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Abstract001

Large Language Model (LLM)-based agents002
have excelled in various domains but face sig-003
nificant challenges when applied to data sci-004
ence workflows due to their complex, multi-005
stage nature. Current LLM-based agents strug-006
gle with non-linear relationships, recursive de-007
pendencies, implicit data- and logic-dependent008
reasoning, and managing extensive context. In009
this paper, we introduce Data Interpreter, an010
LLM-based agent that addresses these chal-011
lenges through hierarchical graph-based mod-012
eling to represent the complexity and a pro-013
gressive strategy for step-by-step verification,014
refinement, and consistent context manage-015
ment. Extensive experiments confirm the ef-016
fectiveness of Data Interpreter. On InfiAgent-017
DABench, it boosts performance by 25% (from018
75.9% to 94.9%), and on machine learning and019
open-ended tasks, it lifts accuracy from 88%020
to 95% and from 60% to 97%, respectively.021
Moreover, our method surpasses state-of-the-022
art baselines by 26% on the MATH dataset. We023
will release the code upon publication.024

1 Introduction025

Large Language Models (LLMs) have demon-026

strated remarkable capabilities in various reasoning027

tasks (Hong et al., 2023; Wu et al., 2023a; Wang028

et al., 2023a,b; Chen et al., 2024; Zhang et al.,029

2024b,a), showcasing their ability to understand030

complex contexts, generate coherent responses, and031

even tackle multi-step problem-solving tasks.032

Among the many areas where LLMs have been033

applied, data science stands out as a field of partic-034

ular importance, but also one that presents unique035

challenges (Hu et al., 2024; Qin et al., 2020). Data036

science tasks, including machine learning, data037

analysis, table-based question answering, and math-038

ematical reasoning, involve multi-stage workflows039

that require both precise logical and numerical rea-040

soning across various datasets. These data science041

workflows are inherently complex and involve mul- 042

tiple steps, with each task building upon the re- 043

sults of previous ones (Hu et al., 2024; Liu et al., 044

2024b; Li et al., 2024a). The complexity arises 045

from the interdependencies across different stages, 046

where tasks are not only sequential, but may also 047

involve parallel processes, feedback loops, and re- 048

cursive relationships. Furthermore, many data sci- 049

ence tasks require reasoning that is both data- and 050

logic-dependent, introducing implicit dependencies 051

that are not always clearly stated. For example, in 052

machine learning workflows, the transformation of 053

categorical variables across different stages of a 054

pipeline (e.g., encoding methods) may not always 055

be consistent, leading to misalignments that de- 056

grade model performance. LLMs may struggle to 057

capture these implicit dependencies, applying dif- 058

ferent methods inconsistently, which can result in 059

erroneous conclusions and degraded performance. 060

To address these challenges, several (LLM agent- 061

based) frameworks have been proposed, as shown 062

in Table 1. However, these existing solutions still 063

have significant limitations in tackling the issues 064

faced by LLMs when applied to data science tasks. 065

One major issue is hallucinations and error prop- 066

agation. Errors can compound through dependent 067

tasks, leading to increasingly unreliable results. 068

While most current frameworks include verifica- 069

tion mechanisms, as shown in Table 1, their ap- 070

proach of generating complete code at once, rather 071

than step-by-step atomic code, increases the risk of 072

hallucinations propagating through task dependen- 073

cies. Another challenge is that many data science 074

tasks require reasoning that is both data- and logic- 075

dependent as discussed, linear plan structures inad- 076

equately capture the often non-linear relationships 077

in data science tasks (Wang et al., 2024d; Rawte 078

et al., 2023) most existing framework, as shown in 079

Table 1. Finally, contextual memory and long-term 080

dependencies present a significant challenge. The 081

lengthy steps in data science tasks generate exten- 082
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Table 1: Comparison of DS agent frameworks. Code Exec. (Code Execution): indicates how code is executed in
real-time; Memory: represents the framework’s memory structure for storing context and history; Expandable:
denotes if the framework supports custom extensions and modules; Domains: specifies the primary application areas
(ML: Machine Learning, DA: Data Analysis, TQA: Table Question Answering, MR: Mathematical Reasoning).
* Indicates open-source framework

Framework Plan Structure Verification Code Exec. Memory Expandable Domains
AutoML-GPT (Zhang et al., 2023a) – × × Raw × ML
HuggingGPT* (Shen et al., 2024) – × × Raw × ML, DA, TQA, MR
MLCopilot* (Zhang et al., 2024b) – × × Raw × ML
AutoGen* (Wu et al., 2023a) Linear ✓ All-at-once Raw × ML, DA, TQA, MR
TaskWeaver* (Qiao et al., 2023) Linear ✓ Progressive Raw ✓ ML, DA, TQA, MR
OpenHands* (Wang et al., 2024b) Linear ✓ All-at-once Raw ✓ ML, DA, TQA, MR
AIDE* (Schmidt et al., 2024) Hierarchical ✓ All-at-once Tree ✓ ML
DS-Agent* (Guo et al., 2024) Linear ✓ All-at-once Raw × ML
AutoML-Agent (Trirat et al., 2024) Linear ✓ All-at-once Raw × ML
AutoKaggle* (Li et al., 2024b) Linear ✓ All-at-once Raw ✓ ML

