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Abstract

Large Language Models (LLMs) have demonstrated immense versatility and have1

been successfully adapted to tackle numerous problems in scientific domains. In2

chemistry, specialized LLMs have been recently developed for molecule structure3

tasks such as molecule name conversion, captioning, text-guided generation, and4

property or reaction prediction. However, evaluations of chemistry-focused LLMs5

remain inconsistent and often lack rigor: new models are typically assessed only6

on tasks they were explicitly trained for, while compared models have been trained7

on different sets of tasks. In addition, several proposed benchmarks introduce id-8

iosyncratic features, e.g., task-specific input or output tags, and, thus, the LLMs’9

performance is highly sensitive to prompting strategies, answer formatting, and10

generation parameters, further complicating reproducible evaluation. To address11

these shortcomings, we perform a standardized and reproducible method compari-12

son of chemical reasoning models on CHEMSETS, a flexible benchmark suite inte-13

grated into lm-evaluation-harness. CHEMSETS unifies existing benchmarks14

with newly designed symbolically verifiable tasks, thereby expanding both task di-15

versity and difficulty. Through this evaluation, we establish a fair leaderboard and16

provide new insights into the limitations of recently proposed chemistry-aware17

LLMs. We show that current chemistry LLMs exhibit limited generalization be-18

yond the specific tasks they were trained on. Remarkably, across chemical tasks,19

recent open-weight non-specialist reasoning models outperform specialist models.20

1 Introduction21

Large language models (LLMs) have emerged as versatile multi-task systems, capable of addressing22

a wide range of problems with a single model (Brown et al., 2020; Chowdhery et al., 2023; Hoffmann23

et al., 2022; Touvron et al., 2023). Advances in inference scaling, particularly chain- of-thought24

generation, have further improved performance on symbolic tasks such as mathematics and logic25

puzzles (DeepSeek-AI et al., 2025; Yang et al., 2025). In chemistry, the rise of LLMs has led to the26

development of several instruction-tuned models designed as easy-to-use tools for diverse chemical27

structure tasks (Zhang et al., 2024; Fang et al., 2024; Zhao et al., 2025c; Yu et al., 2024; Xia et al.,28

2025). Building on this momentum, the first chemistry-specialized reasoning models have appeared29

(Narayanan et al., 2025; Zhao et al., 2025b,a), with each new chemistry LLM (cLLM) claiming30

state-of-the-art performance across a range of chemical structure tasks.31

Unfortunately, chemistry LLMs to date have been trained and evaluated on disparate sets of tasks,32

making direct model comparisons difficult and often unfair. New models are typically assessed on33

tasks included in or very similar to their own training data, while baseline models may not have34

seen those tasks at all during their training. In such situations, benchmarks are effectively test-35

ing the "interpolation" capabilities of the new model against the "extrapolation" capabilities of the36

baselines. Moreover, evaluation pipelines often include idiosyncratic conventions (e.g., input/output37

tags), and performance is highly sensitive to the system prompt, decoding settings, and answer ex-38
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traction – issues widely recognized in broader LLM evaluation (Liang et al., 2022; Cobbe et al.,39

2021; Hendrycks et al., 2021). Without a standardized protocol, formatting and extraction choices40

can artificially inflate performance for some models while unfairly penalizing others.41

In this work, we address these challenges through the following three contributions:42

• We introduce CHEMSETS, a standardized evaluation pipeline with robust model-specific43

answer extraction integrated into lm-evaluation-harness (Gao et al., 2024), to evaluate44

LLMs on chemical structure tasks. It integrates and standardizes two existing chemistry45

benchmarks, and46

• introduces SymMolic, a benchmark set which solely focuses on symbolically solvable47

molecule structure tasks. This evaluation set was crafted to cover both a wide range of48

molecule complexities and property values for each task.49

• We evaluate multiple domain-specific and general language LLMs in order to attain sys-50

tematic insights into limitations and failure modes of current LLMs applied to chemistry.51

2 CHEMSETS Benchmarks52

CHEMSETS centers on molecular structure reasoning – tasks whose answers follow directly from53

graph-derived properties, where the molecular structure is typically represented in SMILES format54

