Data Interpreter: An LLLM Agent For Data Science

Anonymous ACL submission

Abstract

Large Language Model (LLM)-based agents
have excelled in various domains but face sig-
nificant challenges when applied to data sci-
ence workflows due to their complex, multi-
stage nature. Current LLM-based agents strug-
gle with non-linear relationships, recursive de-
pendencies, implicit data- and logic-dependent
reasoning, and managing extensive context. In
this paper, we introduce Data Interpreter, an
LLM-based agent that addresses these chal-
lenges through hierarchical graph-based mod-
eling to represent the complexity and a pro-
gressive strategy for step-by-step verification,
refinement, and consistent context manage-
ment. Extensive experiments confirm the ef-
fectiveness of Data Interpreter. On InfiAgent-
DABench, it boosts performance by 25% (from
75.9% to 94.9%), and on machine learning and
open-ended tasks, it lifts accuracy from 88%
to 95% and from 60% to 97%, respectively.
Moreover, our method surpasses state-of-the-
art baselines by 26% on the MATH dataset. We
will release the code upon publication.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in various reasoning
tasks (Hong et al., 2023; Wu et al., 2023a; Wang
et al., 2023a,b; Chen et al., 2024; Zhang et al.,
2024b,a), showcasing their ability to understand
complex contexts, generate coherent responses, and
even tackle multi-step problem-solving tasks.
Among the many areas where LLMs have been
applied, data science stands out as a field of partic-
ular importance, but also one that presents unique
challenges (Hu et al., 2024; Qin et al., 2020). Data
science tasks, including machine learning, data
analysis, table-based question answering, and math-
ematical reasoning, involve multi-stage workflows
that require both precise logical and numerical rea-
soning across various datasets. These data science

workflows are inherently complex and involve mul-
tiple steps, with each task building upon the re-
sults of previous ones (Hu et al., 2024; Liu et al.,
2024b; Li et al., 2024a). The complexity arises
from the interdependencies across different stages,
where tasks are not only sequential, but may also
involve parallel processes, feedback loops, and re-
cursive relationships. Furthermore, many data sci-
ence tasks require reasoning that is both data- and
logic-dependent, introducing implicit dependencies
that are not always clearly stated. For example, in
machine learning workflows, the transformation of
categorical variables across different stages of a
pipeline (e.g., encoding methods) may not always
be consistent, leading to misalignments that de-
grade model performance. LLMs may struggle to
capture these implicit dependencies, applying dif-
ferent methods inconsistently, which can result in
erroneous conclusions and degraded performance.

To address these challenges, several (LLM agent-
based) frameworks have been proposed, as shown
in Table 1. However, these existing solutions still
have significant limitations in tackling the issues
faced by LLMs when applied to data science tasks.
One major issue is hallucinations and error prop-
agation. Errors can compound through dependent
tasks, leading to increasingly unreliable results.
While most current frameworks include verifica-
tion mechanisms, as shown in Table 1, their ap-
proach of generating complete code at once, rather
than step-by-step atomic code, increases the risk of
hallucinations propagating through task dependen-
cies. Another challenge is that many data science
tasks require reasoning that is both data- and logic-
dependent as discussed, linear plan structures inad-
equately capture the often non-linear relationships
in data science tasks (Wang et al., 2024d; Rawte
et al., 2023) most existing framework, as shown in
Table 1. Finally, contextual memory and long-term
dependencies present a significant challenge. The
lengthy steps in data science tasks generate exten-



Table 1: Comparison of DS agent frameworks. Code Exec. (Code Execution): indicates how code is executed in
real-time; Memory: represents the framework’s memory structure for storing context and history; Expandable:
denotes if the framework supports custom extensions and modules; Domains: specifies the primary application areas
(ML: Machine Learning, DA: Data Analysis, TQA: Table Question Answering, MR: Mathematical Reasoning).

* Indicates open-source framework

Framework Plan Structure | Verification | Code Exec. | Memory | Expandable Domains
AutoML-GPT (Zhang et al., 2023a) - X X Raw X ML
HuggingGPT* (Shen et al., 2024) - X X Raw X ML, DA, TQA, MR
MLCopilot* (zhang et al., 2024b) - X X Raw X ML
AutoGen* (Wu et al., 2023a) Linear v All-at-once Raw X ML, DA, TQA, MR
TaskWeaver* (Qiao et al., 2023) Linear v Progressive Raw v ML, DA, TQA, MR
OpenHands™* (Wang et al., 2024b) Linear v All-at-once Raw v ML, DA, TQA, MR
AIDE* (Schmidt et al., 2024) Hierarchical v All-at-once Tree v ML
DS-Agent* (Guo etal.,, 2024) Linear v All-at-once Raw X ML
AutoML-Agent (Trirat et al., 2024) Linear v All-at-once Raw X ML
AutoKaggle* (Li etal., 2024b) Linear v All-at-once Raw v ML

Data Interpreter | Hierarchical | v | Progressive | Graph | v | ML, DA, TQA, MR

sive contextual information. However, most current
frameworks rely on raw memory structures, which
are inadequate for managing relevant context, as
shown in Table 1.

