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ABSTRACT

Long context compression is a critical research problem due to its significance
in reducing the high computational and memory costs associated with LLMs. In
this paper, we propose Activation Beacon, a plug-in module for transformer-based
LLMs that targets effective, efficient, and flexible compression of long contexts.
To achieve this, our method introduces the following technical designs. 1) We
directly compress the activations (i.e. keys and values at every layer), rather
than leveraging soft prompts to relay information (which constitute a major bot-
tleneck to encapsulate the complex information within long contexts). 2) We
tailor the compression workflow, where each fine-grained input unit is progres-
sively compressed, enabling high-quality compression and efficient computation
during both training and inference. 3) We train the model through compression-
based auto-regression, making full use of plain texts and instructional data to op-
timize the model’s compression performance. 4) During training, we randomly
sample a compression ratio at each step, teaching the model to support a wide
range of compression configurations. Extensive evaluations are conducted on var-
ious long-context tasks whose lengths (e.g., 128K) may far exceed the maximum
training length (20K), such as document understanding, few-shot learning, and
Needle-in-a-Haystack. Whilst existing methods struggle to handle these challeng-
ing tasks, Activation Beacon maintains a comparable performance to the uncom-
pressed baseline across various scenarios, achieving a 2x acceleration in inference
time and an 8x reduction of memory costs for KV cache.

1 INTRODUCTION

Large language models (LLMs) need to process long contexts to accomplish many important tasks,
such as long-document understanding (Jiang et al., 2024b), long-content creation (Bai et al., 2024),
and long-term memorization/reasoning (Zhang et al., 2024). To address these needs, modern LLMs
are built with extended context windows (e.g., 128K) that enable remarkable long-context processing
capabilities (OpenAI et al., 2024; Yang et al., 2024; Dubey et al., 2024). Despite their effectiveness,
LLMs encounter efficiency challenges in processing long contexts. On one hand, transformer-based
LLMs incur substantial computational costs due to the quadratic complexity of self attention. On
the other hand, they require tremendous GPU memory to hold the KV cache of the entire sequence
for faster decoding. Both computation and memory costs increase as the context length grows.

A wide array of studies are dedicated to alleviating efficiency issues, among which context compres-
sion is a promising direction (Mu et al., 2023; Chevalier et al., 2023; Ge et al., 2024; Jiang et al.,
2023a;b). This approach aims to compress raw input into more concise representations, allowing
the generation process to be conditioned on a shorter context. Therefore, it helps to reduce both
computation cost of inference and memory cost from KV cache, while also enabling the processing
of longer inputs than the LLM’s built-in context window.

Despite the current progresses, it it remains a tough challenge to compress long contexts. Specifi-
cally, existing methods usually summarize the context into a few soft tokens (Chevalier et al., 2023;
Ge et al., 2024), which constitute the major bottleneck to summarize the complex information within
long contexts. Besides, they try to compress the context “all-at-once”, lacking a fine-grained han-
dling of the detailed information. Moreover, these soft tokens must be re-encoded before generation,
resulting in inferior efficiency in both training and inference. Lastly, these methods are learned to
compress with a fixed number of soft tokens, thus, it’s hard to customize the compression ratio for
downstream tasks. While some alternamtive methods focus on deleting unimportant tokens (Jiang
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Let there ⟨b⟩11 be light ⟨b⟩21 and there was⟨b⟩11 ⟨b⟩21 ⟨b⟩12

there be light and there was light

Chunk 1

.

light

Chunk 2

⟨b⟩22

Figure 1: Overview of Activation Beacon. The context is partitioned into chunks. Each chunk is
further split into fine-grained units and interleaved with beacon tokens according to a compression
ratio (2 in the figure). The LLM encodes one chunk at a time, compressing the context into beacon
tokens’ activations, which are accumulated and reused for encoding following chunks.

et al., 2023b; Li et al., 2024b), they depend on the input question to estimate the token importance,
limiting their efficiency in real-world multi-turn scenarios.

To address the above challenges, we present Activation Beacon (Figure 1), a plug-in module to
transformer-based LLMs that enables effective, efficient, and flexible compression of long contexts.
Activation Beacon is featured with the following technical designs.

First of all, we introduce a new special token, called the beacon token ⟨b⟩. The context is distilled
into beacon tokens’ activations (i.e. keys and values at every layer), whose capacity are large enough
to encapsulate the complex information within long contexts.

Next, we tailor the compression workflow, where each fine-grained context unit is progressively
compressed. Specifically, the long context is partitioned into equal-size chunks. Each chunk is fur-
ther split into fine-grained units of size α where α is the desired compression ratio. A group of
beacon tokens are interleaved with these units (one beacon token is dispatched to the end of every
unit). The LLM encodes one chunk at a time, distilling the chunk’s information into beacon tokens’
activations during self attention. After encoding, the raw tokens’ activations are discarded; while the
beacon tokens’ activations are accumulated and reused for encoding following chunks. This pro-
gressive workflow brings forth several advantages: 1) It can handle inputs longer than the backbone
LLM’s context window as the chunk size is small. 2) It achieves fine-grained compression since
the attention scope of each beacon token is differentiated. 3) By caching and reusing activations,
it facilitates contiguous gradient propagation in training, avoids re-encoding overhead in inference,
and allows for incrementally updating the compression results in multi-turn scenarios.