(Weininger, 1988). By focusing on symbolically verifiable tasks, where correctness can be rig-55

orously determined via deterministic algorithms, we enable reproducible model comparisons and56

ensure that performance reflects reasoning capability rather than artifacts.57

Several existing benchmarks, while valuable, fall outside this scope of molecular structure reason-58

ing with symbolically verifiable tasks. ChemBench (Mirza et al., 2024) and ChemEval (Huang59

et al., 2024) cover broad ranges of chemistry problems beyond reasoning on the chemical structure,60

including conceptual reasoning and literature comprehension. Similarly, ChemLLMBench (Guo61

et al., 2023), Mol-Instructions (Fang et al., 2024), and SMolInstruct (Yu et al., 2024) include tasks62

such as molecule captioning, property prediction, and retrosynthesis, which inherently depend on63

reference data or trained models for evaluation. These benchmarks are therefore not directly suited64

to measuring symbolic reasoning accuracy.65

Within these constraints, CHEMSETS integrates three core datasets for which the majority of tasks66

are symbolically solvable: ChemIQ, ether0, and SymMolic. Table A1 outlines their task coverage,67

and Figure A2 shows the distribution of molecular complexity across datasets. We group the tasks68

under five categories: translation, constrained generation, feature counting, molecule comparisons,69

and reaction predictions.70

ChemIQ was introduced by Runcie et al. (2025) and was originally used to evaluate the chemical71

reasoning capabilities of OpenAIs o3-mini series. It consists of eight tasks (five of which can be72

verified symbolically) spanning a wide range of task categories, totaling 796 open-ended questions73

with diverse expected output types. Many of the tasks do not require chemistry understanding but74

serve as useful sanity checks, testing whether a model can correctly parse and interpret SMILES75

notation - a crucial prerequisite for more advanced molecular structure reasoning tasks.76

ether0 was introduced by Narayanan et al. (2025) as the evaluation set for their ether0 model and77

includes a subset of tasks the model was trained on. It comprises a total of 325 questions spanning78

open-ended tasks and multiple-choice questions (MCQs) all of which expect a SMILES string as the79

answer. The open-ended portion covers eight tasks, five of which are symbolically evaluable, with80

five falling under the category of constrained generation. The MCQs cover six property categories,81

none of which are symbolically evaluable.82

SymMolic v0 is a dataset focused exclusively on symbolically verifiable tasks over molecular83

structure. SymMolic v0 consists of 1900 questions across 19 tasks from the translation and feature84

counting categories. One key design choice made for this benchmark is that, for each task, we85

intentionally cover a broad range of molecular complexities. This enables evaluation of a models86

structural reasoning ability along two axes: the variety and difficulty of tasks, and the complexity of87

the molecules involved. Furthermore, in the case of feature-counting tasks, we also ensure a diverse88

2



Table 1: Results on CHEMSETS: For each model, average task accuracy per benchmark is reported.
Error bars indicate standard errors across tasks. R denotes reasoning models. The highest value per
column is marked bold. Green color indicates the highest and yellow within the standard deviation.

Size R ChemIQ ether0 SymMolic

Chemistry LLMs

Llama-molinst (Fang et al., 2024) 8B 3.2 ± 0.6 0.6 ± 0.2 8.9 ± 0.5
ChemDFM-8B (Zhao et al., 2025c) 8B 1.1 ± 0.4 1.9 ± 0.4 3.3 ± 0.3
ChemDFM-13B (Zhao et al., 2025c) 13B 1.4 ± 0.3 0.9 ± 0.4 2.3 ± 0.2
ChemLLM-7B (Zhang et al., 2024) 7B 0.7 ± 0.3 0.4 ± 0.2 2.4 ± 0.2
LlaSMol-Mistral (Yu et al., 2024) 7B 1.6 ± 0.3 0.4 ± 0.2 3.6 ± 0.3
Txgemma-9b (Wang et al., 2025) 9B 2.6 ± 0.8 3.9 ± 0.8 0.7 ± 0.1
Txgemma-27b (Wang et al., 2025) 27B 4.0 ± 0.6 3.0 ± 0.6 3.0 ± 0.3
Ether0 (Narayanan et al., 2025) 24B 3 13.1 ± 1.1 45.9 ± 2.2 2.4 ± 0.3