To address the above challenges, we propose
Data Interpreter, a framework that leverages hi-
erarchical graph-based modeling to systematically
structure and manage task relationships, as shown
in Figure 1. By explicitly organizing both high-
level task relationships and low-level computa-
tional (i.e., action) dependencies into a structured
graph format, Data Interpreter ensures a clear rep-
resentation of the workflow’s complexity.

Building on this graph-based structure, Data
Interpreter implements a progressive strategy for
managing long-term dependencies. The framework
identifies task dependencies and represents them as
a reasoning graph, progressively verifying and re-
fining each node to ensure the continuity of context
throughout the process. This progressive verifica-
tion ensures that earlier steps inform later ones,
allowing Data Interpreter to handle complex, multi-
step workflows while maintaining coherence and
accuracy across extended tasks. This results in
a graph-based memory that ensures each task is
grounded in a consistent context, minimizing the
risk of errors propagating through the workflow.

Our experiments demonstrate that Data Inter-
preter significantly outperforms existing methods
across several benchmarks, achieving a 25% per-
formance boost on the public dataset InfiAgent-
DABench (Hu et al., 2024) and a 26% improve-
ment on the MATH dataset (Hendrycks et al., 2021).
Compared to other open-source frameworks, Data
Interpreter consistently shows notable advance-
ments in machine learning and open-ended tasks.

2 Related Work

LLMs as Data Science Agents LLMs demon-
strate expert-level knowledge in machine learning
and have made significant progress in automat-
ing data science tasks (Xie et al., 2024). Early
research focused on using LLMs to write code,
aiming to simplify complex computations involved
in reasoning processes (Gao et al., 2023; Chen
et al., 2022; Zhu et al., 2024). Code interpreters
with function-calling mechanisms have become
the popular approach for enabling LLMs to han-
dle complex reasoning and scientific tasks (Zhou
et al., 2023; Gou et al., 2024; Wang et al., 2024a;
Huang et al., 2023b; Hassan et al., 2023; Qiao
et al., 2023; Zhang et al., 2024b). Recently, frame-
works like AutoML-GPT (Zhang et al., 2023a),
MLCopilot (Zhang et al., 2024b), AutoKaggle (Li
et al., 2024b), AutoML-Agent (Trirat et al., 2024).
Specifically, Zhang et al. (2023b) and Liu et al.
(2024a) focus primarily on machine learning tasks
but lack comprehensive data science capabilities,
particularly in handling multimodal data and auto-
matically detecting and fixing errors in the work-
flow. Although frameworks such as AutoGen (Wu
et al., 2023a), TaskWeaver (Qiao et al., 2023),
Agent K (Grosnit et al., 2024), HuggingGPT (Shen
et al., 2024), DS-Agent (Guo et al., 2024), and
AIDE (Schmidt et al., 2024) support data science
scenarios, they face challenges in scalability, so-
phisticated planning, and effective long context
management. End-to-end frameworks tailored for
data science tasks are still underdeveloped. To fill
this gap, we propose a unified framework designed
for data science, thoroughly benchmarked across
various tasks and settings, providing key insights



Task
Dependency

Task Action

Project

1 - Data
Exploration

4 - Feature
Engineering

2 - Correlati
on Analysis

Read
csv

Data
Splitting

General
Selection

Correlation

Fill
Missing
Value

Target
Mean
Encoder

Descriptive
Statistics

XGBoost

3 - Outliers
Detection

Variance
Based
Selection

MinMax
Scale

Isolation
Forest

Evaluation

Generate
task graph

Generate
action graph

This is a dataset featuring sensor readings from water pump, aimed at
predicting machine operational status (normal or faulty). Your tasks include conducting a
comprehensive data analysis encompassing correlation analysis, causal inferences, data 1
exploration, anomaly detection, and feature engineering.

5 - Model Training

6 - Model
Evaluation

Hierarchical Graph Model !

time  sensor.00  sensor.01

o 2018615 oo

47002011
225

o

8171
2 20181 2.510648

47135410
14:48

Visualization
7 - Visualization

Visualize the analysis
and prediction
results with high-
quality graphs.

