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ABSTRACT

Out-of-distribution (OOD) detection methods, especially post-hoc methods, rely
on off-the-shelf pre-trained models. Existing literature shows how OOD and ID
performance are correlated, i.e. stronger models with better ID performance tend to
perform better in OOD detection. However, significant performance discrepancies
exist between model versions, sometimes exceeding the impact of the OOD detec-
tion methods themselves. In this study, we systematically investigated this issue
and identified two main factors—Ilabel smoothing and mixup—that, while improv-
ing in-distribution accuracy, lead to a decline in OOD detection performance. We
provide empirical and theoretical explanations for this phenomenon and propose
a solution that enhances OOD Detection while maintaining strong in-distribution
performance. Code will be released upon acceptance.

1 INTRODUCTION
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Figure 1: OOD and ID performance comparison between torchvision vl, v2 and AugDelete
(ours) models on ImageNet-1K. AUROC is averaged among near-OOD and far-OOD datasets.

Out-of-distribution (OOD) detection identifies input samples that differ from the in-distribution (ID)
training data. Detecting such samples avoids overconfident or incorrect predictions on data outside
the training scope, and is particularly important in sensitive domains such as healthcare, autonomous
driving, and security. Previous works (Vaze et al.,|2022b; |[Lu et al.| |2024) have shown that a model’s
ID and OOD detection performance are correlated - the higher the ID classification accuracy (on
CIFAR, ImageNet, etc.), the better it is at distinguishing OOD versus ID samples. They assume
that a stronger separation of ID classes naturally leads to a separation of OOD from ID classes. The
generalization improvement may come from the learning rate schedule or model ensemble, though
data augmentation has been found to be the most effective Lu et al.|(2024). An assortment of data
augmentation strategies, such as RandAugment (Cubuk et al., 2020), Style Augment (Geirhos et al.,
2018), and AugMix (Hendrycks et al.,|2020a) have all been found to be effective for improving both
ID and OOD performance. These strategies use a combination of techniques, such as image rotation,
translation, or color transformation.

Curiously, our empirical results challenge the conventional understanding of ID and OOD per-
formance correlation. Specifically, we find two commonly used augmentation strategies — label
smoothing (Szegedy et al.,[2016) and mixup (Zhang, [2017) exhibit the opposite phenomena. Models
trained with label smoothing and mixup have a ~ 10% drop in OOD detection performance compared
to omitting these strategies, despite their ability to improve model (ID) accuracy. This phenomenon
is observed across a range of convolutional and transformer network architectures, including ResNet,
MobileNet, ResNetXt, WideResNet, RegNet, SWIN-T, and ViT (See Figure|l|and appendix).
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This naturally begs the question - why should label smoothing and mixup harm OOD detection?
These two augmentation strategies exhibit a trade-off between ID and OOD performance, contra-
dicting trends in prior literature. One hint lies in the transformation in the augmentation itself.
Label-smoothing and mixup transform the data sample’s label. In contrast, previously reported
augmentation strategies that improve ID and OOD separation operate only on the data sample itself,
i.e. RandAugment, Style Augment, and AugMix, as shown by [Lu et al.[(2024)).

We analyze, from a gradient perspective, to show that both label smoothing and mixup reduce the
maximal logit values. This reduction is more pronounced for in-distribution (ID) samples than out-of-
distribution (OOD) samples, thereby diminishing their separability. In turn, methods that rely on the
logit values for OOD separation, such as the maximal logit score (MLS) (Hendrycks et al., 2022) or
energy-based score (EBO) (Liu et al., [2020), are compromised. Feature-based methods are likely
similarly compromised, due to downstream effects of diminished gradients being back-propagated
from logits.

To address this issue, we propose two novel methods: Augmentation Deletion (AugDelete) for
finetuning pretrained models and Augmentation Revision (AugRevise) for models trained from
scratch. AugDelete mitigates the negative effects of label smoothing and mixup by deleting them
and finetuning only the final layer of the network. In contrast, AugRevise introduces a revised data
augmentation method paired with a corresponding training strategy aimed at enhancing in-distribution
generalization while preserving OOD detection. Both AugDelete and AugRevise demonstrate
improvements over baseline methods in OOD detection (see Fig.[T). Besides, AugRevise outperforms
state-of-the-art training-based methods regrading OOD detection and ID accuracy.

Our contributions are as follows:

* We identified that label smoothing and mixup, two widely used data augmentation tech-
niques used in modern neural network training, can significantly degrade OOD detection
performance despite improving in-distribution accuracy.

* We theoretically demonstrated that label smoothing and mixup reduce the separation between
OOD and ID data in the logit space, impairing OOD detection.

* Based on this analysis, we proposed AugDelete for finetuning pretrained models and Au-
gRevise for training from scratch. Both methods enhance OOD detection while maintaining
strong in-distribution performance.

2 RELATED WORKS

Post-Hoc OOD Detection methods often use pre-trained models; the main research focus is to
define new score functions or post-hoc adjustments to improve detection capabilities. Methods
such as softmax-based thresholds (Hendrycks & Gimpel, 2017a) and EBO (Liu et al., |2020) use
simple yet effective techniques to repurpose off-the-shelf networks for OOD detection. Others, such
as ASH (Djurisic et al.l [2023) and ReAct (Sun et al., 2021)), are logit-based. They modify logits
by reshaping the feature activation, showing promising results in OOD detection. Feature-based
methods leveraging internal representations. For instance, Mahalanobis distance-based methods (Lee
et al., 2018)) calculate the distance of feature vectors from class-conditional Gaussian distributions,
effectively identifying OOD samples by measuring feature space uncertainty. In addition to logit-
based and feature-based techniques, recent work like NNGuide (Park et al.,2023)) combine the two to
derive more robust OOD detection scores.

Training-based OOD Detection methods adjust model training to improve the model’s ability to
distinguish between ID and OOD samples. One strategy is through explicit supervision, either from
true OOD samples (Hendrycks et al.L 2019) or synthesized virtual ones (Pinto et al.|[2022; Huang &
Li,2021). Synthesized samples are more appealing, since real OOD data is typically not available for
training. One example is MOS (Huang & L1, [2021), which creates virtual OOD samples by grouping
classes to encourage clearer separation in feature space. RegMixup (Pinto et al.|[2022)) treat mixed-up
samples as virtual outliers, the cross-entropy loss of which serves as regularizers for strengthening
the decision boundary between ID and OOD data. Other training-based techniques, like LogitNorm
(Wei et al.l [2022)) and T2FNorm (Regmi et al., [2023)), aim to improve the separability of feature
representations between ID and OOD samples. After the model training, a compatible post-hoc score
function is still required for OOD detection.
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Relations between ID and OOD has been widely explored in previous works (Vaze et al., [ 2022bj
Humblot-Renaux et al., 2024} [Lu et al., |[2024). |Vaze et al.| (2022b) found that a good closed-set
classifier is able to identifying semantically novel classes; similarly, [Humblot-Renaux et al.| (2024)
observed that ID and OOD accuracy are positively correlated, at least for correctly predicted ID
samples. [Lu et al. (2024) found that data augmentations including AugMix and RandAugment
improve both ID and OOD performance.

3 PRELIMINARIES

3.1 OOD DETECTION

A commonly used setup for the OOD detection task is to identify semantic shifts in image clas-
sification (Huang & Li, 2021} |Yang et al., [2022} Hendrycks et al., 2022). During training, only
in-distribution (ID) training set {(x,y) ~ Dip,y € Vip} are observed, where Yp has C ID classes.
Samples from semantically novel classes unseen during training are considered OOD. During testing,
OO0D samples {(z,y) ~ Doop, ¥y € Yoop, Yoop N Vip = (I} are encountered.

To separate ID and OOD samples, a score function S(x) is designed to output higher values for ID
samples than OOD samples. Based on some threshold 7, an OOD indicator 1(z; 7) can be defined as

ID if S(x) > 7
I(z;7) = - 1
(@;7) {OOD if S(z) < 7. M
The score function S(x) is derived from an ID classification network F'. F' can be further decomposed
as a feature extractor G sub-network and a linear layer (W € RE*P b € RC):

v=F(x)=W. -G(x)+b, f=G(x), 2)

where f € RP is the feature vector of the penultimate layer. Typically, network F is trained with an
ID training set using the standard cross-entropy loss Lo g:

LCE(vvy) = yT IOg(U(v))v v = F(:E), 3)
where o is the softmax function and v € R is the output logit.

Post-hoc OOD detection methods (Hendrycks et al.l 2022; Liu et al., 20205 Djurisic et al.|[2023) use
pre-trained networks, off-the-shelf to feed directly into the scoring function. They focus on post-hoc
adjustment to the features f and/or designing more effective score functions S(x). On the other
hand, training-based methods train a novel F' from scratch to improve the ID/OOD separation, e.g.
by adding regularizers (Pinto et al.,|[2022; |Wei et al., 2022) or data augmentations (Hendrycks et al.,
2020b;, (Cubuk et al., [2020). They still require a compatible S(x) to maximize the potential of F'.