Generalist LLMs

Qwen3-8b (Yang et al., 2025) 8B 3 12.0 ± 1.1 4.1 ± 0.7 19.3 ± 0.7
Qwen3-14b (Yang et al., 2025) 14B 3 12.2 ± 1.2 3.7 ± 0.7 24.9 ± 0.8
Qwen3-32b (Yang et al., 2025) 32B 3 22.6 ± 1.2 2.8 ± 0.6 28.2 ± 0.8
Qwen3-Think-30B∗ (Yang et al., 2025) 30B (A3B) 3 31.7 ± 1.5 4.1 ± 0.9 34.8 ± 0.9
Qwen3-Think-235B∗ (Yang et al., 2025) 235B (A22B) 3 65.5 ± 1.2 9.2 ± 1.3 50.1 ± 0.9
GPT-oss-20b-medium (OpenAI, 2025) 20B (A4B) 3 20.8 ± 1.0 10.0 ± 1.1 33.8 ± 0.8
GPT-oss-20b-high (OpenAI, 2025) 20B (A4B) 3 47.4 ± 1.0 13.5 ± 1.3 51.1 ± 0.8
GPT-oss-120b-medium (OpenAI, 2025) 120B (A5B) 3 36.9 ± 1.2 15.9 ± 1.5 43.1 ± 0.9
GPT-oss-120b-high (OpenAI, 2025) 120B (A5B) 3 65.6 ± 1.1 18.9 ± 1.5 57.2 ± 0.9
* version 2507

distribution of feature values. Additional details on the construction of SymMolic and the symbolic89

verifiers used for each task are provided in Appendix A.1.90

3 Evaluation & Leaderboard91

Usability Features. We built our benchmark on top of lm-evaluation-harness (Gao et al., 2024).92

This enables a modular approach to tasks and model configurations. We provide default configura-93

tions with sampling parameters, preprocessor, and extractors specifically tailored for each model.94

Symbolic Extraction. Fair comparison hinges on precise answer extraction. Recent work (Chandak95

et al., 2025; Shao et al., 2025) questions reported RLVR gains, arguing that models may learn format-96

following rather than new skills. In practice, adopting stronger extractors alone can inflate scores,97

while baselines without robust extraction are artificially deflated. To mitigate this, we use – for each98

model family – a system prompt and a matching extractor.99

Task Verifiers. Each task is evaluated using a task-specific success metric and verifier. Success100

metric values range from 0 to 1, Metrics with higher values indicating better performance. For101

ChemIQ and ether0, we adopt the original metrics and verifiers as defined in their respective papers102

(Narayanan et al., 2025; Runcie et al., 2025). For the SymMolic tasks, the evaluation procedures are103

detailed in Section A.2.104

Accuracy Metrics. We report the mean of 3 rollout attempts per question (Wang et al., 2022).105

Following standardized reporting practices advocated by HELM (Liang et al., 2022), we macro-106

average accuracies: task-level accuracy is averaged over questions; category- and dataset-level107

scores are the unweighted mean of task-level accuracies. For tasks present in multiple datasets108

(e.g., SMILES→IUPAC in ChemIQ and SymMolic), we recompute the task accuracy jointly over109

the union of questions.110

Living Benchmark. The full leaderboard and per-task results will be hosted online [link in camera-111

ready]. Following the model of the Open LLM Leaderboard (Fourrier et al., 2024), we will accept112

submissions of new chemistry LLMs (open weights or free API access). Authors provide (i) a config113

file to run their model in lm-evaluation-harness, and (ii) a short description of training tasks.114
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Figure 1: Performance comparison on CHEMSETS benchmark suite. Average task accuracy for five
distinct categories of chemical reasoning tasks. Large generalist models, particularly from the
Qwen3 and GPT-oss series, consistently outperform smaller, specialized chemical language mod-
els across a majority of categories. Error bars represent standard errors across tasks.

