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Abstract

We consider the Bayesian algorithm execution framework, where the goal is to1

select points for evaluating an expensive function to best infer a property of interest.2

By making the key observation that the property of interest for many tasks is a target3

set of points defined in terms of the function, we derive a simple yet effective and4

scalable posterior sampling algorithm, termed PS-BAX. Our approach addresses5

a broad range of problems, including many optimization variants and level-set6

estimation. Experiments across a diverse set of tasks show that PS-BAX achieves7

competitive performance against standard baselines, while being significantly faster,8

simpler to implement, and easily parallelizable. In addition, we show that PS-BAX9

is asymptotically consistent under mild regularity conditions. Consequently, our10

work yields new insights into posterior sampling, broadening its application scope11

and providing a strong baseline for future exploration.12

1 Introduction13

Many real-world problems can be cast as estimating a property of a black-box function with expensive14

evaluations. Bayesian optimization [1] has focused on the case where the property of interest is the15

function’s global optimum. Similarly, level set estimation [2] deals with the problem of estimating16

the subset of points above a user-specified threshold.17

More generally, it is often of interest to compute a property of the function determined by the output18

of a base algorithm. However, the base algorithm usually requires a large number of function19

evaluations, often far more than can be performed in practice. As a result, it cannot be used directly,20

and the evaluation points must instead be carefully selected through other means. Building on the21

Bayesian optimization and level set estimation frameworks, this is accomplished using two key22

components: (1) a Bayesian probabilistic model of the function and (2) a sequential sampling policy23

that uses this model to select new evaluation points. Following [3], we refer to this framework as24

Bayesian algorithm execution (BAX).25

Existing approaches to BAX use expected information gain (EIG) as a criterion for choosing which26

points to evaluate [3], yet maximizing the EIG poses a significant computational challenge. We27

propose a simple but effective and scalable algorithm based on posterior sampling to address this28

challenge. Our approach relies on the key observation that many real-world BAX tasks aim to find a29

target set. For example, in Bayesian optimization, the goal is to find the function’s global optimum;30

in level set estimation, the goal is to find the points above the user-specified threshold. Leveraging31

this observation, we propose an algorithm termed PS-BAX where points are chosen according to32

the posterior probability of being in the target set. PS-BAX is scalable and orders of magnitude33

faster than INFO-BAX, the EIG-based approach proposed by [3]. Finally, we prove that PS-BAX34

is asymptotically consistent under mild regularity conditions.35
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Algorithm 1 PS-BAX

Require: p(f) (prior), D0 (initial dataset), A (base algorithm), N (number of iterations).
1: for n = 1 : N do
2: Sample f̃n from p(f | Dn−1)

3: Apply algorithm A on f̃n to obtain Xn = OA(f̃n)
4: Choose xn ∈ argmaxx∈Xn

H[f(x)|Dn−1] //Choose xn ∈ Xn with highest uncertainty
5: Evaluate yn = f(xn) and set Dn = Dn−1 ∪ {(xn, yn)}
6: end for
7: return Estimate of OA(f) based on pN . //E.g., run A on the final posterior mean
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Figure 1: Depiction of PS-BAX (Algorithm 1) for a level-set estimation problem. We plot the
objective function f (black line), the available data Dn (black points), the threshold (grey dashed
line), the posterior distribution p(f | Dn) (blue line and light blue region), a sample from the posterior
f̃n ∼ p(f | Dn) (green line), the corresponding sampled target set Xn = OA(f̃n) (green region)
(this is the set of inputs where the green line is above the threshold), the variance of p(f | Dn) (green
line, bottom row), and the next point to evaluate selected by PS-BAX xn+1 ∈ Xn (input marked by
the vertical red line). The key step is computing the target set Xn using the sampled function f̃n,
which generalizes posterior sampling for Bayesian optimization.

