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Abstract

X-ray imaging is a cornerstone in medical diagnosis, constituting a significant portion of the
radiation dose encountered by patients. Despite the imperative to reduce radiation doses,
conventional image processing methods for X-ray denoising often struggle with heuristic pa-
rameter calibration and prolonged execution times. Deep Learning solutions have emerged
as promising alternatives, but their effectiveness varies, and challenges persist in preserving
image quality. This paper presents an exploration of diffusion models for planar X-ray im-
age denoising, a novel approach that to our knowledge has not been yet investigated in this
domain. Evaluation on clinical data shows that our approach enables real time denoising
of Poisson noise while preserving image resolution and structural similarity. This suggests
that diffusion models are promising for planar X-ray image denoising, offering a potential
improvement in the optimization of diagnostic utility amid dose reduction efforts.
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1. Introduction and related work

X-ray imaging accounts for 93.7% of the mean radiation dose applied to patients in medical
diagnosis (Nuclear, 2010). A single X-ray chest image implies an approximate effective
radiation dose of 0.1 mSv, which is equivalent to 10 days of exposure to ambient radiation.
For fluoroscopic interventions or clinical studies requiring several planar X-ray images, doses
can significantly build up, posing a risk for the patient, especially for paediatric patients
(Luo et al., 2020). Additionally, large radiation doses can lead to premature hardware
failure of the X-ray equipment, due to vaporization of the tube´s anode and breakdown of
the tube´s filament. Therefore, it is important to reduce the dose of X-ray acquisitions.
However, a reduction in dose implies an increase in image noise, which arises due to the
quantic nature of X-rays and the presence of thermal fluctuations in the detector (Ding et al.,
2018; Yi and Babyn, 2018). This hampers the contrast resolution of the image, limiting
the diagnostic utility of the radiography and degrading the performance of downstream
processing or feature extraction algorithms (Juneja et al., 2023).
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Several conventional image processing methods have been proposed to perform denoising
of X-ray images. Some of the methods that have shown good results are bilateral filters
(Juneja et al., 2023), total variation (TV) methods (Sagheer and George, 2020), or 3D Block
Matching (Dabov et al., 2007). However, these methods require heuristic calibration of
parameters hindering their generalization and can have long execution times limiting their
incorporation into clinical practice (Lin et al., 2023). To solve these limitations, several
Deep Learning (DL) solutions have been proposed for planar X-ray and fluoroscopy image
denoising. To date most DL works simulate Gaussian noise, despite being Poisson noise the
most relevant type of noise in X-ray images (Ding et al., 2018; Yi and Babyn, 2018).

Depending on the type of data used during training, most DL solutions applied to X-
ray denoising can be classified into two main categories. The first aim to predict the clean
image from the noisy image using simple networks such as DnCNN or Denoising Autoen-
coders (Juneja et al., 2023; Gondara, 2016) or heuristically designed architectures composed
of feature extracting and refinement blocks (Nayak et al., 2023) or of dual denoising net-
works(Sahu et al., 2023). The second category of methods either train the network with
pairs of noisy images of different noise content (Noise2Noise methods) or aim to predict
specific pixels selected either randomly (Krull et al., 2019) or by intensity thresholding
(Batson and Royer, 2019) (Noise2Self methods). The majority of these solutions minimize
MSE estimates of the target, such as the Charbonnier or Frobenius norm, while only a
few explore alternative loss functions (Matviychuk et al., 2016). As MSE estimates only
compare pixel wise differences, it is common to obtain results of reduced perceptual quality,
generally leading to a loss of spatial resolution (Chung et al., 2022a) or to incomplete noise
removal.