4 Results & Discussions115

We evaluated 16 models across CHEMSETS under unified extraction protocols (Table 1, Figures 1,116

A3, A4, A5, and A6), and observed consistent differences between general-purpose LLMs and117

chemistry-specialized models, as well as clear effects of scale, architecture, and reasoning budget.118

General-purpose LLMs, despite lacking chemistry-specific training, often outperform specialized119

chemistry models. On ChemIQ, GPT-oss-120b-high (65.6 ± 1.1) and Qwen3-235B-Think (65.5 ±120

1.2) surpass all chemistry-focused models, which remain in the single-digit or low-teen range. This121

advantage holds even on SMILES-based tasks, where chemistry LLMs should excel, with general122

models maintaining 10 to 50 times higher accuracy.123

Performance within model families is driven by scale and reasoning budget. Accuracy increases124

consistently with parameter count, MoE architectures outperform dense counterparts, and test-time125

reasoning nearly doubles accuracy in some cases. Together, these factors yield the strongest results,126

with Qwen3-235B-Think and GPT-oss-120b-high reaching comparable peak performance.127

Among chemistry-specialized models, ether0 performs best (45.9±2.2 on its benchmark), reflecting128

its training on SMILES outputs. However, it fails to generalize beyond this narrow setting, dropping129

to near-zero accuracy on tasks requiring natural language or non-SMILES outputs.130

Task difficulty also varies: general LLMs achieve near-ceiling performance on simple counting131

tasks but remain below 40% on translation or functional group identification. Chemistry-specialized132

models perform even worse on these tasks. This suggests that while some structured reasoning tasks133

are largely solved, more complex forms of chemical understanding remain open.134

Conclusion. Evaluating 16 models, we find that general-purpose LLMs outperform chemistry-135

specialized models on the majority of the considered tasks, while scaling, mixture-of-experts, and136

reasoning-augmented variants yield the strongest results. Our results highlight a central open ques-137

tion: as generalist models continue to advance, can domain-specific LLMs keep pace, or will their138

utility remain confined to narrow, in-domain tasks? By establishing a fair and reproducible evalua-139

tion suite, we hope CHEMSETS will help clarify this trajectory.140

Limitations and Outlooks Our evaluation is restricted to open-weight models; closed-source sys-141

tems (Runcie, 2025; Anthropic, 2024; DeepMind, 2025) remain untested. Although CHEMSETS142

introduces new symbolically verifiable tasks, it also integrates existing benchmarks, so data con-143

tamination from pretraining corpora cannot be ruled out. The limited transparency about training144

sets raises the risk of molecule leakage; Reaction prediction tasks based on USPTO dataset (Lowe,145

2012) are especially prone to such leakage, making generalization harder to assess. Finally, like146

any benchmark, CHEMSETS is static: tasks may saturate as models improve. To address this, we147

envision iterative releases with increasingly challenging symbolically verifiable tasks.148
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A SymMolic v0 Details274

An overview of the SymMolic task is provided in Table A1.275

A.1 Dataset Creation276

As all tasks in SymMolic are symbolically evaluable, data may come from any source because277

ground-truth answers can be derived from the molecular graph (except for IUPAC tasks, which re-278

quire a provided ground truth). We selected PubChem (Kim et al., 2023) as it is a comprehensive279

and publicly accessible chemical database that covers a broad spectrum of molecules and associated280

bioactivity information (Schimunek et al., 2025). Its diversity and scale — currently over 119 mil-281

lion compounds and 295 million bioactivity records (Kim et al., 2023) — make it well suited for282

evaluating chemistry LLMs across heterogeneous chemical spaces. We first draw a random subset283

from PubChem to form a testing pool (we do not use the full database, as we are developing a com-284

prehensive dataset suite with planned train/test/validation splits and reserve the remainder for future285

dataset releases). For this pool, we extract the SMILES and IUPAC name of each molecule and286

compute its Bertz complexity (Bertz, 1981) using RDKit (Landrum and contributors, 2006).287