Model
Serializati-
on

Classificat
-ion
Report

Confusion
Matrix

° pedcteiovel |

Task Graph Generator

Graph Generation

[ Action Graph Generator ] [ Graph Executor ] &

[}
I
I
I
1
1
:
Feedback & :
[}
[}
I
1
1
1
1
[}

7y Execution Process
Input Output Input Output
project info task graph task graph v action graph Trajectory v
[ Large Language Model H Tools ]

Figure 1: Data Interpreter Workflow. The upper section shows how Data Interpreter organizes a data science
workflow with a hierarchical structure, starting with decomposing project requirements into a task graph and actions
executed via code. The lower section highlights key modules: task graph generator, action graph generator, and
graph executor, which work together to manage task execution and provide real-time feedback.

into the effectiveness of LLMs in this field.

Graph-Based Planning for LLM Agents Plan-
ning is a crucial capability for LLM-based agents,
enabling them to create structured action plans
for solving problems (Huang et al., 2024b; Chen
etal., 2024). While early approaches like CoT (Wei
et al., 2022; Yao et al., 2022) used sequential plan-
ning, more recent methods like ToT (Yao et al.,
2024) and GoT (Besta et al., 2023) have adopted
tree and graph structures to refine LLM prompts.
This graph-based paradigm has been further devel-
oped in various systems like DSPy (Khattab et al.,
2023) and PRODIGY (Huang et al., 2023a), with
recent work focusing on enhancing node prompts
and agent coordination through graph connectiv-
ity (Zhuge et al., 2024; Vierling et al., 2024).
However, these approaches often struggle with

multistep, task-dependent problems in data sci-
ence domains. While OpenHands (Wang et al.,
2024b), offers an agent interaction platform with
event streaming and sandboxing, it requires im-
provements in plan management and code verifica-
tion for complex data science tasks. In this paper,
we use a hierarchical structure that adapts to real-
time data changes.

3 Methodology

In this section, we first present the foundational for-
mulation of hierarchical graph modeling for data
science problems, defining the task graph and ac-
tion graph in Section 3.1. Next, we detail the itera-
tive process of the hierarchical graph structure in
Section 3.2 and illustrate how our Data Interpreter
benefits from the graph-based structured memory.



Finally, in Section 3.3, we introduce programmable
node generation, explaining how we integrate ex-
pertise at different granularities to improve the per-
formance of LLMs.

3.1 Hierarchical Graph Modeling

Data science problems, particularly those involv-
ing machine learning, encompass extensive detail-
ing and long-horizon workflows, including data
pre-processing, feature engineering, and model
training. Drawing inspiration from the applica-
tion of hierarchical planning in automated machine
learning tasks (Mohr et al., 2018; Mubarak and
Koeshidayatullah, 2023), we organize the data sci-
ence workflow via hierarchical structure, which
initially decomposes the intricate data science prob-
lem into manageable tasks and further breaks down
each task into executable code (see Figure 1). For-
mally, we define the task-solving process as a func-
tion P that takes an input z to produce an output
y = P(z). Our goal is for P to generate solutions
that closely approximate or match the anticipated
output y. However, due to the complexity of P,
which may involve various operations and interme-
diate data, fully automating the solution to a task
is typically challenging (Hutter et al., 2019; Zhuge
et al., 2024).

Task Graph. To fully leverage the reasoning
capability of LLMs for general task decompo-
sition, our method first decomposes the task-
solving process of P into a series of sub-processes
{p1,p2,ps3, ...}, each of which can be atomic and
verifiable. As shown in Figure 1, each sub-process
represents a step to complete a specific task. The
primary challenge lies in determining the rela-
tionships 7 = (p;,pj) € R between these sub-
processes, which define the order of execution:
which sub-tasks must be executed first, and which
can be executed in parallel or after others.

We represent all sub-processes as fask nodes
within P, where an edge (p;, p;) indicates that sub-
process p; depends on the output of sub-process p;,
forming a Directed Acyclic Graph (DAG) G that
embodies the entire function P. To execute the task
graph, we can compute the task output, which is
formally defined as follows:

9=9{pi(x)}ii,R), (1)

where G represents a DAG composed of the sub-
processes {p1, p2, p3, . . .}, interconnected through

the relationships R, which model the dependencies
between tasks.

As shown in Figure 1, for a machine operational
status prediction problem, the task graph includes
nodes ranging from data exploration to visualiza-
tion. The graph topology exhibits complex depen-
dencies that cannot be represented by simple se-
quential or tree-based structures, as tasks may have
multiple predecessors and successors. The detailed
task graph representation and the prompt for task
decomposition can be found in Appendix C.1.