Finally, Activation Beacon is learned with compression-based auto-regression to optimize the gen-
eration quality conditioned on the compressed context. Thanks to high sample efficiency, the model
can be effectively trained with 1B plain corpus and 30K fine-tuning samples (maximum context
length is 20K), which can be quickly accomplished. During training, we randomly sample the
compression ratio for each chunk, enhancing the model’s flexibility to tackle different compression
ratios in downstream tasks. Note that all beacon tokens share the same token embedding, one can
use arbitrary number of beacon tokens to achieve the desired compression ratio by repeating.

In our experiments, Activation Beacon is applied to Llama-2 (Touvron et al., 2023) and Qwen-
2 (Yang et al., 2024). We evaluate the resulted models on a variety of long-context tasks (whose
lengths may be much longer than the training length, e.g., 128K), such as document understanding,
few-shot learning, and Needle-in-a-Haystack. Whilst existing methods struggle to handle these
challenging tasks, Activation Beacon maintains a comparable performance to the uncompressed
baseline across various compression configurations, meanwhile achieving 2x acceleration and 8x
KV cache reduction. Moreover, the LLM’s original capabilities on short context is well preserved.

2 RELATED WORKS

Recently, processing long context has become a fundamental capability of modern LLMs (OpenAI
et al., 2024; Dubey et al., 2024; Yang et al., 2024; DeepSeek-AI, 2024). The recipe of context
window extension is roughly the same: modifying the rotary position embedding (Su et al., 2021)
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by extrapolation and interpolation (Chen et al., 2023a; ntk, 2023; Peng et al., 2023; Ding et al.,
2024), and leveraging long-dependency data in both the pre-training and post-training stage. Despite
the impressive progress in effectiveness, LLMs face significant challenges in efficiency. There is
significant computational cost due to the quadratic complexity of transformer, and huge memory cost
because LLMs need to hold the KV activations of the entire sequence on GPU for faster decoding.
Multiple threads of research endeavour to reduce these costs, which are discussed as follows.

Sparse Attention. Conventional sparse attention methods require re-training a model from scratch
using the designated sparse patterns (Zaheer et al., 2020; Beltagy et al., 2020). However, extensive
recent studies have identified that the attention pattern of LLMs are naturally sparse despite they are
densely trained (Jiang et al., 2024a; Xiao et al., 2023; Han et al., 2023; Zhu et al., 2024). They also
propose to dynamically set appropriate sparse patterns for each head so that the attention mass can be
largely preserved, leading to competitive performance against the full-attention method with reduced
computation. However, these methods require holding all KV activations on chip to dynamically
determine the optimal sparse patterns, making them unsuitable for KV cache reduction. There are
some sparse attention methods that directly evict the middle tokens (Han et al., 2023; Xiao et al.,
2023). Despite their high efficiency and ability to generate endless fluent texts, these methods’
cannot memorize information in the middle contexts, leading to inferior performances on long-
context tasks Xiao et al. (2024).

KV Compression. This line of research focuses on compressing the KV activations to reduce
the attention computation as well as the cache size. Since the KV activations are per-layer, per-
head, per-token, and per-channel float numbers, they can be reduced from all the five dimensions
(including the numerical dimension). For example, CLA (Brandon et al., 2024) shares the KV cache
across multiple layers; GQA (Ainslie et al., 2023) compresses multiple key/value heads into a single
one; MLA (DeepSeek-AI, 2024) compresses the channels into fewer and more compact ones; and
KIVI (Zirui Liu et al., 2023) quantizes the numerical value in the activations. The sequence-wise
compression (also known as context compression), where Activation Beacon falls, is introduced
in the following paragraph. It is orthogonal to the compression along other dimensions, and the
complementary effect of the compression along different dimension could be left for future work.
Besides, some recent studies design efficient strategies for offloading and transferring KV cache (Liu
et al., 2023; Xiao et al., 2024). They can also be jointly used with KV compression techniques to
achieve more efficient long-context generation.

Context Compression. This type of methods aim to compress the raw context into shorter yet more
compact representations. Existing studies are usually tailored for compressing short context (less
than 1K), which tend to be sub-optimal for long-context compression. Specifically, Gisting (Mu
et al., 2023) compresses the user instruction into gist activations all at once. As a result, it cannot
process context longer than the backbone LLM’s window. CCM (Kim et al., 2024) extends Gisting to
compress conversations in online chatting, yet it cannot be used in general long context tasks such as
long document understanding. ICAE (Ge et al., 2024) and AutoCompressor (Chevalier et al., 2023)
alleviate this problem by segmenting the long context into chunks and compressing each chunk, in
order to compress contexts longer than the backbone LLM’s window. CEPE (Yen et al., 2024) shares
a similar workflow while introducing a standalone encoder to compress the context and utilizing
the compression results through a cross-attention module. However, these methods compress the
context into soft tokens, which are the major bottleneck to encapsulate the complex information in
long contexts. Their compression workflow also lacks fine-grained handling of the chunked inputs,
resulting in inferior compression quality. Moreover, these methods must perform re-encoding or
employ additional cross-attention mechanism to utilize the compressed soft tokens, which introduces
extra overhead. Lastly, since the number of soft tokens are pre-defined, it is hard to flexibly assign the
compression ratio for downstream tasks. Another branch of methods (Jiang et al., 2023b; Li et al.,
2024b) propose to delete unimportant tokens to realize compression. However, they depend on the
input question to accurately estimate the token importance, leading to low efficiency in real-world
multi-turn scenarios. Compared with existing approaches, Activation Beacon is able to achieve more
effective, efficient, and flexible compression. Based on context compression techniques, there are
some innovated frameworks like LLoCO (Tan et al., 2024). It is built upon a compressor and a
decoder, where the context is compressed offline and offloaded into a retrieval system. The decoder
then efficiently responds to the user inputs based on retrieved compression results. Both modules are
learned with in-domain fine-tuning. Our work aims at improving the compressor itself, and hence is
orthogonal to these frameworking research.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHODOLOGY

LLMs accomplish arbitrary tasks in the form of next-token prediction. Formally, given the context
X = [x1, . . . , xn], the LLM generates the next token based on all preceding tokens and its well-
trained parameters: Pr(xn+1 | x1, . . . , xn;Θ). Transformer-based LLMs incur heavy computation
cost due to the quadratic complexity of self attention; besides, they require tremendous GPU mem-
ory to store the KV cache of x≤n+1 for faster decoding (Zhang et al., 2023). Both the costs in
computation and memory significantly expand when the context length increases.

Activation Beacon employs a new special token, namely beacon token ⟨b⟩, and condenses the raw
context X into beacon tokens’ activations Ψ (i.e. their keys and values at every layer). The next-
token prediction is converted to condition on the compressed context instead of the plain one. Given
|Ψ| < |X|, both the computation cost and the KV cache size are reduced. Additionally, the LLM is
enabled to handle context longer than its window size based on the compressed representations. We
tailor the compression mechanism and the learning method of Activation Beacon towards achieving
effective, efficient, and flexible compression, which will be elaborated in the following.

3.1 COMPRESSION MECHANISM

Overview. We propose to progressively compress each fine-grained units of long contexs. Specifi-
cally, given the input context X whose length may exceed the LLM’s context window N , it is first
partitioned into chunks of the same size w (e.g., 1024):

[x1, . . . , xn]
Partition−−−−−−→ [X1, . . . X⌈n/w⌉], Xi = [x(i−1)w+1, . . . , xiw]

1 = [xi
1, . . . , x

i
w]. (1)

Next, for each chunk Xi, we determine a compression ratio αi (w is evenly divisible by αi). The
chunk is further split into fine-grained units of size α. Then a group of ki = w/αi beacon to-
kens, Bi = [⟨b⟩i1, . . . , ⟨b⟩iki

], are interleaved with these units. In other words, one beacon token is
dispatched to the end of every unit:

Xi
Interleave Bi−−−−−−−−→ X ′

i = [xi
1, . . . , x

i
αi
, ⟨b⟩i1, . . . , xi

w−αi+1, . . . , x
i
w, ⟨b⟩iki

]. (2)

The LLM encodes these chunks one by one, compressing the contextual information of each chunk
into the corresponding beacon tokens’ activations during self attention. After encoding X ′

i , we
discard activations of all the raw tokens Xi, while we accumulate the activations of the beacon
tokens Bi. When encoding the next chunk X ′

i+1, the LLM directly conditions on the accumulated
beacon activations as a proxy to the raw context X≤i.

This progressive workflow benefits both compression quality and running efficiency. On one hand,
it enables thorough distillation of complex information within long contexts and allows for the com-
pression of inputs that exceed the LLM’s context window. On the other hand, by caching and reusing
beacon tokens’ activations, it avoids redudant computation and allows for incrementally update of
the compression results in multi-turn interactions.

Encoding and Compression. As shown in Figure 2, Activation Beacon reuses all modules of the
LLM except imposing a slight modification on self attention. Without loss of generality, for the i-th
chunk X ′

i , the encoding process can be written as:

LLM( ⟨b⟩i1, . . . , ⟨b⟩i−1
ki−1

,︸ ︷︷ ︸
beacon activations accumulated from X′

<i

xi
1, . . . , x

i
αi
, ⟨b⟩i1, . . . , xi

w−αi+1, . . . , x
i
w, ⟨b⟩iki︸ ︷︷ ︸

the current chunk X′
i

), (3)

where the input to the LLM is a mix of the activations accumulated from previous chunks and
the tokens to be encoded within the current chunk. Let D denote the LLM’s hidden size, H ∈
R(w+ki)×D denote input hidden states to self attention in an arbitrary layer of the LLM. We first
slice out the hidden states of raw tokens and beacon tokens:

Ir = {j | xi
j ̸= ⟨b⟩}, Ib = {j | xi

j = ⟨b⟩}; Hr = H[Ir], Hb = H[Ib]. (4)

Then the hidden states are projected into queries, keys, and values:

Qr = W r
QH

r, Kr = W r
KHr, V r = W r

V H
r,

Qb = W b
QH

b, Kb = W b
KHb, V b = W b

V H
b, (5)

1The last chunk X⌈t/w⌉ may be shorter than w, which is omitted for simplicity.
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Figure 2: Activation Beacon performs compression during self attention while reusing all other
modules of the LLM. Forward ➀: encode and compress the first chunk. Forward ➁: encode and
compress the second chunk conditioned on activations of preceding beacon tokens.