We argue that the difficulty of a chemistry reasoning task depends on both the question type and288

the complexity of the molecule of interest. Accordingly, we bin molecules into five complexity289

ranges: [0-100, 100-300, 300-600, 600-1000, 1000+], and sample molecules for each task from290

these bins. For each task, we sample 100 questions (see sampling strategy per task category below).291

To introduce variability in phrasing, each task has 15 question templates – a combination of manually292

authored templates and LLM-generated reformulations – which are sampled uniformly at random.293

Translation. For the four translation tasks, we sample 20 molecules at random from each complexity294

bin once. The same set of molecules is used across all translation tasks, which allows for direct295

comparison of task difficulty. The SMILES and IUPAC names are already provided in the dataset,296

while for molecular formula tasks, the ground truth is computed using RDKit.297

Feature counting. With the exception of functional_group – for which we adopt the exmol298

definition (Wellawatte et al., 2022) to enumerate present functional groups – we compute ground-299

truth feature counts for every molecule in the evaluation pools using RDKit-based symbolic solvers.300

Most feature-count distributions are highly skewed toward one or a few values. To mitigate this im-301

balance, rather than uniform sampling within each complexity bin, we use double inverse-frequency302

sampling: each candidate is weighted by the inverse frequency of its feature value and by the inverse303

frequency of its complexity bin, and sampled proportionally to the product (Algorithm 1). To avoid304

pathological outliers, for each task we discard molecules whose feature value occurs fewer than305

1,000 times in the evaluation pool. The resulting feature-value histograms for SymMolic are shown306

in Figure A1307
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Algorithm 1 Feature Frequency-Complexity Bin Weighted Sampling

Require: Molecule dataset D with:
f : discrete feature values
c: complexity bin assignments

Require: Sample size N = 100, frequency threshold τ = 1000
1: Compute value frequencies:

nf ← count of each f in D
nc ← count of each c in D

2: for each molecule i ∈ D do
3: Wi,f ← 1/nfi if nfi > τ else 0
4: Wi,c ← 1/nci
5: Wi ←Wi,f ×Wi,c

6: end for
7: Normalize: Wi ←Wi/

∑
j Wj

8: S ← Select N molecules from D with probabilities Wi

9: return S
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Figure A1: Feature value distributions for each feature counting task in SymMolic, except Function
Groups Identification, as it’s not a distribution of integers.

A.2 Verifiers308

Translation. For x2formula tasks, an answer is considered correct if the molecular composition309

matches that of the reference answer, meaning the order of atom types in the formula is not impor-310

tant. For smiles2iupac, we adopt the same verifier as in ChemIQ: the generated IUPAC name311

is evaluated using the Open Parser for Systematic IUPAC Nomenclature (OPSIN) API (Lowe et al.,312

2011). An IUPAC name is accepted as correct if it can be parsed into the intended structure. For313

iupac2smiles, correctness is determined by verifying that the generated SMILES corresponds to314

the same molecular structure as the reference SMILES associated with the input IUPAC name.315

Feature Counting. For all feature counting tasks, except functional groups identification, the output316

is an integer for which the ground truth can be deterministically obtained from the molecular struc-317

ture using RDKit. The generated answer must exactly match the reference value. For functional318

9



group identification the output is a set of strings, extracted from a string in the format "primary319

carbon, carboxylic acid, carboxylic acid derivative", must match the reference set320

obtained with adaptation of the exmol functional group definitions.321
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B CHEMSETS Datasets Details322

Table A1 lists all tasks included in the CHEMSETS datasets, with information on their symbolic323

evaluability, task category, number of questions, and expected output type.324

Table A1: Overview of tasks in each benchmark dataset. SE = Symbolically evaluable.
Task SE Categorya N Output Type