To better preserve image resolution and texture, generative models such as Generative
Adversarial Networks (GANs) have been recently been applied to medical image denois-
ing. However, GANs suffer from convergence issues, mode collapse and vanishing gradients,
greatly hindering their training (Skandarani et al., 2023). Recently, diffusion models have
outperformed GANs (Dhariwal and Nichol, 2021), and have further improved image quality
with notably simple models. These models apply a Noise2Noise training strategy, simulat-
ing noise in a self-supervised fashion at different noise levels and predicting the residual.
Diffusion models are recently being applied to CT denoising (Xia et al., 2022; Liu et al.,
2023), but to our knowledge they have not yet been applied to denoising of planar X-ray
and/or fluoroscopy images.

In this work, we propose a denoising method based on diffusion models for planar X-ray
imaging. The method is trained with a small database to mimic the conditions of clinical
scenarios where images are difficult to obtain and is evaluated on images contaminated with
Poisson noise.

2. Materials and Methods

The proposed method is based on the original implementation of Denoising Diffusion Prob-
abilistic Models (DDPMs) (Ho et al., 2020), which are designed for generative modelling by
using a DL network to sequentially remove noise in a residual fashion.

Figure 1 shows the workflow of the proposed method, DDPM-X, that consists of two
stages: I) a diffusion model is trained with real clinical data for image generation by pro-
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gressively eliminating Gaussian noise starting from pure Gaussian noise and II), the method
identifies the step of the generative pipeline from which to start denoising real images. This
is achieved by identifying the specific denoising step within the generative pipeline that
corresponds to the equivalent noise level of the noisy image. For this stage we used real
images with simulated noise.

Figure 1: Workflow of the proposed method.

Evaluation was done on images contaminated with Gaussian noise, for which the DDPM-
X was trained, and Poisson noise, which better models the noise found in X-ray images.

2.1. Generative diffusion model

As shown in Figure 1, the diffusion model used in DDPM-X consists of three elements: a
Forward Diffusion Kernel (FDK), a DL network, and a Reverse Diffusion Kernel (RDK).
The FDK iteratively applies a diffusion process to corrupt a clean image x0 ∈ ℜH×W with
Additive White Gaussian Noise (AWGN) for a set of timesteps t ∈ [0, T ], as shown in
Equation 1.

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where xt is the noise corrupted image for timestep t and βt is a hyperparameter. The FDK
is applied in a single step for any random t as follows:

q(x0:t|x0) = q(x1, x2, ..., xt|x0)
Markov

=

T∏
t=1

q(xt|xt−1) = N (xt;
√
αtx0, (1− αt)I) (2)

where αt = 1 − βt and αt =
∏t

s=0 αs. βt may be updated following any differentiable
function that ensures that

√
αT ≈ 0. We use the linear function presented in (Ho et al.,

2020): βt =
βe−βs

T t + βs, with βs = 10−6 and βe = 0.02. The value of βs was selected to
ensure that evaluation noise levels corresponded to realistic X-ray doses.
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The RDK generates an image by iteratively reversing the forward diffusion. Given that
the reversal of a Gaussian diffusion process is also Gaussian, the p.d.f of the data can be
recovered by marginalization of the individual Markov steps:

pθ(x0)
marginal

=

∫
pθ(x0:T )∂x1:T

markov
=

∫
p(xT )

T−1∏
t=0

pθ(xt−1|xt)∂x1:T (3)

where θ ∈ ℜΘ are the parameters of the DL network, p(xT ) ∼ N (0, I), and pθ(xt−1|xt) =
N (xt−1;µθ(xt, t),Σθ(xt)) is a step from the RDK, being µθ ≈ xt − ηθ and ηθ the Gaussian
noise prediced by the network. For simplicity, we used a fixed small variance Σθ = βt. At
each step of the RDK, we clipped µ0 to the [-1,1] intensity range (Saharia et al., 2022).

2.2. Denoising strategy

To perform denoising we follow a similar approach to the Come Closer Diffuse Faster al-
gorithm (CCDF) (Chung et al., 2022b). The RDK is applied from t = t′ to t = 0 (Fig.
1), where t′ is the denoising timestep obtained from an estimate of the noise level of the
image. The approach followed to compute the denoising timestep t′ varies depending on
the probabilistic model used to simulate noise. In this work we consider two noise models:
Gaussian noise, for which the DL network has been specifically trained, and Poisson noise,
which is the type of noise inherent to X-rays due to their quantic nature. Gaussian noise
is simulated with equation 2 for a specific timestep t, and therefore t′ = t. Poisson noise
is simulated using equation 4, which includes a small Gaussian noise η ∼ N (0, I) scaled by
σ2 = 10 to emulate electronic noise, as in (Gao et al., 2023).