This work is based on our prior work [citation removed to preserve anonymity]. The present version36

extends our prior work by including new experiments, a generalization of our algorithm to the batch37

setting, and an improved discussion of theoretical results.38

2 Bayesian Algorithm Execution via Posterior Sampling39

Problem Setting Our work takes place within the Bayesian algorithm execution (BAX) framework40

introduced by [3]. The goal is to estimate OA(f), the output of a base algorithm A applied on a41

function f : X → R. We assume that f is expensive to evaluate, which means that employing42

A directly on f is infeasible (would require evaluating f too many times). Instead, we will select43

the points at which f is evaluated sequentially, aided by a probabilistic model. As is standard in44

the literature, we use Gaussian process models in our experiments. More details are provided in45

Appendix B However, our framework can easily accommodate other models, provided that sampling46

from the posterior is feasible. We specifically focus on problems where the property of interest can47

be encoded by a set OA(f) ⊂ X , which we term the target set.48

PS-BAX Our algorithm, termed PS-BAX, is summarized in Algorithm 1. In words, we first49

draw a sample from the posterior over f , denoted by f̃n (line 2), and then set the sample target50

set Xn = OA(f̃n). We then select the point in sampled target set Xn with maximal entropy:51

xn ∈ argmaxx∈Xn
H[f(x)|Dn]. For a Gaussian posterior, xn can be equivalently selected as52

xn ∈ argmaxx∈Xn
σn(x), where σn(x) is the posterior standard deviation of f(x). Intuitively, PS-53
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BAX can be seen as a generalization of posterior sampling in Bayesian optimization. However, in54

general BAX tasks, the target may be comprised of several points; thus, we select the point with the55

highest uncertainty among points in Xn, a standard strategy in the active learning literature. The56

batch generalization of PS-BAX is discussed in Appendix F. A comparison between INFO-BAX and57

PS-BAX is provided in Appendix D.58

Asymptotic Consistency of PS-BAX A natural question is under which conditions is PS-BAX able59

to find the target set given enough evaluations. We provide an answer to this question below. Before60

formally stating our results, we introduce a definition related to the characterization of problems61

where PS-BAX is expected to converge.62

Definition 1. A target set estimated by an algorithm A is complement-independent if OA(f) =63

OA(f
′) for and any pair of functions f and f ′ such that f(x) = f ′(x) for all x ∈ OA(f) ∪OA(f

′).64

Many target sets of interest, such as a function’s optimum or level set, are complement-independent.65

Indeed, the value of f at points that are not the optimum or that do not lie in the level of interest do66

not influence these properties. Theorem 1 below shows that PS-BAX enjoys asymptotic posterior67

consistency, provided the target set of interest is complement-independent. Intuitively, this result68

means that if f is drawn from the prior used by our algorithm (i.e., the prior is well-specified), then,69

with probability one, the posterior will concentrate around the true target set. Corollary 1 gives70

an asymptotically consistent estimator of the target set. Finally, we also show there are problems71

where the target set is not complement-independent and PS-BAX is not asymptotically consistent in72

Theorem 2. The proofs of these results can be found in Appendix C.73

Theorem 1. Suppose that X is finite and that the target set estimated by A is complement-independent.74

If the sequence of points {xn}n is chosen according to the PS-BAX strategy, then, for each X ⊂ X ,75

limn→∞ Pn(OA(f) = X) = 1{OA(f) = X} almost surely for f drawn from the prior.76

Corollary 1. Suppose that the assumptions made in Theorem 1 hold and let Tn ∈77

argmaxX∈XPn(OA(f) = X). Then, Tn = OA(f) for all n large enough almost surely for f78

drawn from the prior.79

Theorem 2. There exists a problem instance (i.e., X , a Bayesian prior over f , and A) such that if80

the sequence of points {xn}n is chosen according to the PS-BAX strategy, then there is a set X ⊂ X81

such that limn→∞ Pn(OA(f) = X) = 1/2 almost surely for f drawn from the prior.82

3 Numerical Experiments83

We demonstrate the performance of PS-BAX on four different problem classes, described below84

below. We compare the performance of PS-BAX against the INFO-BAX [3], and uniform random85

sampling over X (Random); when available, we also include an algorithm from the literature86

specifically designed for the problem class. The performance of each algorithm is determined by87

running the algorithm A on µn, the posterior mean of f given Dn and subsequently computing a88

suitable performance metric on OA(µn). Additional details are provided in Appendix E.89

(a) Local Optimization aims to find the optimum of f using a local optimization method90

base algorithm (potentially with multiple restarts). In our experiments, we use L-BFGS-B91

as the base algorithm. The performance metric is the log10 inference regret, given by92

log10(f
∗ − f(x̂∗

n)), where x̂∗
n is obtained by applying A on µn. As a baseline, we also93

include the expected improvement (EI) acquisition function.94

(b) Level Set Estimation aims to find a OA(f) := {x ∈ X | f(x) > τ} for a user-specified95