ChemIQ SMILES to IUPAC 3 T 200 String (IUPAC)
Shortest Path 3 FC 108 Integer
Carbon Counting 3 FC 50 Integer
Ring Counting 3 FC 48 Integer
NMR Elucidation 7 CG 76 String (SMILES)
Reaction prediction 7 R 90 String (SMILES)
Atom Mapping 3 C 184 List of integer tuples
Free-Wilson Analysis 3 C 40 Float

ether0 IUPAC to SMILES 3 T 25 String (SMILES)
Solubility edit 3 CG 25 String (SMILES)
SMILES completion 3 CG 25 String (SMILES)
Formula to SMILES 3 CG 15 String (SMILES)
Functional groups to SMILES 3 CG 10 String (SMILES)
Organism Elucidation 7 CG 25 String (SMILES)
Reaction prediction 7 R 25 String (SMILES)
Retrosynthesis prediction 7 R 25 String (SMILES)
Property Selectionb 7 C 150 String (SMILES)

SymMolic SMILES to IUPAC 3 T 100 String (IUPAC)
IUPAC to SMILES 3 T 100 String (SMILES)
SMILES to Formula 3 T 100 String (Formula)
IUPAC to Formula 3 T 100 String (Formula)
Alipatic Ring Counting 3 FC 100 Integer
Aromatic Ring Counting 3 FC 100 Integer
Branch Point Counting 3 FC 100 Integer
Bridgehead Counting 3 FC 100 Integer
sp3 Carbon Counting 3 FC 100 Integer
Fusen Ring Counting 3 FC 100 Integer
HBA Counting 3 FC 100 Integer
HBD Counting 3 FC 100 Integer
Heterocycle Counting 3 FC 100 Integer
Largest Ring Size 3 FC 100 Integer
Longest Carbon Chain Length 3 FC 100 Integer
Rotable Bond Counting 3 FC 100 Integer
Spiro Atom Counting 3 FC 100 Integer
Stereo Center Counting 3 FC 100 Integer
Function Groups Identification 3 FC 100 Stringc

a Categories: T: Translation, FC: Feature Counting, CG: Constrained Generation, R: Reactions,
C: Comparisons.

b MCQ across 6 different property categories.
c List of functional groups (e.g., "primary carbon, alcohol")

For each question in the CHEMSETS datasets, we compute the Bertz complexity (Bertz, 1981) for the325

reference molecule. For translation and feature counting tasks, as well as retrosynthesis prediction,326

the reference molecule is the molecule given in the question. For forward reaction prediction and327

NMR elucidation tasks, the reference molecule is the correct answer. The constrained generation328

tasks in ether0 do not have a single correct answer molecule, but for each question, the authors329

provide a reference molecule that fulfills all the constraints. The only task excluded is the SMILES330

completion task from ether0, as no valid reference molecule was provided. Figure A2 shows the331

molecule complexity distribution for each task in CHEMSETS. SymMolic contains, on average,332

more complex molecules than ether0 and ChemIQ. Each task in SymMolic spans a similar range333

of molecular complexities. However, the median complexity varies substantially between tasks,334

ensuring a good representation of different feature counts in each task.335
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C Models336

CHEMSETS is designed to benchmark modern chemistry reasoning models across diverse chemi-337

calunderstanding tasks. The suite targets instruction-tuned, general-purpose LLMs that can follow338

free-form prompts and produce verifiable final answers, rather than narrow sequence-to-sequence339

translators.340

C.1 Scientific LLMs341

Many chemistry LMs have been trained primarily for molecule-text translation – captioning342

(smiles2text) and text-guided generation (text2smiles) – rather than open-ended reasoning343

(Edwards et al., 2022; Irwin et al., 2022; Zeng et al., 2024). Because these tasks are absent from344

CHEMSETS and differ substantially from our evaluation format, such models are not well-matched345

without additional instruction tuning or extraction layers. We nevertheless probed representative346

systems; for example, ChemLLM (Zhang et al., 2024), trained broadly but evaluated in a strict347

Q&A style, performed poorly on our open-response prompts and is among the worst performing348

model on all benchmarks in CHEMSETS (table 1). Consequently, our main comparisons center349

on instruction-tuned LLMs suitable for free-form reasoning , evaluated with the model-specific350

prompts, preprocessors and extractors. We also exclude research prototypes without released check-351

points or a stable inference API; for instance, Galactica (Taylor et al., 2022) is not instruction-tuned352

for our prompt+extractor protocol, precluding a reproducible comparison.353

C.2 Generalist LLMs354

We restrict our evaluation to open-weight generalist models. Model selection was guided by the355