Data Interpreter* Hierarchical ✓ Progressive Graph ✓ ML, DA, TQA, MR

sive contextual information. However, most current083

frameworks rely on raw memory structures, which084

are inadequate for managing relevant context, as085

shown in Table 1.086

To address the above challenges, we propose087

Data Interpreter, a framework that leverages hi-088

erarchical graph-based modeling to systematically089

structure and manage task relationships, as shown090

in Figure 1. By explicitly organizing both high-091

level task relationships and low-level computa-092

tional (i.e., action) dependencies into a structured093

graph format, Data Interpreter ensures a clear rep-094

resentation of the workflow’s complexity.095

Building on this graph-based structure, Data096

Interpreter implements a progressive strategy for097

managing long-term dependencies. The framework098

identifies task dependencies and represents them as099

a reasoning graph, progressively verifying and re-100

fining each node to ensure the continuity of context101

throughout the process. This progressive verifica-102

tion ensures that earlier steps inform later ones,103

allowing Data Interpreter to handle complex, multi-104

step workflows while maintaining coherence and105

accuracy across extended tasks. This results in106

a graph-based memory that ensures each task is107

grounded in a consistent context, minimizing the108

risk of errors propagating through the workflow.109

Our experiments demonstrate that Data Inter-110

preter significantly outperforms existing methods111

across several benchmarks, achieving a 25% per-112

formance boost on the public dataset InfiAgent-113

DABench (Hu et al., 2024) and a 26% improve-114

ment on the MATH dataset (Hendrycks et al., 2021).115

Compared to other open-source frameworks, Data116

Interpreter consistently shows notable advance-117

ments in machine learning and open-ended tasks.118

2 Related Work 119

LLMs as Data Science Agents LLMs demon- 120

strate expert-level knowledge in machine learning 121

and have made significant progress in automat- 122

ing data science tasks (Xie et al., 2024). Early 123

research focused on using LLMs to write code, 124

aiming to simplify complex computations involved 125

in reasoning processes (Gao et al., 2023; Chen 126

et al., 2022; Zhu et al., 2024). Code interpreters 127

with function-calling mechanisms have become 128

the popular approach for enabling LLMs to han- 129

dle complex reasoning and scientific tasks (Zhou 130

et al., 2023; Gou et al., 2024; Wang et al., 2024a; 131

Huang et al., 2023b; Hassan et al., 2023; Qiao 132

et al., 2023; Zhang et al., 2024b). Recently, frame- 133

works like AutoML-GPT (Zhang et al., 2023a), 134

MLCopilot (Zhang et al., 2024b), AutoKaggle (Li 135

et al., 2024b), AutoML-Agent (Trirat et al., 2024). 136

Specifically, Zhang et al. (2023b) and Liu et al. 137

(2024a) focus primarily on machine learning tasks 138

but lack comprehensive data science capabilities, 139

particularly in handling multimodal data and auto- 140

matically detecting and fixing errors in the work- 141

flow. Although frameworks such as AutoGen (Wu 142

et al., 2023a), TaskWeaver (Qiao et al., 2023), 143

Agent K (Grosnit et al., 2024), HuggingGPT (Shen 144

et al., 2024), DS-Agent (Guo et al., 2024), and 145

AIDE (Schmidt et al., 2024) support data science 146

scenarios, they face challenges in scalability, so- 147

phisticated planning, and effective long context 148

management. End-to-end frameworks tailored for 149

data science tasks are still underdeveloped. To fill 150

this gap, we propose a unified framework designed 151

for data science, thoroughly benchmarked across 152

various tasks and settings, providing key insights 153
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Figure 1: Data Interpreter Workflow. The upper section shows how Data Interpreter organizes a data science
workflow with a hierarchical structure, starting with decomposing project requirements into a task graph and actions
executed via code. The lower section highlights key modules: task graph generator, action graph generator, and
graph executor, which work together to manage task execution and provide real-time feedback.

into the effectiveness of LLMs in this field.154

Graph-Based Planning for LLM Agents Plan-155

ning is a crucial capability for LLM-based agents,156

enabling them to create structured action plans157

for solving problems (Huang et al., 2024b; Chen158

et al., 2024). While early approaches like CoT (Wei159

et al., 2022; Yao et al., 2022) used sequential plan-160

ning, more recent methods like ToT (Yao et al.,161

2024) and GoT (Besta et al., 2023) have adopted162

tree and graph structures to refine LLM prompts.163

This graph-based paradigm has been further devel-164

oped in various systems like DSPy (Khattab et al.,165

2023) and PRODIGY (Huang et al., 2023a), with166

recent work focusing on enhancing node prompts167

and agent coordination through graph connectiv-168

ity (Zhuge et al., 2024; Vierling et al., 2024).169

However, these approaches often struggle with170

multistep, task-dependent problems in data sci- 171

ence domains. While OpenHands (Wang et al., 172

2024b), offers an agent interaction platform with 173

event streaming and sandboxing, it requires im- 174

provements in plan management and code verifica- 175

tion for complex data science tasks. In this paper, 176

we use a hierarchical structure that adapts to real- 177

time data changes. 178

3 Methodology 179

In this section, we first present the foundational for- 180

mulation of hierarchical graph modeling for data 181

science problems, defining the task graph and ac- 182

tion graph in Section 3.1. Next, we detail the itera- 183

tive process of the hierarchical graph structure in 184

Section 3.2 and illustrate how our Data Interpreter 185

benefits from the graph-based structured memory. 186
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Finally, in Section 3.3, we introduce programmable187

node generation, explaining how we integrate ex-188

pertise at different granularities to improve the per-189

formance of LLMs.190

3.1 Hierarchical Graph Modeling191

Data science problems, particularly those involv-192

ing machine learning, encompass extensive detail-193

ing and long-horizon workflows, including data194

pre-processing, feature engineering, and model195

training. Drawing inspiration from the applica-196

tion of hierarchical planning in automated machine197

learning tasks (Mohr et al., 2018; Mubarak and198

Koeshidayatullah, 2023), we organize the data sci-199

ence workflow via hierarchical structure, which200

initially decomposes the intricate data science prob-201

lem into manageable tasks and further breaks down202

each task into executable code (see Figure 1). For-203

mally, we define the task-solving process as a func-204

tion P that takes an input x to produce an output205

ŷ = P (x). Our goal is for P to generate solutions206

that closely approximate or match the anticipated207

output y. However, due to the complexity of P ,208

which may involve various operations and interme-209

diate data, fully automating the solution to a task210

is typically challenging (Hutter et al., 2019; Zhuge211

et al., 2024).212

Task Graph. To fully leverage the reasoning213

capability of LLMs for general task decompo-214

sition, our method first decomposes the task-215

solving process of P into a series of sub-processes216

{p1, p2, p3, . . .}, each of which can be atomic and217

verifiable. As shown in Figure 1, each sub-process218

represents a step to complete a specific task. The219

primary challenge lies in determining the rela-220

tionships r = ⟨pi, pj⟩ ∈ R between these sub-221

processes, which define the order of execution:222

which sub-tasks must be executed first, and which223

can be executed in parallel or after others.224

We represent all sub-processes as task nodes225

within P , where an edge ⟨pi, pj⟩ indicates that sub-226

process pj depends on the output of sub-process pi,227

forming a Directed Acyclic Graph (DAG) G that228

embodies the entire function P . To execute the task229

graph, we can compute the task output, which is230

formally defined as follows:231

ŷ = G ({pi(x)}ni=1,R) , (1)232

where G represents a DAG composed of the sub-233

processes {p1, p2, p3, . . .}, interconnected through234

the relationships R, which model the dependencies 235

between tasks. 236

As shown in Figure 1, for a machine operational 237

status prediction problem, the task graph includes 238

nodes ranging from data exploration to visualiza- 239

tion. The graph topology exhibits complex depen- 240

dencies that cannot be represented by simple se- 241

quential or tree-based structures, as tasks may have 242

multiple predecessors and successors. The detailed 243

task graph representation and the prompt for task 244

decomposition can be found in Appendix C.1. 245

Action Graph. Each task node expands into an 246

action subgraph within the overall action graph. 247

Specifically, each task node pi is further decom- 248

posed into more granular steps, represented by Ai, 249

forming an implicit graph of atomic operations 250

⟨o1, o2, . . .⟩. These atomic operations correspond 251

to executable code snippets or functions, providing 252

fine-grained control for each task pi. As illustrated 253

in Figure 1, the visualization task is converted to 254

code snippets, with the confusion matrix calcula- 255

tion handled by sklearn. Thus, the complete task- 256

solving process can be expressed as: 257

ŷ = G ({Ai(x)}ni=1,R) (2) 258

Ai(x) = ⟨o1, o2, . . .⟩ represents the refined 259

steps for processing input x. Each atomic oper- 260

ation oj may depend not only on x but also on 261

other parameters or previous operations’ outputs. 262

G connects these atomic action graphs according 263

to the dependency relationships R, forming a com- 264

prehensive representation of the entire data science 265

workflow. The dynamic contextual data are auto- 266

matically managed through inter-task dependen- 267

cies, making the workflow scalable and flexible for 268

complex applications. 269

3.2 Iterative Graph Refinement 270

Graph-based Episodic Memory. As previously 271

discussed, data science tasks generate abundant 272

contextual information due to their lengthy steps. 273

In Data Interpreter, we adopt a graph-based data 274

structure to store context during the reasoning pro- 275

cess and provide the memory of reasoning steps 276

with corresponding intermediate results when con- 277

verting task nodes into action graphs. Specifically, 278

we use the task graph structure to manage agent 279

memory and context. The agent’s memory expands 280

and updates along with the task graph refinement, 281

beginning with an initial memory state at task graph 282
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initialization. As task nodes are progressively con-283