Action Graph. Each task node expands into an
action subgraph within the overall action graph.
Specifically, each task node p; is further decom-
posed into more granular steps, represented by A;,
forming an implicit graph of atomic operations
(01,02, ...). These atomic operations correspond
to executable code snippets or functions, providing
fine-grained control for each task p;. As illustrated
in Figure 1, the visualization task is converted to
code snippets, with the confusion matrix calcula-
tion handled by sklearn. Thus, the complete task-
solving process can be expressed as:

7 =9 {Ai(z)}, R) 2

Ai(x) = (o01,09,...) represents the refined
steps for processing input z. Each atomic oper-
ation o; may depend not only on x but also on
other parameters or previous operations’ outputs.
G connects these atomic action graphs according
to the dependency relationships R, forming a com-
prehensive representation of the entire data science
workflow. The dynamic contextual data are auto-
matically managed through inter-task dependen-
cies, making the workflow scalable and flexible for
complex applications.

3.2 [Iterative Graph Refinement

Graph-based Episodic Memory. As previously
discussed, data science tasks generate abundant
contextual information due to their lengthy steps.
In Data Interpreter, we adopt a graph-based data
structure to store context during the reasoning pro-
cess and provide the memory of reasoning steps
with corresponding intermediate results when con-
verting task nodes into action graphs. Specifically,
we use the task graph structure to manage agent
memory and context. The agent’s memory expands
and updates along with the task graph refinement,
beginning with an initial memory state at task graph



| . . Task Node Status | Task graph optimization

| Success

1 in case of execution failure
Failure Not executed Updated |

Figure 2: Task Graph refinement of Data Interpreter.
Task graph refinement for the failed task. After task
execution, Task 3.3 fails. The refined task graph inte-
grates existing success tasks, replaces task 3.3 with the
updated task 3.3, and introduces new tasks 4.1, 4.2, 4.3,
and 5.

initialization. As task nodes are progressively con-
verted into action graphs, Data Interpreter uses a
temporary memory to store intermediate data re-
sults, generated code, and debugging processes.
When a task node’s state is updated, the tempo-
rary memory is cleared, retaining only the gener-
ated code and execution results for the current task
node. Consequently, during the problem-solving
process, dynamic contextual data is automatically
constructed and acquired through task interdepen-
dencies. This avoids the need to retrieve the entire
context at once, maintaining input relevance and
offering flexibility and scalability for broader data
science applications.

Iterative Graph Refinement. During task node
execution, a task is marked as Success if the cor-
responding code executes successfully. If it fails,
Data Interpreter leverages LLMs to debug the code
based on runtime errors, making up to a predefined
number of attempts to resolve the issue. If the prob-
lem persists after the set attempts, the task node is
flagged as Failure, as shown in Figure 2.

To ensure runtime verification and provide real-
time feedback during execution, Data Interpreter
incorporates a stateful graph executor that man-
ages both execution and debugging using reflection
mechanisms (Shinn et al., 2024). Specifically, if the
execution encounters exceptions or fails a verifica-
tion check, the action graph generator dynamically
reflects on the execution results and then regener-
ates the code to resolve the issue or optimize the
output, providing data-driven feedback.

For failed tasks, Data Interpreter regenerates
the task graph based on current episodic memory
and the execution context, as depicted in Figure 2.
Given the task dependencies, the regenerated task
graph is sorted topologically and compared to the
original using a prefix matching algorithm (Wald-

vogel, 2000) to identify differences in task descrip-
tions. This comparison helps identify divergence
points (forks), and the final output includes all un-
changed tasks before the fork, along with any new
or modified tasks after the fork. This approach
allows Data Interpreter to efficiently locate the par-
ent node of the failed task and seamlessly integrate
the newly generated task and its subsequent tasks
into the original graph. It directly leverages the
completed memory of all dependent tasks during
re-execution, avoiding unnecessary code regenera-
tion or redundant executions.

Using continuous monitoring and iterative up-
dates, Data Interpreter avoids the inefficiencies as-
sociated with generating all tasks upfront. This
dynamic adjustment of code and planning, based
on task outcomes, allows for modifications at vari-
ous levels of granularity, greatly enhancing overall
efficiency.

3.3 Programmable Node Generation

Action Node. As described in Section 3.1, action
graph A;(x) = (01,09, ...), is represented in code
format as an implicit graph of various operations.
Here, we define the operators as action nodes. An
action node encapsulates executable computational
logic, integrating both tool-based operations and
application programming interface (APIs) into co-
hesive code snippets.