LiveBench leaderboard as of 15/08/2025 (White et al., 2025). We include two leading model356

families: (i) Qwen3, covering both the largest reasoning-optimized variant (Qwen3-235B-A22B-357

Thinking-2507) as well as smaller scales (Qwen3-8B, Qwen3-32B, Qwen3-30B-A3B-Thinking-358

2507), and (ii) the GPT-oss series, spanning medium- and high-reasoning variants at different pa-359

rameter scales (GPT-oss-20B, GPT-oss-120B). All models were executed on our local GPU cluster360

under unified inference settings.361

Closed-source systems (e.g., GPT-5, Claude 3, Gemini 2.5 Pro) were not included, as our benchmark362

focuses on transparent and fully reproducible evaluation.363

C.3 Model Nomenclature364

For clarity and consistency throughout this work, we use abbreviated model names. Table A2 pro-365

vides a comprehensive mapping between our abbreviations, the official model names from their366

respective publications, and their HuggingFace repository identifiers to ensure reproducibility.367
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Table A2: Model nomenclature mapping our abbreviations to official names and HuggingFace iden-
tifiers.

Abbreviation Used Model Name HuggingFace Identifier

Chemistry-Specialized Models

Llama-molinst Mol-Instructions zjunlp/llama3-instruct-molinst-molecule-8b
ChemDFM-8B ChemDFM OpenDFM/ChemDFM-v1.0-8B
ChemDFM-13B ChemDFM OpenDFM/ChemDFM-v1.0-13B
ChemLLM-7B ChemLLM AI4Chem/ChemLLM-7B-Chat
LlaSMol-Mistral LlaSMol osunlp/LlaSMol-Mistral-7B
Txgemma-9b TxGemma google/txgemma-9b-chat
Txgemma-27b TxGemma google/txgemma-27b-chat
Ether0 Ether0 futurehouse/ether0

General-Purpose Models

Qwen3-8b Qwen3-8B Qwen/Qwen3-8B
Qwen3-14b Qwen3-14B Qwen/Qwen3-14B
Qwen3-32b Qwen3-32B Qwen/Qwen3-32B
Qwen3-Think-30B Qwen3-30B-A3B Qwen/Qwen3-30B-A3B-Thinking-2507
Qwen3-Think-235B Qwen3-235B-A22B Qwen/Qwen3-235B-A22B-Thinking-2507
GPT-oss-20b-medium* GPT-oss-20b openai/gpt-oss-20b
GPT-oss-20b-high* GPT-oss-20b openai/gpt-oss-20b
GPT-oss-120b-medium* GPT-oss-120b openai/gpt-oss-120b
GPT-oss-120b-high* GPT-oss-120b openai/gpt-oss-120b

* Medium/high refer to reasoning effort settings, not separate models

D Extended Results368

D.1 Effect of molecule complexity369

Figure A3 shows the average accuracy of GPT-oss-120B-high for each task category as a function370

of the molecule complexity in the question. As we suspected when designing SymMolic, the dif-371

ficulty of chemical reasoning tasks depends on both the question type and the complexity of the372

molecule of interest. For each task category, the accuracy decreases with the increasing complexity373

of the molecules. This demonstrates the risk of drawing conclusions about the difficulty of chemi-374

cal structure reasoning without controlling for the complexity of the molecules in the questions. It375

also highlights the usefulness of SymMolic, as it was explicitly designed to cover a wide range of376

molecule complexities in a balanced manner.377
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Figure A3: Average accuracy of GPT-oss-120B-high across the different task categories as a func-
tion of binned Bertz molecule complexity.
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D.2 Results per Tasks378

Figures A4, A5, and A6 show the per-task performance of all models, for the ChemIQ, ether0, and379

SymMolic evaluation sets, respectively.380
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Figure A4: Average accuracy of all models for ChemIQ tasks.
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Figure A5: Average accuracy of all models for ether0 tasks.
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Figure A6: Average accuracy of all models for SymMolic tasks.
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