Typical scoring functions are based on the logits v or the features f, or a combination of the two. For
example, the maximal logit score (MLS) (Hendrycks et al.,2022) and energy-based score (Liu et al.,
2020)are defined respectively as as:

c

Swrs(@) = max v[jl,  Sppo(w) = log(i? e’) “
=

where “[j]” denotes get the j-th element of the logit prediction. Sgpo is a soft approximation of

Sars, and other logit-based scores such as ASH (Djurisic et al, [2023) or FSEBO (Guan et al.|

2024)) are also related to Sy, s since they modified logits by reshaping feature activation. A typical

feature-based scoring function is the k-th nearest neighbor distance score (KNN) (Sun et al., [2022),

SN () = —||F = fr-ll2, )

where fi~ denotes the feature of the k-th nearest neighbor in the training set. The nearest neighbor
guidance score (NNGuide) (Park et al.| 2023) combines both features and logits, computed as:

1
SNNGuide(®) = Sppo(x) - Guide(x), Guide(z) = z Z Sepo(x) - cos(G(x+), f), (6)

i=1

where z;« denotes the i-th nearest sample in the training set and cos(-) the cosine similarity function.
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3.2 DATA-AUGMENTATION STRATEGIES

Depending on whether transform the label y, data augmentations can be categorized into data-based
augmentation and label-based augmentation. In this work, we consider Random Erasing (RE) and
Trivial Augment (TA) to represent data-based augmentation strategies, and label smoothing and
mixup to represent label-based augmentation strategies. We select these four strategies because they
are the additional strategies used by the torchvision v2 models (Torchvision, [2024) compared to
torchvision vl models.

Data-Based Augmentation 1: Random Erasing (RE) (Zhong et al.,[2020) applies random zero
masking in the input sample x with a probability p". It reduces over-fitting and improve the
generalization of neural networks. Typically, p®" = 0.1.

Data-Based Augmentation 2: Trivial Augment (TA) (Miiller & Hutter, 2021)) is a parameter-free
set of image transformations to the input sample & such as solarize, posterize, brightness adjustment,
etc. During training, TA randomly selects a single augmentation and an augmentation strength from
a pre-defined set.

Label-Based Augmentation 1: Label Smoothing (LS) (Szegedy et al., 2016) is used to avoid
overconfidence by adding a uniform vector to the label y:

Lsp(v,9y") = (¥*) T log(o(v)), y*=01-By+pu, 0<p<1, )

where u € R is a uniform vector with all elements equal to 1, 3 is the label smoothing strength,
and o is the softmax function. A larger S denotes smoother learning targets; typically, 8 = 0.1.

Label-Based Augmentation 2: Mixup (Zhang, 2017) interpolates new samples (2% %) by
linearly combining two samples in both the data and label spaces:

" = (1= Nz + Az, Y™ =(1-Ny+ My ®)
The cross-entropy loss is applied to the mixed samples (z™%*,y™®) in a standard fashion:
nggc(vmim’ ymiw) — (ymiw)T log(o_(vmi:p))’ ,Umiw — F(wmzm) (9)

Mixup creates a smooth transition between different classes and can improve ID generalization.

4 DIAGNOSING DATA AUGMENTATIONS

In this section, we systematically investigate the influence of data augmentations on OOD detection.
Starting with a case study in Sec.[4.T] we find that label-based data augmentations, label smoothing
and mixup, harm OOD detection. Then, in Sec. we explain the reason with a derivation.
Specifically, label smoothing and mixup reduce the maximal logits of sample outputs, but more so
for ID samples than OOD samples, leading to poorer ID/OOD separation. Furthermore, we analyze
mixup from the perspective of virtual sample generation in Sec. Empirical results suggest that
adding mixup reduces the distinction between ID and mixed samples. Less separable ID and mixed
samples will result in poor ID/OOD separation because mixed samples are close to OOD samples.

4.1 AN EMPIRICAL CASE STUDY BASED ON TORCHVISION

The contributions in this paper are motivated by a case study based on the protocols of OpenOOD
V1.5 (Lu et al, 2024). OpenOOD V1.5 is currently the largest OOD detection benchmark. The
findings released by the authors are in line with previous literature showing the correlation between
ID and OOD performance. A curious discrepancy that we noticed is that state-of-the-art methods
for OOD almost all rely on torchvision vl models. Yet the vl is a basic model that lags in
ID performance compared to v2 models with the same backbones. The v2 models improve ID
performance by incorporating improved training techniques such as label smoothing and mixup.

We begin by comparing the performance of the vl and v2 models using a ResNet50 backbone in
ImageNet-1k (Deng et al.,|2009). ResNet50-v2 improves accuracy by 4% compared to ResNet50-v1
but results in a 20% decrease in the OOD AUROC (see Fig.[I). Such a change in the OOD AUROC
is significant because it surpasses the improvements that most post-hoc OOD methods achieve (Liu
et al., [2020; |Djurisic et al.,[2023). Similar trends hold for other v1 and v2 models (see Fig. .
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One of the key differences between v2 and vl lies in the different data augmentation schemes. v2
uses both data- and label-based augmentations (see Sec.[3.2) on top of the simple augmentations
(e.g. random resizing, cropping, and horizon flipping) used by v1. To pinpoint the influence of each
augmentation strategy, we train models from scratch on ImageNet200 (Lu et al.l 2024) with a single
augmentation. Figure[2]compares the ID vs. OOD accuracy based on the MLS score, KNN score and
NNGuide. More experimental details and results for CIFAR10/100 (Krizhevskyl 2009) are given in
Appendix.

The impact of the augmentations is split. The data-only augmentations, i.e., the Random Erasing (RE)
and the Trivial Augment (TA), have minimal impact on the OOD accuracy, while the label-based
augmentations, i.e., label smoothing (LS) and mixup greatly decrease OOD performance. The effects
likely compound together into the significant drop in OOD for v2 (all augs). These trends are most
prominent at the logits, where the MLS scores (and NNGuide) are derived, but less pronounced at the
feature level, where the KNN score is computed.

MLS KNN NNGuide
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Figure 2: ID Accuracy and OOD detection AUROC for various data augmentations on ImageNet200,
using a ResNet18 backbone as per (Yang et al., 2022).

7 7 ID 60

Bmm OOD

—e— LS
mixup
—e— RE
—e— TA
o— all augs (v2)

N
o

NS
==
N\\\\

40

20

" e |
Ls mixup RE TA all augs (v2) 1 2 3 4 5 6 7 8 9 10
Distance to ID Samples

Figure 3: Relative decrease of the maximal logit Sy,1 s with different data augmentations.

4.2 GRADIENT ANALYSIS OF DATA AUGMENTATIONS

This section analyzes how label smoothing and mixup influence OOD detection with the MLS scoring
function Sysrg (see equation ). Proposition [d.1]shows that adding label smoothing and mixup will
decrease the maximal logits Sy;7,s. Proposition 1] further shows that the decrement of Sy is
more pronounced for ID samples than OOD samples.

Proposition 4.1. Let i* denote the index of the maximal logit, Av[i*]| denote the increment of the

maximal logit after one-step gradient descent, Lo g, Lg 5 and L are defined as equation and
9 We have

) aLls/miz oL
K] ls/mix | * CE _ CE \-x >
Av[i*] — Av [0¥] o ( 5o 5o )[i*] >0, (10)

where “oc” denotes the softmax function, and “[j]” denotes take the j-th element of a vector.

Remark: Proposition {.1] suggests that label smoothing and mixup tend to decrease the gradient
updation to the maximal logits during each step, thus decreasing Sjsrs. Detailed proof can be
found in the appendix. Figure|3| (left) visualizes the decrement of Sj;1.s of ID and OOD after data
augmentations in ImageNet200. It can be observed that LS and Mixup will reduce Sy, s, while RE
and TA do not significantly influence Sj1.s.

To understand why LS and mixup reduce OOD performance, we delve into the Sj;5 s decrement
among ID and OOD samples in Proposition[#.2]
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Proposition 4.2. Let i* denote the index of the maximal logit, Av[i*]| denote the increment of the
maximal logit after one-step gradient descent, £'“/x°°¢ denote ID/OOD samples, f*%/f°°% denote
ID/OOD features, and cos(-,-) denote the cosine similarity function. Assume the features f are
already learned while only the last fully-connected layer requires training; the feature norms of ID
and OOD samples follow the same distribution, while the cosine similarity among features satisfies
E{cos(f1%, fi)} > E{cos(f%, £21))}. We have

qud{A’U[Z*] _ Avls/miz[i*]} Z ]Ewood{A'U[i*] _ Avls/miz[i*]}’ (11)

Remark: Proposition shows that the Sy;1 s decreases more on the ID than OOD, thus reducing
the separability between ID and OOD samples. This result is experimentally verified and shown in
Figure 3] Furthermore, we observed that the decrement of Syrs is negatively correlated with the
distance to the ID training set when adding label smoothing or mixup. This also suggests that ID
samples which should be closer to training samples in the feature space than OOD samples, will have
larger decrements in Sy/ps.

