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Abstract

Generative retrieval models encode pointers to001
information in a corpus as an index within the002
model’s parameters. These models serve as003
part of a larger pipeline, where retrieved infor-004
mation conditions generation for knowledge-005
intensive NLP tasks. However, we identify006
two limitations: the generative retrieval does007
not account for contextual information. Sec-008
ondly, the retrieval can’t be tuned for the down-009
stream readers as decoding the page title is a010
non-differentiable operation. This paper intro-011
duces Re3val, trained with generative rerank-012
ing and reinforcement learning using limited013
data. Re3val leverages context acquired via014
Dense Passage Retrieval to rerank the retrieved015
page titles and utilizes REINFORCE to maxi-016
mize rewards generated by constrained decod-017
ing. Additionally, we generate questions from018
our pre-training dataset to mitigate epistemic019
uncertainty and bridge the domain gap between020
the pre-training and fine-tuning datasets. Sub-021
sequently, we extract and rerank contexts from022
the KILT database using the rerank page titles.023
Upon grounding the top five reranked contexts,024
Re3val demonstrates the Top 1 KILT scores025
compared to all other generative retrieval mod-026
els across five KILT datasets.027

1 Introduction028

The primary objective of retrieval models is to en-029

hance the accuracy of answers by selecting the030

most relevant documents retrieved for a given031

query, ensuring models have sufficient informa-032

tion to help the downstream reasoning process. For033

instance, DRQA (Chen et al., 2017) introduces a034

"retrieve and read" pipeline using TF-IDF to re-035

turn documents for a question answering model to036

achieve this goal. More recently, NLP researchers037

have studied neural retrieval models like Dense038

Passage Retrieval (DPR) (Karpukhin et al., 2020)039

with a seq2seq model to build retrieval augmented040

language models.041

Figure 1: Re3val’s Page Title Reranker (gϕ) utilizes
contexts (Y ) from DPR to rerank and refine generated
page titles (X), resulting in reranked page titles (Z).

Rather than using inner-product based retrieval, 042

generative retrieval models such as GENRE (Cao 043

et al., 2021) and CorpusBrain (Chen et al., 2022) 044

generate page titles through constrained decoding, 045

attaining higher R-Precision and Recall compared 046

to DPR. In our work, we further evaluate how 047

additional contextual information can benefit the 048

generative retrieval models through reranking and 049

how reinforcement learning can enhance relevance 050

through reward signals. 051

We introduce Re3val: Reinforced and Reranked 052

Generative Retrieval, a novel framework specifi- 053

cally designed to address the challenges in neural 054

information retrieval. Our approach utilizes 500k 055

pre-training data and 48k task-specific data for 056

training. Despite the reduced data used in distant 057

supervision, Re3val achieves exceptional perfor- 058

mance. Our contributions are described as below: 059

• We combine the initially retrieved page titles 060

with contexts obtained from DPR, facilitat- 061

ing the generative reranking process of the 062

page titles. Through this reranking procedure, 063

Re3val outperforms other generative retrieval 064

models including GENRE, CorpusBrain, and 065

SEAL (Bevilacqua et al., 2022), in terms of 066

average R-Precision across five tasks, show- 067

casing an average increase of 1.9%. 068
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• We incorporate REINFORCE (Williams,069

1992) to facilitate information integration dur-070

ing the decoding process of generative re-071

trieval. Combined with question generation,072

REINFORCE enables Re3val to outperform073

CorpusBrain zero-shot retrieval with an aver-074

age improvement of 8% in R-Precision across075

five tasks.076

• We suggest a new retrieval pipeline that ex-077

tracts the contexts for the reranked page titles,078

applies our context reranker, and grounds an-079

swers with the reranked contexts. As a result,080

Re3val distinguishes itself by achieving the081

highest KILT scores among other generative082

retrieval models, with an average increase of083

2.1%.084

In summary, Re3val uses DPR contexts for085

reranking page titles, leading to improved R-086

Precision. Re3val enhances performance by in-087

tegrating generated questions in pre-training and088

utilizing REINFORCE during distant supervision.089

Moreover, Re3val achieves more accurate answers090

by reading reranked contexts retrieved with the091

reranked page titles. These advancements en-092

able Re3val to achieve state-of-the-art performance093

while also offering cost savings by reducing train-094

ing time and minimizing the need for extensive095

data labeling.096

2 Related Work097

2.1 Document Retrieval098

TF-IDF (Johns, 1972) and BM25 (Robertson et al.,099

2009) assign weight to terms in a document based100

on their term frequency and inverse document fre-101

quency. These methods cannot inherently consider102

semantic shift or distribution similarity while com-103

puting similarity metrics. In light of this limita-104

tion, Karpukhin et al. (2020) introduce the Dense105

Passage Retrieval (DPR) (Karpukhin et al., 2020),106

establishing a bi-encoder that creates dense embed-107

dings of questions and related passages within a108

corpus. These embeddings are subsequently com-109

pared using a dot product operation. During in-110

ference, DPR retrieves the top-k relevant contexts111

employing either Nearest Neighbor Search or Max-112

imum Inner Product Search on the FAISS index.113

Guu et al. (2020) and Lewis et al. (2020) retrieve114

knowledge from a corpus using DPR and generate115

an answer using a variant of the Transformer mod-116

els. FiD (Fusion in Decoder) (Izacard and Grave,117

2021) extends T5 (Wolf et al., 2020) by combin- 118

ing independently encoded queries and retrieved 119

passages to decode an answer. However, these 120

models do not rerank retrieved documents that al- 121

low a reader to perform better with fewer contexts 122

utilized for a reader. 123

2.2 Generative Retrieval 124

Cao et al. (2021) introduce an Autoregressive En- 125

tity Retrieval model (GENRE). GENRE utilizes 126

seq2seq language models for page title retrieval 127

and employs a trie-based constrained decoding ap- 128

proach. This allows GENRE to assign a probability 129

of 0 to non-existing page titles, ensuring accurate 130

retrieval. Moreover, Chen et al. (2022) propose 131

CorpusBrain, a generative retrieval model encod- 132

ing the knowledge about the corpus through pre- 133

training strategies. DEARDR (Thorne, 2022) pro- 134

poses three distinct pre-training regimens and a 135

data-efficient distant supervision method for gener- 136

ative retrieval. Moreover, SEAL (Bevilacqua et al., 137

2022) leverages an FM-Index to efficiently gen- 138

erate n-grams within the corpus for fast lookup 139

speed without increasing the index size. The Dif- 140

ferentiable Search Index (DSI) (Tay et al., 2022) 141

employs a seq2seq model to map individual queries 142

to atomic document identifiers, which in turn are 143

associated with segmented chunks of the docu- 144

ment. Similarly, the Neural Corpus Index (NCI) 145

(Wang et al., 2022) utilizes hierarchical k-means for 146

document representation, generates queries based 147

on content, and trains a transformer model with 148

a Prefix-Aware Weight-Adaptive Decoder using 149

Consistency-based regularization. However, these 150

models overlook the opportunity to minimize ad- 151

ditional entropies in retrieved page titles or doc- 152

uments by incorporating contextual information. 153

Leveraging such information reduces randomness 154

and refines the ranking. Moreover, these models 155

overlook the potential benefits of harnessing knowl- 156

edge during decoding. 157

2.3 Question Generation 158

In the past, numerous endeavors (Labutov et al., 159

2015; Chali and Hasan, 2015; Serban et al., 2016; 160

Duan et al., 2017) have been made to generate 161

questions to enhance the task of Question Answer- 162

ing. Recently, studies analyzing questions have at- 163

tempted to find the relationship with contexts. Mao 164

et al. (2021) propose Generation-Augmented Re- 165

trieval (GAR) that generates query contexts. GAR 166

employs a BM-25 retrieval model and achieves per- 167
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formance comparable to DPR. Sachan et al. (2022)168