τ . The base algorithm A is the algorithm that ranks all the objective values and returns the96

points at which the function value is greater than the threshold. The performance metric we97

consider is the F1 score. As an additional baseline specifically designed for this setting, we98

include the LSE algorithm proposed by [2].99

(c) Top-k Estimation aims to find the k points with the largest values of f(x) on a finite (but100

potentially large) set X . The base algorithm A is the algorithm that evaluates f at all points101

in X and returns the k best points. We use the Jaccard distance between the estimated output102

Sn = OA(µn) and the ground truth optimal set S∗, which is defined as103

d(Sn, S
∗) = 1− |Sn ∩ S∗|

|Sn ∪ S∗|
. (1)
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Figure 2: Performance of PS-BAX across four test problems and comparisons against different
baselines. (a) The log10 inference regret for the local optimization setting on the Ackley 10D test
function. Lower is better. (b) The F1 score for the level set estimation setting on Auckland’s Maunga
Whau volcano dataset [4] with threshold τ = 0.55 of all the function values in the domain. Higher is
better. (c) The Jaccard distance for the top-10 problem on an 80-dimensional domain of size 10000
on the GB1 protein dataset with batch size = 5 [5]. (d) Inference regret for DiscoBAX problem using
the Achilles dataset [6], with intervention values from the Interferon γ assay [7]. Lower is better.

(d) DiscoBAX is a problem setting from [8] where the goal is to find a set of optimal genomic104

interventions to determine suitable drug targets. Formally, OA is the solution of105

max
S⊂X :|S|=k

Eη

[
max
x∈S

f(x) + η(x)

]
, (2)

where X is a pool of genetic interventions, k is the desired interventions set size, f(x) is106

an in vitro measurement correlated to the effectiveness of intervention x, and η(x) encodes107

noise and other exogenous factors.108

We evaluate the performance of PS-BAX on eight problems across four problem classes (the rest of109

the experiment results can be. The results for four of the problems (one for each class) are shown in110

Figure 2. The rest of our experimental results can be found in Appendix E). Overall, we find that111

PS-BAX is always competitive with and sometimes significantly outperforms INFO-BAX across all112

of our experiments. Moreover, PS-BAX is one to two orders of magnitude faster in all experiments.113

4 Conclusion114

Many real-world problems can be cast as estimating a property of a black-box function with expensive115

evaluations. By making the key observation that in many problems, the property of interest is a target116

set of points defined in terms of the function, we introduce a novel posterior sampling strategy. Our117

experiments across a broad range of settings show that this strategy is competitive with the approach118

proposed by [3] while being much faster to compute. Finally, we showed that our posterior sampling119

strategy is asymptotically consistent under mild regularity conditions.120
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A Additional Related Work246

Our work falls within the broad field of probabilistic numerics [9], which casts numerical problems,247

such as optimization or integration, as probabilistic inference problems. This probabilistic approach248

allows for uncertainty quantification, which is crucial for settings where the computational budget is249

small and computing must be carefully planned, often in an adaptive fashion. Most of the recent work250

in probabilistic numerics has focused on (Bayesian) optimization [1, 10]. However, there have also251

been efforts in integration (Bayesian quadrature) [11–13], level set estimation [2, 14], and solving252

differential equations [15, 16].253

Recently, [3] proposed an approach termed INFO-BAX to estimate an arbitrary property of interest254

that, in principle, can be computed via a known base algorithm. The base algorithm requires255

a potentially large number of function evaluations and thus cannot be applied directly. Instead,256

following the probabilistic numerics paradigm, a Bayesian probabilistic model of the function is used257

to select new points to evaluate iteratively. At each iteration, the point to evaluate next is obtained258
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by maximizing the expected information gain (EIG) between the point and the property of interest.259

Similar EIG-based approaches have been used in the statistical design of experiments [17–19] and260

Bayesian optimization [20–22]. These approaches often deliver an excellent performance. However,261

they are quite computationally demanding due to the look-ahead nature of the EIG computation.262

Moreover, in most cases, the EIG cannot be computed in closed form and must be approximated via263