4.3  ANALYSIS OF MIXUP AS VIRTUAL SAMPLE GENERATION

Different from label smoothing, mixup creates virtual samples from ID data. We compare the
maximal logit of mixed samples to that of ID and OOD samples in Figure[d We find that: ¢) With the
increasing A, the AUROC becomes lower between mixed and OOD samples while higher between
mixed and ID samples, meaning that the mixed samples will be inseparable from OOD samples. This
suggests that the mixed samples can also serve as virtual OOD samples. i) After adding mixup to
the basic recipe v1, the AUROC of mixed and OOD samples will decrease for each ), indicating
that adding mixup decreases the separability between ID and mixed samples. As mixed samples
get closer to OOD samples, less separable ID and mixed samples will likely cause less separability
between ID and OOD.
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Figure 4: AUROC between ID/OOD and mixed samples with different mixup coefficient A.

To sum up, label smoothing and mixup reduce the distinction between ID and OOD in logits during
gradient updation. The negative influence will also be propagated into the feature space, as shown
Figure[2] Compared to the impact on logits, the impact on the feature space is much smaller.

5 FIXING DATA AUGMENTATION FOR OUT-OF-DISTRIBUTION DETECTION

Based on the analysis of label smoothing and mixup, we devise two methods for fixing impaired
logits. The first, augmentation deletion (Sec. [5.1)), fixes the impaired logits by finetuning the last
fully connected layer without problematic data augmentations. The second, augmentation revision
(Sec.[5.2)), revises the problematic data augmentations in the torchvision v2 receipt for training
models from scratch.

5.1 AUGMENTATION DELETION (AUGDELETE) FOR PRETRAINED MODELS

Empirically, the impact of label smoothing and mixup is the greatest on the output logits. The effects
gradually diminish with back-propagation into the feature layers. The results of figure [2| show less
impact on OOD detection when adopting a feature-based score Sk n y rather than a logit-based score
Sars- These empirical results suggest that a simple way to fix the logits v is to fine-tune the last
fully connected layer W, b without label smoothing and mixup.
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Figure 5: Pipelines of AugDelete (top) and AugRevise (bottom). In AugRevise, L, is added to
enforce the separation between ID and mixed samples. As mixed samples are close to OOD samples,
better separation between ID and mixed samples can deliver better ID/OOD separation.

To make the finetuning process efficient, we extract the features f in a single forward pass and then
train W, b with extracted f. Alg.[I]and Figure [5]show the pipeline of this simple approach termed as
AugDelete. AugDelete can improve the logit-based OOD detectors with minimal training cost and
maintain the ID accuracy since the feature extractor G is fixed.

By retraining the last layer, AugDelete improves torchvision v2 models in terms of OOD
detection. However, its OOD performance is simply comparable to vl models (see ResNet or RegNet
in Fig. EI) as the features themselves are left untouched. Next, we aim to surpass the vl models in
both ID and OOD by revising the v2 training recipe when training models from scratch.

5.2 AUGMENTATION REVISION (AUGREVISE) FOR MODELS TRAINED FROM SCRATCH

We follow the analysis from Section[d]and make the following design decisions. First, the data-based
augmentations (Random Erasure and Trivial Augment) do not harm OOD detection, so they can be
kept. Secondly, we remove label smoothing, since it harms OOD detection. Finally, we adjust the
mixup scheme to ensure that ID samples are sufficiently separable from the mixed samples. Ideally,
Swyps of ID samples should be larger than mixed samples. The closer the A to 0.5, the greater the
gap in Sys1s between ID and mixed samples.

To improve mixup for OOD detection, [Pinto et al.|(2022) propose regmixup, which treats mixup loss
as an OOD regularizer as

ewéiz(vmiwvymia:) _ LCE(”»y) 4 gbgv(vmia:7ymi:v). (12)

However, we find that regmixup cannot ensure that ID samples are separable from that of mixed
samples, as shown in Figure[d] As mixed samples are close to OOD samples, poor separation between
ID and mixed samples will degrade ID/OOD separation. To ensure a clear separation between mixed
and ID samples, we propose a virtual separation loss L:

| £C, el £E, e
Los (v, mm:, A) = —(1=P)1 1= . — Py 1 = - , (13
(. ) ( W og 1'0:1 evlil ev’””“[i]) * Og(Zil evlil 1 e”m”[i]) 4
P — mazx(\, 1 — \) (14)

maz(A, 1 —A)+1’
L, optimize the LogSumExp(LSE) approximation of Sy 1,5 since this approximation provides dense

id
gradients. It ensures the ratios between the maximal logits of ID and mixed samples ( ;:f}{-f,fp) equals
MLS

id
1 Shivs
maz(X,1-X)" S up

> 1 ensures that Sjsrs of ID samples is larger than that of OOD samples.
ALS

Sid . . . . e
Moreover, S,ﬁﬁfp increases as A becomes closer to 0.5, ensuring the increasing distinction between
MLS

mixed and ID samples. Overall, the final revised mixup adopts the loss LLym®:

Levglir(vmi:c7y7nix’ A) — chngzx(vmzr, ymlx) 4 Lvs(’U7UMix, A), (15)
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This augmentation revision approach is termed as AugRevise, the pipeline of which is shown in
Alg.[2]and Figure[5] Note that AugRevise still requires AugDelete after training the whole network
to mitigate the influence of data augmentation in the fully connected layers.

Algorithm 1: AugDelete Algorithm 2: AugRevise

Input: ID training set {x;, y;}, Input: ID training set {x;, y; }, initialized
pre-trained network with G,W b network with G,W,b

Output: Finetuned linear layer Wb Qutput: Trained Network G,W,b

Extract features f; with G as equation[2] while Training not end do

1: 1:

2: while Training not end do 2:  Sample a batch of (x;, y;)

3:  Sample a batch of (f;, y;) 3:  Perform mixup to get (2", ymiv)

4:  Compute Lc g as eq. equation 3] 4:  Perform other data augmentations to x;

5:  Perform gradient descent to update 5 Compute logits v;,v!™® as equation 3| |§|
W.b 6:  Compute L{Y7'® as equation

6: end while 7:  Perform gradient descent to update G, W, b
8: end while
9: Call AugDelete to update linear layer W, b

7: return W, b 10: return G,W,b

6 EXPERIMENTS

6.1 ABLATION STUDIES

We do ablation studies on ImageNet200 to verify critical elements of AugDelete and AugRevise on
OOD Detection. By default, the maximal logit score Sys1.s is chosen as the OOD score function.

AugDelete for Different Data Augmentation. Figure[6]shows the OOD detection results before and
after applying AugDelete under various data augmentations. We observe that AugDelete improves
models with label smoothing and mixup by a large margin while maintaining the ID accuracy.
AugDelete can also slightly improve the OOD Detection performance of RE and TA. However, with
AugDelete, models trained with label smoothing and mixup are still worse than the vl model. This is
because AugDelete keeps the pretrained features, thus the negative impact of label smoothing and
mixup are not mitigated.

0.8
v 441 7 . w/o AugDelete 72 w/o AugDelete
2 e w AugDelete z B w AugDelete P
®
2 3 506 /
a // E / /
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Figure 6: AugDelete for models trained with different data augmentations on ImageNet200

Fixing Mixup for OOD Detection. Mixup is fixed in AugRevise with L, loss to increase the
separability between ID and mixed samples. Table[I]shows the quantitative results of fixing mixup.
Regmixup improves the vanilla mixup but cannot outperform the vl model in OOD detection.
Adopting mixup in AugRevise can outperform the vl model in both ID classification and OOD
detection. To explain the superior OOD performance of mixup-AugRevise to regmixup, we visualize
the separability between ID, OOD, and mixed samples in Figure. @ Mixup-AugRevise delivers
higher auroc between ID and mixed samples, while lower auroc between mixed and OOD samples. It
suggests better separation between ID and OOD samples and mixed samples as better virtual OOD
samples, thus improving the separation between ID and OOD samples.