Programmable Node Generation.  Effective
tool selection and integration, particularly in the
context of task-specific requirements, play a cru-
cial role in the success of task execution, as noted
in prior research (Qian et al., 2023; Yuan et al.,
2024; Huang et al., 2024a; Liu et al., 2023). In
Data Interpreter, we leverage the typology and de-
scription of tasks to enrich the task-specific context,
thereby enhancing the decision-making process for
tool selection and code generation.

Given each task description p;, Data Interpreter
retrieves candidate tools from the toolset T' =
{t1,t2,...,tn} , ranks them by functionality rele-
vance, and selects the top-k tools for the task.

Instead of generating isolated function calls,
Data Interpreter integrates tools, APIs, and code
snippets in context into a context-aware operation.
This process can form three levels of advanced op-
erations: 1) Basic tool extension with added func-
tionality, 2) Tool chaining via concatenating their
outputs, creating a sequential flow of tools, and 3)
Nested tool calls with control logic for complex de-



Table 2: Performance comparisons on Data Analysis.
Results marked with an asterisk (*) are reported by Hu
et al. (2024). Rows marked with a dagger symbol ()
indicate the w/o Agent baseline for comparison. The
A column represents the accuracy improvement of the
agent framework compared to the w/o agent setups. The
best results are highlighted in bold. C.Accuracy indi-
cates Competition-level Accuracy, and RPG refers to
the Relative Performance Gap metric.

Methods | Model Metric A (%)
InfiAgent-DABench Accuracy
gemini-pro 56.42%
gpt-3.5-turbo-0613 60.70*
Model-only gpt-4-0613 78.99%%
gpt-4-0613 75.21
gpt-4o 75.92% -
XAgent gpt-4-0613 47.53* -31.46
AutoGen gpt-4-0613 71.49 -7.50
Data Interpreter gpt-4-0613 73.55 -5.44
Data Interpreter gpt-4o 94.93 +19.01
DS-Bench Data Modeling RPG
AutoGen gpt-4o 34.74
AutoGen gpt-4o-mini 11.24 -
Data Interpreter gpt-4o 52.43 +50.92
Data Interpreter gpt-4o-mini 37.84 +236.65
DS-Bench Data Analysis C.Accuracy
AutoGen gpt-4o 26.72
AutoGen gpt-4o-mini 21.01 -
Data Interpreter gpt-4o 28.75 +7.60
Data Interpreter gpt-4o-mini 24.46 +16.42

pendencies. Programmable node generation relies
on in-context learning with retrieved context, en-
suring efficient and adaptive tool integration. The
prompt for programmable node generation can be
found in Figure 6. This can be viewed as develop-
ing advanced and composite tool forms.

4 Experiments

4.1 Experimental setup

Data Analysis. For data analysis tasks, we eval-
uated our approach using two publicly available
benchmarks: InfiAgent-DABench (Hu et al., 2024)
and DS-Bench (Jing et al., 2024). These bench-
marks are specifically designed to comprehensively
evaluate LLM performance in real-world data anal-
ysis tasks. Following the evaluation setups in these
benchmarks, we used accuracy as the primary met-
ric for InfiAgent-DABench and competition-level
accuracy, which is calculated by averaging the accu-
racy scores obtained from each competition for DS-
Bench. Notably, data modeling tasks in DS-Bench
are also reported in Table 2 with the RPG (Jing
et al., 2024) metric. We conducted comparative

evaluations mainly against AutoGen (Wu et al.,
2023a), utilizing gpt-4o, gpt-4-0613 and gpt-4o-
mini with temperature set to 0 following the orig-
inal benchmark configurations. The details of the
benchmark are in Appendix B.1.

Machine Learning. For machine learning tasks,
we crafted a dataset named ML-Bechmark, con-
sisting of 8 Kaggle machine learning tasks (de-
tails in Table 12. We also detail the evaluation
metrics on the ML-Benchmark in Appendix B.2.
We compared with a broad range of baselines, in-
cluding XAgent (Team, 2023), AutoGen, OpenlIn-
terpreter (Lucas, 2023), TaskWeaver (Qiao et al.,
2023), and OpenHands (Wang et al., 2024c). By
default, we used gpt-4-1106-preview with tempera-
ture set to 0.

Mathematical Reasoning. We evaluated four
categories (C.Prob, N.Theory, Prealg, Pre-
calc) of level-5 problems from the MATH
dataset (Hendrycks et al., 2021), following the set-
ting of (Wu et al., 2023b). The level-5 problems
were chosen for their complexity and the challenges
in reliable numeric interpretation. We used Math-
Chat (Wu et al., 2023b) and AutoGen (Wu et al.,
2023a) as baselines for the MATH benchmark.