verted into action graphs, Data Interpreter uses a284

temporary memory to store intermediate data re-285

sults, generated code, and debugging processes.286

When a task node’s state is updated, the tempo-287

rary memory is cleared, retaining only the gener-288

ated code and execution results for the current task289

node. Consequently, during the problem-solving290

process, dynamic contextual data is automatically291

constructed and acquired through task interdepen-292

dencies. This avoids the need to retrieve the entire293

context at once, maintaining input relevance and294

offering flexibility and scalability for broader data295

science applications.296

Iterative Graph Refinement. During task node297

execution, a task is marked as Success if the cor-298

responding code executes successfully. If it fails,299

Data Interpreter leverages LLMs to debug the code300

based on runtime errors, making up to a predefined301

number of attempts to resolve the issue. If the prob-302

lem persists after the set attempts, the task node is303

flagged as Failure, as shown in Figure 2.304

To ensure runtime verification and provide real-305

time feedback during execution, Data Interpreter306

incorporates a stateful graph executor that man-307

ages both execution and debugging using reflection308

mechanisms (Shinn et al., 2024). Specifically, if the309

execution encounters exceptions or fails a verifica-310

tion check, the action graph generator dynamically311

reflects on the execution results and then regener-312

ates the code to resolve the issue or optimize the313

output, providing data-driven feedback.314

For failed tasks, Data Interpreter regenerates315

the task graph based on current episodic memory316

and the execution context, as depicted in Figure 2.317

Given the task dependencies, the regenerated task318

graph is sorted topologically and compared to the319

original using a prefix matching algorithm (Wald-320

vogel, 2000) to identify differences in task descrip- 321

tions. This comparison helps identify divergence 322

points (forks), and the final output includes all un- 323

changed tasks before the fork, along with any new 324

or modified tasks after the fork. This approach 325

allows Data Interpreter to efficiently locate the par- 326

ent node of the failed task and seamlessly integrate 327

the newly generated task and its subsequent tasks 328

into the original graph. It directly leverages the 329

completed memory of all dependent tasks during 330

re-execution, avoiding unnecessary code regenera- 331

tion or redundant executions. 332

Using continuous monitoring and iterative up- 333

dates, Data Interpreter avoids the inefficiencies as- 334

sociated with generating all tasks upfront. This 335

dynamic adjustment of code and planning, based 336

on task outcomes, allows for modifications at vari- 337

ous levels of granularity, greatly enhancing overall 338

efficiency. 339

3.3 Programmable Node Generation 340

Action Node. As described in Section 3.1, action 341

graph Ai(x) = ⟨o1, o2, . . .⟩, is represented in code 342

format as an implicit graph of various operations. 343

Here, we define the operators as action nodes. An 344

action node encapsulates executable computational 345

logic, integrating both tool-based operations and 346

application programming interface (APIs) into co- 347

hesive code snippets. 348

Programmable Node Generation. Effective 349

tool selection and integration, particularly in the 350

context of task-specific requirements, play a cru- 351

cial role in the success of task execution, as noted 352

in prior research (Qian et al., 2023; Yuan et al., 353

2024; Huang et al., 2024a; Liu et al., 2023). In 354

Data Interpreter, we leverage the typology and de- 355

scription of tasks to enrich the task-specific context, 356

thereby enhancing the decision-making process for 357

tool selection and code generation. 358

Given each task description pi, Data Interpreter 359

retrieves candidate tools from the toolset T = 360

{t1, t2, . . . , tn} , ranks them by functionality rele- 361

vance, and selects the top-k tools for the task. 362

Instead of generating isolated function calls, 363

Data Interpreter integrates tools, APIs, and code 364

snippets in context into a context-aware operation. 365

This process can form three levels of advanced op- 366

erations: 1) Basic tool extension with added func- 367

tionality, 2) Tool chaining via concatenating their 368

outputs, creating a sequential flow of tools, and 3) 369

Nested tool calls with control logic for complex de- 370
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Table 2: Performance comparisons on Data Analysis.
Results marked with an asterisk (*) are reported by Hu
et al. (2024). Rows marked with a dagger symbol (†)
indicate the w/o Agent baseline for comparison. The
∆ column represents the accuracy improvement of the
agent framework compared to the w/o agent setups. The
best results are highlighted in bold. C.Accuracy indi-
cates Competition-level Accuracy, and RPG refers to
the Relative Performance Gap metric.

Methods Model Metric ∆ (%)
InfiAgent-DABench Accuracy

Model-only

gemini-pro 56.42* -
gpt-3.5-turbo-0613 60.70* -

gpt-4-0613 78.99*† -
gpt-4-0613 75.21 -

gpt-4o 75.92† -

XAgent gpt-4-0613 47.53* -31.46
AutoGen gpt-4-0613 71.49 -7.50
Data Interpreter gpt-4-0613 73.55 -5.44
Data Interpreter gpt-4o 94.93 +19.01
DS-Bench Data Modeling RPG
AutoGen gpt-4o 34.74 -
AutoGen gpt-4o-mini 11.24 -
Data Interpreter gpt-4o 52.43 +50.92
Data Interpreter gpt-4o-mini 37.84 +236.65
DS-Bench Data Analysis C.Accuracy
AutoGen gpt-4o 26.72 -
AutoGen gpt-4o-mini 21.01 -
Data Interpreter gpt-4o 28.75 +7.60
Data Interpreter gpt-4o-mini 24.46 +16.42

pendencies. Programmable node generation relies371

on in-context learning with retrieved context, en-372

suring efficient and adaptive tool integration. The373

prompt for programmable node generation can be374

found in Figure 6. This can be viewed as develop-375

ing advanced and composite tool forms.376

4 Experiments377

4.1 Experimental setup378

Data Analysis. For data analysis tasks, we eval-379

uated our approach using two publicly available380

benchmarks: InfiAgent-DABench (Hu et al., 2024)381

and DS-Bench (Jing et al., 2024). These bench-382

marks are specifically designed to comprehensively383

evaluate LLM performance in real-world data anal-384

ysis tasks. Following the evaluation setups in these385

benchmarks, we used accuracy as the primary met-386

ric for InfiAgent-DABench and competition-level387

accuracy, which is calculated by averaging the accu-388

racy scores obtained from each competition for DS-389

Bench. Notably, data modeling tasks in DS-Bench390

are also reported in Table 2 with the RPG (Jing391

et al., 2024) metric. We conducted comparative392

evaluations mainly against AutoGen (Wu et al., 393

2023a), utilizing gpt-4o, gpt-4-0613 and gpt-4o- 394

mini with temperature set to 0 following the orig- 395

inal benchmark configurations. The details of the 396

benchmark are in Appendix B.1. 397

Machine Learning. For machine learning tasks, 398

we crafted a dataset named ML-Bechmark, con- 399

sisting of 8 Kaggle machine learning tasks (de- 400

tails in Table 12. We also detail the evaluation 401

metrics on the ML-Benchmark in Appendix B.2. 402

We compared with a broad range of baselines, in- 403

cluding XAgent (Team, 2023), AutoGen, OpenIn- 404

terpreter (Lucas, 2023), TaskWeaver (Qiao et al., 405

2023), and OpenHands (Wang et al., 2024c). By 406

default, we used gpt-4-1106-preview with tempera- 407

ture set to 0. 408

Mathematical Reasoning. We evaluated four 409

categories (C.Prob, N.Theory, Prealg, Pre- 410

calc) of level-5 problems from the MATH 411

dataset (Hendrycks et al., 2021), following the set- 412

ting of (Wu et al., 2023b). The level-5 problems 413

were chosen for their complexity and the challenges 414

in reliable numeric interpretation. We used Math- 415

Chat (Wu et al., 2023b) and AutoGen (Wu et al., 416

2023a) as baselines for the MATH benchmark. 417

Open-ended Task. To verify the capability for 418

dynamic data handling, we also crafted the Open- 419

ended task benchmark comprising 20 tasks. De- 420

tails about the dataset are in the Appendix B.1. 421

We adopted AutoGen, OpenInterpreter, and Open- 422

Hands as baselines, with average results reported 423

over three runs. We adopted gpt-4-1106-preview 424

with the temperature set to 0. 425

4.2 Main Results 426

Performance on Data Analysis. As demon- 427

strated in Table 2, with gpt-4-0613, Data Inter- 428

preter achieved a score of 73.55, outperforming 429

AutoGen by 2.9%. In particular, it still did not sur- 430

pass the performance of directly invoking the LLM. 431

We found that this is primarily due to the growing 432

context overhead in the problem-solving process, 433

where the context length exceeds the maximum 434

window size of gpt-4-0613, leading to task failures. 435

However, by incorporating LLMs like gpt-4o with 436

longer context windows, Data Interpreter demon- 437

strated outstanding performance, improving results 438

by 25% compared to direct LLM inference. This in- 439

dicates that Data Interpreter significantly enhances 440

the LLM’s multi-step reasoning capabilities across 441
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Table 3: Performance Comparisons on Machine Learning Task Benchmarks. This table reports the compre-
hensive score of each task. “WR”, “BCW”, “ICR”, “SCTP”, and “SVPC” represent “Wine recognition”, “Breast
cancer wisconsin”, “ICR - Identifying age-related conditions”, “Santander customer transaction prediction”, and
“Santander value prediction challenge”, respectively.