Compare AugDelete and AugRevise We compare AugDelete and AugRevise in Table 2] Au-
gRevise outperforms AugDelete and vanilla vl models in both the ID classification and OOD
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Table 1: Fixing mixup on ImageNet200. Table 2: Comparison on ImageNet200.
. . AUROC FPR@95 ID ACC
Training Recipe Loss AUIT{OC FPRL@% D TACC Training Recipe + 1 1
vl Lo 87.00 4690 8637 v A S Gl
v1+mixup Lz 8400  57.81 86.87 Y e AueDel sl 97 s
vl+regmixu LimiT 8697  48.03 87.58 varougdelete : : :
smbxup cE : : : AugRevise 87.88 4172 87.67
vl+mixup-AugRevise  L¢ig 87.72 42.09 87.28 AugRevise+LS 87.17 43.87 87.33

detection. However, adding label smoothing in AugRevise will decrease the OOD performance of
OOD detection, suggesting that label smoothing should be removed in AugRevise.

6.2 AUGDELETE FOR PRETRAINED MODELS OF IMAGENET-1K IN TORCHVISION

OOD detection with Various Pretrained Network Architectures. We apply AugDelete to pre-
trained models with different network architectures including convolutional neural networks (CNNs)
and transformers. Figure[I]visualizes the ID accuracy and OOD performance with/without AugDelete.
We see that AugDelete improves the OOD detection of both CNNs and transformers while main-
taining ID accuracy. Besides, models with better ID accuracy show higher or at least comparable
AUROC after applying AugDelete.

AugDelete for various OOD score functions. We apply AugDelete with various OOD score func-
tions S(x) using torchvision v2 pretrained models. Both logit-based (MLS,EBO,ASH), feature-
based (KNN) and combing both scores (NNGuide) are considered. Table[3|shows the results with
torchvision models, including ResNet50-v1 and ResNet50-v2 and ResNet50-v2+AugDelete.
We can see that AugDelete can improve ResNet50-v2 in all S(x) by a large margin, except KNN
scores since features are not changed in AugDel. AugDelete performs comparably to ResNet50-
v1 with logit-based S(x) in terms of OOD detection, while having much better ID accuracy than
ResNet50-v1. However, AugDelete shows worse OOD detection performance than ResNet50-v1
when adopting feature-based S(x), KNN or NNGuide. This is because AugDel does not fix the
impaired features of ResNet50-v2.

Table 3: AugDelete for various OQOD score functions on ImageNet-1k.

ResNet50-v1 ResNet50-v2 ResNet50-v2 + AugDelete
Method AUROC FPR@95 ID ACC | AUROC FPR@95 ID ACC | AUROC FPR@95 ID ACC
i | I T | I I 1 T
MLS (Hendrycks et al.|2022) 83.02 53.02 76.18 72.84 84.75 80.92 83.08 63.11 80.31
EBO (Liu et al.{[2020) 82.68 53.48 76.18 52.88 89.97 80.92 81.83 65.59 80.31
ASH (Djurisic et al.[[2023) 83.97 49.62 76.18 53.53 90.59 80.92 81.70 65.11 80.31
KNN (Sun et al.|[2022) 80.64 52.50 76.18 79.91 55.09 80.92 79.91 55.09 80.31
NNGuide (Park et al.|2023) 86.68 44.81 76.18 65.77 72.07 80.92 77.54 58.22 80.31

6.3 AUGREVISE FOR TRAINING-TIME MODEL ENHANCEMENT

We train models from scratch with AugRevise on ImageNet200/1k and CIFAR10/100 datasets.
Following the same training setting as OpenoodV 1.5, all the AugRevise models are trained for 100
epochs with learning rate starts from 0.1. ResNet18 is adopted for CIFAR10/100 and ImageNet200,
while ResNet50 is for ImageNet200. We choose logit-based (MLS), feature-based (KNN), and logit
and a combination of both (NNGuide) OOD score functions for AugRevise. Table ] and [5|compares
AugRevise with state-of-the-art (SOTA) methods in Openood V1.5 Benchmark. AugRevise improves
both logit-based and feature-based methods since it improves both features and logits. AugRevise
also improves ID accuracy and outperforms comparing methods. Overall, AugRevise outperforms
both post-hoc and training-based methods in ID and OOD.

7 CONCLUSION

In this paper, we identify that certain widely used data augmentations, label smoothing and mixup,
harm OOD detection despite improving ID classification. Through theoretical and empirical analysis,
we find that label smoothing and mixup reduce the separation between OOD and ID data in the
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Table 4: Comparison with SOTA methods on CIFAR10/100. Method are grouped as post-hoc and
training-based OOD detection methods, respectively.

CIFAR10 CIFAR100

Method AUROC FPR@95 ID ACC | AUROC FPR@95 ID ACC

T 1 i i \ D)
v1+MLS (Hendrycks et al.|[2022) 89.31 51.50 95.06 80.36 56.09 77.26
v1+EBO (L1u et al.[[2020) 89.39 51.51 95.06 80.34 56.09 77.26
v1+MSP (Hendrycks & Gimpel|[2017b) 89.38 39.95 95.06 79.02 56.75 77.26
v1+ASH (Djurisic et al.[[2023) 89.34 51.42 95.06 80.50 55.84 77.26
v1+FSEBO (Guan et al.|[2024) 88.08 59.00 95.06 79.97 57.24 77.26
vI+KNN (Sun et al.|[2022) 91.80 29.14 95.06 81.29 57.44 77.26
v1+NNGuide (Park et al.[2023) 85.25 72.22 95.06 80.84 57.51 77.26
T2FNorm+T2FNorm (Regmi et al.|[2023) 94.89 19.61 94.69 81.28 54.86 76.43
LogitNorm+MSP (Wei et al.|[2022) 94.53 21.57 94.30 80.00 58.25 76.34
VOS+EBO (Du et al.|[2022) 89.27 48.73 94.31 81.12 54.63 77.20
NPOS+KNN (Tao et al.|[2023) 91.92 26.62 — 80.32 57.24 —
CIDER+KNN (Ming et al.|[2023) 92.71 26.41 — 76.79 63.12 —
MOS+MOS (Huang & Li![2021) 73.93 70.81 94.83 80.29 56.67 76.98
AugMix+MSP (Hendrycks et al.|[2020b) 90.55 32.34 95.01 78.27 57.33 76.45
RegMixup+MSP (Pinto et al.{[2022) 88.86 42.54 95.75 79.94 56.81 79.32
AugRevise +MLS (Ours) 94.03 25.27 96.73 83.69 50.86 82.10
AugRevise +MSP (Ours) 93.50 24.11 96.73 82.50 52.12 82.10
AugRevise +KNN (Ours) 94.95 21.83 96.73 83.88 53.46 82.10
AugRevise +NNGuide (Ours) 94.22 26.45 96.73 84.51 49.52 82.10

Table 5: Comparison with SOTA methods on ImageNet200/1k.

ImageNet200 ImageNet-1k

Method AUROC FPR@95 ID ACC | AUROC FPR@95 ID ACC

T 1 i i \ )
v1+MLS (Hendrycks et al.|[2022) 87.00 46.90 86.37 83.02 53.02 76.18
vI1+EBO (Liu et al.[[2020) 86.68 47.54 86.37 82.68 53.48 76.18
v1+MSP (Hendrycks & Gimpel}[2017b) 86.73 45.13 86.37 80.63 58.57 76.18
v1+ASH (Djurisic et al.[[2023) 87.19 46.25 86.37 83.97 49.62 76.18
v1+FSEBO(Guan et al.[[2024) 86.75 48.87 86.37 86.82 45.14 76.18
v1+KNN (Sun et al.||2022) 86.54 44.70 86.37 80.64 52.50 76.18
v1+NNGuide 87.83 46.90 86.37 86.68 44.81 76.18
T2FNorm+T2FNorm (Regmi et al.|[2023) 88.28 40.37 86.87 82.50 50.19 76.76
LogitNorm+MSP (Wei et al.|[2022) 87.85 40.28 86.04 83.08 49.94 76.45
VOS+EBO (Du et al.[[2022) 86.75 46.95 86.23 — — —
NPOS+KNN (Tao et al.[2023) 86.94 41.93 — — — —
CIDER+KNN (Ming et al.[[2023) 85.62 45.14 — 80.58 50.19 —
MOS+MOS (Huang & Li!/[2021) 75.15 61.58 85.60 77.80 64.47 72.81
AugMix+MSP (Hendrycks et al.|[2020b) 87.09 44.20 87.01 82.08 55.70 77.63
RegMixup+MSP (Pinto et al.{[2022) 87.47 49.62 87.25 81.68 57.12 76.68
AugRevise +MLS (Ours) 87.88 41.72 87.67 84.77 49.06 77.70
AugRevise +MSP (Ours) 87.89 41.65 87.67 84.78 49.06 77.70
AugRevise +KNN (Ours) 87.00 41.66 87.67 82.56 49.25 77.70
AugRevise +NNGuide (Ours) 89.31 37.56 87.67 87.17 43.64 77.70

logit space, thus hurting OOD detection. To mitigate the negative impact, we proposed AugDelete
for finetuning pretrained models and AugRevise for training from scratch. Both approaches can
improving OOD detection performance while maintaining strong ID accuracy.

