposed in Mishchenko & Defazio|(2023)) or DoG (proposed in Ivgi et al.| (2023)). Yet,
they perform not better then the most prominent Ada-optimizer Adam (cf. [Kingma & Ba|(2017)) or
its successful predecessor Lion (cf. |Chen et al.| (2023))).

The use of a fixed learning rate « is in part due to the fact that it allows, at least locally, for precise
mathematical analysis, guaranteeing or almost surely guaranteeing (for SGD) a lower bound on
convergence rates (e.g. see|Nesterov|(2018)), 1.2.3). However, these lower bounds often depend on
strong assumptions (such as convexity) and on constants which are in practice unknown. Moreover,
more complex optimizers, such as Adam, even tend to fail general convergence (cf. Bock & Weils
(2019)), although they perform very reliable in practice.

We propose a paradigm changing algorithm that estimates in each step self-consistently a near
optimal learning rate o from low-cost local knowledge of the function, thereby achieving a jump

'Such as: AdaGrad, RMSProp, AdaDelta, Adam, Lion, which all scale the gradient components individually
(precondition-like).

Under review as a conference paper at ICLR 2025

close to the next minimum along the gradient direction. In particular, o approaches a problem-
specific good scale exponentially fast (cf. Fig. and « is continually updated. We propose ELRA -
Exponential Learning Rate Adaption as a name for the new optimizer based on this idea.

Recent articles indicate that large variations of e might be very beneficial. In |Grimmer| (2023), it
is for the first time mathematically proven that (periodically) varying step sizes lead to much better
convergence rates, which our experimental results confirm. In|Iruong & Nguyen| (2021) it is shown
that estimating the best « via backtracking using Armijo’s condition (see Nesterov| (2018)), 1.2.3) can
lead to faster convergence then the Ada-family. However, each backtracking step needs a separate and
expensive function value. Hence, backtracking more than once is seldom justified by the speed gained.
ELRA does not suffer from this computational conundrum, as we provide a low-cost estimator (see
sections [3.Tand [3.6)) for the best «, thereby retaining the benefit of a good o without losing speed.
The first essential advantage of ELRA is that a strongly adaptive @ completely eliminates the need to
find "by hand’ a good constant « for each specific problem. Secondly, most modern training schemes
rely on decreasing « over time to achieve better test accuracy. Yet the best timing is a priori unknown
and often determined by educated guesses. The strong performance of ELRA (cf. Tab. 3}{5) shows
that a strongly adaptive a needs no external timing. Thirdly, ELRA is invariant under orthogonal
transformations of z, such as rotations, unlike the Ada-family (see Fig. for different behaviour for
rotated coordinates), which due to adaptively scaling each gradient component looses the invariance.
The lack of such an invariance can cause problems in geometric optimization (cf. Ling et al.|(2022))
as it can lead to unwanted biases and artifacts, it can negatively effect the generalization of the trained
network (cf.[Zhou et al.| (2020)) and it can drastically reduce the speed near saddle points (cf. Fig. [3).
In addition to the learning rate, we propose also dynamic adaption of the batch size (cf.[3.3) and
provide a kind of soft restart (necessary, as big « can lead to temporary instability). Moreover, we
present a technique that can improve the final result, which we call boosting.

We are convinced that each of these features on its own can, to a varying degree, be also beneficial for
other types of optimizers, like the Ada-family (see App., table[6|for a summary of their properties).

2 THE IMPORTANCE OF ORTHOGONAL GRADIENTS

All gradient descent methods for minimizing functions f(z) follow the update scheme
Ti41 = Tt — a~((1—6)Gt + ﬂMt)7 (D

where Gy = V f(x;) is the gradient at z;, M; the momentum and {3 the ratio between G and M.
For the Ada-family, « is essentially constant while G, is not actually the gradient, but a component-
wise modification, which is dynamically adapted. In general, the use of component-wise adaption
of gradient and momentum leads to a dependency on the coordinate system and the speed of the
algorithm depends heavily on the concrete representation of the data (see Fig. [3). Moreover, an
essentially constant or time-variable « has to be chosen with care, either using past results or initial
calibration runs. We provide a completely new approach which overcomes these problems. Firstly,
our method requires no momentum, i.e. 3 = 0 for us, simplifying equation (TJ) to:

Tt41 = Tt — oGy ()

With constant « this would be the trivial gradient descent. However, our « is highly dynamically
adaptive. The main idea is to use the angle between the current and previous gradient G; and
G_1 to determine the adaptation of «;. A short proof of why this is reasonable can be given as
follows: We want to find «, such that x; = x;_1 — aG;_1 is a local minimizer to the differentiableE]
function f near a point ;_; in the direction of —G;_;. For that, we consider the function h(«) :=
flxi—1 — a-Gy—1) = f(x), whichis f(z;) at the next point x;, depending on the learning rate «.
Differentiating h with respect to « yields:

W (a) = <Vf($t)7 —Gt—1> = _<Gt7Gt71>7 3)

where (a, b) denotes the scalar product. Note that b/ (0) = —(G;_1,Gy—1) = —||Gy—1]|? is negative
(with ||a|| = 1/{(a, a) being the euclidean norm). This means that h, and hence f, decreases for small
a. In fact, h decreases until it reaches a critical point cv;,;,, > 0, where we have h/(min) = 0 <
0 = (G4, G¢—1). If h has at a4, an extremum, then it is necessarily a local minimum and thus also
a minimum of f in the direction of —G;_;.

2See Math. suppl. , why even for non-differentiable activation functions (e.g. ReLU), f can assumed to be
smooth.

Under review as a conference paper at ICLR 2025

This gives the following conclusion: For the optimal learning rate «, providing locally the smallest
f(z), the current and previous gradient G; and G_1 are orthogonal to each other, i.e. (G, G¢—1) =
0. Moreover if (G, Gi—1) > 0 then « has to be increased, while for (G, G;—1) < 0 it has to be
decreased to give a better result. Figuratively speaking (cf. Fig.[I): If we see Zig-zag or anti-parallel
steps we should decelerate, while for primarily parallel steps we should accelerate.

Straight Orthogonal Oscillation
cos>0 = atr cos=0 = a=const. cos<0 = al
Accelerate Keep setting Slow-down

G=Vix), X=X-aG

Figure 1: Situations during optimization and associated a updates.