create questions based on the retrieved contexts169

and rerank contexts based on the log-likelihood170

score over the generated questions. However, these171

studies overlook the fact that question generation172

can address the epistemic uncertainty in question173

answering tasks by minimizing the domain gap174

between pre-training and fine-tuning data.175

2.4 Reranking Models176

Reranking in information retrieval involves refining177

the initial ranking of retrieved documents by utiliz-178

ing scores from a more complex query, as exempli-179

fied by Elastic Search1. Atlas (Izacard et al., 2022b)180

retrieves documents with Contriever (Izacard et al.,181

2022a), reranks the retrieved documents, and rea-182

sons with FiD. Re2G (Glass et al., 2022) employs183

a cross-encoder (Rosa et al., 2022; Nogueira and184

Cho, 2020) to rerank retrieved documents based on185

softmax probability using BM25(q) ∪ DPR(q),186

determining the relevance between a query and con-187

text. FiD-Light (Hofstatter et al., 2022) introduces188

a compression for encoded passages and reranks189

candidate lists using source pointers. These source190

pointers are textual indices that represent the rel-191

evant context, as initially introduced in FiD-Ex192

(Lakhotia et al., 2021). However, these reranking193

models do not perform reranking at the page title194

level and do not make use of a rerank query.195

2.5 Reinforcement Learning196

When framing text generation as a Reinforcement197

Learning (RL) problem, the state (st) at time t can198

be seen as a sequence of tokens. At the same time,199

the action (at) represents the probability distribu-200

tion of the generated token. This formulation can201

incorporate non-differentiable feedback, such as202

common evaluation metrics as reward. Moreover,203

various RL methodologies such as REINFORCE204

(Williams, 1992), Advantage Actor-Critic (A2C)205

(Mnih et al., 2016), and Proximal Policy Optimiza-206

tion (PPO) (Schulman et al., 2017) are being suc-207

cessfully applied in a multitude of scenarios. This208

study primarily utilizes REINFORCE, a simple yet209

effective method.210

3 Methodology211

The primary contribution of Re3val is its capability212

to generatively rerank page titles by incorporating213

contextual information and to apply REINFORCE214

1https://www.elastic.co

during distant supervision of a generative retrieval. 215

Additionally, Re3val utilizes question generation 216

for pre-training. Furthermore, Re3val pioneers the 217

reading of contexts retrieved using page titles ob- 218

tained through a generative retrieval approach. 219

The following step-by-step description of stages 220

elucidates how the methods proposed at each stage, 221

as depicted in Figure 2, are sequentially integrated 222

into the overall pipeline. 223

3.1 Page Title Retrieval 224

3.1.1 Pre-training 225

Following DearDr (Thorne, 2022), we pre-train 226

the generative retriever. To mitigate the domain 227

shift problem during pre-training for question- 228

answering and dialogue tasks, we generate ques- 229

tions for half of the pre-training passages. We uti- 230

lize Flan-T5 base (Chung et al., 2022) to create 231

questions given a prompt, "Generate a question 232

related to the following Passage: ". Among gener- 233

ated questions, we employ Spacy’s Entity Recog- 234

nizer of en_core_web_sm2 to filter out ambiguous 235

questions such as "Where is he". Specifically, we 236

remove questions that do not contain entities other 237

than DATE, MONEY, CARDINAL, TIME, QUAN- 238

TITY, ORDINAL, and PERCENT. 239

3.1.2 Pre-Training and Few-Shot Training 240

(Stage 1,3) 241

During the pre-training and fine-tuning of Re3val, 242

an instructive prompt - "rank document titles given 243

a query: " - is introduced before each query on the 244

T5 model (Wolf et al., 2020). In Few-Shot training, 245

we added labeled data to narrow the range of target 246

candidates. 247

3.1.3 REINFORCE (Stage 2,4) 248

The REINFORCE is employed during training to 249

optimize the black box of zero-shot (Stage 1) and 250

few-shot (Stage 3) retrieval in Re3val. The RE- 251

INFORCE utilizes the R-Precision of generated 252

page titles as a reward. The effectiveness of the 253

REINFORCE, along with the formula for gradient 254

computation of the REINFORCE objective func- 255

tion, is demonstrated in Appendix A.5. 256

3.2 Page Title Reranker (Stage 5-7) 257

Retrieved page titles are initially ranked based on 258

their relevance score, computed by our retrieval 259

model. Then, a reranking query can be introduced 260

2https://spacy.io
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Figure 2: Re3val Training Pipeline. Generated questions after filtering are integrated into pre-training (1), followed
by few-shot training (3) with REINFORCE (2, 4). Retrieved DPR contexts (5), perturbed page titles (6), and queries
are concatenated for reranker training (7). Gold and negative passages retrieved with BM-25 are employed (8) for
context reranker training (9). Contexts are retrieved using the top 5 reranked titles from KILT (10), where missing
titles are imputed with BM-25 (11). DPR contexts are imputed (12) if lacking five gold contexts during FiD model
pre-training (13). FiD model is fine-tuned using five reranked contexts (14).