Model / Task WR BCW Titanic House Prices SCTP ICR SVPC Avg. Cost ($)

AutoGen 0.96 0.99 0.87 0.86 0.83 0.77 0.73 0.86 -
OpenInterpreter 1.00 0.93 0.86 0.87 0.68 0.58 0.44 0.77 -
TaskWeaver 1.00 0.98 0.63 0.68 0.34 0.74 0.48 0.69 0.37
XAgent 1.00 0.97 0.42 0.42 0 0.34 0.01 0.45 20.09
OpenDevin 0.98 0.98 0.87 0.94 0.93 0.73 0.73 0.88 3.01
Data Interpreter 0.98 0.99 0.91 0.96 0.94 0.96 0.89 0.95 0.84

Table 4: Performance Comparisons on Open-ended Task Benchmarks. This table reports the completion rate of
each task. The tested tasks include “OCR” (Optical Character Recognition), “WSC” (Web Search and Crawling),
“ER” ( Email Reply), “WPI” (Web Page Imitation), “IBR” (Image Background Removal), “T2I” (Text-to-Image),
“I2C” (Image-to-Code), and “MGG” (Mini Game Generation).

Model / Task OCR WSC ER WPI IBR T2I I2C MGG Avg. Cost ($)

AutoGen 0.67 0.65 0.10 0.26 1.00 0.10 0.20 0.67 0.46 -
OpenInterpreter 0.50 0.30 0.10 0.36 1.00 0.50 0.25 0.20 0.40 -
OpenDevin 0.60 0.87 0.10 0.16 1.00 0.50 0.80 0.90 0.60 1.41
Data Interpreter 0.85 0.96 0.98 1.00 1.00 1.00 1.00 0.93 0.97 0.41

a wide range of data analysis tasks, especially as442

the number of interaction rounds increases and the443

context overhead grows.444

For DS-Bench Data Analysis tasks, compared445

to AutoGen, Data Interpreter showed notable im-446

provements of 7.60% and 16.42% in competition-447

level accuracy when using gpt-4o and gpt-4o-mini448

respectively.449

Performance on Machine Learning. As shown450

in Table 3, Data Interpreter achieved a comprehen-451

sive score of 0.95 across tasks, outperforming Au-452

toGen (0.86) and OpenHands (0.88) by 10.3% and453

7.9%, respectively. It was the only framework to454

achieve a score above 0.9 on tasks such as Titanic,455

House Prices, SCTP, and ICR. Additionally, the456

Data Interpreter demonstrated a significant advan-457

tage over other frameworks, with improvements of458

31.5% and 21.9% over OpenHands on the ICR and459

SVPC tasks, respectively. Notably, Data Interpreter460

solved the tasks more efficiently, achieving an aver-461

age score of $ 0.84 while operating at only 27.9%462

of OpenHands’s cost. Data Interpreter consistently463

completed all mandatory processes in all datasets,464

maintaining superior performance. Further details465

can be found in Table 5 in the Appendix.466

In data modeling tasks on DS-Bench, Data In-467

terpreter exhibited substantial performance gains468

compared to AutoGen, with a 50.92% RPG im-469

provement using gpt-4o and a remarkable 236.65%470

Figure 3: Performance on the MATH dataset. We
evaluate all the problems with difficulty level 5 from 4
categories of the MATH dataset.

improvement using gpt-4o-mini, as shown in Ta- 471

ble 2. These significant enhancements demonstrate 472

Data Interpreter’s superior capabilities in handling 473

complex modeling tasks across different model con- 474

figurations. 475

Performance on MATH Problem. As illustrated 476

in Figure 3, Data Interpreter achieved the best re- 477

sults across all tested categories, reaching 0.82 ac- 478

curacy in the N.Theory category, marking a 0.16 479

improvement over AutoGen performance. In the 480

category with the most challenging, Precalc, Data 481

Interpreter obtained an accuracy of 0.29, an in- 482

crease of 0.17 compared to AutoGen. On aver- 483

age, our Data Interpreter showed 26.5% relative 484

improvement compared to AutoGen. 485

7



Figure 4: Ablation on core modules. Evaluated
with Comprehensive Score on ML-Benchmark. “IGR”
stands for Iterative Graph Refinement, and “PNG” de-
notes Programmable Node Generation. “ICR”, “SCTP”,
and “SVPC” represent “ICR - Identifying age-related
conditions”, “Santander customer transaction predic-
tion”, and “Santander value prediction challenge”, re-
spectively.

Performance on Open-ended Tasks. Table 4486

illustrates that the Data Interpreter achieved a com-487

pletion rate of 0.97, marking a substantial 110.8%488

improvement compared to AutoGen and 61.7%489

improvement compared to OpenHands. In OCR-490

related tasks, the Data Interpreter maintained an491

average completion rate of 0.85, outperforming Au-492

toGen, OpenInterpreter, and OpenHands by 26.8%,493

70.0%, and 41.7%, respectively. In the tasks requir-494

ing multiple steps and utilizing multimodal tool-495

s/interfaces, such as WPI, I2C, and T2I, the Data496

Interpreter emerged as the sole method to execute497

all steps. Baseline frameworks failed to log in and498

obtain the status of the ER task, resulting in a lower499

completion rate. In contrast, Data Interpreter dy-500

namically adjusted to task requirements, achieving501

a completion rate of 0.97.502

4.3 Ablation Study503

Ablation on core modules. We conducted abla-504

tion experiments with three configurations on the505

ML-Benchmark. First, we used ReAct (Yao et al.,506

2022) for code execution with simplified prompts,507

followed by the addition of iterative graph refine-508

ment, and finally, programmable node generation509

was introduced, using the Data Interpreter as the de-510

fault. As shown in Figure 4, iterative graph refine-511

ment improved performance by 0.48, enhancing512

dataset preparation and real-time tracking. Pro-513

grammable node generation further boosted the514

comprehensive score by 10.6%, reaching 0.94. We515

detailed the results in Table 11.516

Figure 5: Evaluation on ML-Benchmark. Left: com-
pletion rate. Right: comprehensive score.