AS apin depends continuously on z;_ 1, we can expect that the optimal «; for z; does not vary too
much from the optimal ;1 for z;_1. This justifies the use of the scalar product (G, G;_1) as an
oracle for the next cy. Note that (G, G;_1) is computational much cheaper than Armijo’s condition
(cf. Nesterov| (2018]), 1.2.3), as no extra gradient/function values are needed. Note that the above
condition does not fix an a-update-scheme. However, all feasable schemes can be written in the form
ap = a;—1-(1+(G, Gi—1)-g), where g is any positive function.

3 THE ELRA OPTIMIZER

This section explains how the ELRA optimizer dynamically controls the learning rate « and the batch
size bs. Furthermore we introduce the techniques of soft restarts and boosting. The code of the ELRA
optimizer described here is online available via anonymous git| (2024), using PyTorch.

3.1 THE a-UPDATE FORMULA

In order to fix an explicit update formula for «;, we assume that the function f is a parabol along
the straight line through z;_; and x4, i.e. f(x) = ax? + b in the direction 2; — 241 = —;_1Gy_1.
Note that here, f is written using (in practice unknown) coordinates such that z = 0 is the minimizer
of f. In this setting, the derivatives of f are:

<Gt717 Gt>
1Geal] 7
where Og,_, is the directional derivative of f with respect to G;_;. Together with z; — x4 =

—ay—1Gy—1, we get the following update formula for «, which is implemented in ELRA (see
Methods,[A.2] for a full derivation):

2aw;_q = f/(xtfl) = aGt_Lf(xtfl) = ||Gt71”7 2ax; = fl(ft) = aGt_1f(xt) =

_ |G |?
[|Gi-1]? = (Gt, Gi-1)

Here x ~ 1 denotes an empirical correction term, which neutralizes random noise effects in neural
networks. & is explicitly given as follows:

k(1) =1+0.15:(1 +a? ;)%

Note that the updated step size oy, can in principle be arbitrary between —oco and +o00. We prevent
this potentially catastrophic behaviour by imposing bounds of the form 0 < ay/a;—1 < Vmaz, Where
'ymME] can be chosen at will, e.g2. Vymaz ~ 10°. Moreover, we found that it is beneficial to impose
the bounds 10~® < a < 10 on a. These are additional hyper-parameters, yet they are sufficient for
all our experiments. For example for our CIFAR-10 experiments without weight-decay (see Results
below), o ranges between 0.01 and 10. The initial cvg is another hyper-parameter. However, its choice
is marginal, as ELRA adapts g exponentially fast (see Fig. . We chose ag = 1072 moderately to
prevent initial instabilities of f(x) (note the two lost runs for ap = 0.1 and 1.0 in Fig. .

‘K. (@)

Qp = Qg1

3A parabola ansatz is chosen, as near local minima, each function is almost a parabola (cf. Math. Suppl. .
*For neural networks, ymaz = 10 is probably sufficient.

Under review as a conference paper at ICLR 2025

1.0E+00

/
1.0E-01 ¢ P - =
1.06-02 4

o

-

]

© 1.0E-03 4

=y

a

®

/ le-6
1.0E-04 =) E
/ le-5 — =

d le-4

/) le-3
1.0E-05 le2 — =
0.1 (lost) 1

) 1.0 (lost)

1.0E-06 ! : !

0 10 20 30 40 50

steps t, batchsize = 32

(a) Learning rates « in first 50 steps for CIFAR-10 for (b) Oscillating optimization path along a valley
different initial op = 107%,107°, ..., 10°.

Figure 2: Exponential adaption of learning rate o and oscillations along optimization path

For large language models such as Babyllama, we need a warm-up phase for o, where we impose
on the step length ||G¢||-a; > 0.1 to prevent catastrophic a-reduction®| Finally, we remark that our
optimizer is by construction rotation invarianﬂ (cf. Fig. , as it uses only scalar products. Moreover,
we stress that computing scalar products is (relatively) cheap (of order O(n) in time and space).

3.2 SOFT RESTARTS

The a-update-scheme explained above can lead to numerical instabilities, due to overestimated
increases for a (especially in almost linear parts of the landscape). To prevent a fatal increase of
f(z), we use retracing/soft restarts, if the new value f(z;) increases too muclﬂ In these situations,
we retrace back to the previous x;_; and update o, by

o —a 1 o, |G|
t — &¢—-1"73
2 fzt) = f(x1-1) + v—1||Ge1]|
a formula coming also from a parabola ansatz (using f'(z:—1 = ||G—1]|| and the function values

f(x¢—1) and f(x;)) that decreases « at least by the factor 0.5 . The next point x;1 is then calculated
by: ;11 = x¢—1 — ay-Gy—1. The question when to retrace is delicate and leaves room for some
individual choices. At the moment, we retrace if f(x;) > f(z) + bo, where f(x) is the average
of f(x:) over the last epoch and o the corresponding standard deviation. The idea is that for
f(zt) > f(x) + 5o, the increase of f(x;) does almost surely not come from random noise but a bad

choice of «. Initially, when no average f(x) is yet known, we also retrace, if f(x:) > 1.1-f(zo),
where f(x) is the initial function value. This prevents fatal explosions of f(x;) in the beginning of
the optimization. When starting at a pre-trained x, this initial condition can be dropped.

3.3 DYNAMICAL BATCH SIZE

Influenced by the article "Don’t Decay the Learning Rate, Increase the Batch Size" by
(2017), we also dynamically adapt the batch size bs. The picture behind this idea is the following:
the gradients G in neural networks carry a roughly fixed absolute amount of random noise. The
optimization leads over time to smaller gradients (near the minimum), thereby increasing the relative
noise until it leads to random walks rather than gradient descent, thus slowing or stopping the
optimization. Increasing the batch size reduces the random noise, as G is computed using more

SThis is implemented by a; = max{c,0.1/||G¢||}
®Actually even invariant under orthogonal transformations.

"Some increment of f(z) is inevitable for stochastic gradients, as f(z) might not decrease in the direction of
-G.

Under review as a conference paper at ICLR 2025

training data, thus getting closer to the correct (noise-free) gradient computed using all data. However
starting with a large bs is also bad, as the computation time for gradients increases with larger bs, and
using gradients with too little random noise can lead to overfitting by fast adaption to training data.
We use a fixed minimal base batch sizeﬂ bsmin and obtain lager batches by accumulating integer
multiples m; of minimal batches, i.e. bs; = my - bsy,;n. We update the accumulation number
after a fixed number of processed training samples (often an epoch, 25% of an epoch for ImageNet
and 45000 tokens for BabyLlama). Over this period, we compute the mean function value f(z),
and its standard deviation o, and we increase m; and hence bs; by a factor of 1.5 if either of the
following three conditions hold:

- - Og

W T@,>T@t T 0 >

() f(@)_g < (@), f(2) sy, f2) s

We use condition (2) as a complement to (1), as it applies if the relative noise is large but does not
lead to large increments of f(x). Condition (3) triggers if f(z) does not get better within 3 control
cycles. Actually, we suspect that (3) alone might suffice as a control mechanism.