Figure 3: Re3val Inference Pipeline. Reranker concatenates retrieved DPR contexts (1), page titles (2), and query to
rerank page titles (3). Contexts retrieved with the top five reranked page titles (4), including BM-25 imputed titles
(5), are reranked (6). The top-5 reranked contexts are used to generate an answer (7).

to refine the ranking further and increase the like-261

lihood of obtaining the most relevant page titles.262

However, the KILT datasets do not provide a spe-263

cific reranking query.264

To address the limitation above, our page title265

reranker leverages contexts retrieved via an aux-266

iliary index, such as the Dense Passage Retrieval267

multi-set checkpoint3, to serve as the reranking268

query. Unlike the prompt for ranking, which is269

"rank document titles given a query: ", the prompt270

for reranking is modified to "rerank document titles271

given a query and contexts: ".272

In order to improve the refinement and re-273

ranking functions of our page title reranker, we274

have implemented a new training strategy. This275

strategy combines REINFORCED few-shot (Stage276

4) and zero-shot (Stage 1) retrieved page titles dur-277

ing training. Additionally, we apply uniform shuf-278

3https://github.com/facebookresearch/DPR

fling to the page titles in the top half of the training 279

sets generated by our zero-shot and few-shot re- 280

trieval models. 281

Mixing titles from different checkpoints and 282

shuffling retrieved page titles introduces noise to 283

the input data. This noise is beneficial as it enables 284

the page title reranker to filter out inconsistencies, 285

outliers, and misleading patterns in the test set, ul- 286

timately enhancing its performance. 287

3.3 Context Retrieval (Stage 10-11) 288

Preprocessing (Stage 10) To refine the data for 289

context retrieval for a reader, we divide each con- 290

text in the KILT Database into chunks, each con- 291

sisting of 100 words. To ensure data quality and 292

relevance, we filter out sentences that only contain 293

a page title, as well as sentences containing the 294

specific patterns, "Section::::" or "BULLET::::". 295

4
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Extraction (Stage 10,11) After the page title296

reranking process, we acquire five reranked page297

titles. Subsequently, we retrieve the corresponding298

contexts for each of these page titles. In situations299

where specific page titles are unavailable in the300

KILT database, we suggest using the BM-25 impu-301

tation method. This method employs the BM-25302

algorithm to impute the most suitable page title303

from the KILT database. A detailed analysis of304

this imputation approach can be found in Appendix305

A.6.306

3.4 Context Reranker (Stage 8-11)307

To enhance the reader’s experience, we reduce308

memory and context usage through our Context309

Reranker. Specifically, we use a cross-encoder to310

assess the relevance of a query and context pair for311

reranking the contexts derived from the five page312

titles. The input structure for our context reranker313

is as follows: "[CLS] Query [SEP] Context [SEP]".314

We utilize gold passages as positive examples for315

training and evaluating our Context Reranker. We316

also include two types of hard negative examples re-317

trieved with BM-25: the top 128 unlabeled context318

chunks mapped to labeled page titles in the train-319

ing set and the top 128 unlabeled context chunks320

mapped to the unlabeled page titles retrieved by321

our Page Title Reranker.322

3.5 Reader (Stage 12-14)323

We employ the Fusion in Decoder (FiD) as our324

reader for the reading task. During the pre-training325

phase of FiD, we utilize gold passages and im-326

pute Dense Passage Retrieval (DPR) contexts for327

queries with fewer than five available gold contexts.328

Subsequently, following the pre-training phase, we329

perform fine-tuning of the FiD model using the330

top five or ten contexts retrieved by our context331

reranker.332

4 Experiments333

4.1 Datasets334

We use datasets from the KILT (Petroni et al.,335

2021) benchmark. We study Natural Questions336

(Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,337

2017), and HotpotQA (Yang et al., 2018) for ques-338

tion answering tasks, FEVER (Thorne et al., 2018)339

for a fact-checking task, and WoW (Dinan et al.,340

2018) for a dialogue task, which are publicly avail-341

able4. Comprehensive details about the datasets342

4https://github.com/facebookresearch/KILT

are discussed in Appendix A.2. 343

4.2 Evaluation 344

KILT utilizes a page-level retrieval strategy, and the 345

assessment of page-level retrieval tasks measures 346

the capacity to present a collection of Wikipedia 347

pages as supporting evidence for a prediction, as- 348

sessed through R-Precision and Recall@k metrics. 349

R-Precision quantifies the proportion of relevant 350

documents retrieved out of the total retrieved docu- 351

ments. On the other hand, Recall@k quantifies the 352

proportion of relevant documents retrieved out of 353

the total number of actual documents, taking into 354

account only the top-k retrieved documents. Down- 355

stream reading tasks utilize different evaluation 356

metrics depending on the specific task. For exam- 357

ple, question-answering tasks are evaluated using 358

Exact Match (EM) and F1 score. Dialogue tasks 359

employ metrics such as ROUGE-L and F1 score. 360

Fact verification tasks, on the other hand, are eval- 361

uated based on Accuracy. However, KILT has re- 362

cently introduced the KILT score5 as a ranking met- 363

ric for evaluating downstream performance. The 364

KILT score takes into account post-processed Ac- 365

curacy, EM, ROUGE-L, and F1 scores mentioned 366

in Appendix A.8.3, but only if the R-Precision for 367

a given query is 1. For detailed information re- 368

garding the metrics for evaluation, please refer to 369

Appendix A.8. 370

4.3 Retrieval 371

We conduct our retrieval experiments by initializ- 372

ing three pre-trained models with varying parame- 373

ters to investigate the impact of model size on per- 374

formance. Specifically, we employ the following 375

pre-trained models: t5-small, t5-base, and t5-large 376

(Wolf et al., 2020). 377

Training We utilize 250k uniformly sampled 378

June 2017 and August 2019 Wikipedia dumps for 379

the pre-training phase across all datasets. Addi- 380

tionally, we generate questions from an additional 381

250k uniformly sampled Wikipedia dumps and in- 382

clude them in the training process. For fine-tuning, 383

we utilize 48k uniformly sampled task-specific 384

datasets. Detailed information about the datasets 385

can be found in Appendix A.2 and Table 8. Impor- 386

tantly, we reinforce the zero and few-shot retrieval 387

stages by employing the same dataset for each re- 388

trieval stage. 389

5https://eval.ai/web/challenges/
challenge-page/689/evaluation
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Evaluation We employ a multi-beam search ap-390