10
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A DERIVATION OF PROPOSITION [4.1]

We use i* denote the index of the maximal logit, Av[i*] to denote increment of the maximal logit
after one-step gradient descent, Lo, LZCS p and L7 are defined as equation ,, and@

The derivation contains 2 steps. First, we illustrate the relationship between the one-step update of
the maximal logit (Av[¢*]) and the gradient. Then, we compute the difference between gradients.
With the results of the previous steps, we finally prove the proposition.

A.1 RELATING THE INCREMENT OF THE MAXIMAL LOGIT TO GRADIENTS

We follow the loss and network definition as equation [3]and [2] Let 6 denote the parameter of the
feature extraction network G, and 7 denote the learning rate. When applying one-step gradient
descent, the network parameters W, b, and 6 are directly updated, then the update of the network
parameters will be reflected on the logits. According to the chain rule, the total derivative Av[i*] of
the maximal logits v[i*] is:

Av[i*] = FEAWi*, ;| + Wi ) TAf + Ab[i*]

_ AW, ] + WIiT, :]T(%)TM + AB[i"]
— £ )+ WIS DT () + (e
B Ov[i*]  OLee 0, OF o OF o O0[K] OLe . O0[i*] OLe,
*’"{fTaW[i*,:] o] T WL "]T(%)T(%; of ookl T ab] du)
C

= T g W G (g Wik )
~ {75+ 1 WG W ) s
o — OL.e

o[

(16)

where “[j]” denotes take the j-th element of a vector, and “[k, :]” denotes take the k-th row of a
matrix.

Remark: During training, the gradient of the maximal logits tends to be much larger than that of
the other logits, i.e. |§f[§:§] >> |gf[°,§] |(k # i*). Besides, W[i*, :]TW[i*, :] tends to be larger than
Wi*,: "Wk, :](k # i*). Based on these reasons, the approximation is reasonable.

According to equation [T6] we have
oLe™*  OLe, )
ovli¥] Ovi*]
ALE™ DL
Ovli*] Ovli*]

Avli*] = Av™/ ™[] & (T f + 1)(

7)

A.2 DIFFERENCE OF GRADIANTS

For cross entropy loss L. defined in equation[3] we can compute the partial derivative w.r.t the j-th
logits v[j] as:

L. evlil
| = —ylj| + plj], )| = ———, 18
50 W1 = —ylil+plil, Pl S (18)
Similarly, the gradient for label smoothing w.r.t the j-th logits v[j] is
OL! Is
el — _alsps } 19
50 U=~y Ll +plil, (19)

14
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compare equation [I8]and[T9] we can get the gradient difference
OLY . L.

. . IsT »
_ = - 20
50 U~ 5, il =ylil — v, (20)

For mixup, we adopt the first-order approximation derived by Zou et al.[(2023), i.e.,
LI % Lo + (y — o(v)) v 1)

With equation [21} we can compute the gradient difference d{i: HL — gﬁ—fﬁ:
; c
oLz o OLce . . . . ‘ .

Sl = bl = (ulil = plil) + pli] Y plK](v[k] — w[j]) (22)

k=1

Now we analyze the gradient of the maximal logit v[¢*]. Take j = ¢* into equation and combining
the definition of label smoothing in equation |/} we have

oL . OLe .., 1

ov [Z]_ v [’L]:B(l_a)>0) (23)
where [ is the label smoothing coefficient and C' is the number of classes. Similarly, take j = *
into equation22] we have

; c
oL . OLce . i
av [Z]_ av [7’]_(1 kZ:lp Z])
c c
= Y plkl+ > pli v[k] - v[i*])
k=1,k#i* k=1,k#i*
c
= > plk +pli*]p[k](v[k] — [i*]) (24)
k=1,k#i*
c
plk
= Y bl pl otk oe (5
k=1,k#i p
S [}
= > pl{1+pli }log( })}>0
k=1,k#i"
Remark: The informative gradients come from the wrong predicted logits, i.e., p[k] > p[i*]. When
plk] > p[i*] holds, p[k]{1+p[i*] 1og( P[] )} is large than 0. On the contrary, for the correct predicted
logits, p[k] << p[i*], then the term p[k ]{1 + p[i¥] log(;’[[i’i]] )} is close to 0.

Combining equation[T7] 23] and[24] we can reach the conclusion:

‘ aLls/m,iz oL
k] ls/mix[;* ce _ ce >
Av[i*] — Av [i*] 9ol ol = 0. (25)

B DERIVATION OF PROPOSITION

Let x, ' and £°°¢ denote ID train samples, ID test samples, and OOD test samples, and f, ¢ and
£°°¢ be their corresponding features, respectively. i* is the index of the maximal logits. According
to equation [I6] we have:

Aw,gi*] — Aot/ ™ %]

) aLls/miz oL
T pid ce ce

= 1 —

OLe/ ™" DL )
Ovli*] Ovi*]

= n([[£1] - (£ llcos(f, £) + 1)(
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Avooqli®] — Av'/ M (%]

ood
~ T pood aLlCi/mm o aLCE

_ ood ood 8Llcs€/mm aLce
= (171117 leos( £, 7°%) 4 (S = 57

Since the norm of fi¢ and f°°¢ follow the same distribution, while E{cos(f:?, f}d)} >
E{cos(fi?, f2°?))}, we have
Egia{|[£I| - [[£*llcos(f, £))} = [|£I] - Egua{[| fl|cos(£, £'T))}
> Egooa{||£|| - [|£°°U|cos(f, £°))}

(28)

Combing equation 26}~ [28] we reach
Egia{Av[i*] — Av"/™[*]} > Epooa{ Av[i*] — Av's/ ™[]} (29)

Remark: Since features f is already trained, there is no gradient updation to f. As a result,
equationcan simplified as Av[i*] ~ —n{fT f + 1}5;—[55]. Based on this simplification, we can
derive equation [26|and [27]

C EXPERIMENT DETAILS

C.1 OPENOODVI1.5 DATASET SETTING

We conduct experiments on OpenOOD v1.5 (Zhang et al., 2023)) benchmark. It consists of 4 ID
datasets, CIFAR10/100 (Krizhevsky, 2009), ImageNet200 (Zhang et al., [2023)), and ImageNet-
1k (Deng et al.,2009). Each ID dataset contains several near-OOD and far-OOD test sets, where the
near-OOD test sets are more challenging than the far-OOD ones.

CIFAR10/100 are relatively small datasets. They have the same far-OOD test set containing
MNIST (LeCun et al., [1998), SVHN (Netzer et al. [2011), Textures (Cimpoi et al., |2014), and
Places365 (Zhou et al., 2018)). TinyImageNet (Le & Yang), 2015) and CIFAR100 are adopted as near-
OOD evaluation sets for CIFAR10; while TinyImageNet and CIFAR10 are adopted for CIFAR100.
For network architecture, we adopt the same network backbone, ResNet18 as OpenoodV1.5 (Zhang
et al.l [2023)).

ImageNet-1Kk is a large-scale dataset consisting of 1281167 training images of 1000 classes. It has 2
near-O0OD dataset, SSB-hard (Vaze et al.| |2022a)) and NINCO (Bitterwolf et al.,[2023)), and 3 far-OOD
datasets, iNaturalist (Horn et al., 2018]), Textures (Cimpoi et al.,|2014)), and Openlmage-O (Wang
et al.,|2022). To be consistent with Openood V1.5 benchmark, ResNet50, Swin Transformer (Swin-T),
and Vision Transformers (ViT) are adopted as pretrained backbone. Besides these models, some
additional torchvision pre-trained models are evaluated.

ImageNet200 is a subset of ImageNet-1k, which contains 200 classes. It has the same near-OOD
and far-OOD datasets as ImageNet-1k. Following OpenoodV 1.5 (Zhang et al., |2023)), ResNet-18 is
adopted as the network backbone.

Evaluation Metrics. FPR@95 and AUROC are adopted to evaluate the OOD performance. FPR @95
is the false positive rate when the true positive rate is 95%, while AUROC is the Area under the
receiver operating characteristic curve. Lower FPR @95 and higher AUROC deliver better separation
between ID and OOD samples.