where W r
∗ are the LLM’s original projection matrices and W b

∗ are the newly introduced matrices to
handle beacon tokens only. Afterwards, the query/key/value states of raw tokens and beacon tokens
are scattered back to acquire Q,K,V ∈ R(w+ki)×D:

Q[Ir] = Qr, Q[Ib] = Qb; K[Ir] = Kr, K[Ib] = Kb; V [Ir] = V r, V [Ib] = V b. (6)

Finally, the standard self-attention is computed over the entire input:

A = softmax

(
mask

(
Q {Kac;K}T√

D

))
, V = A {V ac;V } . (7)

In the above equations, {· ; ·} denotes matrix concatenation. Kac,V ac ∈ Rmi−1×D are the beacon
tokens’ activations accumulated from previous chunks where mi−1 =

∑i−1
j=1 kj , and mask denotes

the causal attention mask. During self attention, all tokens are encoded by their relative positions
([mi−1, . . . ,mi + w − 1] for queries and [0, . . . ,mi + w − 1] for keys). The value states V , are
further processed by other modules (e.g., output projection, MLP, and LayerNorm) before passing
to the next layer. After self attention, the keys and values of beacon tokens, i.e. Kb and V b, have
distilled the contextual information of Xi. They are incrementally accumulated:

Kac = {Kac;Kb}, V ac = {V ac;V b}. (8)

In our default setting, the beacon tokens are interleaved with raw tokens. This leads to a differ-
entiated attention scope for each beacon token (⟨b⟩ij attends to one more interval than ⟨b⟩ij−1),
contributing to the fine-grained compression of the context. We also explore the setting to dispatch
all beacon tokens at the end of the chunk, which results in inferior compression quality (§4.6).

Note that unlike ICAE (Ge et al., 2024) and LLMLingua (Jiang et al., 2023b), Activation Beacon
unifies generation and compression operations within a single forward pass of the LLM. That is to
say, the hidden states of the last input token H[Rr[−1]] is directly used to decode the next token
without resorting to another decoder model.

Efficiency Analysis. Activation Beacon reduces the KV cache by α times where α is the average
compression ratio and hence the memory cost. This is because it only needs to store the compressed
activations of the preceding chunks instead of the raw activations. In terms of computation, the sit-
uation is a bit more complex. Specifically, Activation Beacon significantly reduces the computation
in self attention, because each token only needs to interact with local tokens within the chunk and
preceding beacon tokens, which are approximately α times shorter than the raw context. However, it
also triggers more computation to encode the inserted beacon tokens in other modules (e.g., MLP).
Formally, given an LLM with a fixed number of layers, attention heads, and hidden size, let s denote
the input context length, spst denote the cached context length, the forward FLOPs is:

FLOPs = FAtt(s, spst) + FOth(s), (9)
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Figure 3: Comparison of the forward FLOPs of different models using full attention and Activation
Beacon (the compression ratio is annotated in the brackets).

where FAtt is the computation during self attention, and FOth is the computation of other modules.
For full-attention models, s = n, spst = 0. For “beaconed” models, the FLOPs is:

FLOPsbcn =

⌈ n
w ⌉∑

i=1

FAtt

(
(α+ 1)w

α
,
(i− 1)w

α

)
+ FOth(n+ ⌈n

α
⌉). (10)

Since the implementation of FAtt and FOth depends on the actual setting of the LLM (see Ap-
pendix B), we visualize the FLOPs curve of three different LLMs in Figure 3. It can be observed
that Activation Beacon consistently saves computational costs across different model settings and
scales. The extent of saving amplifies as the context length grows, finally achieving more than x4
reduction at 256K context. The specific implication on latency is studied in §4.3.

3.2 LEARNING METHOD

Compression-Based Auto-Regression. Activation Beacon is learned to optimize the generation
quality conditioned on the mixture of the compressed context and the local context. Formally, the
compression-based next-token prediction loss is minimized:

min
Θb

.

⌈N/w⌉∑
i=2

w∑
j=1

Pr(xi
j | ⟨b⟩11, . . . , ⟨b⟩i−1

ki−1
, xi

1, . . . x
i
j−1;Θ,Θb). (11)

Θ denotes the parameters of the LLM itself, which are fixed throughout the training process. Θb

includes the projection matrices for beacon tokens at each layer W b
Q, W b

K , W b
V , and the token

embedding of beacon token e⟨b⟩ (we use one shared embedding for all beacon tokens). The training
loss can be obtained from all tokens except the ones in the first chunk. Such a property leads to high
sample efficiency that maximizes the use of training data. Note that we exclude the beacon tokens
from the above loss (setting their labels to -100) because they are solely intended for compression.

No Stop Gradients. Recurrent memory methods (Chevalier et al., 2023; Bulatov et al., 2023) stop
the gradients back-propagation at a given chunk number to improve the training efficiency. This is
because these methods depend on the final-layer outputs of preceding chunks to encode the current
chunk, which results in deepened computation graph as more chunks are involved. In contrast,
Activation Beacon only depends on the previous-layer outputs of preceding chunks (the encoding
of X ′

i at layer l only conditions on the results of X ′
i−1 at layer l − 1), which is the same as any

auto-regressive LLMs. Thus, the gradients can naturally flow through all chunks to optimize the
compression effect over long contexts.