To further reduce the danger of overfitting from fast adaption to training data, we increase bs; in
cascades, meaning that every third update we decrease bs; by 1/1.5 instead of increasing it.

3.4 THE GRADIENT-DECAY-FEATURE

By chance (a simple error), we found that the following gradient decaying feature can be helpful for
datasets with strong overfitting (see results): When increasing the batch size by a factor of 1.5, we
simultaneously decrease the Agradient by 1.5, i.e. if the accumulated batch size is bs; = my - bSpin,

we use the scaled gradients Gy = Gy - :’;‘—LS However, this feature is not always helpful!

3.5 MISCELLANEOUS

Firstly, consider the following often overlooked fact: The last batch of an epoch may contain much
fewer elements than the other batches thus yielding a gradient that is noisier than the others. This can
disrupt the optimization and give unreliable test losses (as they are calculated after the last batch).
Especially optimizers using larger learning rates o and no momentum (such as ELRA) are effected
by this phenomenon. Therefore, we always skip the last batch.

Secondly, as the norm of the gradient has a direct influence on the a-update for ELRA, we cannot
use gradient cropping to prevent numerical instabilities coming from very large single gradients. If
necessary, we use step size cropping instead, i.e. we require a4 - ||G¢|| < ¢ for some constant ¢ (we
use ¢ = 2) and set a; = min {oy, ¢/||Gy]|} to satisfy this condition.

3.6 EFFICIENT ARCHITECTURE

An important advantage of ELRA over most of the current optimizers is its momentum-freeness, as
ELRA needs fewer vectors. As presented above, ELRA uses four vectors each step: the current point
¢, the current and last gradients G; and G;_1 and (for retraces) the last point z;_;. Moreover, only
3 vector operations are needed: the two scalar products ||G;_1||? and (G;_1, G¢) and the subtraction
2y — ay-Gy. This gives ELRA a roughly 10% computation advantage over Adam and Lion, when
used with the same batch size. The memory requirements for ELRA could be further reduced as by

1
=21 —a-1G1 & G = P (-1 — @),

the last gradient can be recovered from the other three vectors. Moreover, we only use G;_; for its
norm ||G;_1]|, which can be calculated in the previous step, and for the scalar product

oztl,l (<$t—1,Gt> - (mt,Gt>).

Hence, then using only z;_1,x:, Gt, ELRA computes at most three scalar products each step
(the two above and ||G¢||?> = (G, G;)) and one vector subtraction ;11 = x; — ay-Gy. In the
retrace case even less is needed, as the norm ||G;_1]| is already computed and no scalar product

<Gt—17 Gt> =

8bSmin is a hyperparameter to be chosen for each problem.

Under review as a conference paper at ICLR 2025

is needed. Moreover, ELRA can be implemented such that at any time only two vectors are in
the GPU-memory, as ;1 is only needed for the computation of (z;_1, G;) and could be stored
in CPU-memory otherwise. This would require the following three additional memory transfers
xy — CPU, 241 — GPU, xzy — GPU (while G, stays in GPUEI) which would roughly increase
the overall computation time by 10%.

3.7 MEAN VALUE BOOSTING

We noticed that ELRA tends to oscillate round the optimal descent path (see Fig. 2bland). It follows
that the mean = = %(22:1 74) of points z; for a certain number n of steps (e.g. an epoch) can
give better results, i.e. f(T) < f(z1+n). However, it is not beneficial within the optimization process
to replace 7, with Z, as T is relatively to the optimal descent path still further up than x7.,, (in
Fig.[2b] Z is roughly in the middle, while 7., is at the back, at the end of the green arrow). Yet in
the final epochs, calculating and f(T) can boost the final result. Alternatively, using only T for the
test evaluations can give better results faster. We provide for our experiments f () for every epoch to
illustrate the possible benefit.

4 RESULTS

As shown above (see section [J)), we have a mathematical justification for our approach. Yet, giving
guaranteed convergence rates for ELRA is intractable with current methods (even for convex land-
scapes), due to the adaptive nature of the learning rate o. Thus we rely on experiments to show the
usefulness of ELRA. However, comparison with other optimizers poses the following problem: to
prevent unfair representation, the other optimizers should be run with optimal parameters. Yet finding
these can be very costly. Hence we restrict ourselves to only few popular optimizers for comparison.
We conducted low dimensional mathematical experiments and high-dimensional experiments with
neural networks for image classification and large language models. The latter are all executed for
multiple random initializations/seeds, as gradient descent methods show partially chaotic behaviour.
However, for cost reasons (limitations of an academical budget) we restrict ourselves to 10 different
initializations per experiment (except for Wide-ResNet, where we conducted only 6 runs, and Tiny-
ImageNet/ImageNet with 3+4 or 142 runs). We provide graphics using the median and give the mean
of the best values over all runs together with the standard deviation. We stress that no scan of the
seed space was performed for ELRA, nor hyper-parameter tuning via validation data!

4.1 MATHEMATICAL 2D EXPERIMENTS

As proof of concept and to explore certain standard problems in gradient descent, we first show
2-dimensional results on saddle points, bowls/parabolas and the Rosenbrock function.

4.1.1 SADDLE POINTS

Saddle points (where V f(z) =0 but f(z) is not a local max/min) can pose problems in gradient
descent methods, as the gradient becomes arbitrarily small near them, which might lead to catastrophic
speed loss. Generically, in suitable coordinates, these saddle points look locally like z = (0, 0) for
f(x) = 22 — 23 (see Math. Suppl., eq. @). However, for a given data representation, it is more
likely that the coordinates near a saddle are slightly rotated. We looked at the performance of the
optimizers AdaDelta, Adam (with a = 0.01, 5; = 0.9, B2 = 0.999), and our optimizer ELRA near
the standard saddle f(z) = z} — x3 starting a{""|zo = (1,107°) and the problem rotated by 45°
covering the two extremal situations. Fig. 3| (Left) shows the value of f over steps ¢t. The dashed
lines belong to the rotated situation. The fastest solver is ELRA, which has the same graph with or
without rotation, thereby demonstrating its inherent rotational invariance. AdaDelta and Adam are
slower and suffer significantly from 45°-rotation, as it renders the component wise modification of
the Ada-family useless. Fig. 3] (Right) illustrates the paths in the ;-2 —plane chosen by the different
optimizers. One sees that ELRA follows quickly the gradient direction, while the Ada-family either
try to avoid the saddle directly (unrotated situation) or follow slowly the gradient direction. This

The scalar product is still computed in the GPU.
19All true gradient descent methods fail when starting at (1, 0).