Monte Carlo sampling. As a consequence, EIG-based approaches are only useful in low-dimensional264

settings and when the function evaluations are highly expensive, severely limiting their applicability265

in real-world problems.266

In response to the limitations of EIG approaches, we explore an alternative family of strategies known267

as posterior sampling, or Thompson sampling [23, 24]. Posterior sampling algorithms have been268

widely used in Bayesian optimization [25–27], multi-armed bandits [28–30], and reinforcement269

learning [31–33]. In such settings, these approaches select a point at each iteration according to the270

posterior probability of being the optimum. To our knowledge, our work represents the first extension271

of posterior sampling beyond optimization settings, offering fresh insights into this algorithmic272

family. At the same time, we note that the range of problems that can be tackled with our approach is273

narrower than those that can be tackled, at least conceptually, using the EIG approach. Nevertheless,274

this class of problems remains substantial. In particular, it encompasses those investigated empirically275

by [3] and the follow-up work [8], among many others.276

Within the optimization setting, our work aligns with recent efforts aimed at broadening the applica-277

bility of Bayesian optimization to complex real-world problems. Many such problems depart from278

classical optimization formulations, exhibiting diverse structures involving combinatorial [8], robust279

[34, 35], or multi-level optimization formulations [36]. Regular Bayesian optimization algorithms280

often fail to naturally accommodate these structures, thus limiting their practical utility. Our work281

introduces a straightforward algorithm applicable to these diverse settings, serving as a robust baseline282

for future exploration. Finally, our work also benefits from recent advances in probabilistic modeling283

tools [37–39] and opens the door for the application of these tools in a broader range of problems.284

B Probabilistic Model285

Our algorithm relies on a probabilistic model encoded by a prior distribution over f , which we286

denote by p0. Although our framework is more general and can be used with other priors, we assume287

for concreteness that f follows a Gaussian process prior [40]. Let Dn−1 = {(xk, yk)}n−1
k=1 denote288

the data collected after n − 1 evaluations of f . We assume these evaluations are corrupted with289

i.i.d. Gaussian noise, i.e., yk = f(xk) + ϵk, where ϵ1, . . . , ϵn−1 are i.i.d. with common distribution290

N (0, σ2), where σ2 is a non-negative scalar. Under these assumptions, the posterior distribution over291

f given Dn−1, denoted by pn, is again a Gaussian process whose mean and covariance functions can292

be computed in closed form using the classical Gaussian process regression equations.293

C Proofs of Theorems 1 and 2294

C.1 Proof of Theorem 1295

We first introduce the following notation. Let Fn denote the σ-algebra generated by Dn−1 and296

F∞ denote the minimal σ-algebra generated by {Fn}∞n=1. We denote the conditional probability297

measures induced by Fn and F∞ by Pn and P∞, respectively. In the following results, we assume298

that the sequence of points {xn}∞n=1 is selected according to our PS-BAX strategy.299

Lemma 1. Suppose that x ∈ X is such that P∞(OA(f) = X) > 0 for some X ⊂ X with x ∈ X .300

Then, f(x) is F∞-measurable.301

Proof. A standard martingale argument shows that limn→∞ Pn(OA(f) = X) = P∞(OA(f) = X).302

Thus, since P∞(OA(f) = X) > 0, it follows that we can find ϵ > 0 such that Pn(OA(f) = X) > ϵ303

for all n large enough. This implies that the event Xn = X occurs infinitely often. Now we consider304

two cases. If σn(x) = 0 for some n, then this necessarily implies that µn(x) = f(x) (see, e.g., [41],305

Theorem 3.12). If, on the other hand, σn(x) > 0 for all n, it is not hard to see that σn(x) converges306

to zero if and only if x is selected infinitely often. Since xn = argmaxx∈Xn
σn(x), it follows that307

each element in X is selected infinitely often; i.e., the event xn = x occurs infinitely often. Let308
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n1, n2, . . . be the sequence of indices such that xnk
= x. By the law of large numbers309

lim
K→∞

1

K

K∑
k=1

yn,k = f(x)

almost surely. Since µn(x) and limK→∞
1
K

∑K
k=1 yn,k = f(x) are both F∞-measurable, it follows310

from the analysis of these two cases that f(x) is F∞-measurable.311

Theorem 1. Suppose that X is finite and that the target set estimated by A is complement-independent.312

If the sequence of points {xn}n is chosen according to the PS-BAX strategy, then, for each X ⊂ X ,313

limn→∞ Pn(OA(f) = X) = 1{OA(f) = X} almost surely for f drawn from the prior.314

Proof. A standard martingale argument shows that limn→∞ Pn(OA(f) = X) = P∞(OA(f) = X)315

almost surely. Thus, it remains to show that P∞(OA(f) = X) = 1{OA(f) = X} almost surely.316