Chunk-Wise Random Compression Ratio. To teach the model to flexibly support diverse com-
pression granularities, the compression ratio αi for the i-th chunk is randomly sampled from
{2, 4, 8, 16, 32} during training. At inference, one can choose one compression ratio according
to the specific efficiency requirement in downstream tasks and stick to it for all chunks.

4 EXPERIMENTS

Our experiment mainly study Activation Beacon’s effectiveness (§4.2), efficiency (§4.3), and flex-
ibility (§4.4) in long context compression. Besides, we explore Activation Beacon’s impact on
short-context capabilities of the backbone LLM (§4.5) and the effect of each technical design (§4.6).
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Table 1: Evaluation on LongBench (Bai et al., 2023). Activation Beacon maintains comparable
performance to the uncompressed baseline (Full-FT), outperforming other compression methods.
“Length” indicates the number of tokens in the input context.

Model Method Length Single-Doc Multi-Doc Summ. Few-Shot Code
L

la
m

a-
2-

7B
Full 4K 24.7 22.4 24.6 63.2 57.7
Full-FT 32K 34.8 27.5 23.2 61.8 57.8

AutoCompr. 32K 12.9 16.4 16.3 23.8 39.4
ICAE 32K 19.5 19.2 19.5 24.8 27.8
LongLLML. 32K 21.5 18.8 21.7 49.5 53.2
SnapKV 4K 24.2 22.6 16.3 60.1 57.7
Ours 32K 34.9 27.5 25.0 61.4 57.8

Q
w

en
-2

-7
B Full 32K 38.8 37.5 26.7 70.1 60.3

Full-FT 32K 41.0 40.6 26.8 68.5 66.1

LongLLML. 32K 24.7 20.3 26.3 55.9 50.1
SnapKV 32K 38.7 37.6 26.2 67.1 60.3
Ours 32K 40.5 40.3 26.8 68.4 66.4
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Figure 4: Evaluation on Needle-in-a-Haystack. Activation Beacon can accurately retrieves the nee-
dle most of the time, despite the context is far longer than its training data.

4.1 SETTINGS

Implementation. Activation Beacon is applied to Llama-2-7B (chat)2 and Qwen-2-7B (instruct).
The chunk size w is 1024 for Llama-2 and 2048 for Qwen-2. FlashAttention-2 (Dao, 2023) is used
to speed up attention computation. For all our experiments, we use Huggingface framework (Wolf
et al., 2020) and one 8xA800 (80G) machine.

Training. The training consists of two phases. In pre-training, we use 1B tokens sampled from Red-
Pajama (Computer, 2023). The eos token is appended to the end of every document. In fine-tuning,
we leverage LongAlpaca (Chen et al., 2023b), BookSum (Kryściński et al., 2022), and synthetic
data from GPT-3.5 (details in Appendix A). All the training samples are shorter than 20K. The batch
size is 8. The learning rate is 5e-5 for pre-training and 1e-5 for fine-tuning, with linear decay and no
warmup. As introduced, the LLM’s original parameters are frozen throughout the training process.

Baselines. We compare Activation Beacon with the uncompressed baseline (denoted as Full) and
the uncompressed baseline fine-tuned with the same training data (denoted as Full-FT). Besides, we
include the following context compression methods that can tackle long context for comparison, in-
cluding AutoCompressors (Chevalier et al., 2023), ICAE (Ge et al., 2024), LongLLMLingua (Jiang
et al., 2023b), and SnapKV (Li et al., 2024b). The first two methods only support Llama-2. To
guarantee fair comparison, we fine-tune their official checkpoints using the same training data.

4.2 COMPRESSION EFFECTIVENESS

To verify the compression effectiveness of Activation Beacon, we evaluate it on LongBench (Bai
et al., 2023), which consists of a variety of long-context tasks with 32K maximum length, including

2We use Llama-2 because AutoCompressor and ICAE are based on it, both of which are important baselines.
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Table 2: Evaluation on Multi-Needle-in-a-Haystack where the questions are issued one-by-one in a
multi-turn conversation setting. All compression methods use a x8 compression ratio. Activation
Beacon consistently outperforms other compression baselines while enjoying lower latency, espe-
cially when the context lengthens and the turn number increases.

Model Length Method 1-Turn 2-Turn 3-Turn

Acc Latency Acc Latency Acc Latency
L

la
m

a-
2-

7B

32K

Full-FT 9.75 1.336 9.45 1.532 9.10 1.726

AutoCompr. 1.60 2.135 1.50 2.561 1.50 2.994
ICAE 2.15 1.182 2.15 1.476 2.00 1.805
LongLLML. 2.05 2.813 2.00 5.062 2.00 7.034
SnapKV 1.00 0.859 1.00 1.656 1.00 2.199
Ours 9.75 1.153 9.40 1.356 9.05 1.638

Q
w

en
-2

-7
B

128K

Full-FT 9.75 4.399 9.50 5.254 9.20 6.153

LongLLML. 2.00 10.455 1.55 19.768 1.50 27.751
SnapKV 9.45 3.955 8.95 7.803 8.85 10.659
Ours 9.70 2.445 9.35 2.773 9.10 2.981

question answering, summarization, few-shot learning, and code completion. Since Llama-2 has a
context window of 4K, we truncate the context longer than 4K from middle before inputting to it.
For compression methods implemented on Llama-2, we set adaptive compression ratio, translating
to x2 compression for 4K-8K contexts, x4 compression for 8K-16K contexts, and x8 compression
for 16K-32K contexts. For methods implemented on Qwen-2, we apply a uniform compression ratio
of x4. The results are reported in Table 1. We highligh two observations in the following.