Under review as a conference paper at ICLR 2025

______ °°
= «Q
= F() N
L 0.8 - S & B
0.5 - \// |
- X AdaDelta-45° [500+] - S o
g o6 - Adam-45° [608] o
P s - Adam-0° [84] PR
2 Adam45 (t<300) > 0 = AdaDelta-0° [72] Q
g o~ - . 2 ELRA [8] ©
S 8 04- D
15 ° N
S 3 0
w X K4
s
-0.5 |- AdaDelta B 0.2 -
AdaDelta-R45° — — 8 E
Adam (LR=1/100) i
Adam-R45° |
\ ELRA —— 0 ! ¢ g
"l | . . 0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0 20 40 60 80 100 120 140 start = (1, 1e-9)

position x5
Step t

Figure 3: Behaviour of optimizers near saddle f(z) = x?—x3 and effect of 45°-rotation. Left: steps
t needed to reach < —1, Right: optimization paths (4 ~ 0°, X ~ 45°) in x1-z5—plane. Note: 4 of
the 8 steps of ELRA (blue) are indistinguishable near (0, 0).

shows one drawback of conditioning individual axis weights within the Ada-family. It illustrates also
that the different optimizers often find different local/global minima.

4.1.2 BOWLS AND ROSENBROCK

As a second class of mathematical experiments, we considered higher dimensional parabolas (so
called bowls), i.e. functions of the form f(z) = Y, ¢; - #7, and the infamous Rosenbrock function
f(z) = (1—z1)% + 100(z2—2%)?. Bowls provide the simplest non-trivial functions for convex
optimization, while the Rosenbrock function with its curved valley is a difficult standard optimization
problem. Here, we used for Adam o = 0.05, 81 = 0.8, 32 = 0.9 and for RMSprop o = 0.05.

Table 1: Steps ¢ to reach f(x;) < € from Table 2: Steps ¢ to reach f(x;) < 1 from start
2o = (—5.75,1.75) for the bowl point x for the Rosenbrock function
f(z) = 323 + 2423 f(x) = (1 —21)% +100(xs — 22)?
accuracy || Adam | RMSprop | ELRA start point || Adam | RMSprop | ELRA
e=10"1T 128 142 9 (—3,-2) 208 176 10
e=10""° 184 00 12 (—11,121) || > 10? > 107 300

The Tables [I|and [2] give the minimal number of steps ¢ needed for the different optimizers to reach a
certain threshold for f(z,). One sees that for these examples (together with the saddle from above)
ELRA is by far the fastest and for Rosenbrock with bigger starting points, it is the only optimizer.

4.2 NEURAL NETWORKS

We conducted numerous experiments with neural networks for image classification, involving the 6
training data sets MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, Tiny ImageNet and ImageNet and
6 different neural networks ranging from tiny (~ 8k parameters) to substantial (~ 36 mil. parameters).
We use batch shuffling after each epoch and only minimal data augmentation: no augmentation for
MNIST, only random horizontal flips for Fashion-MNIST and random horizontal flips plus PyTorch’s
RandomCrop with padding=4 in reflect mode for CIFAR-10, CIFAR-100, (Tiny)ImageNet. The
training data sets and neural networks used have the following specifications:

* MNIST: (60+10)k pictures (28x28 pixels, gray-scale) of handwritten single digits,
network: primitive fully connected network with 1 hidden layer (10 neurons) and ReL.U-
activation, runs: 10 each

* Fashion-MNIST: (60410)k pictures (2828 pixels, gray-scale) of fashion items of 10
different classes, network: 3-layer convolutional network FashionCNN, runs: 10 each

Under review as a conference paper at ICLR 2025

* CIFAR-10: (50+10)k images (32x 32 pixels, RGB color) of objects of 10 different classes,
networks: standard residual neural networks ResNet18, ResNet34 (cf.He et al.| (2016))), and
Wide-ResNet-28-10 (cf.|Zagoruyko & Komodakis|(2017)), runs: 10 or 6 (Wide-R) each

* CIFAR-100: (50+10)k images (32x 32 pixels, RGB color) of objects of 100 classes net-
work: ResNet18, runs: 10 each

* TinyImageNet: (95+5)k images (64 x 64 pixels resized to 256 x 256 and then croppped to
224 %224, RGB color) of objects of 200 classes, net.: ResNet18, runs: 3+4 (noWD+WD)

 ImageNet: (12004-81)k images (256 x 256 pixels, RGB color) of objects of 1000 classes
from the ImageNet challenge 2012 (ILSVRC2012), network: ResNet50, runs: 142
(noWD+WD)

We conducted all experiments with and without weight decay (wd = 0.9997 or wd = 0.9999 for
(Tiny)ImageNet) and with and without the gradient decay feature (cf. section[3.4). The initial batch
size was bsg = 2x 32, except for TinyImageNet (bsg = 3x32) and ImageNet (bsg = 4x32). The
experiments lasted for 100 epochs without weight decay and for 200 epochs with weight decay, with
ImageNet being again the exception - lasting only 50 epochs.

For comparison, we conducted the experiments without weight decay also for the popular optimizers
Adam and Lion, with batch size bs = 256, default 3, 3> and constant learning rates o« = 1073
(Adam) and o = 10~* (Lion). Our results with weight decay are compared with training results
for stochastic gradient descent (SGD) taken from DeVries & Taylor (2017), who used bs = 128, a
Nesterov-momentum with 8 = 0.9, wd = 5-10"% and a learning rate schedule, which reduced «
from 0.1 by a factor of 5 after 60, 120 and 160 epochs. The overall number of epochs and the data
augmentation are identical to ours.