Ablation on different base LLMs. Based on 517

GPT-4o and GPT-4o-mini, Data Interpreter shows 518

further improvement in task completion across a 519

wide range of tasks, as illustrated in Figure 5. In 520

machine learning tasks, LLMs like Qwen-72B- 521

Chat (Bai et al., 2023) and Mixtral-8x7B (Jiang 522

et al., 2024) performed comparably to GPT-3.5- 523

Turbo, while smaller LLMs experienced perfor- 524

mance degradation. Our Data Interpreter handled 525

data loading and analysis effectively with smaller 526

models but had limitations with tasks requiring ad- 527

vanced coding proficiency. Mixtral-8x7B achieved 528

high completion rates in three tasks, but faced chal- 529

lenges in the WSC task. Smaller LLMs also en- 530

countered execution failures due to restricted cod- 531

ing abilities when acquiring images or parsing web- 532

page results, as shown in Figure 5. 533

5 Conclusion 534

We introduced Data Interpreter, an LLM-based 535

agent that addresses data science challenges 536

through a novel hierarchical graph representation. 537

By continuously monitoring data changes and 538

adapting to dynamic environments via iterative 539

task refinement and graph optimization, it robustly 540

manages data analysis, machine learning, and rea- 541

soning tasks. Leveraging hierarchical decomposi- 542

tion, fine-grained execution, validation, and itera- 543

tive modifications, Data Interpreter harnesses the 544

LLM’s planning and coding abilities to tackle com- 545

plex multi-step workflows. Extensive experiments 546

confirm its superiority over state-of-the-art open- 547

source frameworks in machine learning, mathemat- 548

ical problem-solving, and real-world applications, 549

marking a significant advance in LLM-driven data 550

science solutions. 551
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6 Limitations552

Insufficient diversity and complexity. Our novel553

framework Data Interpreter outperforms other554

open-source frameworks on machine learning prob-555

lems, yet are limited to entry-level Kaggle datasets556

and benchmarked against the capabilities of a ju-557

nior human data scientist. These datasets are rela-558

tively small (under 500MB), with a limited num-559

ber of columns (in the hundreds) and rows (in the560

tens of thousands), and mainly involve classifi-561

cation and regression tasks (as described in Ap-562

pendix D.2). However, we have not yet evaluated563

our Data Interpreter on more challenging datasets564

involving large-scale data or complex tasks such565

as time series analysis, multi-label classification,566

or multi-table problems. In our future work, we567

plan to expand our dataset collection to include568

these types of problem to thoroughly evaluate our569

framework’s performance and capabilities. Precise570

self-improvement. Human data scientists usually571

perform multiple experiments on a dataset, focus-572

ing on pipeline optimization and hyperparameter573

tuning (Liu et al., 2021; Hutter et al., 2019). Our574

Data Interpreter integrates experience to enhance575

the node generation quality. The experience primar-576

ily involves tracking the progress of tasks and code.577

However, it does not use numerical feedback from578

multiple experiences to develop and refine specific579

strategies, such as increasing the learning rate or580

using an ensemble technique, to continuously im-581

prove performance for a given dataset, thus lacking582

the capability for automatic self-improvement. In583

the future, we aim to address this limitation by584

developing mechanisms that allow our model to585

conduct multiple experiments and derive insights586

from the numerical feedback for a given dataset on587

its own. DAG constraint detection mechanism.588

Our current implementation does not include an589

explicit DAG constraint detection mechanism, we590

rely on the LLM’s inherent ability to avoid cycles591

during task planning, as observed in our experi-592

ments. However, such mechanisms could enhance593

robustness in handling less structured domains or594

highly complex dependencies. Incorporating cy-595

cle detection and resolution strategies in future596

iterations would ensure improved reliability and597

adaptability across diverse applications. Full-scale598

evaluation on mathematical problems. For the599

MATH problem, our experiments are limited to600

level-5 problems, primarily due to the budget con-601

straints, we will explore more cost-effective strate-602

gies to evaluate our Data Interpreter on a wider 603

range of mathematical problems in future studies. 604

7 Ethics Statement 605

This study introduces Data Interpreter to system- 606

atically structure and manage task relationships, 607

emphasizing legal and ethical compliance through- 608

out its deployment. We utilize only authorized and 609

de-identified data to uphold fairness and inclusivity 610

in training and system design, thereby minimiz- 611

ing bias. Our process is transparent, with detailed 612

sharing of methodology and outcomes to ensure 613

reproducibility. The deployment of this method 614

is conducted responsibly, limiting its application 615

to lawful and beneficial purposes. We encourage 616

active collaboration and feedback to continuously 617

refine our approach, focusing on its fairness, ac- 618

countability, and positive societal impact. 619
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A Broader Impact887

Our work has the potential to significantly reduce888

the costs associated with a wide range of cus-889

tomized data science tasks, empowering profession-890

als in the field to enhance their automation capabili-891

ties and efficiency. However, the flexibility of tools892

integration, while convenient for local code snip-893

pets integration, comes with potential risks. For894

example, if users provide malicious code intended895

for unauthorized system penetration or web attacks,896

it could lead to security vulnerabilities. In our ex-897

periments, we mitigate this risk by prompting our898

Data Interpreter to check the codes before generat-899

ing new codes. Additional saftguards against these900

risks include collaborating exclusively with LLMs901

that adhere to robust safety policies.902

B Experiment Details903

B.1 Dataset904

InfiAgent-DABench InfiAgent-DABench905

focuses on evaluating the data analysis capabilities906

of agents. It comprises 257 data analysis problems,907

categorized into the following seven areas and908

their combinations: summary statistics, feature909

engineering, correlation analysis, machine learn-910

ing, distribution analysis, outlier detection, and911

comprehensive data preprocessing. Each category912

includes problems with varying difficulty levels.913

In the following, we present some specific prompt914

cases to provide an intuitive understanding of the915

task settings in InfiAgent-DABench.916

Machine Learning Benchmark. This dataset en-917

compassed eight representative machine learning918

tasks categorized into three difficulty levels, rang-919

ing from easy (level 1) to the most complex (level920

3). Each task was accompanied by data, a concise921

description, standard user requirements, suggested922

steps, and metrics (see Table 12 in the Appendix).923

For tasks labeled as “toy", the data were not divided924

into training and test splits, which required the925

framework to perform data splitting during model-926

ing.927

Open-ended Task Benchmarks. To evaluate the928

ability to generalize to real-world tasks, we devel-929

oped the Open-ended task benchmark, comprising930

20 tasks. Each task required the framework to un-931

derstand user needs, break down complex tasks,932

and execute code. They delineated their require-933

ments, foundational data or sources, completion934

steps, and specific metrics. The scope was broad,935

encompassing common needs like Optical Char- 936

acter Recognition (OCR), web search and crawl- 937

ing (WSC), automated email replies (ER), web 938

page imitation (WPI), text-to-image conversion 939

(T2I), image-to-HTML code generation (I2C), im- 940

age background removal (IBR), and mini-game 941

generation (MGG). We present about these tasks 942

in Figure 15 and Figure 16 in the Appendix. 943

MATH Dataset. The MATH dataset (Hendrycks 944

et al., 2021) comprises 12,500 problems, with 945

5,000 designated as the test set, covering various 946

subjects and difficulty levels. These subjects in- 947

clude Prealgebra (Prealg), Algebra, Number The- 948

ory (N.Theory), Counting and Probability (C.Prob), 949

Geometry, Intermediate Algebra, and Precalculus 950

(Precalc), with problems categorized from levels 951

"1" to "5" based on difficulty. Following the set- 952

ting of Wu et al. (Wu et al., 2023b), we evaluated 953

four typical problem types (C.Prob, N.Theory, Pre- 954

alg, Precalc), excluding level-5 geometry problems 955

from the test set. 956

B.2 Evaluation Metrics 957

In the MATH benchmark (Hendrycks et al., 2021), 958

accuracy served as the chosen evaluation metric, 959

aligning with the setting proposed in (Wu et al., 960

2023b; Hendrycks et al., 2021). 961

For the ML-Benchmark, three evaluation met- 962

rics were utilized: completion rate (CR), normal- 963

ized performance score (NPS), and comprehensive 964

score (CS). These metrics provided comprehensive 965

insights into the model performance and were de- 966

fined as follows: 967

Completion rate (CR): In the task requirements 968

description, there were T steps, and the task com- 969

pletion status of each step was denoted by a score 970

st, with a maximum score smax of 2 and a mini- 971

mum score smin of 0. The task completion status 972

categories were defined as follows: missing (score 973

of 0), fail (score of 0), success - non-compliant 974

(score of 1), success-compliant (score of 2), and 975

optional step (not involved in scoring). To mea- 976

sure the completion level, we proposed a com- 977

pletion ratio where the numerator was the sum of 978

scores st for each step, and the denominator was 979

the sum of the maximum possible scores for all 980

steps (smax × T ): 981

CR =

∑T
t=1 st

smax × T
. (3) 982

Normalized performance score (NPS): In our 983

ML-Benchmark, each task was associated with its 984
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# Capabilities
- You can utilize pre-defined tools in any code lines from 'Available Tools' in the

form of Python Class.
- You can freely combine the use of any other public packages, like sklearn, numpy,

pandas, etc..