Firstly, Activation Beacon achieves superior compression quality over other compression base-
lines across all tasks. Concretely, it siginificantly outperforms ICAE and AutoCompressor, which
verifies that several soft tokens are not enough to encapsulate the rich information within long con-
texts. LongLLMLingua also lags far behind Activation Beacon because it need to delete too many
tokens given a high compression ratio (e.g., x4, x8), which may destroy the coherence of the con-
text and lose important information. Despite SnapKV’s top performance among baselines, it cannot
compress context longer than the backbone LLM’s window. This is because it estimates the token
importance based on self attention, which becomes inaccurate once the context exceeds the window
size, limiting its practical usage when compressing long contexts.

Secondly, Activation Beacon achieves comparable performance to the fine-tuned uncom-
pressed baseline (Full-FT) even though Full-FT takes in the entire context without compression.
This indicates that Activation Beacon is able to compress long contexts without evident informa-
tion loss, which validates its high compression quality yielded from the progressive compression
workflow. Furthermore, Activation Beacon improves upon Llama-2 by a large margin despite their
context window is the same, i.e. 4K. The gain is because Llama-2 (Full) directly uses the truncated
4K context, while Activation Beacon compresses the 32K context into 4K compact activations. This
implies that Activation Beacon can effectively introduce useful information from Llama-2’s unseen
context. Therefore, it can be viewed as an efficient approach for context extension.

We further evaluate Activation Beacon on Needle-in-a-Haystack (NIAH) following the official set-
tings (gkamradt, 2023) to investigate whether it will lose fine-grained information. The accuracy
is estimated by ChatGPT (ranges from 1 to 10). For both Llama-2 and Qwen-2, we set adaptive
compression ratio as introduced above. The results are shown in Figure 4. It can be observed that
Activation Beacon precisely retrieves the needle most of the time. Note that Activation Beacon
conducts query-independent compression, which means it has no prior knowledge of what to com-
press and what not. Hence, this remarkable performance again validates our tailored compression
mechanism and learning method can preserve the fine-grained contextual information. Moreover,
Activation Beacon is only trained on context shorter than 20K, while its compression capability can
generalize to far longer contexts (e.g., 128K).
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Figure 5: Evaluation on Needle-in-a-Haystack with various compression ratios based on Llama-2.
Activation Beacon achieves top compression quality across all compression configurations.

4.3 COMPRESSION EFFICIENCY

We evaluate the efficiency of Activation Beacon based on the Multi-Needle-in-a-Haystack task fol-
lowing NeedleBench (Li et al., 2024a). Specifically, we fix the context length to 32K for Llama-2
and 128K for Qwen-2, and insert 3 different needles at different positions. The task is organized in a
multi-turn conversation setting, where the model is asked to retrieve one specific needle in each turn.
The experiment is repeated 20 times for each model with distinct needle positions. In Table 2, we
report the accuracy and the end-to-end latency of compression & generation (measured in seconds).

It can be observed that Activation Beacon enjoys lower latency than other compression base-
lines. Notably, it is 1.8x faster than AutoCompressor because it does not have to re-encode the soft
tokens from previous chunks. It also leads to 9.3x and 3.6x acceleration upon LongLLMLingua
and SnapKV given three turns, respectively. This is because both baselines are query-dependent
while Activation Beacon is not, which eliminates the need to re-compute the compression results for
different input questions. Moreover, Activation Beacon demonstrates consistent speed-up over the
Full-FT baseline, achieving 2x acceleration at 128K context length. This matches our estimation
in Figure 3(b) as Activation Beacon (x8) saves half of the computation. In the meanwhile, since
the compression ratio is x8, it leads to 8x reduction of the KV cache. Lastly, Activation Beacon
always attains nearly-lossless generation quality against the uncompressed baseline, which is in line
with previous observations.

4.4 COMPRESSION FLEXIBILITY

Activation Beacon is learned to support various compression ratios during training. In Figure 5, we
evaluate its compression quality under different compression ratios and context lengths. According
to the figure, Activation Beacon maintains top accuracy across all compression ratios, outperforming
most compression baselines by a large margin. Though SnapKV performs on par with our method
at 1K and 4K context length, it fails to compress inputs longer than the LLM’s window size, which
may limit its practical usage. To summarize, Activation Beacon is a flexible solution to long context
compression with the support of diverse compression ratios and various context lengths. Generally,
we recommend to use x8 compression ratio as it preserves most information with high efficiency.

4.5 SHORT-CONTEXT CAPABILITIES

Table 3: Activation Beacon preserves the short-context capa-
bilities of the backbone LLM.