proach with a beam size specified in Table 4 to391

assess the performance on all development and test392

sets. In addition, we select the top five page ti-393

tles from the list of multi-page titles generated per394

query for evaluation purposes.395

4.4 Page Title Reranker396

In our experimentation, we explore two types of397

initialization for our page title reranker. Firstly,398

we initialize the reranker using the plain t5-small,399

t5-base, and t5-large models. Secondly, consider-400

ing the three different model sizes, we utilize the401

checkpoint from the reinforced few-shot retrieval402

process. To maintain input compatibility, we limit403

the query for the reranker’s input to the first 250404

words. In addition, the input - consisting of a query,405

ten page titles, and five contexts - is truncated to a406

maximum of 512 tokens.407

4.5 Context Reranker408

In our experiments, for all datasets, a query and409

a context are separated using the special token410

"[SEP]", and trained using the nboost/pt-bert-base-411

uncased-msmarco6 as input. We input the first 150412

words of a query for question-answering and fact-413

verification tasks. In the case of a dialogue task,414

the last 300 words of the query are used, as the415

final sentence often serves as the closure to the416

conversation. The maximum sequence length of417

input is detailed in Table 4 and 6, providing further418

information on the specific limitations imposed on419

the input size.420

4.6 Reader421

Two types of inputs are used for pre-training our422

two versions of FiD. The first type includes only423

gold passages, while the second consists of gold424

passages and top-ranked Dense Passage Retrieval425

(DPR) contexts. For the Natural Questions (NQ)426

dataset, pre-training is conducted using the NQ427

FiD checkpoint, which has been pre-trained on 770428

million parameters7. For the remaining datasets,429

pre-training is performed using the TriviaQA FiD430

checkpoint, which has been pre-trained on 770431

million parameters7. Regarding the Wizard of432

Wikipedia (WoW) dataset, we retain the last 385433

words of the query for input. For other datasets, we434

use the first 125 words. The maximum sequence435

6https://huggingface.co/nboost/
pt-bert-base-uncased-msmarco

7https://github.com/facebookresearch/FiD

length is outlined in Table 4 and 6, providing spe- 436

cific details on the constraints imposed on input 437

size. 438

An example of an input format is "question: 439

query title: page_title, context: retrieved_title". In 440

this format, "question:", "title:", and "context:" are 441

special tokens, while "query", "page_title", and 442

"retrieved_title" represent variables denoting the 443

respective components of the input. 444

Following the pre-training phase, we conduct 445

fine-tuning, incorporating 5 or 10 contexts retrieved 446

using our Context Reranker. 447

5 Result 448

5.1 Retrieval 449

5.1.1 Zero-shot Retrieval 450

Based on the findings presented in Table 1, Corpus- 451

Brain exhibits an 8% lower R-Precision on average 452

compared to Re3val, despite being trained on more 453

than 500 times more data. We hypothesize that 454

the question-generation process mitigates the epis- 455

temic uncertainty resulting from limited training 456

data, thus minimizing the domain shift between the 457

pre-training and task-specific fine-tuning data. 458

Examining Table 12 in the Appendix, we ob- 459

serve that REINFORCE yields a modest improve- 460

ment in the performance of zero-shot retrieval, with 461

a few exceptions. Specifically, REINFORCE ef- 462

fectively captures the variability introduced during 463

the constrained beam search exploration, as it uti- 464

lizes the search results as a reward signal, thereby 465

reducing bias towards the pre-training data in our 466

retrieval model. 467

5.1.2 Few-shot Retrieval 468

However, as indicated in Table 12, the effective- 469

ness of REINFORCE diminishes when applied to 470

the few-shot retrieval scenario. In some instances, 471

REINFORCE results in performance degradation 472

across specific datasets. We postulate that this phe- 473

nomenon can be attributed to the inherent variance 474

associated with Reinforcement Learning. Further- 475

more, the performance degradation may arise from 476

the exploration-exploitation trade-off during the 477

multi-beam search, where a broad range of solu- 478

tion spaces is explored, potentially leading to a 479

decreased focus on exploitation. For instance, Ap- 480

pendix A.9 shows that the relative performance 481

ranking can be reversed as the number of samples 482

(K) increases. 483
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Question Answering Fact Check. Dial. Average
Dataset NQ TQA HoPo FEV WoW
Model R-P R@5 R-P R@5 R-P R@5 R-P R@5 R-P R@5 R-P R@5

Zero-shot

TF-IDF 28.10 - 46.40 - 34.10 - 50.90 - 49.00 - 41.70 -
CorpusBrain 28.25 - 42.76 - 44.84 - 70.38 - 29.64 - 43.17 -

Re3valS 25.20 29.62 47.47 27.53 42.91 23.36 74.99 84.19 52.31 64.28 48.58 45.80
Re3valB 33.24 37.90 47.25 52.88 43.82 24.79 76.22 83.42 56.45 70.05 51.40 53.81
Re3valL 34.70 41.47 46.38 53.01 43.55 22.77 78.60 85.36 55.67 72.77 51.78 55.07

Few-shot (48k)

Re3valS 47.44 49.20 61.28 64.32 47.47 27.53 79.74 84.29 56.90 71.86 58.57 59.44
Re3valB 54.15 55.34 63.80 69.83 50.01 31.47 78.67 82.47 62.00 77.50 61.73 63.32
Re3valL 54.92 55.76 63.89 71.35 49.99 32.81 77.15 79.88 62.84 79.91 61.76 63.94

Full Fine-tuning

DPR + BART 54.29 65.52 44.49 56.99 25.04 10.40 55.33 74.29 25.48 55.10 40.93 52.46
RAG 59.49 67.06 48.68 57.13 30.59 12.59 61.94 75.55 57.78 74.63 51.70 57.39

GENRE 60.25 61.36 69.16 75.07 51.27 34.03 83.64 88.15 62.88 77.74 65.44 67.27
KGI 63.71 70.17 60.49 63.54 - - 75.60 84.95 55.37 78.45 - -

SEAL 63.16 68.19 68.36 76.36 58.83 51.03 81.45 89.56 57.55 78.96 65.87 72.82
TABi 62.60 64.95 70.36 69.16 53.12 35.48 84.45 88.62 59.11 69.10 65.93 65.46

CorpusBrain 60.32 61.21 70.19 75.64 51.80 34.57 84.07 90.50 64.79 81.85 66.23 68.75

Reranking (48k)

Re3valS 59.63 60.78 59.84 64.43 54.93 38.50 81.22 85.90 56.90* 71.86* 62.50 64.29
Re3valB 64.75 63.05 66.31 71.95 56.65 41.14 81.58 83.27 62.00* 77.50* 66.26 67.38
Re3valL 66.48 65.40 68.57 74.48 59.60 44.21 82.78 85.71 63.32 79.88 68.15 69.94

Table 1: The performance results of the generative and bi-encoder retrieval models on the KILT test sets are
presented in the table above. The models that achieve the highest performance are indicated in bold, while the
second-best models are underlined. In the case of Re3val, it utilizes a reinforced version for Zero-shot and Few-shot
(48k) results, while an unreinforced version is used for Reranking (48k) results. The Reranking (48k) involves
the page title reranker trained using the Vanilla T5 pre-trained model. The subscript notations used in the table
denote the model size, where S corresponds to t5-small, B represents t5-base, and L indicates t5-large. For the WoW
dataset, the reported scores reflect the few-shot results, except for Re3valL, representing the best overall result.