# Available Tools:
Each Class tool is described in JSON format. When you call a tool, import the tool

from its path first.
{tool_schemas}

# Output Example:
when the current task is "do data preprocess, like fill missing value, handle

outliers, etc.", the code can be like:
```python
# Step 1: fill missing value
# Tools used: ['FillMissingValue']
from metagpt.tools.libs.data_preprocess import FillMissingValue

train_processed = train.copy()
test_processed = test.copy()
num_cols = train_processed.select_dtypes(include='number').columns.tolist()
if 'label' in num_cols:

num_cols.remove('label')
fill_missing_value = FillMissingValue(features=num_cols, strategy='mean')
fill_missing_value.fit(train_processed)
train_processed = fill_missing_value.transform(train_processed)
test_processed = fill_missing_value.transform(test_processed)

# Step 2: handle outliers
for col in num_cols:

low, high = train_processed[col].quantile([0.01, 0.99])
train_processed[col] = train_processed[col].clip(low, high)
test_processed[col] = test_processed[col].clip(low, high)

```end

# Constraints:
- Ensure the output new code is executable in the same Jupyter notebook with the

previous tasks code has been executed.
- Always prioritize using pre-defined tools for the same functionality.
- Always copy the DataFrame before processing it and use the copy to process.

Figure 6: One-shot tool usage prompt

evaluation metric, which may vary between tasks,985

including metrics such as accuracy, F1, AUC, RM-986

SLE, etc. For metrics such as accuracy, F1, and987

AUC, we presented the raw values to facilitate com-988

parison across identical data tasks. We normalize989

all performance values s:990

NPS =


1

1 + s
, if s is smaller the better

s, otherwise.
(4)991

This transformation ensured that loss-based metrics992

like RMSLE are scaled from 0 to 1, with higher993

normalized performance score values indicating994

better performance.995

Comprehensive score (CS): To simultaneously996

assess both the completion rate of task require-997

ments and the performance of generated machine 998

learning models, we calculated the weighted sum 999

of CR and NPS as follows: 1000

CS = 0.5× CR + 0.5× NPS. (5) 1001

Considering the lack of unified performance stan- 1002

dards for Open-ended tasks, we default to NPS = 0 1003

and directly equate CS to CR. 1004

DS-Bench. DS-Bench (Jing et al., 2024), a com- 1005

prehensive benchmark with 466 data analysis and 1006

74 data modeling tasks from Eloquence and Kag- 1007

gle competitions, designed to evaluate data science 1008

agents in realistic settings involving long contexts, 1009

multimodal tasks, large data files, multi-table struc- 1010

tures, and end-to-end data modeling. We followed 1011
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the DS-Bench evaluation setup, randomly sampling1012

64 tasks for data analysis and 10 tasks for data mod-1013

eling in our experiments.1014

MLE-Benchmark. MLE-Benchmark (Chan1015

et al., 2024) assesses AI agents’ capabilities in1016

machine learning engineering through 75 curated1017

Kaggle competitions, focusing on model training,1018

dataset preparation, and experimental execution.1019

In this paper, we designed MLE-Bench-Lite1020

for efficient evaluation, selecting eight random1021

tasks from MLE-Bench and testing them with1022

a 3-hour time limit per task, in contrast to the1023

24-hour limit for AIDE (Schmidt et al., 2024) and1024

OpenDevin (Wang et al., 2024c). The experimental1025

setup utilized a single 24GB GPU, 125GB1026

memory, and a 36-core CPU, running gpt-4o1027

with temperature set to 0.1028

Table 5: Additional performance comparisons on
ML benchmark. “WR", “BCW", “ICR", “SCTP", and
“SVPC" represent “Wine recognition"", “Breast cancer
wisconsin", “ICR - Identifying age-related conditions",
“Santander customer transaction prediction", and “San-
tander value prediction challenge", respectively. “Avg."
denotes “Average".

Model / Task WR BCW Titanic House Prices SCTP ICR SVPC Avg.

Completion rate

AutoGen 0.92 1.00 0.92 0.83 0.83 0.83 0.83 0.88
OpenInterpreter 1.00 0.90 0.92 0.88 0.85 0.91 0.88 0.90
TaskWeaver 1.00 1.00 0.83 0.88 0.67 0.83 0.80 0.86
XAgent 1.00 1.00 0.83 0.83 0 0.67 0 0.62
OpenDevin 1.00 1.00 0.92 1.00 1.00 0.83 1.00 0.96
Data Interpreter 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Normalized performance score

AutoGen 1.00 0.97 0.82 0.88 0.82 0.71 0.63 0.83
OpenInterpreter 1.00 0.96 0.81 0.87 0.52 0.25 0 0.63
TaskWeaver 1.00 0.96 0.43 0.49 0 0.65 0.17 0.53
XAgent 1.00 0.94 0 0 0 0 0 0.28
OpenDevin 0.96 0.96 0.81 0.87 0.86 0.62 0.45 0.79
Data Interpreter 0.96 0.99 0.82 0.91 0.89 0.91 0.77 0.89

B.3 Additional Results1029

B.3.1 Additional results of ML-benchmark1030

and Math dataset1031

For a deeper understanding, Table 5 presents the1032

results on the ML benchmark for both Completion1033

Rate and Normalized Performance Score metrics.1034

Additionally, Table 11 showcases the results of ab-1035

lation experiments on the ML benchmark, focusing1036

on the completion rate (CR) and the normalized1037

performance score (NPS).1038

B.4 Overhead Analysis1039

We compared our token cost (average per task) and1040

inference time (average per task) across the ML-1041

Benchmark, Open-ended Task Benchmark, MATH1042

Table 6: Additional performance comparisons on
MATH dataset. “Avg." and “Std." denotes “Average",
“Standard Deviation" respectively.

Category MathChat AutoGen
Data Interpreter

Avg. Trial1 Trail2 Trail3 Std.(%)

C.Prob 0.52 0.59 0.68 0.70 0.66 0.68 2.05
N.Theory 0.60 0.66 0.82 0.81 0.82 0.82 0.99
Prealg 0.60 0.63 0.74 0.73 0.75 0.75 1.20
Precalc 0.19 0.12 0.29 0.28 0.30 0.29 1.13

Dataset, and InfriAgent-DABench, while also re- 1043

porting our performance. Our framework demon- 1044

strates state-of-the-art performance with competi- 1045

tive efficiency. 1046

Table 7: Overhead analysis on MATH Dataset.“Cost"
represents the total cost in USD, “Time" indicates the
total execution time in seconds, “Avg." denotes “Aver-
age".

Model / Metric Cost ($)↓ Time (s)↓ Accuracy↑

AutoGen 0.242 120.99 0.500
Data Interpreter 0.336 211.57 0.633

Table 8: Overhead analysis on InfriAgent-
DABench.“Cost" represents the total cost in USD,
“Time" indicates the total execution time in seconds,
“Avg." denotes “Average".