C.2 TRAINING SETTINGS

We follow the training setting of Openoodv1.5 (Zhang et al., [2023). All models are trained 100
epochs with learning rates starting from 0.1. The same Cosine learning rate schedule is adopted as
OpenOODv1.5. For CIFAR10/100 and ImageNet200, batch size is 128; for ImageNet-1k, batch
size is 512. All the models are repeated with 3 random seeds and the mean results are reported.
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For AugDelete models, we retrain the fc layers for 15 epochs with learning rates starting from 0.01.
Following torchvision, both vanilla mixup (Zhang, 2017) and cutmix (Yun et al. [2019) are
adopted for models with mixup. The mixup strength A\ of mixup and cutmix follows Beta distribution
Bera(0.2,0.2) and Beta(1, 1), respectively.

We compare our baseline results (receipt v1) with the OpenOOD v1.5 checkpoint with receipt v1 in
Table[6] All the models are repeated with 3 random seeds and the mean results are reported. Our
re-implementation shows similar results as OpenOOD v1.5.

Table 6: Comparison between OpenoodV1.5 models and our re-implementation. The same
receipt vl is adopted in both implementations.

Near-OOD Far-OOD

Dataset Implemention AUROC FPR@95 AUROC FPR@9s 1P ACC
T { T 4 0
CIFARIO  Ours 8754 6039 9104 4017 9459
Openood VIS 8752 6132 9110 4168 9506
CIFARIO0  Ours 8116 5569 8075 5449 7722
Openood VIS 8105 5547 7967 5673  77.25
TmageNet200  Ours 8243 6021 9084 3440 8640
Openood VI.5 8290 5976 Ol11 3403 8637

C.3 IMAPACT OF DATA AUGMENTATION ON OOD DETECTION

Table[7} [§]and [9] show the influence of each data augmentation on CIFAR10/100 and ImageNet200,
with a single augmentation for each time. Follow the same training setting as (Yang et al., [2022),
each training configure is repeated 3 times, and mean results are reported. Besides the MLS score
function, we also adopt the KNN score (Sun et al.,2022) and NNGuide (Park et al.,|2023) to reflect
the OOD detection ability of the feature space.

Table 7: OOD detection results w.r.t data augmenations on CIFAR10.

Near-OOD Far-OOD ID ACC
Score Data Augmentaion AUROC FPR@95 AUROC FPR@95
) \ ) 1 1)
vl 87.52 61.32 91.10 41.68 95.06
vl +LS 82.13 93.76 86.05 85.40 95.23
MLS v1 + mixup 84.39 76.20 88.89 58.10 95.95
vl +RE 88.47 56.22 91.99 39.53 95.36
vl +TA 92.15 32.37 95.28 19.68 95.51
vi+all augs (v2) 85.88 77.50 92.07 45.65 95.86
vl 90.64 33.99 92.96 24.28 95.06
vI+LS 90.03 36.81 93.12 21.48 95.23
KNN v1+mixup 91.58 33.38 94.33 21.47 95.95
vI4+RE 91.30 33.01 93.96 22.15 95.36
vI+TA 92.32 28.88 95.26 18.83 95.51
vi+all augs (v2) 92.82 27.92 96.34 16.84 95.86
vl 83.54 78.57 86.95 65.86 95.06
vI+LS 78.34 85.27 81.70 74.45 95.23
NNGuide v1+mixup 78.21 80.22 83.34 66.39 95.95
vI4+RE 84.42 73.46 88.83 58.68 95.36
vI+TA 90.32 44.11 94.46 26.41 95.51
vi+all augs (v2) 81.48 72.87 92.60 35.96 95.86

C.4 AUGDELETE FOR DIFFERENT DATA AUGMENTATION

Table [I0] [TT] and [I2] shows the OOD detection results before and after applying AugDelete under
various data augmentations. On all 3 datasets, We observe that AugDelete improves models with
label smoothing and mixup by a large margin while maintaining the ID accuracy. AugDelete can also
slightly improve the OOD Detection performance of RE and TA. However, with AugDelete, models
trained with mixup or LS are still worse than the vl model. This is because AugDelete keeps the
pretrained features, thus the negative impact of label smoothing and mixup are not mitigated.
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Table 8: OOD detection results w.r.t data augmentations on CIFAR100.

Near-OOD Far-OOD ID ACC
Score Data Augmentaion AUROC FPR@95 AUROC FPR@95
i 1 i 1 i
vl 81.05 55.47 79.67 56.73 77.25
vl+LS 80.35 58.06 78.44 60.88 77.78
MLS v1 + mixup 71.57 73.10 72.68 78.65 79.69
vl + RE 80.96 56.48 82.31 52.20 76.91
vl +TA 81.92 55.78 82.91 50.57 78.78
vl+all augs (v2) 78.34 71.64 74.85 71.46 79.89
vl 80.18 61.23 82.40 53.65 77.26
vI+LS 78.84 61.34 81.24 56.14 77.78
KNN v1+mixup 78.99 60.55 83.08 52.68 79.69
vI4+RE 79.91 62.27 83.87 50.99 76.91
vI+TA 79.98 63.89 85.53 46.86 78.78
vl+all augs (v2) 79.69 60.98 85.09 48.70 79.89
vl 80.27 58.36 81.41 56.66 77.26
vI+LS 41.33 91.19 43.48 90.77 77.78
NNGuide v1+mixup 46.46 89.79 53.86 85.09 79.69
vI4+RE 80.00 60.18 84.44 51.02 76.91
vI+TA 81.24 57.38 86.01 46.51 78.78
vl+all augs (v2) 37.00 92.39 49.74 85.67 79.89

Table 9: OOD detection results w.r.t data augmentations on ImageNet200.

Near-OOD Far-OOD ID ACC
Score Data Augmentaion AUROC FPR@95 AUROC FPR@95
1) 1 ) 1 )
vl 82.90 59.76 91.11 34.03 86.37
vl +LS 80.74 67.81 87.25 47.82 86.87
MLS v1 + mixup 81.48 65.49 88.70 43.87 86.86
vl +RE 82.57 60.40 90.94 34.52 86.54
vl +TA 82.43 59.81 91.15 33.04 87.04
vi+all augs (v2) 79.18 72.55 86.50 52.88 86.85
vl 81.59 58.26 91.49 31.15 86.37
vI1+LS 81.37 58.46 91.14 31.49 86.87
KNN v1+mixup 80.98 60.31 90.17 35.26 86.86
vI+RE 81.24 58.45 90.31 34.35 86.54
vI+TA 81.06 59.36 90.43 33.56 87.04
vi+all augs (v2) 81.24 58.49 89.70 36.64 86.85
vl 82.54 63.10 93.11 30.70 86.37
vI+LS 66.65 79.65 76.31 63.78 86.87
NNGuide v1+mixup 72.08 75.29 84.78 52.10 86.86
vI+RE 80.83 67.50 92.04 33.93 86.54
vI+TA 80.88 65.58 92.48 32.11 87.04
vi+all augs (v2) 44.72 88.82 55.15 81.17 86.85

C.5 FINETUNE THE FULLY CONNECTED (FC) LAYER OR THE WHOLE NETWORK

AugDelete deletes all data augmentations and finetunes the FC layer while keeping features fixed,
since label smoothing and mixup influence logits more than features. If further finetuning the feature
extractor (G, can we get additional gain in OOD detection? We finetune the entire network or FC layer
for 15 epochs. Table[I3]compares the results of finetuning FC or the whole network. Finetuning the
entire network only gets marginal or no gains compared to finetuning FC layers. However, finetuning
the whole network requires more time and delivers worse ID accuracy, because deleting all data
augmentation during finetuning will hurt pretrained features.

C.6 FIXING MIXUP FOR OOD DETECTION

Mixup is fixed in AugRevise with L, loss to increase the separability between ID and mixed samples.
Table [14] and [T5] shows the quantitative results of fixing mixup. Regmixup improves the vanilla
mixup but cannot outperform the vl model in OOD detection. Adopting mixup in AugRevise can
outperform the v1 model in both ID classification and OOD detection.
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Table 10: AugDelete for models trained with different data augmentations on CIFAR10.

Near-OOD Far-OOD ID ACC
Data Augmentaion AugDelete AUROC FPR@95 AUROC FPR@95
i 1 T 1 i
vl X 87.52 61.32 91.10 41.67 95.06
v 88.01 56.84 91.40 37.56 95.01
vI+LS X 84.39 76.20 88.89 58.10 95.95
v 90.04 45.44 92.13 36.80 95.92
v1+mixup X 82.13 93.76 86.05 85.40 95.23
v 89.91 40.30 92.54 26.72 95.21
vI4RE X 88.47 56.22 91.99 39.53 95.36
v 89.13 50.47 92.48 34.87 95.42
vI+TA X 92.15 32.37 95.28 19.68 95.51
v 92.34 29.88 95.14 19.50 95.46
vl+all augs (v2) X 85.88 77.50 92.07 45.65 95.86
v 91.61 34.61 94.66 24.81 95.85

Table 11: AugDelete for models trained with different data augmentations on CIFAR100.