5.1.3 Page Title Reranker484

The validity of our reranker’s input concatenation is485

supported by the principles of Mutual Information486

theory (Shannon, 1948). Let’s define X as the set487

of page titles and Y as the set of DPR contexts,488

where X takes values from X = {x1, x2, ..., xn}489

and Y takes values from Y = {y1, y2, ..., yn}. We490

denote the probability distribution of X as P (x).491

The mutual information between X and Y is492

denoted as I(X;Y ), and it quantifies the amount493

of shared information between the two variables. It494

is calculated using the formula:495

I(X;Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
(1)496

By considering the joint probability of DPR con-497

texts and page titles, I(X;Y ) allows us to gain498

insights into the dependency between these two499

variables. Therefore, our page title reranker lever-500

ages this shared information to reduce uncertainty501

in the ranking of page titles, thus improving the 502

reranking and refinement process. 503

The results obtained from the dev sets are docu- 504

mented in Table 12. Table 12 indicates that the page 505

title reranker, fine-tuned from the reinforced few- 506

shot retrieval, outperforms the reranker initialized 507

from the T5 pre-trained model when the number of 508

parameters is small. However, the opposite trend 509

is observed as the number of parameters increases. 510

While the knowledge about ranking compensates 511

for the limited capacity to learn complex reranking 512

patterns when the number of parameters is small, 513

prior knowledge about ranking interferes with the 514

reranking function as the number of parameters 515

grows. In essence, ranking and reranking serve dis- 516

tinct purposes. Ranking focuses on sorting relevant 517

documents, while reranking involves permuting the 518

initially ranked documents. 519

The dialogue task requires more detailed rea- 520

soning over textual information than question- 521

answering and fact-verification tasks. Reranking 522
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Question Answering Fact Check. Dial.
Dataset |P| NQ TQA HoPo FEV WoW
Model K.-EM K.-F1 K.-EM K.-F1 K.-EM K.-F1 K.-AC K.-RL K.-F1

Pre-training (48k)

Re3val 5 36.84 42.27 48.34 51.74 23.25 27.55 70.62 9.74 10.81
Re3valI 5 39.88 45.43 51.08 53.93 23.85 28.11 73.09 9.88 11.08

Full Fine-tuning

SEAL 100 38.78 44.40 50.56 54.99 18.06 21.42 71.28 10.45 11.63
RAG 5 32.69 37.91 38.13 40.15 3.21 4.10 53.45 7.59 8.75
KGI 5 36.36 41.83 42.85 46.08 - - 64.41 10.36 11.79

DPR + BART 5 29.09 42.36 46.19 1.96 2.53 63.94 34.70 5.91 6.96

Few-shot (48k)

Re3val 5 38.92 45.06 50.05 53.14 23.94 28.26 71.06 11.70 13.46
Re3val 10 40.17 46.53 51.31 54.46 24.13 28.44 71.08 11.79 13.41
Re3valI 5 40.44 46.23 50.41 53.44 24.33 28.64 72.78 12.01 13.55
Re3valI 10 39.54 45.92 51.00 53.93 24.22 28.71 73.02 11.94 13.57

Table 2: The final KILT scores of the test sets are reported above, as presented on the KILT Leaderboard. The
best-performing models are indicated in bold, while the second-best models are underlined. Additionally, the
notation I denotes the Imputation of DPR contexts for missing gold contexts.

with a few parameters does not yield improvements523

in performance for the WoW test set, as indicated524

in Table 1. Furthermore, the inconsistency between525

the test set results in Table 1 and the dev set results526

in Table 12 for the reranking stage of the 770m,527

770m parameter configuration highlights the need528

for further investigation.529

5.2 Context Reranker530

The performance of our Context Reranker, eval-531

uated using gold passages and hard negative pas-532

sages as described in Section 4.5, is presented in533

Table 3. Notably, our Context Reranker exhibits a534

higher precision compared to recall. This charac-535

teristic shows that the Context Reranker effectively536

filters out irrelevant and low-quality results, prior-537

itizing accuracy in retrieving relevant documents,538

even if they may miss some. The high precision539

score indicates that relevant documents are ranked540

at the top. However, further investigation is re-541

quired to examine the trade-off between precision542

and recall in the Context Reranker for downstream543

reading tasks.544

5.3 Reader545

The slight performance difference observed be-546

tween the reader with 5 and 10 contexts in Table 2547

suggests that our context reranker excels in retriev-548

ing highly relevant documents at the top, showcas-549

ing its exceptional precision. Moreover, our con-550

text imputation pre-training strategy is effective,551

enabling Re3val to outperform SEAL, although552

SEAL utilizes 100 contexts for grounding with FiD. 553

Finally, as indicated in Table 2, Re3val achieves su- 554

perior results with only five passages, underscoring 555

the advantages of our approach. 556

6 Conclusion 557

This paper presents Re3val, a novel reranking ar- 558

chitecture for generative retrieval. Re3val achieves 559

state-of-art performance with question generation, 560

REINFORCE, and reranking. Succinctly, Re3val 561

incorporates question generation to address epis- 562

temic uncertainty and domain shift. It utilizes RE- 563

INFORCE on constrained beam search outputs to 564

enhance exploration. Experimental results demon- 565

strate Re3val’s superiority over the CorpusBrain 566

zero-shot baseline, with an average 8% R-Precision 567

improvement across five tasks using reduced pre- 568

training data. Re3val also achieves an average 1.9% 569

R-Precision increase compared to other generative 570

models via page title reranking with limited task- 571

specific data. Moreover, by employing a context 572

reranker before grounding, Re3val achieves top-1 573

KILT scores among generative retrieval models, 574

showing an average 2.1% improvement across five 575

datasets. Re3val’s data-efficient approaches reduce 576

training time and labeling costs, representing no- 577

table advancements in generative retrieval. 578

Limitations 579

Given this project’s time and resource limitations, 580

a comprehensive comparison of REINFORCE with 581
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other Reinforcement Learning algorithms, such as582

PPO and TRPO, which require more memories for583

their reference model, was not feasible. Further-584

more, the observed disparity between the perfor-585

mance on the development and test sets for both586

the retrieval and reader components necessitates587

further investigation. Lastly, it is worth noting that588

specific labeled page titles in the FEVER dataset589

are not present in the KILT database, introducing a590

discrepancy that should be considered.591

Ethics Statement592

In this study, we utilize datasets obtained from593

various sources, including Natural Questions,594

TriviaQA, HotpotQA, FEVER, and Wizard of595

Wikipedia. These datasets serve as integral compo-596

nents of the KILT benchmark and are derived from597

the KILT knowledge source, which is based on the598

August 1st, 2019, Wikipedia dump. In addition599

to the 2019 Wikipedia dump, we incorporate the600

June 2017 Wikipedia dump into our pre-training.601

It is crucial to acknowledge that these datasets may602

contain instances of incorrect or misconstrued in-603

formation, which could potentially result in the604

generation of biased, toxic, or fabricated content.605

Moreover, the utilization of language models, such606

as T5, during the training and preprocessing stages607

introduces the possibility of ethical risks that may608

be embedded within the internal parameters of609

these models. Consequently, it is imperative for re-610

searchers to exercise caution when employing our611

paper and the associated outputs and to establish612

suitable policies to mitigate any potential ethical613

risks that may arise from the use of these models614

in real-world production settings.615
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A Appendix845