Let Z = {x ∈ X : P∞(OA(f) = X) = 0 ∀X ⊂ X s.t. x ∈ X}. By construction, Z ∩OA(f) = ∅317

P∞-almost surely. Moreover, from Lemma 1, f(x) is F∞-measurable for each x ∈ X \ Z. Since318

OA(f) is complement-independent, OA(f) is fully determined by the values of f over X \ Z. It319

follows from this that OA(f) is F∞-measurable. Hence, P∞(OA(f) = X) = 1{OA(f) = X}320

almost surely under the prior on f .321

C.2 Proof of Theorem 2322

Theorem 2. There exists a problem instance (i.e., X , a Bayesian prior over f , and A) such that if323

the sequence of points {xn}n is chosen according to the PS-BAX strategy, then there is a set X ⊂ X324

such that limn→∞ Pn(OA(f) = X) = 1/2 almost surely for f drawn from the prior.325

Proof. Let X = {−1, 0, 1} and consider a GP prior over f such that f(−1) = f(1) = 0 and f(0) is326

a standard normal random variable. Consider the algorithm A such that OA(f) = {−1} if f(0) < 0327

and OA(f) = {1} otherwise. Clearly, the target set obtained from A is not complement-independent.328

Moreover, under the PS-BAX strategy, xn is always either −1 or 1. Since the values of f at these329

points are known, the posterior distribution over f at any iteration n is equal to the prior. From this it330

can be easily shown that Pn(OA(f) = {−1}) = Pn(OA(f) = {1}) = 1/2 for all n.331

D Comparison Between INFO-BAX and PS-BAX332

D.1 INFO-BAX and its Shortcomings333

Succinctly, the INFO-BAX approach proposed by [3] selects at each iteration the point that maximizes334

the expected entropy reduction between the function’s value at the evaluated point and OA(f).335

Evaluating an expectation is generally difficult, and one often resorts to Monte Carlo sampling.336

Moreover, computing the EIG specifically requires expensive calculations of conditional posterior337

distributions and entropy. These computational issues are also present in similar information-theoretic338

acquisition functions proposed in the classic Bayesian optimization (BO) setting. However, for BAX339

tasks, the computation burden of EIG can be much more pronounced if |OA(f)| is large. This occurs,340

for example, in the level set estimation setting, where OA(f) can be comprised by a large fraction341

of the entire input space. A more detailed discussion of the computation of the EIG is provided in342

Section D.2 below.343

On the other hand, PS-BAX requires running A only once on a single sample of f , which contributes344

to of our algorithm’s practicality and scalability. Like in posterior sampling for the standard BO345

setting, our approach sidesteps the need to maximize an acquisition function over X , which is346

computationally expensive due to needing to compute the expected value of a computationally347

expensive quantity such as information gain. We refer the reader to Section D.3 for a detailed348

discussion on the computational complexity of PS-BAX and INFO-BAX.349

D.2 Computation of the Expected Information Gain350

Let E and H denote the expectation and (differential) entropy operators, respectively. At each351

iteration n, the expected information gain between the OA(f) and a new observation of f at x,352
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denoted by yx, can be written as353

EIGn(x) = H[yx | Dn]−E[H[yx | Dn,OA(f)] | Dn]. (3)
Under the probabilistic model established above, the conditional distribution of yx given Dn is354

Gaussian, allowing the analytical computation of H[yx | Dn]. However, in most cases, H[yx |355

Dn,OA(f)] cannot be computed analytically. In particular, this is true in our setting, where OA(f)356

is a subset of X .357

To address this challenge, [3] introduced an approximation where OA(f) is replaced by a small set of358

pairs (x′, f(x′)) for inputs x′ evaluated when A is applied on f . The corresponding approximation359

of EIGn, denoted by EIGv
n, is then given by360

EIGv
n(x) = H[yx | Dn]−E[H[yx | Dn, {(x′, f(x′)) : x′ ∈ OA(f)}] | Dn]. (4)