Open-ended Task. To verify the capability for
dynamic data handling, we also crafted the Open-
ended task benchmark comprising 20 tasks. De-
tails about the dataset are in the Appendix B.I.
We adopted AutoGen, Openlnterpreter, and Open-
Hands as baselines, with average results reported
over three runs. We adopted gpt-4-1106-preview
with the temperature set to 0.

4.2 Main Results

Performance on Data Analysis. As demon-
strated in Table 2, with gpr-4-0613, Data Inter-
preter achieved a score of 73.55, outperforming
AutoGen by 2.9%. In particular, it still did not sur-
pass the performance of directly invoking the LLM.
We found that this is primarily due to the growing
context overhead in the problem-solving process,
where the context length exceeds the maximum
window size of gpt-4-0613, leading to task failures.
However, by incorporating LLMs like gpt-4o with
longer context windows, Data Interpreter demon-
strated outstanding performance, improving results
by 25% compared to direct LLM inference. This in-
dicates that Data Interpreter significantly enhances
the LLM’s multi-step reasoning capabilities across



Table 3: Performance Comparisons on Machine Learning Task Benchmarks. This table reports the compre-
hensive score of each task. “WR”, “BCW”, “ICR”, “SCTP”, and “SVPC” represent “Wine recognition”, “Breast
cancer wisconsin”, “ICR - Identifying age-related conditions”, “Santander customer transaction prediction”, and

“Santander value prediction challenge”, respectively.

Model / Task | WR BCW  Titanic House Prices SCTP ICR SVPC | Avg. | Cost ($)
AutoGen 096 099 087 0.86 083 077 073 | 0.86 -

OpenlInterpreter | 1.00 093 0.86 0.87 068 058 044 | 077 -

TaskWeaver 1L00 098  0.63 0.68 034 074 048 | 0.69 | 037
XAgent 100 097 042 0.42 0 034 001 | 045 20.09
OpenDevin 098 098 087 0.94 093 073 073 | 088 | 3.01
Data Interpreter | 0.98  0.99 091 0.96 0.94 096 0.89 | 0.95 | 0.84

Table 4: Performance Comparisons on Open-ended Task Benchmarks. This table reports the completion rate of
each task. The tested tasks include “OCR” (Optical Character Recognition), “WSC” (Web Search and Crawling),
“ER” ( Email Reply), “WPI” (Web Page Imitation), “IBR” (Image Background Removal), “T2I” (Text-to-Image),
“I2C” (Image-to-Code), and “MGG” (Mini Game Generation).

Model/Task | OCR  WSC ER WPl IBR T2I 12C MGG | Avg. | Cost($)
AutoGen 067 065 0.10 026 100 010 020 067 | 046 -
Openlnterpreter 050 030 0.10 036 1.00 050 025 020 | 040 -
OpenDevin 060 087 0.0 016 100 050 080 090 | 0.60 | 1.41
Data Interpreter | 0.85 0.96 0.98 1.00 1.00 1.00 1.00 0.93 | 0.97 | 0.41

a wide range of data analysis tasks, especially as
the number of interaction rounds increases and the
context overhead grows.

For DS-Bench Data Analysis tasks, compared
to AutoGen, Data Interpreter showed notable im-
provements of 7.60% and 16.42% in competition-
level accuracy when using gpt-4o and gpt-4o-mini
respectively.

Performance on Machine Learning. As shown
in Table 3, Data Interpreter achieved a comprehen-
sive score of 0.95 across tasks, outperforming Au-
toGen (0.86) and OpenHands (0.88) by 10.3% and
7.9%, respectively. It was the only framework to
achieve a score above 0.9 on tasks such as Titanic,
House Prices, SCTP, and ICR. Additionally, the
Data Interpreter demonstrated a significant advan-
tage over other frameworks, with improvements of
31.5% and 21.9% over OpenHands on the ICR and
SVPC tasks, respectively. Notably, Data Interpreter
solved the tasks more efficiently, achieving an aver-
age score of $ 0.84 while operating at only 27.9%
of OpenHands’s cost. Data Interpreter consistently
completed all mandatory processes in all datasets,
maintaining superior performance. Further details
can be found in Table 5 in the Appendix.