Model Method MMLU ARC-C BoolQ GSM8K

Llama-2-7B Full 47.5 48.5 86.2 9.2
Ours 46.6 48.4 86.5 9.3

Qwen-2-7B Full 70.1 62.7 87.1 76.0
Ours 69.1 62.7 87.2 76.2

Since Activation Beacon inter-
leaves beacon tokens with raw to-
kens and is primarily trained with
long-context tasks, it is intrigu-
ing to examine whether the current
recipe will impair the short-context
capabilities of the backbone LLM.
In Table 3, we compare Activa-
tion Beacon with the original LLM
(Full) on popular benchmarks, including MMLU (Hendrycks et al., 2021), ARC-Challenge (Bhak-
thavatsalam et al., 2021), BoolQ (Clark et al., 2019), and GSM8K (Cobbe et al., 2021). We can
observe that Activation Beacon leads to very little performance degradation on short-context tasks.
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In other words, the short-context capabilities are well preserved. We conjecture that the primary
reason is the LLM’s original parameters are frozen throughout the training process.

4.6 ABLATION STUDIES Table 4: The impact of different technical factors.
Method Single-Doc

Default 40.5

w/o Fine-Grained Compression 35.2
w/o Chunk-Wise Random Ratio 37.7
w/o Pre-training 34.9
w/o Fine-tuning 35.5

We study the impact of each technical factor,
including the compression of fine-grained con-
text units, the sampling strategy of compression
ratio, and training stages. The experiments are
based on Qwen-2-7B and Single-Doc QA task
from LongBench (32K context with x4 com-
pression ratio). The results are shown in Ta-
ble 4. Firstly, instead of splitting the chunk into fine-grained units and interleaving beacon tokens,
we append all beacon tokens at the end of the chunk so that their attention scopes are the same.
It can be observed that such operation results in significant information loss after compression,
which justifies the effectiveness of our fine-grained compression mechanism. Secondly, we replace
the chunk-wise random compression ratio with the instance-wise one, which randomly selects one
compression ratio for each training instance rather than each chunk. We can observe that the chunk-
wise setting facilitates better learning of the compression functionality. Lastly, we remove either
pre-training or fine-tuning. It can be observe that both stages are useful, and the combination of
both leads to the optimal performance. This also implies that the compression quality of Activation
Beacon can be further enhanced given more abundant and targeted training.

5 CONCLUSION

This paper introduces Activation Beacon, a plug-in for transformer-based LLMs to enable effective,
efficient, and flexible compression of long contexts. Activation Beacon is featured for several critical
innovations, including the progressive and fine-grained compression workflow to distill the context
into a small set of activations, the compression-based auto-regression to optimize the model with
high sample efficiency, and the random sampling of compression ratios to support various down-
stream scenarios. According to extensive experimental evaluations, Activation Beacon consistently
outperforms existing context compression methods across various compression configurations. It
even maintains comparable performance to the uncompressed baseline, meanwhile achieving 2x ac-
celeration and 8x KV cache reduction. Moreover, the short-context capabilities of the LLM is well
preserved.
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A TRAINING DATA

In the pre-training phase, we use 1B tokens from RedPajama. We add an eos token to the end of
each document. The documents longer than 20480 or shorter than 2400 are removed.

Prompt A.1

{Segment 1}
...
{Segment N}

Question: {Question 1 for Segment 1}
Answer: {Answer 1 for Segment 1}
...
Question: {Question 4 for Segment N}
Answer: {Answer 4 for Segment N}

In the fine-tuning phase, we use three datasets. 1) LongAlpaca (Chen et al., 2023b), which contains
long-context QA and summarization data; 2) BookSum (Kryściński et al., 2022), which contains
chapter-level summarization of books. 3) Synthesized QA dataset. This dataset contains 16K long-
context question answering instances (13K for books and 3K for papers). Specifically, we split a
given long context (a paper or a book) into short segments (a chunk with less than 4096 tokens) using
the SemanticTextSplitter3. For each segment, we prompt GPT-3.5-turbo to generate 4 question-
answer pairs based on the segment. We then group continuous segments using Template A.1, where
we can control the resulted context length by concatenating different number of segments. The
books are randomly sampled from Books3 corpus, and the papers are sampled from Arxiv, both
coming from the Pile (Gao et al., 2020). All the above fine-tuning data are formatted in the manner
of multi-turn conversations and limit the context length up to 20480. To mitigate forgetting, we also
include 5000 samples from the pre-training data.

B FLOPS CALCULATION

Denote the input sequence length as s, the cached sequence length as spst, query head number as
hq , key/value head number as hk, the hidden size D, head dimension as d, intermediate size I , and
vocabulary size V .

FAtt = F qkv + F qk + F softmax + F av + F out

F qkv = 2× s×D × d× hq + 2× 2× s×D × d× hk

F qk = 2× hq × s× (s+ spst)× d

F softmax = hq × (s+ spst)× (s+ spst)

F av = 2× hq × s× (s+ spst)× d

F out = 2× s× d× hq ×D (12)

FOth = Fup + F gate + F down + F lm

Fup = 2× s×D × 2× I

F gate = s××I

F down = 2× s×D × I

F lm = 2× s×D × V (13)

3https://github.com/benbrandt/text-splitter
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Table 5: Comparison of the breakdown latency of prefilling and decoding, as well as peak GPU
memory between the full-attention baseline and Activation Beacon. Activation Beacon uses x8
compression uniformly.