A.1 Hyperparameters846

The default hyperparameter settings and hardware847

configurations employed for the overall tasks are848

outlined in Table 4, with further details provided in849

Tables 5 to 7. Given the limited hardware resources850

available in our academic environment, we utilize851

different GPUs for our models, as specified in Table852

5. FiD, which uses ten passages, is trained with853

half of the batch size indicated in Table 4 and 6.854

A.2 Data 855

The number of data points used for pre-training and 856

fine-tuning the retrieval models for each task are 857

outlined in Table 8. GENRE and CorpusBrain uti- 858

lize 21 billion data points from the 2019 Wikipedia 859

dump and 9 billion from the Blink dataset. In the 860

case of Re3val pre-training, we use a combina- 861

tion of the June 2017 and August 2019 Wikipedia 862

dumps. 863

For tasks such as Natural Questions (NQ), Wiz- 864

ard of Wikipedia (WoW), TriviaQA, and FEVER, 865

we pre-train the models using 125,000 samples 866

from the 2017 Wikipedia dump and 125,000 rele- 867

vant samples from the Wikipedia dump obtained 868

through the Dense Passage Retrieval multi-set 869

checkpoint. An additional 250,000 generated ques- 870

tions from the remaining samples are also included 871

in NQ, WoW, and TriviaQA. For HotpotQA, we 872

use 125,000 original contexts and 125,000 data 873

points from the two Wikipedia dumps, generating 874

questions with the remaining 125,000 original con- 875

texts and 125,000 data points from the Wikipedia 876

dumps. All subsets are uniformly sampled. 877

For the Page Title reranking task, we utilize Hot- 878

pot contexts instead of Dense Passage Retrieval 879

(DPR) contexts specifically for HotpotQA. For 880

other tasks, we used the Dense Passage Retrieval 881

multi-set checkpoint. 882

A.3 Prefix Tree 883

To construct and search the Prefix Tree for all 884

tasks, we utilize the KILT knowledge source8. This 885

knowledge source is employed as the basis for 886

building and performing Trie Node search. 887

A.4 Constrained Decoding 888

In contrast to GENRE’s constrained decoding(Cao 889

et al., 2021), which predicts a single entity per 890

beam, Re3val decodes a list of page titles per beam 891

similar to DEARDR(Thorne, 2022), as depicted 892

in Figure 4. This approach enables us to capture 893

the variability of related entities, as page titles are 894

mapped to an answer in KILT datasets. 895

A.5 REINFORCE 896

This section presents a formal mathematical proof 897

showcasing the optimization achieved by utilizing 898

the REINFORCE algorithm in our retrieval system. 899

8http://dl.fbaipublicfiles.com/KILT/kilt_
knowledgesource.json
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A.5.1 Notation900

Let J(θ) denote the objective function. In the con-901

text of Re3val, T represents the number of retrieved902

page titles in a beam. The function R(τ) represents903

the return, which is the cumulative reward associ-904

ated with a trajectory τ , defined as a sequence of905

actions (a) and states (s). Finally, we denote the906

policy as π with parameter θ, and ∇ represents the907

gradient operator.908

A.5.2 Proof909

The formula for computing the gradient of the RE-910

INFORCE objective function is given by:911

∇J(θ) = Eπθ

(
T∑
t=1

∇θ log πθ(at, st)R(τ)

)
(2)912

Here, t represents the timestep. The objective913

function (2) guides the policy πθ towards the di-914

rection of the gradient. In equation (2), R(τ) is915

a scalar derived from the undifferentiable portion916

of Re3val, specifically the R-precision calculated917

using a constrained decoding prefix tree.918

Re3val generates a sequence of page titles, repre-919

sented as τ , based on the policy π. The distribution920

of action a given a state s is denoted as πθ(a|s). In921

the case of Re3val, a softmax function is applied922

to the cross entropy loss to obtain a probability923

distribution for the action a. Therefore, the policy924

parameter can be expressed as:925

log πθ(at, st) =
M∑
i=1

yi log ȳi (3)926

Here, M represents the vocabulary size, which927

corresponds to the number of unique elements in928

the vocabulary.929

In scenarios where R(τ1) < R(τ2), the930

model parameter undergoes a greater num-931

ber of gradient updates in the direction of932

∇θ(
∑M

j=1 log πθ(at, st)R(τ2)) compared to933

∇θ(
∑M

j=1 log πθ(at, st)R(τ1)), provided that934

R(τ1) > 0 and R(τ2) > 0.935

Consequently, the REINFORCE enhances the936

performance of zero-shot and few-shot retrieval937

by assigning more updates to samples that yield938

higher rewards, thereby promoting the learning of939

more relevant patterns and improving overall per-940

formance.941

A.6 Imputation 942

A.6.1 Missing Page Imputation 943

It has been observed that specific page titles re- 944

trieved by our model are absent in the KILT 945

database, despite applying the same preprocessing 946

and tokenization procedures to these page titles as 947

those utilized for building the Trie Node. This dis- 948

crepancy in retrieval is systematically attributed to 949

the labeler’s mistake. Notably, as the missingness 950

of top-ranked retrieved page titles can significantly 951

impact performance, we assert that these page titles 952

exhibit Missing Not At Random (MNAR) charac- 953

teristics. 954

Let a dataset be D = {(x(i)t , o
(i)
t )Ti

t=1, y
(i)}ni=1 955

where x be a page title, o be a missing indicator, 956

y be a relevant context, n be the number of data, 957

T be the number of page titles per a query, fθ 958

be Re3val’s context reranker that produces a logit, 959

and k be the KILT database. For classification, 960

p(y|x1:T , o1:T , θ) = efθ(k(x1:T ,o1:T ))1∑1
j=0 e

fθ(k(x1:T ,o1:T ))j
. Then, 961

p(x, o|θ) = p(x|θ)p(o|x, ϕ), indicating missing 962

(o) depends on both existing (x) and non-existing 963

(ϕ) page titles in the KILT database. That is, the 964

probability of a missing retrieved page title in the 965

database is related to the page title. 966

To address this MNAR missingness, we employ 967

the BM-25 algorithm to impute the best matching 968

page title from the KILT database. The outcomes 969

of this imputation strategy are presented in Table 9, 970

illustrating that the performance of our reranker on 971

the test sets improves through the imputation. 972

A.6.2 Missing Context Imputation 973

Within the KILT dataset, contexts may be pertinent 974

to an answer but have remained unlabeled due to bi- 975

ases from the labeler. This particular phenomenon 976

aligns with the characteristics of Missing Not At 977

Random (MNAR) since the absence of these con- 978

texts is systematically linked to the actions of the la- 979

beler. Table 2 demonstrates a notable performance 980

improvement when utilizing imputation techniques 981

to address sparse contexts in a query using the DPR 982

(Dense Passage Retrieval) method. 983

A.7 KILT Leaderboard 984

Our performance results on the KILT downstream 985

tasks can be found on the eval.ai leaderboard9. We 986

prioritize the performance values reported in the 987

original papers in Table 1 and 2. In cases where 988

9https://eval.ai/web/challenges/
challenge-page/689/leaderboard
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the original papers do not provide specific values,989

