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Abstract— Training robots to perform a huge range of
tasks in many different environments is immensely difficult.
Instead, we propose selectively training robots based on end-
user preferences.

Given a vision and language conditioned factory model
that lets an end user instruct a robot to perform lower-level
actions (e.g. ‘Move left’), we show that end users can collect
demonstrations using language to train their home model for
higher-level tasks specific to their needs (e.g. ‘Open the top
drawer and put the block inside’). Our method results in a
13% improvement in task success rates compared to a baseline
method.

We also explore the use of the large vision-language model
(VLM), Bard, to automatically break down tasks into se-
quences of lower-level instructions, aiming to bypass end-user
involvement. The VLM is unable to break tasks down to our
lowest level, but does achieve good results breaking high-level
tasks into mid-level skills. We have a supplemental video and
additional results at talk-through-it.github.io.

I. INTRODUCTION

Interactive devices such as Alexa and Google Home have
brought AI into the home, but the prospect of having
embodied AI manipulating household objects remains out of
reach. Large Vision-Language Models (VLMs) demonstrated
the capacity to effectively control mobile robots. However,
those models have yet to demonstrate highly successful 3D
object manipulation. We believe using a VLM on top of a
robotic manipulation model is currently the best strategy.

We can’t expect to pre-train any model to complete
every task an end user might want. We believe the robotic
manipulation model must be capable of learning from the
end user, necessitating the development of robot learning
frameworks centered around end users. We take a two step
approach: creating a factory model and creating a home
model, as shown in Figure 1. We envision a user receiving
a robot programmed with a factory model which endows
it with primitive capabilities, allowing it to follow basic
natural language instructions such as “move right”, “close
the gripper”, or “move above the green jar”. The end user
would bootstrap off of these capabilities to direct the robot’s
factory model to evolve into a personalized home model. By
instructing the robot through more complex skills such as
“sweep the dust into the dustpan”, or “open the top drawer”,
the user can collect demonstrations and teach the robot to
follow more complex instructions.

We include experiments using the VLM Bard to see
whether it can replace a human breaking down tasks for a
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robot. While the VLM can break a task into skills, it cannot
break skills into primitive actions.

Our main contributions are as follows.

• We present a method for training a robot to respond
to observation-dependent and observation-independent
language commands.

• We show language commands for primitive actions
can be used in sequence to collect demonstrations for
training higher-level skills and tasks. This technique
allows non-expert end users to train a robot.

• Our results prove that our hierarchical training method
leads to performance gains over a state-of-the-art base-
line method.

• We demonstrate a VLM can successfully chain skills
learned by our model to complete longer-horizon tasks.

II. RELATED WORK

A. Learning from Demonstrations

Behavior cloning (BC) has garnered significant attention
when it comes to robot manipulation task learning from
demonstrations [1], [2], [3], [4]. For our proposed frame-
work, we require a policy that can learn many skills in
a sample efficient manner. Models such as BC-Z [2] and
MOO [5] are designed to output robot end-effector states
based on expert demonstrations. While such methods demon-
strated impressive success rates, they require prohibitively
large amounts of demonstration data.

To address the data collection bottleneck, Wang et al.
[6] proposed using videos of human play to augment the
training process. Recording human play data is fast, but they
still require robot teleoperation demonstrations to transfer
the skills to their robot. Shridhar et al. proposed PerAct [3],
which demonstrated high accuracy and sample efficiency in
the RLBench simulation environment. We chose to utilize
the PerAct architecture in our framework.

B. Demonstration Data Acquisition

BC models require expert demonstrations. The tools used
for interfacing with robots are not particularly user-friendly.
Teleoperation using game controllers is commonly used [6],
with some works leveraging VR [2], [7] to facilitate data
collection. ALOHA [8] uses a twin robot for the target robot
to mimic. While teleoperation techniques can be intuitive,
they still require expensive equipment that can be difficult
to set up. In our work, we expose the robot’s controls via
natural language.

talk-through-it.github.io


Fig. 1: The Level-1 factory model is trained on scripted demonstrations to perform primitive actions from language commands.
An end user trains the robot to perform Level-2 skills in their home by using the Level-1 action commands to collect
demonstrations of desired skills. They can then train Level-3 tasks by utilizing Level-1 action commands and Level-2 skill
commands to collect demonstrations of desired tasks. These demonstrations collected by the end user only use natural
language; no programming or special hardware is required. Different end users may choose to train different skills and tasks
according to their needs.

C. Reasoning via Large Vision-Language Models

LLM-based VLMs extend LLMs to allow reasoning over
visual contexts [9], [1]. VLMs demonstrate the ability to
describe visual scenes and answer questions about them,
as well as control robots [9]. Given a prompt describing
a situation and intention, VLMs demonstrated the ability
to reason over tasks [9] and integrate feedback from their
environments [10], [11]. We utilize Bard [12] for evaluating
the need for human intervention and hierarchical learning.