The advantage of this approximation is that, again, H[yx | Dn, {(x′, f(x′)) : x′ ∈ OA(f))} can be361

computed analytically under a Gaussian posterior.362

The expectation E[H[yx | Dn, {(x′, f(x′)) : x′ ∈ OA(f)}] | Dn] still requires to be approximated363

via Monte Carlo sampling. Concretely, this can be achieved by drawing L samples from the posterior364

over f given Dn, denoted by f̃n,1, . . . , f̃n,L, and setting365

EIGv
n(x) ≈ H[yx | Dn]−

1

L

L∑
ℓ=1

H[yx | Dn, {(x′, f(x′)) : x′ ∈ OA(f̃n,ℓ)}]. (5)

This is the approximation of EIGn that we use in our experiments in Section 3, i.e., at each iteration,366

we set xn to be a point that maximizes the expression in Equation 5. For brevity, we refer to this367

acquisition function simply as EIGn.368

D.3 Computational Complexity of INFO-BAX and PS-BAX369

Given a Gaussian process posterior, we analyze the complexity of computing the next point to370

evaluate for PS-BAX and INFO-BAX. Our analysis excludes the cost of generating a sample from the371

posterior, which is fixed and depends only on the number of Fourier features used. It also assumes372

that the cost of evaluating such a sample at any given point is 1. Similarly, it assumes that the cost373

of evaluating the posterior mean and covariance is 1. We further assume that the function domain374

X is discrete with |X | = N , the algorithm output has a fixed cardinality |OA| = M , the number of375

execution paths to approximate the posterior entropy is L, and running the algorithm on any input376

function requires P evaluations of the input function. As we shall see, the computational cost of377

INFO-BAX can be significantly higher than that of PS-BAX if either N , M , or L is large.378

For PS-BAX, the complexity is O(P +M), which represents the complexity of running the algorithm379

once on one function sample f̃ and maximizing the posterior variance over OA(f̃). For INFO-BAX,380

the complexity is O
(
(P +M3 +N ·M2) · L

)
. For each function sample, we need to execute the381

algorithm (P ), condition on M new points to find the conditional entropy (M3), and compute the382

posterior variance of the fantasized model on N points (N · M2). This process is repeated for L383

function samples.384

E Additional Details on the Numerical Experiments385

E.1 Implementation Details386

In all problems, an initial data set is obtained using 2(d + 1) inputs chosen uniformly at random387

over X , where d is the input dimension of the problem. After this initial stage, each algorithm is388

used to select additional inputs iteratively. The performance plots show the mean plus and minus389

two standard errors of the corresponding performance metrics. Each experiment was replicated 30390

times. All our algorithms are implemented using BoTorch [37]. In particular, all of our experiments,391

except for the top-k GB1 protein design task, use BoTorch’s SingleTaskGP class with its default392

settings. Approximate samples from the posterior on f used by both PS-BAX and INFO-BAX393

are obtained using 1000 random Fourier features [42]. Our implementations of both PS-BAX and394

INFO-BAX provide automatic computation of gradients, which allows continuous optimization when395

X is continuous. For INFO-BAX, we set the number of Monte Carlo samples to estimate the EIG396

equal to L = 30 across all problems.397
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Figure 3: Results for the local optimization setting showing the log10 inference regret achieved by
the compared algorithms. The left and right panels show results for the Hartmann-6D, Ackley-10D
functions, respectively. PS-BAX and EI are comparable on Hartmann-6D, both surpassing INFO-
BAX. On Ackley-10D, PS-BAX is significantly better. Lower is better.

E.2 Local Optimization398

We explore the performance of our algorithm in the local optimization setting, where A is a local399

optimization algorithm, assuming that f (and potentially its gradients) can be evaluated at a large400

number of points. Examples of such algorithms include evolutionary algorithms [43], trust-region401

methods [44], and many gradient-based optimization algorithms [45–47]. This setting reduces to the402

classical BO setting if A can recover the global optimum of f . In such case, the INFO-BAX reduces403

to the classical predictive entropy search acquisition function [21] when computed exactly and to the404

joint entropy search acquisition function [48] under the approximation proposed by [3] we use in our405

experiments. PS-BAX, in turn, reduces to the classical posterior sampling strategy used in BO [25].406

In our experiments, we use a gradient-based optimization method as a base algorithm instead407

of an evolutionary algorithm as pursued by [3]. Gradient-based methods typically exhibit faster408

convergence than their gradient-free counterparts. However, they are often infeasible if gradients409

cannot be obtained analytically and instead are obtained, e.g., via finite differences. Since in most410

applications, analytic gradients of f are unavailable, directly applying such methods on f is infeasible.411