we rely on the results available on the KILT leader-990

board. It is important to note that slight variations991

in the reported values may occur due to minor dif-992

ferences in the model versions used for evaluation993

across tasks.994

A.8 Metrics995

A.8.1 Retrieval996

Let us assume that R represents the entire number997

of retrieved documents, and among these retrieved998

documents, r is deemed relevant. In this case, R-999

Precision is the ratio of relevant retrieved docu-1000

ments to the entire number of retrieved documents,1001

i.e., r
R . Similarly, Recall@k is calculated as w

n , the1002

ratio of relevant retrieved documents to the entire1003

number of actual documents, assuming there are n1004

actual documents and w of these documents were1005

successfully retrieved within a set of k retrieved1006

documents (Petroni et al., 2021).1007

A.8.2 Context Reranker1008

Let us consider a classification task with the follow-1009

ing definitions: TP (True Positive), TN (True Nega-1010

tive), FP (False Positive), and FN (False Negative).1011

Precision is the ratio of true positives to the sum of1012

true and false positives, given by TP
TP + FP . Similarly,1013

Recall is defined as the ratio of true positives to1014

the sum of true positives and false negatives, de-1015

noted as TP
TP + FN . The F1 score represents a balance1016

between Precision and Recall, computed as the har-1017

monic mean of the two metrics: 2× Precision×Recall
Precision + Recall .1018

Accuracy, on the other hand, is calculated as the ra-1019

tio of the sum of true negatives and true positives to1020

the sum of true negatives, true positives, false posi-1021

tives, and false negatives, given by TP + TN
TP + TN + FP + FN .1022

A.8.3 Downstream Performance1023

For the downstream reading task, we do not per-1024

form any post-processing on the gold and predicted1025

outputs for the training and development sets. How-1026

ever, for the blind test sets, KILT applies post-1027

processing techniques such as lowercase conver-1028

sion, removal of articles, punctuation, and dupli-1029

cate whitespace to the gold and predicted outputs.1030

KILT maintains that these post-processing steps1031

ensure consistency and fairness in the evaluation1032

process.1033

A.8.4 KILT scores1034

As mentioned in 4.2, the KILT score incorporates1035

post-processed Accuracy, EM, ROUGE-L, and F11036

Figure 4: The decoding process in Re3val involves the
utilization of DEARDR PTHL state machine decoding.
During decoding, each page is conditionally decoded
based on the previous page, as there are instances where
multiple page titles are mapped to an answer. Further-
more, a query may have various answers, further influ-
encing the decoding process.

scores mentioned in Appendix A.8.3. However, 1037

these scores are considered only if the R-Precision 1038

for a given query is 1. The KILT scores provide 1039

a comprehensive evaluation of the system’s per- 1040

formance on the KILT tasks by emphasizing high 1041

precision and relevance, in addition to other evalu- 1042

ation metrics. 1043

A.9 Recall Curve of the Page Title Reranker 1044

The plots below demonstrate the impact of different 1045

numbers of parameters on recall performance at 1046

varying levels of documents retrieved. A detailed 1047

discussion and analysis of these findings can be 1048

found in 5.1 of this paper. 1049
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A.9.3 HotpotQA1054
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A.9.4 FEVER1056
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Question Answering
NQ TQA HoPo

PR RC F1 AC PR RC F1 AC PR RC F1 AC

62.04 21.10 31.49 99.12 68.47 32.34 43.93 99.09 79.65 78.76 79.21 99.60

Fact Check. Dial.
FEV WoW

PR RC F1 AC PR RC F1 AC

76.56 54.35 63.57 99.59 63.45 7.69 13.72 99.56

Table 3: The results of our Context Reranker on the dev sets are presented in terms of Precision (PR), Recall (RC),
Accuracy (AC), and F1-Score (F1).

Configuration RetrievalL RerankerL Reranker2 FiD

learning rate 5e-4 5e-4 5e-5 1e-4
scheduler constant w/ warmup constant w/ warmup linear constant

warmup ratio 10% 10% 0 0
eval steps ratio 10% 10% 10% 10%

batch size 46* 10 1200* 32*
max seq length 200* 512 250* 250*

max target length 30 30 50 50
epoch 5* 10* 4 5*

train beam size 1 1 1 1
eval beam size 10 10 1 1
test beam size 5 5 1 1
dropout rate 0.2 0.2 0 0

optimizer AdamW AdamW AdamW AdamW
gpu RTX6000 RTX6000 A100 A100

early stopping steps 4 4 4 4

Table 4: The hyperparameter and hardware configurations used in our study are described above. The "Reranker"
refers to the page title reranker, while "Reranker2" represents the context reranker. The asterisks (*) denote cases
where different values were used for specific tasks. Further information can be found in Tables 5 to 7.

Configuration RetrievalS RetrievalB RetrievalL RerankerS RerankerB RerankerL

batch size 220 160 46 70 35 10
gpu RTX4000 RTX3090 RTX6000 RTX4000 RTX6000 RTX6000

Table 5: The retrieval and reranker models were configured differently with varying numbers of parameters.

Configuration RetrievalS RetrievalB RetrievalL Reranker2 FiD
Dataset WoW WoW WoW WoW WoW

batch size 110 95 20 600 16
max seq length 512 512 512 500 500

Table 6: The configuration for the Wizard of Wikipedia (WoW) dataset is adjusted to accommodate the longer
length of the input.

Configuration Retrieval Reranker FiD
Dataset FEV WoW NQ FEV WoW TQA

epoch 1 1 20 1 1 1

Table 7: Different configurations are utilized for certain datasets, deviating from the settings outlined in 4.
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Model NQ TQA HoPo FEV WoW

Pre-training

Re3val 500,000 500,000 500,000 250,000 500,000
GENRE 30,000,000 30,000,000 30,000,000 30,000,000 30,000,000

CorpusBrain 30,000,000 30,000,000 30,000,000 30,000,000 30,000,000

Fine-tuning

Re3val 48,000 48,000 48,000 48,000 48,000
GENRE 87,372 61,844 88,869 104,966 63,734

CorpusBrain 87,372 61,844 88,869 104,966 63,734

Table 8: The number of datasets utilized for training in our approach is smaller than that employed by other
generative retrieval models.