III. FRAMEWORK

A. Framework Architecture

Our architecture consists of an observation-dependent, and
an observation-independent model, as shown in Figure 2.
The command classifier determines which model to use for
a given text command. Both models take in a text instruction
and output a robot action. The observation-dependent model
takes in RGB-D images in addition to the text instruction.
This architecture applies to the factory model and the home
model illustrated in Figure 1.

The observation-independent model is a multi-layer per-
ceptron that regresses ∆x, ∆y, ∆z, ∆roll, ∆pitch, ∆yaw, and
gripper state from a CLIP [13] embedding of the instruction.
The model also takes the previous output as input to maintain
the previous gripper state. We train using a set of labeled
commands. For example, “move left” is a 10cm move in the
negative x direction, whereas “move a little left” prompts a
5cm move instead. “Rotate clockwise” is a 90-degree roll.
More commands can be seen in Appendix Table IV.

The observation-dependent model is PerAct [3] with 2cm
voxel size. Note that our architecture is modular so future
improved models can be easily integrated.

B. Model Levels

The Level-1 model is trained on primitive actions demon-
strated by a scripted expert in RLBench. Primitive actions

include both observation-independent commands (e.g. ‘Move
a little right’), and observation-dependent commands (e.g.
‘Move above the block’). Level-2 and Level-3 are skill
and task models, respectively, trained by end users via
language-commanded demonstrations. The skills model in-
cludes things like picking and placing, or pushing an object.
The tasks model includes things that require repeating a skill
or combining multiple skills.

C. Environments

We selected 14 RLBench tasks, which are a subset of the
18 tasks evaluated in PerAct. Each voxel in our model is
2cm wide, which makes high precision tasks more difficult.
Therefore, we eliminated 4 high precision tasks we wouldn’t
succeed on. To avoid confusion, we refer to the 14 RLBench
tasks as environments. Some of the RLBench tasks are
actually skills according to our definitions.

D. Level-1 Factory Model

The basis of our approach is training a Level-1 model
on demonstrations of primitive actions. The demonstrations
for Level-1 all consist of a single robot motion. We created
primitive action demonstrations for each RLBench environ-
ment. For example, the open drawer environment has 3
primitive actions: “move in front of the top handle,” “move
in front of the middle handle,” and “move in front of the
bottom handle.” The factory model is trained with 1400
scripted demonstrations covering primitive actions across all
the environments. In practice, these scripted demonstrations
will be replaced by expert demonstrations in the factory
setting.

E. Collecting Demonstrations with Language

Once the factory model is trained, we no longer need
scripted demonstrations. Demonstrations for more complex
skills and tasks are collected using only language instructions
typed by the user. Figure 3 shows a demonstration of



(a) If the command classifier determines a command is observation-
independent, the observation-independent model uses the text em-
bedding to output a robot action, as shown above.

(b) If the command classifier determines a command is observation-
dependent, the observation-dependent model uses the text embed-
ding and the current image observations to output a robot action,
as shown above.

Fig. 2: Our architecture includes a command classifier
which determines whether to run an observation-dependent
or observation-independent model. The factory model and
home model include both models. The observation-dependent
model is fine-tuned in the home model.

Fig. 3: Primitive motion (Level-1) commands are used to
collect a skill (Level-2) demonstration of sweeping dust into
the large dustpan.

the Level-1 language commands used to sweep dirt into a
dustpan.

Once the user collects a few demonstrations of a skill or
task they desire the robot to learn, they can have the factory
model fine-tune these demonstrations to create their home
models.

IV. EXPERIMENTS & RESULTS

For all experiments, model weights are saved after every
5000 steps of training. Every saved weight is evaluated on 25
unseen rollouts of each skill or task the model was trained
on. The best weight from the evaluation is then tested on
another set of unseen rollouts.

A. Learning Level-1 Primitive Actions

For primitive actions, success is determined by the robot
end effector reaching within 2.5cm of the target position. The
model is given up to 5 action predictions to reach the target
position. On average, the robot reaches the correct location
87% of the time. This Level-1 model is a strong foundation
for collecting demonstrations for higher-level models via
language.

B. Language Augmentation

In order to test variations in language, we created 6 total
paraphrases of the Level-1 action instructions. We use a
Level-1 model that was only trained on variation i = 0 as
the default model. We compare it to a Level-1 model that
was trained on variations i = 0, 1, 2, 3. Variations i = 4, 5
were not seen by either model. Variation i = 4 uses a novel
combination of words from earlier variations. Variation i = 5
includes at least one unseen word.

The augmented model shows an 8% improvement in
success rate compared to the default model on both test vari-
ations, showing a model trained on more language variations
is more likely to succeed when given paraphrased commands.