However, INFO-BAX and PS-BAX can make use of gradient-based methods thanks to the availability412

of gradients of most probabilistic models used in practice, including Gaussian processes.413

We consider the Hartmann and Ackley functions, with input dimensions of 6 and 10, respectively,414

as test functions. Both functions have many local minima and are standard test functions in the BO415

literature. As a performance metric, we report the log10 inference regret, given by log10(f
∗−f(x̂∗

n)),416

where x̂∗
n is obtained by applying A on µn. The results of these experiments are depicted in Figure 3.417

As a baseline, we also include the expected improvement (EI).418

E.3 Level Set Estimation419

Level set estimation is the task of finding points in X for which f(x) > τ for a user-specified value420

of τ . Such tasks arise in environmental monitoring applications, where a mobile sensing device takes421

measurements to detect regions with dangerous pollution levels [2], and topographic applications,422

where the goal is to infer the portion of a large geographic region above a specified altitude using a423

small number of measurements [4]. The base algorithm A in this case is simply the algorithm that424

ranks all the objective values and returns the points at which the function value is greater than the425

threshold. We evaluate our algorithm and benchmarks on both a synthetic problem (the 2 dimensional426

Himmelblau function) and the Auckland’s Maunga Whau volcano dataset [4], constituted by 87 × 61427

height measurements in a large geographic area around the volcano. The threshold τ is set to be the428

0.55 quantile of all the function values in the domain for both problems. An illustration of running429

INFO-BAX and our PS-BAX is shown in Figure 4. The performance metric we consider is the F1430

score, given by F1 = 2TP/(2TP + FP + FN), where TP is the number of true positives, FP is431

the number of false positives, and FN is the number of false negatives.432
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Figure 4: Example of using the INFO-BAX (left) and PS-BAX (right) policy on volcano level-set
estimation problem described in Section E.3. The figures show the algorithm output by running the
algorithm on the posterior mean, the ground truth super-level-set, and all the points evaluated by
each algorithm after 100 iterations. PS-BAX provides an accurate estimate of the level set, whereas
INFO-BAX misses a significant portion.

0 10 20 30 40 50
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Random LSE INFO-BAX PS-BAX (Ours)

0 20 40 60 80 100
Iteration

0.5

0.6

0.7

0.8

0.9

Random LSE INFO-BAX PS-BAX (Ours)

Figure 5: Comparison for the level-set estimation problem. (Left) Results for the 2-dimensional
Himmelblau function. (Right) Results for the Maunga Whau volcano dataset.

The results of this experiment are depicted in Figure 5. As an additional baseline specifically designed433

for level set estimation, we include the popular LSE algorithm proposed by [2]. PS-BAX again434

exhibits a strong performance, surpassing all the benchmarks.435

E.4 Top-k Estimation436

We consider the top-k estimation setting where X is a finite set, and our goal is to find the k points437

with the largest values of f(x). As a base algorithm, we use the algorithm that simply evaluates f at438

all points in X and returns the k best points. Following [3], we use the Jaccard distance between the439

estimated output Sn = OA(µn) and the ground truth optimal set S∗, which is defined as440

d(Sn, S
∗) = 1− |Sn ∩ S∗|

|Sn ∪ S∗|
. (6)

Synthetic Function We use the 3-dimensional Rosenbrock test function, which is a standard441

benchmark in the literature. The input space is obtained by taking a uniform grid over the original442

input spaces of this function.443

GB1 Protein Design We also consider a real-world top-k selection problem in the realm of protein444

design, where the task is to maximize stability fitness predictions for the Guanine nucleotide-binding445
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Figure 6: Comparison for the top-k problem using the Jaccard difference metric. Lower is better.
(Left) Finding the top 6 points on a 3-dimensional domain with 1000 candidate points in the discretized
set using the Rosenbrock function with batch size = 1. (Right) Finding the top 10 points on a 80-
dimensional action space of size 10000 on the GB1 dataset with batch size = 5.