The following plot (Fig.[d) shows the typical training behavior of the median test accuracy in the ex-
periments, illustrated by the CIFAR-10 experiments on ResNet18. Note that each ELRA-experiment

0.96 :
P s e
0.95 - e v E
S
~ 0.94 - e .
o Y A,
9 093 ,.-‘}vﬁ . 1
o .'- e B
- 092} - ﬁ.w” 4 1
% __ : |
5 0.91 - /'}7 B
Q .
E o9 §
3 [SGD+WD ——
® 0.89 | | Adam]
g / Lion
£ o088 \MM ELRA+FT ——
‘ A ELRA+FT+WD ——
0.87 |- Tk V ELRA .
A} ELRA+WD
0.86 ! ! J
0 50 100 150 200

epochs t, batchsize = 256 & dyn

Figure 4: CIFAR-10, ResNet18: Median Test-accuracy for 100 epochs (without wd) and 200 epochs
(with wd). The bolds lines for ELRA are with Boost (cf. Sec. , the thin lines without.

has two lines, one with Boost (cf. Sec.[3.7)), one without. With the exception of ELRA+WD (weight
decay without gradient decay), the boosted and unboosted values meet at the end of the training (for
ELRA+WD they meet around the epoch 300). Hence, we give in the following only the boosted
values, as it makes no difference. The clearly visible bends in the curves for ELRA are the points
where for the first time the batch size increment is triggered by the algorithm.

Under review as a conference paper at ICLR 2025

The tables [3}{5]show the mean over the best test accuracies with standard deviation for each experiment.
The data for comparision in tables 4] and [5] are taken from the literature. Note that ELRA greatly
profits from the use of weight decay, but keep in mind that the training time is also doubled. Moreover,
the gradient decay feature is only really beneficial with weight decay and only for networks with
strong overfitting (Fashion-MNIST, CIFAR, cf. section .

Table 3: Best test accuracy (%) without weight decay

y network [ELRA | ELRA+FT [Adam | Lion |
MNIST 94.25+0.21 | 94.41+0.10 | 93.9040.56 | 93.82+£0.49
Fashion-MNIST || 92.58+0.13 | 92.7140.11 | 92.37+0.14 | 92.4840.13
CI0+R18 94.34+0.14 | 94.11+0.07 | 93.0140.10 | 92.77+0.10
C10+R34 94.540.19 | 94.09+0.42 | 93.2640.07 | 93.04+0.13
C10+WRN-28-10 || 95.11+0.11 | 94.8640.15 - -
CI100+R18 73.99+0.38 | 74.05+0.30 [70.224+0.31 | 70.24+0.16

Table 4: Best test accuracy (%) with weight decay

y network [ELRA [ELRA+FT [SGDI |
MNIST 94.7040.25 [94.67+0.19 -
Fashion-MNIST || 92.7740.08 | 93.3140.10 -
C10+R18 94.83£0.65 | 95.7740.16 | 95.28+0.21
C10+R34 94.7740.77 | 95.8040.08 -
C10+WRN-28-10 || 96.2120.10 | 96.21:0.03 | 96.13+0.08
C100+R18 78.12£0.16 | 79.3540.16 | 77.5440.31

Table 5: Best test accuracy (%) for (Tiny)ImageNet

network ELRA ELRA+FT | IRRCNNY [unknown
TIN-200 56.10+0.61 - 52.23 -
TIN-200+WD || 59.4740.59 - 52.23 -

ImgNet-1k 70.69+0 70.9440 - 76.00 £0.0

ImgNet-1k+WD || 75.5440.01 | 73.64+0.22 - 76.00 £0.0

4.3 ANALYSIS

For the almost trivial problems MNIST and Fashion-MNIST, the advantage of the ELRA optimizer
over whose from the Ada-family is (at least without weight decay) only marginal. Yet the lead is
overwhelming for CIFAR. On the other hand, ELRA shows similar (albeit slightly better) results to
SGD (with learning rate scheduler), when weight decay is used. This suggests that as an optimizer,
ELRA could be considered a variant of SGD, yet with adaptive learning rate « and batch size, which
eliminates the hand-tuning of a learning rate scheduler. For SGD it has been observed that, albeit
being slower, it tends to yield minimizers, which generalize better to the test data. This is explained by
SGD having noisier optimization paths, which helps to escape steep local minima, which generalize
less optimal. See Zhou et al.|(2020) and |[Huang et al.|(2019)) for some explanations of this effect. Our
experiments suggest that ELRA shares this behaviour with SDG.

We note that the gap between ELRA and Adam and Lion can be reduced with the use of aditional
features such as warm-up, learning rate scheduler and heavy data augmentation. However, all these
need additional calibration runs or an experienced programmer. Strongly adaptive learning rates and

"Results taken from|DeVries & Taylor| (2017)
12Results taken from vpn.th-wildau.deAlom2020, trained for 70 epochs
3Results taken from Dauphin & Cubuk|(2021)), trained for 90 epochs

Under review as a conference paper at ICLR 2025

batch sizes seem to have the potential to eliminate the need for these extra features.

Finally, the experiments with (Tiny)ImageNet show that ELRA also works with much larger net-
works/training data sets, yielding comparable results to the literature (without the use of more involved
modern training schemes/data augmentations).

4.4 LARGE LANGUAGE MODELS — BABYLLAMA

Recently, we also started testing ELRA on Large Languages models, using the BabyLlama model
with ~15 mil. parameters. The problem here is, that ELRA needs at the moment a very small
initial batch size bsy = 1x16. This makes performance comparison with popular optimizers
difficult, as they use typically a much larger batch size (e.g. 512 or 1024). On the one hand, runs
with smaller batch sizes fit more easily into the GPU, on the other hand larger batch sizes can
make better use of parallel computations. Here, we need to invest more time into the development
of an implementation which combines the adaptive batch size with the use of multiple GPUs.
However, our initial experiments suggest that ELRA yields similar test losses as AdamW (with
a=510"% wd = 1071, B, = 0.9, B = 0.95,bs = 512): After 100.000 steps (corresponding
to ~51 mil. tokens), AdamW reached a validation loss of 1.08, while ELRA (with bsg = 16, no
wd) reached after 800.000 steps (corresponding to ~12.8 mil. tokens, or 25% of AdamW’s run) a
validation loss of 1.156 (after the same amount of tokens, AdamW had a validation loss of 1.187).

5 LIMITATIONS

Our implementation still leaves much room for improvements. For instance our code and consequently
the computational resources needed would benefit from ELRA specific adaptations of the PyTorch
or Jax architecture, such as providing by default the function value f(z;) to the optimizer and the
implementation of a function that computes simultaneously the scalar products (G¢, G:), (Gi—1, Gt).
Moreover, a flexible data loader for varying batch sizes together with multi-GPU computation could
give ELRA a significant speed boost.

The last part is particular important, as ELRA tends to work better with smaller than usual initial
batch sizes bsg. As we increase bs at the moment solely by accumulation, we cannot use the speed
gain coming from computing larger batches on multiple GPUs.

Finally, ELRA has some relevant hyperparameters to be chosen for each experiment: The initial
batch size, the length of the batch size control cycles, (if needed) a fixed weight decay and (again if
needed) the warm-up condition a;-||G¢|| > ¢. Also, the use of the gradient decay feature is optional.
Here, some future guidelines for choices should be developed.