C. Baseline Models

We create baseline models for Level-2 and Level-3 using
a more traditional approach. We generate 10 demos for each
skill using scripted waypoints in RLBench. Then we train
a model on the scripted demos for 100,000 steps. The key
differences are that our method trains the model with Level-
1 demos first, and our method uses Level-2 demos collected
with language instead of using scripted waypoints. The same
is true for the Level-3 baseline.

D. Learning Level-2 Skills from Level-1 Actions

From our 14 RLBench environments, we define 14 Level-
2 skills and 4 Level-3 tasks. The skills are listed in Table I.
The tasks build on the skills. For example, put in drawer
includes the skills of open drawer, and put in drawer.

We train a Level-2 multi-skill model, and Level-2 single
skill models. We use 10 demos for each skill to fine-tune
the Level-1 model to learn the Level-2 skills. Our multi-skill
model achieves an average success rate of 39% compared to
the baseline of 23%, as seen in Table I. We believe many
important features for learning a skill are learned from the
Level-1 actions model. In the open drawer skill, the Level-
1 model already learned the concepts of top, middle, and
bottom from Level-1. In the push buttons skill, the Level-1
model already learned the 18 button color variations. When
trained on a single skill, success rates are 11% higher on
average. Therefore, users who want to train fewer skills will
likely see better success rates.

E. Learning Level-3 Tasks from Level-1 & 2

To learn Level-3 tasks, we fine-tune with Level-3 demos
on the best Level-2 models. The multi-task model results are
shown in Table II. The baseline multi-task model achieves an
average success rate of 10%, whereas our multi-task model
achieves 23%.



Model Average Open Drawer Slide Block Sweep to Dustpan Meat Off Grill Turn Tap Put in Drawer Lv2
Ours 5 demos 30±2 79±6 24±8 33±22 5±2 52±8 60±16
Ours 10 demos 39±2 79±6 40±4 68±11 15±15 51±14 84±7

Baseline 10 demos 23±3 49±9 43±5 23±21 41±2 8±7 44±31
Close Jar Drag Stick Stack Blocks Lv2 Put in Safe Place Wine Put in Cupboard Push Buttons Lv2 Stack Cups Lv2

13±2 56±7 5±5 3±2 7±2 0 73±6 8±4
28±7 51±27 9±5 16±7 8±7 0 79±10 15±2
3±2 24±7 7±6 21±6 23±8 0 24±11 9±5

Table I: Success rates for the multi-skill Level-2 model compared to a baseline. Success rates are the mean and standard
deviation from tests on 3 models initialized randomly before training.

Model Average Put in Drawer Stack Blocks Push Buttons Stack Cups
Ours 5 demos 17±2 28±11 3±5 39±6 0
Ours 10 demos 23±6 40±8 0 53±17 0

Baseline 10 demos 10±2 0 0 39±9 0

Table II: Success rates for Level-3 tasks with multi-task models. Success rates are the mean and standard deviation from
tests on 3 models initialized randomly before training.

Model Average Put in Drawer Push Buttons
Best L3 48 40 56

VLM 57.5 25 90

Table III: Success rates of Level-3 single-task models com-
pared to the VLM using a Level-2 multi-skill policy

F. Using Large Vision-Language Models

We explore utilizing VLM-generated lower-level instruc-
tions to complete higher-level skills or tasks. We prompt
the VLM Bard (version 2023.10.30) with a list of possible
actions and an image containing a front view and a gripper
view, as shown in Figure 4. The VLM is then asked to state
the feasibility of each potential next action and choose the
best one. The list of possible actions is reduced to only the
relevant actions for a given task.

VLM Reasoning over Level-1 Policy: In this experiment,
the VLM is given a list of Level-1 commands to use to com-
plete a Level-2 skill. Each command it selects is executed by
our trained Level-1 model. We observe that the VLM fails to
perform 3D spatial reasoning and provides poor justification
as to why it elected to perform an action. We hypothesize
that the VLM reasons at a high level, which is corroborated
by the way it describes a scene when prompted. Similarly,
the VLM was not trained to comprehend the robot’s state
and tends to predict that the robot is carrying an object even
when the gripper is open.

VLM Reasoning over Level-2 Policy: We provide the
VLM with a Level-2 multi-skill model and observe that it
is capable of utilizing it to achieve some success in zero-
shot task execution. The VLM is able to complete the
put in drawer and push buttons tasks. We do not attempt
stack blocks or stack cups since the provided Level-2 policy
already has low success rates on the prerequisite skills.

On average, the VLM performs better than the trained
Level-3 models, as shown in Table III. This result suggests
that the VLM can reason well over a high-level task given
a prompt. We observe that a primary reason for the VLM’s
failures on put in drawer is that the Level-2 policy fails to

Fig. 4: The prompt template shown above is used to query the
VLM for the next actions. Every action proposed is executed
by the policy for 8 steps. The images are updated after every
execution.

open the drawer, and the VLM fails to recognize that and
does not retry. An example is shown in Appendix Figures 5
and 6.