protein GB1 given different sequence mutations in a target region of 4 residues [5]. There are 204446

possible orderings given 20 amino acids and four positions. GB1 has been well studied by biologists,447

and its domain is known to be highly rugged and dominated by "dead" variants with very low fitness448

scores [49]. Due to its high input dimensionality, enormous input space, and sparse fitness landscape,449

this dataset is very challenging for standard GP models, and thus, we utilize Deep Kernel Learning450

as proposed in [50] as our probabilistic model. As the dataset size is large, we perform batched451

evaluations (with a batch size of 5) for PS-BAX and INFO-BAX. The description of the batch452

extensions of PS-BAX and INFO-BAX can be found in Appendix F.453

E.5 DiscoBAX: Drug Discovery Application454

As a final application, we consider the DiscoBAX problem setting from [8], where the task is to find455

a set of optimal genomic interventions to determine suitable drug targets. Formally, let X denote a456

pool of genetic interventions and for each x ∈ X let f(x) be an in vitro phenotype measurement457

correlated to the effectiveness of genetic intervention x. It is assumed that actual effectiveness of458

the genomic intervention is not f(x) itself but rather f(x) + η(x), where η(x) encodes noise and459

other exogenous factors not captured by the in vitro measurement. Following the settings in [8],460

we simulate η using a Gaussian process with mean 0 and an RBF covariance function. The goal is461

to find a small set of genomic interventions in X that maximize an objective function embodying462

two goals: high expected change in the target phenotype and high diversity to maximize chances of463

success in the following stages of drug development. The work of [8] formalizes this by introducing464

the combinatorial optimization problem465

max
S⊂X :|S|=k

Eη

[
max
x∈S

f(x) + η(x)

]
, (7)

where k is the desired set of interventions. Solving Equation 7 is challenging due to its combinatorial466

structure. However, a computationally efficient approximation can be obtained by leveraging the467

submodularity of the objective function. We refer the reader to [8] for more details.468

Following [8], we use the Achilles dataset. The gene embeddings of this dataset are represented469

by 808-dimensional vectors. However, we perform Principal Component Analysis (PCA) as a470

dimensionality reduction mechanism and then fit a GP to the lower dimensional representation. In471

addition, we truncate the dataset to 5000 genes with the highest intervention values to keep the runtime472

of INFO-BAX computationally feasible. The results are shown in Figure 7. PS-BAX significantly473

outperforms INFO-BAX, whose performance is barely better than that of Random.474

F Batch Extensions of PS-BAX and INFO-BAX475

In this section, we discuss extensions of the PS-BAX and INFO-BAX algorithms to the batch476

setting, where at each iteration, we generate q new points to evaluate, denoted by x1
n, · · · , xq

n. These477

extensions are inspired by batch extensions of the posterior sampling [25] and joint entropy search478
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Figure 7: Comparison of DiscoBAX [8] with batch size = 1 on the Achilles dataset [6], with
interventions from the Tau protein assay in [7] (left) and the Intergeron γ assay (right). The metric
reported is the regret, which is the difference between the objective (Eq. 7) values of the algorithm
output (the select set of genes) on the posterior mean and the optimum value. Lower is better.
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Figure 8: Performance of PS-BAX under various batch sizes (q = 1, 2, 4) on the local optimization
Ackley 10-D test problem (left) and the Top-4 Himmelblau problem.

acquisition functions [48]. Figure 8 shows the performance of PS-BAX under various batch sizes in479

two of our test problems.480

Batch PS-BAX To enable parallel evaluations, the batched version of PS-BAX is implemented as481

follows. For a batch size of q, we draw q samples from the posterior on f , denoted by f̃1, · · · , f̃q482

and set T = ∪q
i=1OA(f̃i). We then select x1

n, · · · , xq
n iteratively by maximizing the joint posterior483

entropy of these points, i.e.,484

x1
n = argmaxx∈S H[f(x) | Dn],

...

xq
n = argmaxx∈S H

[
f(x) | Dn ∪ {x1

n, · · · , xq−1
n }

]
Batch INFO-BAX INFO-BAX can be naturally generalized to the batch setting by considering485

the EIG over a batch of q points. Directly optimizing the EIG, in this case, requires optimizing over486

X q , which may be too challenging. Instead we pursue a greedy optimization approach that leverages487

the submodularity of the EIG. Specifically, we select x1
n, · · · , xq

n iteratively by maximizing the joint488

posterior entropy of these points, i.e.,489

x1
n = argmaxx∈XH[yx | Dn]−E[H[yx | Dn,OA(f)] | Dn],

...

xq
n = argmaxx∈XH

[
yx | Dn ∪ {x1

n, · · · , xq−1
n }

]
−E

[
H
[
yx | Dn ∪ {x1

n, · · · , xq−1
n },OA(f)

]
| Dn ∪ {x1

n, · · · , xq−1
n }

]
.
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