6 CONCLUSION

We presented the novel, simple, self-adjusting, robust and fast optimizer ELRA with linear dimen-
sional scaling, rotational invariance and without momentum. Typical runs on mathematical standard
problems and statistical tests on neural networks for the (Fashion)MNIST, CIFAR and (Tiny)ImageNet
data sets with several initializations showed better final test accuracies then the popular optimizers
Adam, Lion or SGD with hand-tuned optimal parameters! Moreover, the adaptive learning rates and
batch sizes seem to eliminate the need for hand-tuned learning rate schedulers and (to some extent)
heavy data augmentation, thus leading to greater universality and possible out-of-the-box usage.
We believe that nobody has thought about trying steep and fast a-adaptions before due to the fol-
lowing reasons: for small dimensions good solvers exist (often using matrix inversions, e.g. the
Levenberg—Marquardt algorithm), mathematical optimizers strive for provability (which restricted
until recently to constant c: compare Nesterov|(2018)) and |Grimmer| (2023))) and previous conditions
(Armijo) for updating « are too expensive in high dimensions.

Finally, better control systems for the learning rate, batch sizes and soft restarts promise to further
increase performance and universality (see Future works below).

We strongly believe that the above ideas will create a completely new research field in gradient
descent-based optimization.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Mohd Nadhir Ab Wahab, Samia Nefti-Meziani, and Adham Atyabi. A comprehensive review of
swarm optimization algorithms. PloS one, 10(5):e0122827, 2015.

anonymous git. python elra solver in git, 2024. URL https://anonymous.4open.science/
r/solver-E8C8/README .mdl

Sebastian Bock and Martin Weifl. Non-convergence and limit cycles in the adam optimizer. In
Igor V. Tetko, Véra Kirkova, Pavel Karpov, and Fabian Theis (eds.), Artificial Neural Networks
and Machine Learning — ICANN 2019: Deep Learning, pp. 232-243, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-30484-3.

O. Borysenko and M. Byshkin. Coolmomentum: a method for stochastic optimization by
langevin dynamics with simulated annealing. Scientific Reports, 11:10705, 2021. doi:
10.1038/s41598-021-90144-3.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of optimiza-
tion algorithms. ArXiv, abs/2302.06675, 2023. URL https://api.semanticscholarl
org/CorpusID:256846990.

Yann Dauphin and Ekin Dogus Cubuk. Deconstructing the regularization of batchnorm. In Infer-
national Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=d-XzF81Wgl.

Terrance DeVries and Graham Taylor. Improved regularization of convolutional neural networks
with cutout. 08 2017. doi: 10.48550/arXiv.1708.04552.

Benjamin Grimmer. Provably faster gradient descent via long steps, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR2016, pp. 770-778, 06 2016. doi: 10.1109/CVPR.2016.90.

W. Ronny Huang, Zeyad Emam, Micah Goldblum, Liam Fowl, Justin K. Terry, Furong Huang, and
Tom Goldstein. Understanding generalization through visualizations. CoRR, abs/1906.03291,
2019. URLhttp://arxiv.org/abs/1906.03291.

Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic step
size schedule, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Selena Ling, Nicholas Sharp, and Alec Jacobson. Vectoradam for rotation equivariant geometry
optimization, 2022. URL https://arxiv.org/abs/2205.13599.

John Milnor. Lectures on the H-Cobordism Theorem. Princeton University Press, Princeton, 1965.
ISBN 9781400878055. doi: doi:10.1515/9781400878055. URL https://doi.org/10|
1515/9781400878055.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner, 2023.

Yurii Nesterov. Lectures on Convex Optimization. Springer Publishing Company, Incorporated, 2nd
edition, 2018. ISBN 3319915770.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate, increase the
batch size. CoRR, abs/1711.00489, 2017. URL http://arxiv.org/abs/1711.00489.

Tuyen Trung Truong and Hang-Tuan Nguyen. Backtracking gradient descent method and some
applications in large scale optimisation. part 2: Algorithms and experiments. Applied Mathematics
& Optimization, 84:2557-2586, 2021. doi: 10.1007/s00245-020-09718-8. URL https://doi,
org/10.1007/s00245-020-09718-38.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks, 2017.

11

https://anonymous.4open.science/r/solver-E8C8/README.md
https://anonymous.4open.science/r/solver-E8C8/README.md
https://api.semanticscholar.org/CorpusID:256846990
https://api.semanticscholar.org/CorpusID:256846990
https://openreview.net/forum?id=d-XzF81Wg1
https://openreview.net/forum?id=d-XzF81Wg1
http://arxiv.org/abs/1906.03291
https://arxiv.org/abs/2205.13599
https://doi.org/10.1515/9781400878055
https://doi.org/10.1515/9781400878055
http://arxiv.org/abs/1711.00489
https://doi.org/10.1007/s00245-020-09718-8
https://doi.org/10.1007/s00245-020-09718-8

Under review as a conference paper at ICLR 2025

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Hoi, and E. Weinan. Towards theoretically
understanding why sgd generalizes better than adam in deep learning. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

12

Under review as a conference paper at ICLR 2025

A METHODS DETAILS
A.1 SUMMARY

Table 6: Properties of Adaptive Optimizer Features

Main feature Level of maturity General applicable

dynamic alpha great (fast, robust, universal) yes, simple

dynamic batch-size good (fast, robust, universal) yes, independent of any SGD optimizer
(final) boosting great, improves most results could help Adam (etc.) in final epochs
soft restart good, reverts failed step simple, more robustness with high «

A.2 ESTIMATING o USING A PARABOLA ANSATZ

To get the update formula for « of ELRA, we consider f only along the straight line through x;_; and
x¢, whose direction is x; — ;1 = —ay—1Gy—1. We assume that f along this line is a parabola, i.e.
f(z) = ax? + b, where we chose (in practice unknown) coordinates such that z = 0 is the minimizer
of f. In this setting, the derivatives of f are:

<Gt717 Gt)

2axi1 = f'(x1-1) = 0a,_, f(zi-1) = ||Giall, 20z = f'(20) = Og,_, f(x) = TGl
—

where Og,_, is the directional derivative of f with respect to G;_;. Together with x; — 41 =
—ay—1G_1, we get

(Gi-1,Gy) Gi—1,Gy) = [|Gia|? (Gi=1,Gy) = ||Gea|

i = = -

2a(xy — x4-1) =

Gl Gl =201 - [|Gia|?