Model / Metric Cost ($)↓ Time (s)↓ Accuracy↑

AutoGen (gpt-4o) 0.112 42.42 88.72
AutoGen (gpt-4-0613) 0.423 45.69 71.49

Data Interpreter (gpt-4o) 0.017 49.44 94.93
Data Interpreter (gpt-4-0613) 0.311 51.09 73.55

In specific domains such as MATH Dataset (See 1047

Table 7) and InfriAgent-DABench (See Table 8), 1048

Data Interpreter consistently shows superior accu- 1049

racy (63.3% and 94.93% respectively) while main- 1050

taining competitive efficiency, as demonstrated 1051

in Table 7 and Table 8. Notably, on InfriAgent- 1052

DABench, our approach achieves better perfor- 1053

mance with lower cost (0.017 USD vs. 0.112 USD) 1054

compared to AutoGen. 1055

On ML-Benchmark (See Table 9), Data Interpreter 1056

achieves the highest comprehensive score (0.95) 1057

among all frameworks, though with moderate cost 1058

(0.84 USD) and inference time (237.31s), as shown 1059

in table 9. While frameworks like OpenInterpreter 1060

achieve lower costs (0.21 USD) through one-time 1061

code generation, they show inferior performance 1062

(0.77). 1063

In Table 10, for Open-ended tasks, Data Interpreter 1064

significantly outperforms baselines with a compre- 1065
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Table 9: Overhead analysis on ML Benchmark.
“SCTP", and “SVPC" represent “ICR - Identifying age-
related conditions", “Santander customer transaction
prediction", and “Santander value prediction challenge",
respectively. “Cost" represents the total cost in USD,
“Time" indicates the total execution time in seconds,
“Avg." denotes “Average".

Model / Task Titanic House ICR SCTP SVPC Avg.

Cost ($)↓

AutoGen 0.08 0.25 0.19 0.48 0.58 0.32
OpenInterpreter 0.26 0.15 0.27 0.18 0.21 0.21
OpenDevin 2.66 3.01 3.35 3.24 2.78 3.01
TaskWeaver 0.35 0.38 0.36 0.29 0.48 0.37
XAgent 21.15 17.16 27.81 14.12 20.23 20.09
Data Interpreter 0.65 0.84 0.76 0.54 1.41 0.84

Time (s)↓

AutoGen 124.71 84.11 136.91 280.60 244.04 174.07
OpenInterpreter 116.66 132.00 170.00 239.00 296.00 190.73
OpenDevin 164.00 133.00 148.00 282.00 212.00 187.80
TaskWeaver 109.76 279.25 151.97 182.13 119.62 168.55
XAgent 5400.00 5107.00 5400.00 6023.00 9000.00 6186.00
Data Interpreter 168.01 193.21 184.77 244.39 396.17 237.31

Comprehensive Score↑

AutoGen 0.87 0.86 0.83 0.77 0.73 0.86
OpenInterpreter 0.86 0.87 0.68 0.58 0.44 0.77
OpenDevin 0.87 0.94 0.93 0.73 0.73 0.88
TaskWeaver 0.63 0.68 0.34 0.74 0.48 0.69
XAgent 0.42 0.42 0.00 0.34 0.01 0.45
Data Interpreter 0.91 0.96 0.94 0.96 0.89 0.95

Table 10: Overhead comparison on Open-ended
Tasks. “OCR”, “WSC", “WPI”, and “IBR” repre-
sent “Optical Character Recognition”, “Web Search and
Crawling”, “Web Page Imitation”, and “Image Back-
ground Removal”, respectively. “Cost” represents the
total cost in USD, “Time” indicates the total execution
time in seconds, “Avg.” denotes “Average”.

Model / Task OCR WSC WPI IBR Avg.

Cost ($)↓

AutoGen 0.10 0.18 0.43 0.48 0.30
OpenInterpreter 0.28 0.08 0.15 0.07 0.15
OpenDevin 1.27 1.88 1.26 1.24 1.41
Data Interpreter 0.275 0.69 0.23 0.18 0.34

Time (s)↓

AutoGen 68.85 57.28 154.46 79.26 90.05
OpenInterpreter 133.00 109.00 102.00 68.00 103.00
OpenDevin 190.00 196.00 94.00 146.00 156.50
Data Interpreter 77.00 293.00 65.00 34.00 117.25

Comprehensive Score↑

AutoGen 0.67 0.65 0.26 1.00 0.65
OpenInterpreter 0.50 0.30 0.36 1.00 0.54
OpenDevin 0.60 0.87 0.16 1.00 0.66
Data Interpreter 0.85 0.96 1.00 1.00 0.95

hensive score of 0.953, maintaining reasonable cost1066

(0.34 USD) compared to OpenDevin (1.41 USD)1067

and AutoGen (0.30 USD).1068

B.4.1 Ablation Study 1069

Here we provide detailed ablation study results on 1070

core modules.

Table 11: Ablation on core modules. Evaluated with
CR, NPS and CS on ML-Benchmark. “IGR" stands
for Iterative Graph Refinement, and “PNG" denotes
Programmable Node Generation. “ICR", “SCTP", and
“SVPC" represent “ICR - Identifying age-related condi-
tions", “Santander customer transaction prediction", and
“Santander value prediction challenge", respectively.

Code execution IGR PNG House Prices SCTP SVPC ICR Avg.

Completion rate

✓ 0.58 0.33 0.67 0.33 0.48
✓ ✓ 1.00 1.00 0.92 0.88 0.95
✓ ✓ ✓ 1.00 1.00 1.00 1.00 1.00

Normalized performance score

✓ 0.43 0 0.64 0 0.27
✓ ✓ 0.91 0.82 0.68 0.60 0.75
✓ ✓ ✓ 0.91 0.89 0.77 0.91 0.87

Comprehensive score

✓ 0.51 0.17 0.66 0.17 0.37
✓ ✓ 0.96 0.91 0.80 0.74 0.85
✓ ✓ ✓ 0.96 0.95 0.89 0.96 0.94

1071

C Additional Examples 1072

C.1 An Example of Task Graph 1073

Here is the prompt used to generate the task graph. 1074

Here is an example of a task graph. The user 1075

requirement is: “This is a dataset featuring sen- 1076

sor readings from industrial machines, aimed at 1077

predicting machine operational status (normal or 1078

faulty). Visualize the analysis and prediction re- 1079

sults with high-quality graphs. Train data path: 1080

{train_path}, eval data path: {eval_path}.” 1081

C.2 Prompts for Action Graph 1082

Data Interpreter utilizes LLMs to generate an ac- 1083

tion graph for each task. For each task node, we 1084

maintain the execution context and task graph state 1085

via plan status, and generate executable code using 1086

the following prompt: 1087

C.3 Example of Dynamic Task Graph 1088

Refinement 1089

This section details how Data Interpreter resolves 1090

task failures and refines the task graph dynamically. 1091

Initially, the task graph is created as described in 1092

Appendix C.1. When encountering task execution 1093

failures (e.g., Task 4: feature engineering), Data 1094

Interpreter utilizes a reflection-based debugging 1095

prompt (REFLECTION_PROMPT) to iteratively 1096

analyze errors and propose improved implementa- 1097

tions. 1098

16



PLAN_PROMPT = """
# Context:
{context}
# Available Task Types:
{task_type_desc}
# Task:
Based on the context, write a plan or modify an existing plan of what you should do

to achieve the goal. A plan consists of one to {max_tasks} tasks.
If you are modifying an existing plan, carefully follow the instruction, don't make

unnecessary changes. Give the whole plan unless instructed to modify only one
task of the plan.

If you encounter errors on the current task, revise and output the current single
task only.

Output a list of jsons following the format:
[

{{
"task_id": str = "unique identifier for a task in plan, can be an ordinal",
"dependent_task_ids": list[str] = "ids of tasks prerequisite to this task",
"instruction": "what you should do in this task, one short phrase or

sentence",
"task_type": "type of this task, should be one of Available Task Types",

}},
...