Near-OOD Far-OOD ID ACC
Data Augmentaion AugDelete AUROC FPR@95 AUROC FPR@95
i { T 1 i
vl X 81.05 55.47 79.67 56.73 77.25
4 80.96 55.60 80.26 56.01 77.16
vl +LS X 80.35 58.06 78.44 60.88 77.78
4 80.81 55.89 79.67 58.17 77.93
v1 + mixup X 71.57 73.10 72.68 78.65 79.69
v 80.46 62.21 77.81 64.60 79.75
vl +RE X 80.96 56.48 82.31 52.20 76.91
v 81.04 56.31 82.84 51.10 76.81
vl +TA X 81.92 55.78 8291 50.57 78.78
v 81.93 55.84 82.51 51.03 78.62
vl1+all augs (v2) X 78.34 71.64 74.85 71.46 79.89
v 80.89 62.21 80.33 56.96 80.03

Table 12: AugDelete for models trained with different data augmentations on ImageNet200.

Near-OOD Far-OOD ID ACC
Data Augmentaion AugDelete AUROC FPR@95 AUROC FPR@95
i 1 T 1 T
vl X 82.90 59.76 91.11 34.04 86.37
v 82.92 59.24 90.51 35.82 86.26
vI+LS X 80.74 67.81 87.25 47.82 86.87
v 81.86 64.21 87.85 45.22 86.94
vI1+mixup X 81.48 65.49 88.70 43.87 86.86
v 82.51 62.44 89.08 41.88 86.93
vI+RE X 82.57 60.40 90.94 34.52 86.54
v 83.06 59.43 90.69 35.49 86.63
vI+TA X 82.43 59.81 91.15 33.04 87.04
v 82.97 58.91 90.85 33.90 87.04
vi+all augs (v2) X 79.18 72.55 86.50 52.88 86.85
v 82.33 62.70 89.30 40.78 87.14

C.7 COMPARE AUGDELETE AND AUGREVISE

We compare AugDelete and AugRevise in Table AugRevise outperforms AugDelete and vanilla
v1 models in both the ID classification and OOD detection. However, adding label smoothing in
AugRevise will decrease the OOD performance in both near-OOD and far-OOD detection, suggesting
that label smoothing should be removed in AugRevise.
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Table 13: Comparing finetuning the fully connected (FC) layer and finetuning the whole
network.

Near-OOD Far-OOD

Dataset Models Finetuning AUROC FPR@95 AUROC FPR@95 1D ACC
0 { T 1 T

P 6920 8600 7647 8349 8092

ImageNet-1k  ResNet50-v2 FC 78.69 70.05 87.47 56.18 80.31
Network 7847 7074 8898 4545  80.08

P 7566 8076 8480 6781  81.59

ImageNet-1k  Swin-T-v2 FC 8101  69.06 9096 3779 8130

Network 77.58 72.76 87.42 51.26 80.45

Table 14: The results of fixing mixup on CIFAR10/100. The top/bottom halves are for CI-
FAR10/CIFAR100, seperately.

Near-OOD Far-OOD

Data Augmentaion Loss AUROC FPR@95 AUROC FPR@95 D ACC
i { i 1 i
vl Leg 87.52 61.32 91.10 41.68 95.06
vl + mixup L&y 84.39 76.20 88.89 58.10 95.95
vl + regmixup Lgy” 89.19 53.81 93.18 32.93 96.27
vl + mixup-AugRevise L{Fg"*  90.56 44.71 94.20 25.55 96.58
vl Leg 81.05 55.47 79.67 56.73 77.25
vl + mixup LEy 71.57 73.10 72.68 78.65 79.69
vl + regmixup Ley® 82.22 56.53 82.40 54.80 80.43

vl + mixup-AugRevise ~ L7ypie 83.34 51.56 85.20 45.93 81.22

Table 15: The results of fixing mixup on ImageNet200.

Near-OOD Far-OOD ID ACC
Training Recipe Loss AUROC FPR@95 AUROC FPR@95

1) 1 1) 1 1)
vl Leg 82.90 59.76 91.11 34.04 86.37
v1+mixup Ly 80.74 67.81 87.25 47.82 86.87
vI1+regmixup Lymie 82.85 61.58 91.10 34.48 87.58
vl+mixup-AugRevise — Lyit® 83.88 54.26 91.57 29.91 87.28

Table 16: Compare AugDelete and AugRevise on CIFAR10/100 and ImageNet200.

Near-OOD Far-OOD ID ACC
ID Dataset Train Recipe AUROC FPR@95 AUROC FPR@95
) 1 T 1 1)
CIFAR10 vl 87.52 61.32 91.10 41.67 95.06
v2 85.88 77.50 92.07 45.65 95.86
v2+AugDelete 91.61 34.61 94.66 24.81 95.85
v2+AugRevise 92.78 30.37 95.28 20.16 96.73
v2+AugRevise +LS  91.34 39.72 93.97 31.34 96.78
CIFAR100 vl 81.05 55.46 79.67 56.72 717.26
v2 78.34 71.64 74.85 71.46 79.89
v2+AugDelete 80.89 62.21 80.33 56.96 80.03
v2+AugRevise 84.05 51.49 83.33 50.22 82.10
v2+AugRevise +LS ~ 83.83 50.87 82.21 51.17 81.85
ImageNet200 vl 82.90 59.76 91.11 34.04 86.37
v2 79.33 72.21 86.36 53.88 86.89
v2+AugDelete 82.33 62.70 89.30 40.78 87.14
v2+AugRevise 84.07 54.02 91.70 29.41 87.67

v2+AugRevise +LS 83.88 54.64 90.47 33.10 87.33

C.8 OOD DETECTION WITH VARIOUS PRETRAINED NETWORK ARCHITECTURES

We apply AugDelete to pretrained models with different network architectures including convolutional
neural networks (CNNs) and transformers. Table[17|presents the ID accuracy and OOD performance
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with/without AugDelete. We see that AugDelete improves the OOD detection of both CNNs and
transformers while maintaining ID accuracy.

Table 17: AugDelete w.r.t various pretrained Networks on ImageNet-1k. The top half is before
AugDelete while the bottom half is after AugDelete.

Near-OOD Far-OOD

Pre-trianed Models AUROC FPR@95 AUROC FPR@9s 10 ACC
i 1 T 1 T
ResNet50-v1 76.46 67.84 89.58 38.20 76.18
ResNet50-v2 69.20 86.00 76.47 83.49 80.92
MobileNetv2-v1 72.01 73.01 88.68 38.54 7191
MobileNetv2-v2 73.89 74.33 80.74 62.88 72.22
ResNetXt50-v1 78.49 67.73 89.37 40.64 77.64
ResNetXt50-v2 72.06 84.55 79.28 82.66 81.22
WideResNet50-v1 78.69 67.93 89.02 41.22 78.50
WideResNet50-v2 66.56 87.58 68.32 91.84 81.64
RegNet-v1 78.58 70.92 88.13 45.16 80.44
RegNet-v2 72.13 89.20 78.41 91.49 82.96
ConvNext-v2 76.44 74.10 84.58 53.83 83.59
Swin-T-v2 75.66 80.76 84.80 67.81 81.59
ViT-B-16-v2 68.30 92.25 83.54 79.23 81.14
ResNet50-v2 + AugDelete 78.69 70.05 87.47 56.18 80.31
MobileNetv2-v2 + AugDelete 75.45 69.93 83.63 56.23 70.24
ResNetXt50-v2 + AugDelete 80.27 69.48 88.64 50.59 80.92
WideResNet50-v2 + AugDelete  76.67 77.19 83.84 71.38 81.45
RegNet-v2 + AugDelete 76.74 84.57 87.79 66.05 82.86
ConvNext-v2 + AugDelete 79.41 67.19 88.88 45.69 82.98
Swin-T-v2 + AugDelete 81.01 69.06 90.96 37.79 81.30
VIT-B-16-v2 + AugDelete 79.83 69.84 91.87 30.31 81.00

C.9 COMPARISON WITH VARIOUS POST-HOC OOD DETECTION METHODS.

We combine AugDelete into various post-hoc OOD detection methods on Openood V1.5. Both
logit-based and feature-and-logit-based methods are considered for AugDelete. Note that AugDelete
has no effect on the feature-based method since it does not change the features. Table [I8] shows
the results with ResNet-v2, Swin-T-v2 and ViT-B-16 prerained networks. More results concerning
network architectures are in the appendix. We can see that AugDelete can improve both methods by
a large margin since AugDelete fixes the logits hurt by label smoothing and mixup.