As we want 2y — oy - f'(2¢) = 2441 = 0 to be the minimizer of f, we obtain with z; = % that

& :L:i:a 1 1G] = 1.<1+ (Gi-1,Gy) >
t f(zy) 2a = IGi1|2 = (Gi—1,Gy) t— Gl = (Giai G
CoSt
= Q4_1 * 1 + ,
o (|Gt—1||/||Gt|—cost>
5

where we used (Gt—_1, Gt) = cos; +||Gt—1|| - ||G¢]| in the final step.

B FUTURE WORK

Opening a new field creates lots of opportunities for continuation. Here we mention some of the most
promising directions:

* o = a- (14 cos-g(x)) is the general update scheme for o obtained from our idea of
orthogonal gradients equation Here, g can be any function with g(x) > 0. What is the
best g? Different answers for different problems?

* Problem specific fine tuning (selected hyper-parameters) is possible and could give further
improvement:

— fixed bounds for o (i.e. 107 < e < 10~1) based on statistics gathered during current
run. Could speed up ELRA (fewer soft restarts, shorter time to recover from restart)

* Further applications: electronic structure optimizations, protein folding, molecular dynamics,
finite element methods

* Possible landscape characterization as a side-result

13

Under review as a conference paper at ICLR 2025

C MATHEMATICAL SUPPLEMENTS

C.1 EXTREMAL POINTS SIT INSIDE QUADRATIC SURROUNDING

In principle, critical points xg, such as local/global minima and saddle points, can be degenerate,
i.e. the Hessian at zy can have 0 as an eigenvalue. However, functions with all critical points non-
degenerate, so called Morse functions, are the generic situation, meaning that they form an open and
dense subset within C? (R™), see [Milnor (1965). So figuratively speaking, "almost all" two times
continuously differentiable functions have only non-degenerate critical points. For these functions f,
we find then by Taylor expansion, that they are locally dominated by their Hessian, i.e. they behave
locally around critical points like quadratic functions:

x) :Zci~m?, ¢ € {+1,—-1}. (6)
i=1

C.2 RANDOM NOISE CONVOLUTION REMOVES DISCONTINUITIES IN GRADIENTS

In some applications, the function f, which we want to optimize, is not differentiable, such as f(z) =
[|z]| or f(x) = max{x,0}. Then, the gradient is not everywhere defined and most optimization
methods suffer. However, if the data contains some random noise, i.e. the function f is slightly
blurred, then we can expect differentiability. Indeed, the effect of random noise can be thought of as
convoluting f with a probability density function ¢, such as the density of the normal distribution
é(x) = exp(—x?/20%)/(0+/7) (if the blurring can be arbitrarily large) or a density with finite
support, if the blurring is limited. Now, if ¢ is continuously differentiable and f integrable or
locally integrable (for finite support), then it is a well known fact that the convolution f * ¢ is also
differentiable with differential

Ou;(fx0) (@) = Op, | f(8)- Pz —t)dt = | [f(t)-Op,¢(x —t)dt = (f % 0p,0) (x). (7)

Rn Rn

Especially DNN learning should be affected by noise from the input and from batching, resulting in
smooth landscapes.

D ADDITIONAL PERFORMANCE PLOTS

0.45 ‘u T 0.5

M Adam Adam
Lion Lion
0.4 - \h ELRA+FT —— _ ELRA+FT ——
) VM ELRA+FT+WD —— 0.4 | \M ELRA+FT+WD ——
\ | ELRA A ELRA
\ | ELRA+WD Y ELRA+WD
035 - || 4 W \ WV\M !
\ 0.3 F W 4

0.2 |\ ™ |

test loss median (10 seeds)
train loss median (10 seeds)

0.3 k
025 " ." | ;
L, 7-7 ...-.l
- [e
0.2 - f 7,

T i _F,..mw M-“ £

0.15 ! ! 0 S~
0 50 100 150 200 0 50 100 150 200
epochs t, batchsize = 256 & dyn epochs t, batchsize = 256 & dyn
(a) Test-loss (b) Train-loss

Figure 5: Median Test-/Train-loss over 100/200 epochs for CIFAR-18.

14

Under review as a conference paper at ICLR 2025

test accu median (10 seeds)

test loss median (10 seeds)

train loss median (10 seeds)

0.95

0.945

0.94

0.935

0.93

0.925 ||

0.92

ELRA+FT

ELRA+FT+WD
ELRA
ELRA+WD
Adam
Lion
| | |
0 50 100 150
epochs t, batchsize = 256 & 32*dyn
(a) MNIST

200

0.935

0.93
o
T 0.925 -
o
?
S 092 -
5
2 0915
o
£
3 091 - [,
< ELRA+FT
% 0905 - ELRA+FT+WD —— |
+ ELRA

L ELRA+WD —— |
0.9 Adam
Lion ———
0.895 :
50 100 150 200

epochs t, batchsize = 256 & 32*dyn

(b) Fashion-MNIST

Figure 6: Median Test-accuracy over 100/200 epochs for (Fashion-)MNIST.

200

200

T
l’ ELRA+FT
0.28 ELRA+FT+WD
ELRA
ELRA+WD
0.26 Adam
Lion
0.24 H
0.22 -
0.2
e, o
0.18 o
Il Il
0 50 100 150
epochs t, batchsize = 256 & 32*dyn
(a) MNIST
Figure 7: Median Test-loss over
0.26 T
ELRA+FT
ELRA+FT+WD
0.24 ELRA 7
ELRA+WD
! Adam
0.22 - Lion B
0.2
0.18 Ly
- il
~
0.16 -
Y U\/\
0.14 |- e, 4
\\-" ‘J‘-A,/
Te———l
0.12 L L
0 50 100 150
epochs t, batchsize = 256 & 32*dyn
(a) MNIST

test loss median (10 seeds)

T
ELRA+FT

ELRA+FT+WD

epochs t, batchsize = 256 & 32*dyn

(b) Fashion-MNIST

100/200 epochs for (Fashion-)MNIST.

train loss median (10 seeds)

T
ELRA+FT ——
ELRA+FT+WD ——
ELRA
ELRA+WD ——
Adam
Lion

50 100 150 200
epochs t, batchsize = 256 & 32*dyn

(b) Fashion-MNIST

Figure 8: Median Train-loss over 100/200 epochs for (Fashion-)MNIST.