In data modeling tasks on DS-Bench, Data In-
terpreter exhibited substantial performance gains
compared to AutoGen, with a 50.92% RPG im-
provement using gpt-4o and a remarkable 236.65%

@ MathChat @ AutoGen @ Data Interpreter

0.82
0.8
0.68 0.66
0.59 0.6

0.6F o52
0.4
0.2

[

C.Prob

N.Theory

0.6 9-63

0.74
0.29
0.19
I 0.12

Prealg Precalc

0.65
0.590.61

|

Algebra

Accuracy

Figure 3: Performance on the MATH dataset. We
evaluate all the problems with difficulty level 5 from 4
categories of the MATH dataset.

improvement using gpt-4o-mini, as shown in Ta-
ble 2. These significant enhancements demonstrate
Data Interpreter’s superior capabilities in handling
complex modeling tasks across different model con-
figurations.

Performance on MATH Problem. As illustrated
in Figure 3, Data Interpreter achieved the best re-
sults across all tested categories, reaching 0.82 ac-
curacy in the N.Theory category, marking a 0.16
improvement over AutoGen performance. In the
category with the most challenging, Precalc, Data
Interpreter obtained an accuracy of 0.29, an in-
crease of 0.17 compared to AutoGen. On aver-
age, our Data Interpreter showed 26.5% relative
improvement compared to AutoGen.



@CE WCE+IGR WALL

ir 0.96 0.96 0.95 0.96 0.04

0.89
0.74
0.37
0.17

House Prices SCTP SVPC ICR Avg

o e
> o
T T

Comprehensive Score
o
»
T

e
N
T

Figure 4: Ablation on core modules. Evaluated
with Comprehensive Score on ML-Benchmark. “IGR”
stands for Iterative Graph Refinement, and “PNG” de-
notes Programmable Node Generation. “ICR”, “SCTP”,
and “SVPC” represent “ICR - Identifying age-related
conditions”, “Santander customer transaction predic-
tion”, and “Santander value prediction challenge”, re-
spectively.

Performance on Open-ended Tasks. Table 4
illustrates that the Data Interpreter achieved a com-
pletion rate of 0.97, marking a substantial 110.8%
improvement compared to AutoGen and 61.7%
improvement compared to OpenHands. In OCR-
related tasks, the Data Interpreter maintained an
average completion rate of 0.85, outperforming Au-
toGen, Openlnterpreter, and OpenHands by 26.8%,
70.0%, and 41.7%, respectively. In the tasks requir-
ing multiple steps and utilizing multimodal tool-
s/interfaces, such as WPI, 12C, and T2I, the Data
Interpreter emerged as the sole method to execute
all steps. Baseline frameworks failed to log in and
obtain the status of the ER task, resulting in a lower
completion rate. In contrast, Data Interpreter dy-
namically adjusted to task requirements, achieving
a completion rate of 0.97.

4.3 Ablation Study

Ablation on core modules. We conducted abla-
tion experiments with three configurations on the
ML-Benchmark. First, we used ReAct (Yao et al.,
2022) for code execution with simplified prompts,
followed by the addition of iterative graph refine-
ment, and finally, programmable node generation
was introduced, using the Data Interpreter as the de-
fault. As shown in Figure 4, iterative graph refine-
ment improved performance by 0.48, enhancing
dataset preparation and real-time tracking. Pro-
grammable node generation further boosted the
comprehensive score by 10.6%, reaching 0.94. We
detailed the results in Table 11.

—— GPT-4-Turbo
—— GPT-3.5-Turbo
Qwen-72B-Chat

—— Mixtral-8x7B
Yi-34B-Chat
Qwen-14B-Chat

— Llama2-13B-Chat —— Qwen-7B-Chat
— Llama2-7B-Chat GPT-40
DeepSeek-7B-Chat GPT-40 mini

BCW

O —

Figure 5: Evaluation on ML-Benchmark. Left: com-
pletion rate. Right: comprehensive score.

Ablation on different base LLMs. Based on
GPT-40 and GPT-40-mini, Data Interpreter shows
further improvement in task completion across a
wide range of tasks, as illustrated in Figure 5. In
machine learning tasks, LLMs like Qwen-72B-
Chat (Bai et al., 2023) and Mixtral-8x7B (Jiang
et al., 2024) performed comparably to GPT-3.5-
Turbo, while smaller LLMs experienced perfor-
mance degradation. Our Data Interpreter handled
data loading and analysis effectively with smaller
models but had limitations with tasks requiring ad-
vanced coding proficiency. Mixtral-8x7B achieved
high completion rates in three tasks, but faced chal-
lenges in the WSC task. Smaller LLMs also en-
countered execution failures due to restricted cod-
ing abilities when acquiring images or parsing web-
page results, as shown in Figure 5.