Model Input Length Method Prefilling Decoding Total GPU Memory

Qwen-2.5-7B
32K Full 0.522 0.709 1.231 27.0

Ours 0.514 0.506 1.020 18.1

128K Full 3.312 2.081 5.393 64.3
Ours 2.038 0.550 2.588 24.6

Qwen-2.5-14B
32K Full 0.952 1.862 2.814 45.7

Ours 0.996 0.857 1.853 36.0

128K Full – – – OOM
Ours 4.340 1.117 5.457 40.3

Table 6: Comparison of the training time and the peak GPU memory usage during training between
Full-FT and Activation Beacon.

Model Method DeepSpeed Stage Training Time GPU Memory

Qwen-2.5-7B Full-FT Zero-2 6.32 51.2
Ours Zero-2 6.58 38.5

Qwen-2.5-14B Full-FT Zero-3 (OOM w/ Zero-2) 18.67 79.4
Ours Zero-2 12.34 75.6

C ADDITIONAL EFFICIENCY ANALYSIS

We further evaluate the efficiency of Activation Beacon by decomposing the latency of pre-filling
and decoding. Specifically, we set the context length to 32K and 128K and enforce the model to
generate precisely 128 tokens. We use a uniform x8 compression ratio. The peak GPU memory
during the entire generation process is also reported.

According to Table 5, our method accelerates both pre-filling and decoding, and the acceleration
extent amplifies as the context gets longer. Meanwhile, our method is better at speeding up decoding
because it directly conditions on the beacon tokens’ activations, which are 8x shorter than the raw
activations used by the baseline. Moreover, Activation Beacon significantly reduces the peak GPU
memory usage, enabling efficient processing of long context on customer GPUs.

Lastly, we also compare the training efficiency of Activation Beacon against the standard fine-tuning.
The results are shown in Table 6. The experiment result indicates that Activation Beacon achieves
comparable training speed as the Full-FT baseline while significantly reducing the memory cost.

D RULER EVALUATION

In addition to LongBench and NIAH, we evaluate the performance of Activation Beacon on
RULER (Hsieh et al., 2024), a challenging long-context benchmark that consists of 13 synthetic
tasks. Concretely, there are 6 tasks extending the regular NIAH to multi-key, multi-value, and multi-
query variants; 1 task (Variable Tracking) aiming at examining the multi-hop reasoning capability
by tracking variable assignments; 2 tasks (Common/Frequent Words Extraction) targeting on the ag-
gregation capability by counting the word occurrences; and 2 tasks performing question answering
while inserting noisy context to the ground-truth passages. Our evaluation is based on 128K context
length and x4 compress ratio for Activation Beacon. The results are shown in Table 7.

It can be observed that our initial Activation Beacon model (denoted as “Ours”) maintains a com-
petitive performance on QA tasks, while lagging far behind the full-attention baseline on reason-
ing/aggregation tasks (VT and CWE). A similar drop can also be observed on Full-FT, too. One
likely reason for this disadvantage is that our current fine-tuning recipe only uses one-hop QA data
(as stated in Appedix A), which does not teach the model to perform complex reasoning or count-
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Table 7: Evaluation on RULER (Hsieh et al., 2024). Initially, Activation Beacon lags behind full-
attention models on reasoning/aggregation tasks, yet the gap can be easily compensated by addi-
tional fine-tuning with synthetic 200 samples.

Model Method NIAH AVG VT CWE FWE QA AVG

Qwen-2.5-7B

Full 79.06 88.00 41.04 66.67 40.25
Full-FT 80.13 71.95 32.28 64.76 52.38

Ours 78.43 25.30 10.12 60.00 52.15
Ours + Synthetic FT 80.91 85.30 59.30 72.18 51.27

Table 8: Evaluation of 7B and 14B models on LongBench (Bai et al., 2023). Activation Beacon
always maintains a comparable performance to the expensive full-attention fine-tuned baseline.

Model Method Length Single-Doc Multi-Doc Summ. Few-Shot Code

Qwen-2.5-7B
Full 32K 41.9 45.2 26.5 69.1 64.9
Full-FT 32K 42.7 46.1 26.7 67.6 66.3
Ours 32K 42.5 45.8 26.8 67.4 66.4

Qwen-2.5-14B
Full 32K 42.5 52.9 25.1 71.7 66.7
Full-FT 32K 43.9 50.5 27.1 68.8 67.1
Ours 32K 43.4 49.9 27.1 68.5 67.4

ing, resulting in inferior performance on these tasks. However, this problem should be mitigated
by adjusting the composition of training data. We add 200 synthetic samples (100 for VT and 100
for CWE) with 20K maximum context length to the training data and fine-tune the model. The new
model, denoted as “Ours+Synthetic FT”, achieves substantial improvements on both VT and CWE
while preserving its competitive performances on other tasks. This observation further validates
the effectiveness of our Activation Beacon: it can quickly learn the desired compression capability
given a limited set of training data.

E EXPERIMENTS ON LARGER MODELS

We apply Activation Beacon on Qwen-2.5-7B and Qwen-2.5-14B to inspect its performance on
larger models. The LongBench evaluation results (with a uniform x4 compression ratio) are shown
in Table 8. It can be observed that Activation Beacon retains its effectiveness, holding comparable
performance to the full-attention fine-tuned baseline.

Additionally, we report the training & inference efficiency of 14B models in Table 5 and Table 6,
respectively. Activation Beacon significantly reduces the memory costs during training, enabling
efficient training of large models at high speed. Besides, it stably accelerates the inference process
while being much more memory-efficient than the full-attention baseline.
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