Zlog = −log

(
Poisson(Y ) + σ2η

I

)
(4)

where Y = Ie−Ylog , Ylog is the noiseless image, and
∫
I0(ϵ)∂ϵ = I represents the flood image.

Due to the signal dependency of Poisson noise, the denoising timestep t′ is estimated from
the maximum noise variance found in the image, as follows:

ˆYlog = I ∗ 1

n

N∑
i=1

P99(max(Y i
log)), I ∈ RH×W (5a)

where N correspond to the size of the training dataset. The percentile is applied to avoid
the contribution of high intensity artificial details present in the images such as medical

annotations. Then, Ẑlog is computed from Ŷ = Ie−Ŷlog by using Equation 4, and the
denoising timestep t′ is estimated as follows:

t′ := 1− α′
t ≈ V̂ar(Ẑlog) (6)

Calculating the timestep t′ using Equation 6 ensures that the model removes the noise
of maximum variance. It must be noticed that obtaining Zlog requires knowing the dose
I. For real noisy images, I can be estimated from the X-ray acquisition parameters, or by
using noise estimation methods (Turajlić and Karahodzic, 2017). To ensure an equivalent
noise level between Gaussian and Poisson noise, Gaussian noise was simulated by taking
the timestep t from Equation 2 as the denoising timestep t′ estimated for Poisson noise.
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2.3. Network

We used a U-Net composed of five pairs of downsampling and upsampling blocks with SiLU
activation functions, each built of 2 Resnet layers, and an attention block of 8 heads. The
number of output channels per downsampling and attention block were duplicated from 128
to 512 every two blocks. The network was conditioned on the timestep which was given to
each block as a sinusoidal embedding preprocessed by an MLP block of two layers.

The model was trained for 100 epochs with mixed precision, using a learning rate of
10−4, an AdamW optimizer, and a cosine schedule to achieve super convergence (Smith and
Topin, 2019). The MSE loss function L(θ) = E[∥η − ηθ(xt, t)∥2] was used to predict the
Gaussian noise η of the image at a timestep t randomly drawn from a uniform distribution.
A random horizontal flip was applied to the images to perform data augmentation. Training
was performed on a RTX 3090 GPU of 24 GB, and took 500 s per epoch, while inference
took 0.25s per timestep. All code was implemented on Pytorch based on Fastai (Howard
and Gugger, 2020) and Diffusers from Hugging Face (von Platen et al., 2022).

2.4. Evaluation

The proposed method was evaluated for Poisson noise and Gaussian equivalent noise. Noisy
images were obtained for high dose with I = 5× 104 and

√
1− α3 = 9.6× 10−3 for Poisson

and Gaussian noise, respectively, and for low dose with I = 9×103 and
√
1− α9 = 9.6×10−2,

for Poisson and Gaussian noise, respectively. The high dose corresponded to an estimated
denoising step of t′ = 3 and the low dose to t′ = 9. We randomly selected 1225 images
from the NIH Chest X ray database (Wang et al., 2017), splitted into a training set of 1125
images and a validation set of 100 images. Images were resized from 1024x1024 to 512x512
and normalized to the [-1,1] intensity range, as in (Matviychuk et al., 2016). These images
were taken as the noiseless image Ylog from Equation 4.

The evaluation of Poisson contaminated images was compared with four well-known al-
gorithms: Block Matching and 3D filtering (BM3D) (Dabov et al., 2007); Neighbor2Neighbor
(Nei2Nei) (Huang et al., 2021a); Dual GAN (DU-GAN) (Huang et al., 2021b), and the same
UNet architecture used by DDPM-X trained in a supervised fashion with the MSE loss.
As BM3D is designed for Gaussian noise, to be fair we preprocessed the images with the
Anscombe transform to convert Poisson noise into Gaussian of variance 1 and normalized
them to the [0,1] intensity range as in (Bodduna and Weickert, 2019).