]
"""

Figure 7: Prompt for task graph generator

After repeated failures (e.g., three unsuccessful1099

attempts to execute the action graph), Data Inter-1100

preter restructures the task graph: Tasks 1-3 remain1101

unchanged, but Task 4 is simplified to basic feature1102

creation, a new Task 5 for feature selection is intro-1103

duced, and subsequent tasks (e.g., original Task 51104

becoming Task 6) are automatically reindexed with1105

updated dependencies, as shown below:1106

C.4 Runtime Results of Task Graph1107

We provide three distinct runtime results of our1108

Data Interpreter, to offer an in-depth demonstra-1109

tion of its capabilities. These results meticulously1110

showcase the intricacies of the task graph, action1111

graph, and the overall graph typology, as shown1112

in Figure 12.1113

C.5 Additional Results of Open-ended Tasks1114

We present the results by Data Interpreter of sev-1115

eral Open-ended tasks in: tasks 4, 14, and 15 in1116

Figure 13.1117

C.6 Result of Data Visualization1118

Figure 14 illustrates the results of the data analysis1119

and visualization using Data Interpreter.1120

D Details of Datasets 1121

D.1 Open-ended Task Details 1122

Figures 15 and 16 showcase several typical Open- 1123

ended tasks in the following illustrations. For each 1124

task, we include the necessary data, user require- 1125

ments, and the assessment pipeline. 1126

D.2 ML-Benchmark Dataset Description 1127

Here are the details of the ML-Benchmark dataset. 1128

We collect several typical datasets from Kaggle1 1129

and machine learning. Details are in Table 12 1130

1https://www.kaggle.com/
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[
{

"task_id": "1",
"dependent_task_ids": [],
"instruction": "Perform data loading and preliminary exploration of the

train and eval datasets. Fill missing values and apply MinMax scaling.",
"task_type": "eda"

},
{

"task_id": "2",
"dependent_task_ids": [

"1"
],
"instruction": "Conduct correlation analysis and provide descriptive

statistics.",
"task_type": "eda"

},
{

"task_id": "3",
"dependent_task_ids": [

"1"
],
"instruction": "Perform outlier detection using Isolation Forest to identify

and handle anomalies.",
"task_type": "eda"

},
{

"task_id": "4",
"dependent_task_ids": [

"2",
"3"

],
"instruction": "Execute feature engineering, including General Selection,

Target Mean Encoding, and Variance Based Selection to prepare features for model
training.",

"task_type": "feature_engineering"
},
{

"task_id": "5",
"dependent_task_ids": [

"4"
],
"instruction": "Split the data and train predictive models using Random

Forest and XGBoost.",
"task_type": "model_train"

},
{

"task_id": "6",
"dependent_task_ids": [

"5"
],
"instruction": "Evaluate the model's performance and generate an evaluation

report.",
"task_type": "model_evaluate"

},
{

"task_id": "7",
"dependent_task_ids": [

"5",
"6"

],
"instruction": "Visualize the analysis and prediction results, including

classification reports and confusion matrix, and serialize the model.",
"task_type": "visualization"

}
]

Figure 8: Task graph example
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GRAPH_STATUS = """
## Finished Tasks
### code
```python
{code_written}
```

### execution result
{task_results}

## Current Task
{current_task}

## Task Guidance
Write complete code for 'Current Task'. And avoid duplicating code from 'Finished

Tasks', such as repeated import of packages, reading data, etc.
Specifically, {guidance}
"""

Action_Graph_Prompt = """
# User Requirement
{project_requirement}

# Plan Status
{plan_status}

# Tool Info
{tool_info}

# Constraints
- Take on Current Task if it is in Plan Status, otherwise, tackle User Requirement

directly.
- Ensure the output new code is executable in the same Jupyter notebook as the

previous executed code.
- Always prioritize using pre-defined tools for the same functionality.

# Output
While some concise thoughts are helpful, code is absolutely required. Always output

one and only one code block in your response. Output code in the following
format:

```python
your code
```
"""

Figure 9: Prompt for action graph generator

19



REFLECTION_PROMPT = """
[example]
Here is an example of debugging with reflection.
{debug_example}
[/example]

[context]
{context}

[previous impl]:
{previous_impl}

[instruction]
Analyze your previous code and error in [context] step by step, provide me with

improved method and code. Remember to follow [context] requirement. Don't forget
to write code for steps behind the error step.

Output a json following the format:
```json
{{

"reflection": str = "Reflection on previous implementation",
"improved_impl": str = "Refined code after reflection.",

}}
```
"""

Figure 10: Prompt for reflection and debugging

...
{

"task_id": "4",
"dependent_task_ids": [

"2",
"3"

],
"instruction": "Create engineered features from sensor readings",
"task_type": "feature_engineering"

},
{

"task_id": "5",
"dependent_task_ids": [

"4",
],

"instruction": "Perform feature selection using statistical methods and
importance analysis",
"task_type": "feature_engineering"

},
{

"task_id": "6",
"dependent_task_ids": [

"4",
"5"

],
"instruction": "Train a predictive model to determine machine status",
"task_type": "model_train"

},
...

Figure 11: Example of refined task graph
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Figure 12: Runtime examples of Data Interpreter: machine learning, webpage imitation, and math problem
solving

Figure 13: Image background removal / text-to-image / web search and crawling by Data Interpreter
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Figure 14: Data analysis and visualization capabilities of Data Interpreter

    

Scenario Description: Scan all the necessary fields and amounts from the given file and then create an Excel sheet with the extracted data

User Requirement: This is an English invoice image.
Your goal is to perform OCR on the image, extract the total amount from ocr result and save as table, using PaddleOCR.
The PaddleOCR environment has been fully installed, try to use Paddleocr as much as possible.
Image path: ./workspace/CORD_test/image/receipt_00001.png

Pipeline Requirement: 
1.Load and read images from a given folder/path
2.Install OCR tools/software
3.Using OCR tools/software to extract necessary fields and amounts
4.Collect results and convert them to a DataFrame
5.Save the result in a csv/xlsx forma

Performance Requirement: Recall / Precision / Accurac

(1) OCR (Task 1-3)

y 

Data:
- Task 1: - Task 2:         - Task 3:

(2) Web search and crawling (Task 4-7)

Scenario Description: Crawling and organizing web form information

Data: -

Pipeline Requirement: 
1.Open target URL
2.Select and filter the required information
3.Download or transform the data, convert them into a specified format
4.Output in a tabular form

Performance Requirement: Recall / Precision / Accuracy 

User Requirement: 
- Task 4:
Get data from `paperlist` table in https://papercopilot.com/statistics/iclr-statistics/iclr-2024-statistics/, and save it to a csv file. paper title must 
include `multiagent` or `large language model`.
notice: print key variables

Figure 15: Open-ended task cases (OCR and web search and crawling). We present task 4, omitting similar
tasks for brevity.
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(16) Image2Code

(5) Image Background Removal (Task 14)

Scenario Description: Remove the background of a given image

User Requirement: This is an image, you need to use python toolkit rembg remove the background of the image. image path:'./data/lxt.jpg'; save 
path:'./data/lxt_result.jpg'

Data: 

Pipeline Requirement: 
1. Read a local image
2. Install image background removal tools/software
3. Using background removal tools/software to remove the background of the target image
4. Save the new image

Performance Requirement: Correctness

(6) Text2Img  (Task 15)

Scenario Description: Use SD tools to generate images

User Requirement: I want to generate an image of a beautiful girl using the stable diffusion text2image tool, sd_url=""

Data: -

Pipeline Requirement: -
 
Performance Requirement: -

(7) Image2Code (Task 16-17)

Scenario Description: Web code generation 

User Requirement: 
- Task 16:
This is a image. First, check if the path exists, then convert the image to webpage code including HTML, CSS and JS in one go, and finally save 
webpage code in a file.The image path: ./medium.png .NOTE: All required dependencies and environments have been fully installed and 
configured.

- Task 17:
This is a image. First, check if the path exists, then convert the image to webpage code including HTML, CSS and JS in one go, and finally save 
webpage code in a file.The image path: ./gemini.png .NOTE: All required dependencies and environments have been fully installed and configured.

Data:   (Task 16-17 in order)

Pipeline Requirement: -
 
Performance Requirement: -

Figure 16: Open-ended task cases (image background removal, text-to-image, and image-to-code)
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