Question Answering Fact Check. Dial. Average
Dataset NQ TQA HoPo FEV WoW
Model R-P R@5 R-P R@5 R-P R@5 R-P R@5 R-P R@5 R-P R@5

Before Imputation

Re3valS 59.00 61.97 59.69 64.29 54.70 38.18 81.22 85.90 56.90* 71.86* 62.30 64.44
Re3valB 64.75 63.05 66.29 71.93 55.76 39.59 81.58 83.27 62.00* 77.50* 66.01 66.67
Re3valL 66.48 65.40 68.55 74.47 59.58 44.21 82.29 85.25 63.32 79.88 67.94 69.13

After Imputation

Re3valS 59.63 60.78 59.84 64.43 54.93 38.50 81.22 85.90 56.90* 71.86* 62.50 64.29
Re3valB 64.75 63.05 66.31 71.95 56.65 41.14 81.58 83.27 62.00* 77.50* 66.26 67.38
Re3valL 66.48 65.40 68.55 74.47 59.60 44.21 82.37 85.25 63.32 79.88 68.06 69.13

Table 9: The impact of page title imputation using BM-25.

Question Answering Fact Check. Dial.
Dataset |P| NQ TQA HoPo FEV WoW
Model EM F1 EM F1 EM F1 AC RL F1

Few-shot (48k)

Re3val 5 39.06 48.58 40.49 50.54 35.13 45.60 88.25 17.06 17.49
Re3valI 5 41.50 51.02 40.98 51.15 36.27 47.15 89.83 17.68 17.87
Re3val 10 40.36 51.15 42.84 53.29 35.09 46.02 88.42 17.22 17.56
Re3valI 10 41.35 51.84 43.35 53.74 36.30 46.93 90.09 17.83 17.90

Table 10: The best scores achieved on the dev sets when fine-tuning FiD are presented in the table above. The values
highlighted in bold indicate the best scores, while those underlined indicate the second-best scores. The notation I
represents the Imputation of DPR contexts for missing gold contexts.
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Question Answering Fact Check. Dial.
Dataset |P| NQ TQA HoPo FEV WoW
Model EM F1 EM F1 EM F1 AC RL F1

Pre-training (48k)

Re3val 5 44.88 52.86 62.24 67.17 31.78 40.78 86.30 14.53 15.89
Re3valI 5 48.75 56.58 66.23 70.65 33.90 43.49 89.43 14.74 16.36

Full Fine-tuning

SEAL 100 53.74 62.24 70.86 77.29 40.46 51.44 89.54 16.65 18.34
RAG 5 44.39 52.35 71.27 75.88 26.97 36.03 86.31 11.57 13.11
KGI 5 45.22 53.38 60.99 66.55 - - 85.58 16.36 18.57

DPR + BART 5 39.75 48.43 59.60 66.53 31.77 41.56 86.32 13.27 15.12

Few-shot (48k)

Re3val 5 47.92 56.46 64.39 69.14 35.39 45.04 87.36 16.75 19.03
Re3val 10 49.79 58.94 66.57 71.42 35.73 45.48 87.15 16.92 18.93
Re3valI 5 49.58 57.75 65.06 69.96 36.45 46.66 89.27 17.10 19.06
Re3valI 10 48.68 57.37 65.87 70.49 36.52 46.89 89.59 17.06 19.16

Table 11: Reader scores of test sets on the KILT Leaderboard. The bolded are the best and the underlined are the
second best. I indicates the Imputation of DPR contexts for missing gold contexts. Note that the reader scores are
not final scores as final scores are the KILT scores which award reader scores if R-Precision is 1.

Question Answering Fact Check. Dial.
Dataset NQ TQA HoPo FEV WoW
Model |P| Stage R-P R@5 R-P R@5 R-P R@5 R-P R@5 R-P R@5

Re3val 60m Z 26.40 35.35 45.62 59.38 52.95 45.91 77.70 84.93 46.40 58.91
Re3val 60m Z, P 27.42 36.02 46.05 58.95 52.67 45.94 78.49 85.92 44.27 56.81
Re3val 60m F 45.40 60.49 59.49 71.99 51.06 49.45 81.74 87.73 48.10 67.62
Re3val 60m F, P 47.59 62.18 60.68 73.00 50.45 49.59 81.90 87.60 46.23 65.88
Re3val 60m R 61.72 76.00 64.75 81.64 56.79 60.16 84.79 88.86 45.12 66.86
Re3val 60m R, P 62.39 75.36 63.78 81.36 57.39 60.32 84.79 88.07 43.98 67.13

Re3val 60m,60m R 56.36 74.52 65.25 80.07 57.04 59.91 83.87 88.51 42.53 61.53
Re3val 60m,60m R, P 61.37 76.67 64.43 80.29 56.72 59.73 82.94 87.93 36.97 58.32

Re3val 220m Z 32.78 45.93 47.02 62.72 52.29 46.78 72.27 85.98 49.84 60.31
Re3val 220m Z, P 35.78 47.97 42.40 60.59 54.13 47.64 77.25 86.81 49.18 61.85
Re3val 220m F 54.74 69.05 61.90 77.87 50.69 51.97 79.15 82.58 52.00 71.77
Re3val 220m F, P 54.35 68.56 61.78 78.52 50.43 51.88 78.74 81.95 52.72 72.10
Re3val 220m R 63.66 77.44 65.95 82.91 57.54 60.49 79.82 81.77 40.01 63.79
Re3val 220m R, P 64.22 76.35 65.80 82.87 57.69 60.39 79.86 82.52 39.06 62.41

Re3val 220m,220m R 66.30 79.10 66.95 83.04 58.85 62.13 82.39 84.70 47.18 63.23
Re3val 220m,220m R, P 65.67 78.43 64.51 80.71 58.73 61.82 82.84 84.59 39.06 62.38

Re3val 770m Z 32.11 47.83 43.37 61.19 48.10 46.33 78.73 83.77 49.67 65.55
Re3val 770m Z, P 33.84 49.77 44.95 63.22 46.24 44.90 81.08 87.94 50.36 65.19
Re3val 770m F 55.97 71.24 64.06 79.92 50.39 51.85 80.46 82.97 55.34 74.89
Re3val 770m F, P 57.00 71.23 63.61 79.79 50.62 52.27 79.40 82.40 53.90 74.36
Re3val 770m R 65.00 78.00 66.77 82.98 57.66 60.29 81.64 84.96 46.07 69.91
Re3val 770m R, P 64.65 78.22 67.25 81.82 57.95 60.48 81.26 84.74 38.47 62.38

Re3val 770m,770m R 67.36 80.82 67.98 84.05 59.75 63.15 84.68 87.00 46.07 69.25
Re3val 770m,770m R, P 63.80 77.79 65.05 79.79 59.76 63.26 81.43 82.77 46.73 69.68

Table 12: The performance of the development sets is evaluated at each stage of the training, considering different
numbers of parameters. The stages include zero-shot retrieval (Z), few-shot retrieval (F), reranking (R), and
reinforcement (P). The parameter counts |P | represent the total parameters used to train the retrieval and reranker
models. The comma (,) in |P | indicates that the retrieval and reranker were initialized separately. In contrast, the
absence of a comma (,) signifies that the reinforced few-shot retrieval was fine-tuned with the reranker’s input and
output.
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