To evaluate the performance of the models, we applied three metrics commonly used in
denoising: Peak Signal to Noise Ratio (PSNR), to evaluate pixelwise differences, Learned
Perceptual Image Patch Similarity (LPIPS), to evaluate visual quality, and Structural Sim-
ilarity Index Measure (SSIM), to evaluate both distortion and visual quality (Blau and
Michaeli, 2018). The absolute difference (AD) was obtained as the difference between the
metrics computed for the target and the denoised image, and the relative difference (RD) as
the ratio of AD and the metric computed for the target and noisy image. Visual evaluation
was done after a simple post-processing pipeline, consisting of a Contrast Limited Adapta-
tive Histogram Equalization (CLAHE) with size tile of 70 ṕıxels and clip limit of 0.0001,
and a Laplacian Pyramid of 3 levels. We additionally performed a preliminary evaluation
of our method with real noisy data acquired at a low dose. This evaluation is found in
Appendix A.
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3. Results

Table 1 shows that our method is powerful enough to achieve significant denoising for a
wide range of noise levels.

Table 1: Metrics evaluated on the validation set at different dose levels.

Dose AD RD

I (×103) LPIPS SSIM PSNR LPIPS SSIM PSNR

9 0.02 98.05 36.89 92.41 12.68 22.63
14 0.02 98.25 38.36 91.93 7.74 19.57
33 0.01 98.90 40.97 90.59 3.06 14.37
50 0.01 99.06 41.93 87.07 1.86 11.50
100 0.00 99.47 44.37 78.75 0.87 9.23

Figure 2: Zoom of shoulder and lung regions indicated by the yellow rectangles of Figure
4. Red arrows point to hallucinations.

Table 2 shows that DDPM-X achieved the best quantitative performance of all methods
for most. We can see that for most metrics, and specially for low doses, the best results
were achived by DDPM-X for Gaussian noise, for which the network was trained. However,
the performance for Poisson noise was similar, with percentually small differences in RD
(below 3% in the worst of the cases) and from a qualitative point of view, these differences
do not significantly hinder the visualization of the denoised image (Figure 2). The denos-
ing timesteps for which the best quantitative results were obtained shows an error in the
estimations of t′ = ±1 for our method (t′ in Table 2).
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Visual results in Figure 2 show that DDPM-X can effectively handle the different Pois-
son noise levels found in the images due to the signal dependency of Poisson noise, while
preserving spatial resolution. However, for low doses it was unable to restore details of
low contrast resolution that had been masked by noise, and in some cases it introduced a
slight spatial distortion and/or small details as shown by the red arrows. BM3D introduces
smoothing and artificial textures, being more noticeable for low doses, while Nei2Nei loses
low contrast details for high doses and fails to achieve complete denoising for low doses. The
vanilla UNet blurs the images for both high and low doses, while the DU-GAN preserves
spatial resolution for high doses but introduces smoothing for low doses.

Figure 3 shows that for denoising timesteps above the optimum, the value of the metrics
for DDPM-X on Poisson noise is not significantly affected. However, visual evaluation shows
smoothing and hallucinations (Figure 4). For smaller timesteps, images preserve spatial
content despite suffering from incomplete noise removal.

Table 2: Quantitative results of the models for t′ denoising steps. DDPM-Xg and DDPM-
Xp correspond to DDPM-X evaluated on Gaussian and Poisson noise respectively.
Best results, second best results

.