C.10 DETAILED RESULTS OF AUGREVISE FOR TRAINING-TIME MODEL ENHANCEMENT

We train models from scratch with AugRevise on ImageNet200/1k and CIFAR10/100 datasets,
following the same training setting as OpenoodV1.5. ResNet18 is adopted for CIFAR10/100 and
ImageNet200, while ResNet50 is for ImageNet200. Note that AugRevise for ImageNet-1k is trained
100 epochs as ResNet50-v1 instead of 600 epochs as ResNet50-v2. We choose logit-based, feature-
based, and logit-and-feature-based OOD score functions for AugRevise. Table [I9]and [20]compares
AugRevise with state-of-the-art (SOTA) methods in Openood V1.5 Benchmark. AugRevise improves
both logit-based and feature-based methods since it improves both features and logits. AugRevise
also improves ID accuracy and outperforms comparing methods. Overall, AugRevise outperforms
both post-hoc and training-based methods in ID and OOD.
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Table 18: AugDelete w.r.t various OOD scores on ImageNet-1k.

Near-OOD Far-OOD
Pre-trianed Models Method AugDelete AUROC FPR@95 AUROC FPR@95
T 4 T {
MLS X 6920 8600 7647 8349
v 7869 7005 8747 5618
EBO X 5430 8923 5136 9072
v 7684 7246 8682 5872
MSP X 7253 8221 8148 7228
v 7764 6692 8558  53.98
ResNet50-v2 ASH X 5475 9001 5232 91.16
v 7650 7232 8690 5791
RNN X 7076 7348 89.07 3671
MDS X 7662 6917 9374 2688
NNGuide X 6116 8225 7037  61.89
v 7138 7084 8371 4560
MLS X 7566 8076 8480 6781
v 8101  69.06 9096  37.79
EBO X 7323 8331 8132 7559
v 8078 7174 9140 3832
MSP X 7675 7106 8630  49.16
Swin T2 v 7888 6408 8828  43.68
ASH X 6791 8586 7193 8268
v 7846 7689 8930 4575
KNN X 7162 7176 8937 3412
MDS X 7518 6865 9149 2987
NNGuide X 6792 8499 8536  50.77
v 7195 8348 90.07 4244
MLS X 6830 9225 8354 793
v 7983 69.84 9187 3031
EBO X 6241 9319 7898 8535
v 80.13 7090 9269  27.94
MSP X 7352 8185 8604  51.69
. v 7777 6534 89.00  39.64
VIT-B-16-v2 ASH X 5782 9365 7308 8539
v 7971 7199 9301  27.96
RNN X 7411 7047 9081 3193
MDS X 7904 6612 9260 2997
NNGuide Pt 6040 8989 8174  59.86
v 6983 8566 9036 4340
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Table 19: AugRevise w.r.t various OOD scores on CIFAR10/100 and ImageNet200/1k.

Near-OOD Far-OOD ID ACC
ID Dataset Method AugRevise AUROC FPR@95 AUROC FPR@95
i 1 i 1 )
CIFAR10 MLS 87.52 61.32 91.10 41.67 95.06
92.78 30.37 95.28 20.16 96.73
EBO 87.58 61.32 91.21 41.70 95.06
92.86 30.43 95.46 20.11 96.73
MSP 88.03 48.18 90.73 31.72 95.06
92.44 28.62 94.56 19.59 96.73
ASH 87.54 61.23 91.13 41.60 95.06
92.82 30.42 95.35 20.11 96.73
KNN 90.64 33.99 92.96 24.28 95.06
93.69 27.46 96.22 16.20 96.73
NNGuide 83.54 78.57 86.95 65.86 95.06

92.83 32.41 95.60 20.48 96.73

81.05 55.46 79.67 56.72 77.26
84.05 51.49 83.33 50.22 82.10

CIFAR100 MLS

EBO 80.91 55.60 79.77 56.58 77.26
83.88 51.66 84.29 49.59 82.10
MSP 80.27 54.79 77.76 58.70 77.26
83.37 52.06 81.63 52.17 82.10
ASH 81.07 55.99 79.92 55.69 77.26
83.78 52.15 84.51 49.19 82.10
KNN 80.18 61.23 82.40 53.65 77.26
81.88 60.24 85.88 46.68 82.10
NNGuide 80.27 58.36 81.41 56.66 77.26

83.92 52.89 85.10 46.14 82.10

82.90 59.76 91.11 34.04 86.37
84.07 54.02 91.70 29.41 87.67

ImageNet200 MLS

EBO 82.50 60.22 90.86 34.86 86.37
83.68 54.49 91.85 29.66 87.67
MSP 83.34 54.83 90.13 35.43 86.37
84.09 5391 91.69 29.38 87.67
ASH 82.76 59.82 91.63 32.68 86.37
83.94 53.82 92.68 26.85 87.67
KNN 81.59 58.26 91.49 31.15 86.37
81.34 56.45 92.65 26.88 87.67
NNGuide 82.54 63.10 93.11 30.70 86.37

84.34 54.15 94.29 20.98 87.67

76.46 67.84 89.58 38.20 76.18
79.23 62.37 90.30 35.74 77.70

ImageNet-1k  MLS

EBO 75.89 68.56 89.47 38.40 76.18
78.96 62.59 90.72 34.57 71.70
MSP 76.02 65.67 85.23 51.47 76.18
79.25 62.36 90.31 35.75 717.70
ASH 76.41 66.85 91.52 32.39 76.18
79.34 61.09 91.93 30.91 717.70
KNN 71.10 70.87 90.18 34.13 76.18
72.60 69.82 92.52 28.67 77.70
NNGuide 78.80 63.89 94.56 25.73 76.18

A Y N e N e S R Y N O S N RV L S R SR
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Table 20: Comapre AugRevise with training-based OOD detection methods on CIFAR10/100
and ImageNet200/1k.

Near-OOD Far-OOD ID ACC
Dataset Methods AUROC FPR@95 AUROC FPR@95
) 4 ) 1 T
CIFAR10 T2FNorm+T2FNorm (Regmi et al.| 92.79 26.47 96.98 12.75 94.69
LogitNorm+MSP (Wei et al.||2022] 92.33 29.34 96.74 13.81 94.30
VOS+EBO ( 120 87.70 57.03 90.83 40.43 94.31
NPOS+KN! 89.78 32.64 94.07 20.59 —
CIDER+KNN ( 0 90.71 32.11 94.71 20.72 —
MOS+MOS ( g & 71.45 78.72 76.41 62.90 94.83
AugMix+MSP et all. 89.43 37.68 91.66 27.00 95.01
RegMixup+MSP .|[2022] 87.47 48.78 90.25 36.30 95.75
AugRevise +MLS 92.78 30.37 95.28 20.16 96.73
AugRevise +KNN 93.69 27.46 96.22 16.20 96.73
AugRevise +NNGuide 92.83 32.41 95.60 20.48 96.73
CIFAR100 79.84 58.47 82.73 51.25 76.43
78.47 62.89 81.53 53.61 76.34
80.93 55.56 81.32 53.70 77.20
78.35 63.35 82.29 51.13 —
73.10 72.02 80.49 54.22 —
80.40 56.05 80.17 57.28 76.98
79.36 56.30 77.18 58.36 76.45
. 80.83 56.12 79.04 57.50 79.32
AugRevise +MLS 84.05 51.49 8333 50.22 82.10
AugRevise +KNN 81.88 60.24 85.88 46.68 82.10
AugRevise +NNGuide 83.92 52.89 85.10 46.14 82.10
ImageNet200 83.00 55.01 93.55 25.73 86.87
82.66 54.46 93.04 26.11 86.04
82.51 59.89 91.00 34.01 86.23
79.40 62.09 94.49 21.76 —
80.58 60.10 90.66 30.17 —
69.84 71.60 80.46 51.56 85.60
83.49 54.97 90.68 33.42 87.01
. 84.13 68.92 90.81 30.31 87.25
AugRevise +MLS 84.07 54.02 91.70 29.41 87.67
AugRevise +KNN 81.34 56.45 92.65 26.88 87.67
AugRevise +NNGuide 84.34 54.15 94.29 20.98 87.67
ImageNet-1k ~ T2FNorm+T2FNorm 73.08 69.14 91.92 31.24 76.76
LogitNorm+MSP (Wei et al.| 74.62 68.56 91.54 31.32 76.45
VOS+EBO ( — — — — —
NPOS+KN! — — — — —
CIDER+KNN (Ming et al.| 68.97 71.69 92.18 28.69 —
MOS+MOS (Huang & Li/|20 72.85 76.31 82.75 52.63 72.81
AugMix+MSP (H 77.49 64.45 86.67 46.94 77.63
RegMixup+MSP . 77.04 65.33 86.31 4891 76.68
AugRevise +MLS 79.23 62.37 90.30 35.74 77.70
AugRevise +KNN 72.60 69.82 92.52 28.67 77.70
AugRevise +NNGuide 80.90 59.92 93.44 27.35 77.70
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