15

Under review as a conference paper at ICLR 2025

0.96
0.95
0.94
0.93
0.92
0.91

0.9

0.89

test accu median (10 seeds)

0.88
0.87
0.86

w H\M

| ’V‘Vh N
L /‘J\)
IAda n{
A
M w | W W Pln —
”\/ |V ELRA+FT —— —
‘“\\ ELRA+FT+WD ——
i ELRA
) ELR‘A+WD —
50 100 150 200
epochs t, batchsize = 256 & dyn
(a) ResNet34

test accu median (6 seeds)

0.97
0.96
0.95
0.94
0.93
0.92
0.91

0.9
0.89
0.88
0.87

ELRA+FT
ELRA+FT+WD ——

150 200
epochs t, batchsize = 256 & dyn

(b) WideRes

Figure 9: Median Test-accuracy over 100/200 eps. for CIFAR-10 on ResNet-34/Wide-ResNet-28-10.

test loss median (10 seeds)

0.1

T

Adam

Lion
ELRA+FT ——
ELRA+FT+WD —

ELRA B
ELRA+WD ——

w‘\ ﬂv N /’V
V\J \'V ' VW\M!‘K‘ V‘q)
M /V‘.\N\J

""“-.. a0 4T ot
Oy 4
Il Il
50 100 150 200
epochs t, batchsize = 256 & dyn
(a) ResNet34

test loss median (6 seeds)

0.45

0.4

0.35

0.3

0.25

0.2

0.15

T
L H ELRA+FT ——
ELRA+FT+WD ——
\ ELRA
ELRA+WD ——
Adam
Lion ——
V
M‘
L 14
: . L
- Y
Il - Il o Il
0 50 100 150 200
epochs t, batchsize = 256 & dyn
(b) WideRes

Figure 10: Median Test-loss over 100/200 eps. for CIFAR-10 on ResNet-34/Wide-ResNet-28-10.

train loss median (10 seeds)

T
Adam
Lion ——
ELRA+FT ——
ELRA+FT+WD ——
ELRA
” ELRA+WD ——
KR
WA M ML B
/\N % M\ V\J\N\ m\/ ‘W\J“\IJ I

|
I
WM \ \ﬂ/“‘ N/\ ﬂv

50 100 150 200
epochs t, batchsize = 256 & dyn
(a) ResNet34

train loss median (6 seeds)

T

ELRA+FT ——

ELRA+FT+WD ——
ELRA

ELRA+WD ——
Adam

Lion ———

150 200
epochs t, batchsize = 256 & dyn

(b) WideRes

Figure 11: Median Train-loss over 100/200 eps. for CIFAR-10 on ResNet-34/Wide-ResNet-28-10.

16

Under review as a conference paper at ICLR 2025

0.6
0.58
)
S 0.56
&
™ 0.54
o
5 052
-
c 05
©
T o048
g o
3 046
©
B 044
2
0.42
0.4

Alom ——

ELRA —— -
ELRA+boost
ELRA+WD97 ——

ELRA+WD+boost
1 I

Figure 12:

50 100 150 200
epochs t, batchsize = 32*dyn

(a) Tiny-ImageNet

test accu median (2 seeds)

Median Test-accuracy over 200/50
ResNet18/ResNet50, including reference values.

0.7

0.65

0.6

Dauphin (0.76)
ELRA+FT ——
ELRA+FT+WD —— ~
ELRA
ELRA+YVD e

30 40 50
epochs t, batchsize = 32*dyn

(b) ImageNet

epochs for TinylmageNet/ImageNet using

5 3 T
‘ ELRA —— ELRA+FT ——
ELRA+boost ELRA+FT+WD ——
~ 45 ELRA+WD97 —— ELRA
'§ ELRA+WD+boost . ELRA+WD —
3 8 2.5 B
[l g
B &
© ~
— c
< 2 2
8 [
: ;
£ 8
g is
g
is ‘ ‘ . T
0 50 100 150 200 0 10 20 30 40 50
epochs t, batchsize = 32*dyn epochs t, batchsize = 32*dyn
(a) Tiny-ImageNet (b) ImageNet
Figure 13: Median Test-loss over 200/50 epochs for TinylmageNet/ImageNet using
ResNet18/ResNet50.
0.4 T T T
ELRA ELRA+FT ——
0.35 ELRA+boost i ELRA+FT+WD ——
o : ELRA+WD97 — ELRA
S ELRA+WD+boost — 2 ELRA+WD —
¢ 03 1 8
2 025 - ~
© ~
=1 £ 150
H 0.2 . 105)
S £
[[
g o015 7 g o
é 0.1 1 5 tr a T
@ + " O
“ 005 1\ TN
0.5 N~
o ‘ ‘
50 100 150 200 0 10 20 30 40 50
epochs t, batchsize = 32*dyn epochs t, batchsize = 32*dyn
(a) Tiny-ImageNet (b) ImageNet
Figure 14: Median Test-loss over 200/50 epochs for TinylmageNet/ImageNet using
ResNet18/ResNet50.

17

Under review as a conference paper at ICLR 2025

0.8 T T
m
g 075+
Q
(0]
o
Z
5
ES 0.7
Q
£
3
S
© ELRA+FT ——
@ 0.65 ELRA+FT+WD —— -
2 ELRA
ELRA+WD ——
Adam
Lion ——
0.6 ' !
0 50 100 150 200

epochs t, batchsize = 256 & dyn

Figure 15: Median Test-accuracy over 100/200 epochs for CIFAR-100 on ResNet-18

0.8 T
ELRA+FT ——
i 0.7 ELRA+FT+WD ——
@ o I
3 i 2 0.6 -
2 3 I
S ELRA+FT —— S 05F
~ ELRA+FT+WD —— “':’
& ELRA S o4
3 ELRA+WD —— 3
£ Adam £
0 Lion 8 03
3 8
o c
i) ® 02
£ =]
0.1
0
0 50 100 150 200 0
epochs t, batchsize = 256 & dyn epochs t, batchsize = 256 & dyn
(a) Test-Loss (b) Train-Loss

Figure 16: Median Test/Train-loss over 100/200 epochs for CIFAR-100 on ResNet-18

18

	Introduction
	The importance of Orthogonal Gradients
	The ELRA optimizer
	The -update formula
	Soft Restarts
	Dynamical Batch Size
	The gradient-decay-feature
	Miscellaneous
	Efficient architecture
	Mean value Boosting

	Results
	Mathematical 2D experiments
	Saddle points
	Bowls and Rosenbrock

	Neural networks
	Analysis
	Large Language models – BabyLlama

	Limitations
	Conclusion
	Methods details
	Summary
	Estimating using a parabola ansatz

	Future work
	Mathematical supplements
	Extremal points sit inside quadratic surrounding
	Random noise convolution removes discontinuities in Gradients

	Additional performance plots