Dose Model t’ LPIPS ↓ SSIM ↑ PSNR ↑
AD RD AD RD AD RD

Low

BM3D - 0.05 78.69 97.81 11.81 34.58 22.38
Vanilla UNet - 0.07 72.42 97.81 12.59 37.56 20.25

Nei2Nei - 0.03 85.01 96.85 11.14 36.45 16.94
DU-GAN - 0.04 81.79 97.61 12.27 37.04 19.48
DDPM-Xg 8 0.02 93.81 97.33 14.67 37.27 26.49
DDPX-Xp 8 0.02 92.40 98.05 12.68 36.89 22.63

High

BM3D - 0.02 65.88 98.88 1.99 39.78 12.11
Vanilla UNet - 0.02 64.66 98.68 1.81 41.39 7.21

Nei2Nei - 0.02 53.21 98.80 1.71 40.45 5.90
DU-GAN - 0.01 84.06 99.11 1.88 42.23 9.24
DDPM-Xg 3 0.01 89.87 99.15 1.63 42.54 11.61
DDPM-Xp 4 0.01 87.06 99.07 1.86 41.93 11.50

4. Discussion

In this work we have proposed DDPM-X, a method for planar X-ray image denoising based
on a diffusion model. Although the network was trained on Gaussian noise, results suggest
that the diffusion model can be also applied to Poisson denoising without any modification
or fine-tuning of the network.

Given the noise level conditioning of the network, the user can regulate the amount
of denoising ad hoc. An initial estimate of the noise level, which is used to define the
denoising timestep, may be obtained from the SVD decomposition of the image (Turajlić
and Karahodzic, 2017), or from the X-ray dose associated to the acquisition parameters.
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Figure 3: Mean values of the metrics for different denoising steps for the low dose case on
the validation set.

Figure 4: Denoising results of DDPM-X for Poisson noise for different timesteps, shown for
the spine region indicated by the yellow rectangle. Arrow points to hallucination.

However, the selection of the appropriate denoising timestep can be critical as overly large
values can introduce hallucinations. Given that the preservation of spatial content is of
uttermost importance in the medical field, it is therefore preferable to cautiously use smaller
values. In the future, we will explore the inclusion of data consistency models to constrain
the generative power of these models and reduce the risk of content distortion.

Evaluation showed that the metrics failed to detect the appearance of hallucinations.
In the future we will explore alternative metrics such as the Edge Preservation Index (EPI)
(Sagheer and George, 2020), and we will evaluate them patch-wise to account for small
local spatial distortions. On the other hand, the low differences in metric values between
our method and the baselines did not seemingly correlate with the noticeable visual dif-
ferences observed. This discrepancy is likely caused by the difference in contrast between
the denoised image used to evaluate the metrics and the contrast-enhanced images used for
visualization.

The proposed method can be efficiently trained with a small database of down to ap-
proximately 1100 images, enabling its application to real clinical scenarios which often lack
large databases. Inference can be done in less than 3 seconds allowing its real-time appli-
cation. The method could be further sped up by estimating the variance Σθ of the reverse
diffusion path rather than taking a fixed value (Song et al., 2020).
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Appendix A. Evaluation on real noise

DDPM-X was evaluated on a real noisy acquisition of an anthropomorphic phantom. Target
images were acquired at 100kV and 4 mAs, while noisy images were acquired at the same
voltage and 0.8 mAs. As can be seen in Figure 5, results are slightly blurry, especially in the
lung region. This may be because the phantom image has perfect borders of high resolution
and deviates from the data distribution on which the model was trained. Table 3 shows that
quantitative results are almost identical than for simulated data excepting PSNR, which is
surprisingly low likely due to a non perfect alignment of the phantom for the low and high
dose acquisitions. Despite this, results show the promise of our model on real data.
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Table 3: Quantitative results of DDPM-X for t′ denoising steps.
Denoise timestep t′ LPIPS MSSIM SSIM PSNR

4.00 0.02 99.77 98.15 27.87
3.00 0.02 99.78 98.15 27.88
2.00 0.02 99.77 98.00 27.87

Figure 5: Denoising results for an antropomorphic phantom acquired at 100 kV/ 4 mAs
and 100kV/0.8 mAs. Red arrow points to missing details.
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