V. CONCLUSION

We present a framework that is designed for end users to
train a robot to perform a variety of skills and tasks. By
providing a factory model capable of following language
instructions for primitive actions, we show longer-horizon
demonstrations can be collected using only natural language.
Our hierarchical training method produces home models that
achieve a 1.7x improvement on Level-2 skills, and a 2.3x
improvement on Level-3 tasks compared to the baseline
method.

We attempt to replace the human in the loop with a VLM,
but find the VLM falls short on low-level reasoning. The
VLM shows better results using Level-2 skill commands to
complete Level-3 tasks. These results show potential benefits
of coupling our system with a VLM.
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APPENDIX

A. Observation-Independent Model

To endow the robot with primitive capabilities we train
it to follow the “move” and “turn” instructions listed in
Table IV. Those commands shape the capacity of our low-
level factory model.

Command ∆x ∆y ∆z ∆roll ∆pitch ∆yaw gripper
move left -10 0 0 0 0 0 1

move a little left -5 0 0 0 0 0 1
move a lot left -20 0 0 0 0 0 1

move a tiny bit left -1 0 0 0 0 0 1
move forward 0 10 0 0 0 0 1

move up 0 0 10 0 0 0 1
move backward and down 0 -10 -10 0 0 0 1

rotate clockwise 0 0 0 90 0 0 1
turn left 0 0 0 0 0 -90 1
turn up 0 0 0 0 -90 0 1

close the gripper 0 0 0 0 0 0 0

Table IV: Selected examples of commands and labels used
to train the observation-independent model

B. Training Data

This section provides more information on the training
of the Level-1 factory model. Table IV shows examples
of labels for observation-independent commands. Table V
gives the success rate breakdown of the primitive actions
in each RLBench environment. The motions for the turn
tap environment have a low success rate because the robot
is trying to move directly to a grasp position. We train a
pre-grasp position for most environments, but in the turn
tap environment, the tap handles are at angles difficult to
describe with language. The actions for the put in cupboard
environment also have a low success rate. This is because
the grocery items are not easy to distinguish in our low-
resolution voxel space. Some of the box shaped or cylinder
shaped items are easily confused with each other.

C. VLM Experiment Details

This section provides examples and details of our VLM
experiments. These experiments involved prompting the
VLM with task objective details, possible actions to perform,
a list of previously performed actions, and a description
of the requested output. Alongside the description, images
showing the current state of the robot are also provided.
Figure 7 shows an example of a complete prompt used in
our VLM experiment.

D. VLM Experiment Results

As mentioned in our results section, a pre-trained VLM
does well at decomposing level-3 (high-level) tasks into
level-2 skills but some failure cases remain. In some cases,
the pre-trained VLM fails to recognize a missing step in the
task causing it to fail. Figure 5 shows a successful use of the
VLM whereas Figure 6 shows a failure case.

https://www.bard.google.com


Environment Motions Success Rate

Open Drawer move in front of the {top, middle,
bottom} handle 96

Slide Block move {in front of, behind, left of,
right of} the block 100

Sweep to Dustpan move in front of the broom 100
Meat Off Grill move above the {steak, chicken} 100
Turn Tap move to the {left, right} tap 36
Put in Drawer move above the block 92

Close Jar move above the {color} jar,
move above the lid 92

Drag Stick move above the stick 100

Put in Safe
move above the money,
move in front of the {top, middle,
bottom} shelf

96

Place Wine
move in front of the wine bottle,
move in front of the {near side,
middle, far side} of the rack

96

Put in Cupboard move above the {item},
move in front of the cupboard 48

Push Buttons move above the {color} button 92

Stack Cups move above the left edge of the
{color} cup 88

Table V: Level-1 actions model success rates for 25 test
episodes in each environment

Fig. 5: VLM success for Put in Drawer. The VLM correctly
predicts the sequence of commands (left to right): open the
bottom drawer, put the block in the bottom drawer, move a
lot left (irrelevant since the task is complete).

Fig. 6: VLM failure for Put in Drawer. The VLM correctly
predicts the sequence of commands, but the Level-2 model
fails to execute them correctly. Predicted commands (left to
right): open the middle drawer, put the block in the middle
drawer, move a lot left, put the block in the middle drawer.



Fig. 7: Text prompt for VLM tasks. The VLM is given a prompt with the list of possible actions, and the history of previous
actions, along with a task in each prompt. Each prompt includes the current images from the front view and gripper view.
The output of the VLM is sent to the Level-2 skills model. The Level-2 skills model is allowed to run for 8 steps, then the
VLM is prompted with the updated images.
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