5 Conclusion

We introduced Data Interpreter, an LL.M-based
agent that addresses data science challenges
through a novel hierarchical graph representation.
By continuously monitoring data changes and
adapting to dynamic environments via iterative
task refinement and graph optimization, it robustly
manages data analysis, machine learning, and rea-
soning tasks. Leveraging hierarchical decomposi-
tion, fine-grained execution, validation, and itera-
tive modifications, Data Interpreter harnesses the
LLM’s planning and coding abilities to tackle com-
plex multi-step workflows. Extensive experiments
confirm its superiority over state-of-the-art open-
source frameworks in machine learning, mathemat-
ical problem-solving, and real-world applications,
marking a significant advance in LLM-driven data
science solutions.



6 Limitations

Insufficient diversity and complexity. Our novel
framework Data Interpreter outperforms other
open-source frameworks on machine learning prob-
lems, yet are limited to entry-level Kaggle datasets
and benchmarked against the capabilities of a ju-
nior human data scientist. These datasets are rela-
tively small (under S00MB), with a limited num-
ber of columns (in the hundreds) and rows (in the
tens of thousands), and mainly involve classifi-
cation and regression tasks (as described in Ap-
pendix D.2). However, we have not yet evaluated
our Data Interpreter on more challenging datasets
involving large-scale data or complex tasks such
as time series analysis, multi-label classification,
or multi-table problems. In our future work, we
plan to expand our dataset collection to include
these types of problem to thoroughly evaluate our
framework’s performance and capabilities. Precise
self-improvement. Human data scientists usually
perform multiple experiments on a dataset, focus-
ing on pipeline optimization and hyperparameter
tuning (Liu et al., 2021; Hutter et al., 2019). Our
Data Interpreter integrates experience to enhance
the node generation quality. The experience primar-
ily involves tracking the progress of tasks and code.
However, it does not use numerical feedback from
multiple experiences to develop and refine specific
strategies, such as increasing the learning rate or
using an ensemble technique, to continuously im-
prove performance for a given dataset, thus lacking
the capability for automatic self-improvement. In
the future, we aim to address this limitation by
developing mechanisms that allow our model to
conduct multiple experiments and derive insights
from the numerical feedback for a given dataset on
its own. DAG constraint detection mechanism.
Our current implementation does not include an
explicit DAG constraint detection mechanism, we
rely on the LLM’s inherent ability to avoid cycles
during task planning, as observed in our experi-
ments. However, such mechanisms could enhance
robustness in handling less structured domains or
highly complex dependencies. Incorporating cy-
cle detection and resolution strategies in future
iterations would ensure improved reliability and
adaptability across diverse applications. Full-scale
evaluation on mathematical problems. For the
MATH problem, our experiments are limited to
level-5 problems, primarily due to the budget con-
straints, we will explore more cost-effective strate-

gies to evaluate our Data Interpreter on a wider
range of mathematical problems in future studies.

7 Ethics Statement

This study introduces Data Interpreter to system-
atically structure and manage task relationships,
emphasizing legal and ethical compliance through-
out its deployment. We utilize only authorized and
de-identified data to uphold fairness and inclusivity
in training and system design, thereby minimiz-
ing bias. Our process is transparent, with detailed
sharing of methodology and outcomes to ensure
reproducibility. The deployment of this method
is conducted responsibly, limiting its application
to lawful and beneficial purposes. We encourage
active collaboration and feedback to continuously
refine our approach, focusing on its fairness, ac-
countability, and positive societal impact.



References

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadomski,
Piotr Nyczyk, et al. 2023. Graph of thoughts: Solv-
ing elaborate problems with large language models.
arXiv preprint.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James
Aung, Dane Sherburn, Evan Mays, Giulio Starace,
Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian
Weng, and Aleksander Madry. 2024. Mle-bench:
Evaluating machine learning agents on machine
learning engineering.

Jiagi Chen, Yuxian Jiang, Jiachen Lu, and Li Zhang.
2024. S-agents: self-organizing agents in open-
ended environment.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In ICML.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2024. ToRA: A tool-integrated reasoning
agent for mathematical problem solving.

Antoine Grosnit, Alexandre Maraval, James Doran,
Giuseppe Paolo, Albert Thomas, Refinath Shahul
Hameed Nabeezath Beevi, Jonas Gonzalez, Khy-
ati Khandelwal, Ignacio Iacobacci, Abdelhakim
Benechehab, Hamza Cherkaoui, Youssef Attia El-
Hili, Kun Shao, Jianye Hao, Jun Yao, Balazs Kegl,
Haitham Bou-Ammar, and Jun Wang. 2024. Large
language models orchestrating structured reasoning
achieve kaggle grandmaster level.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen,
Yi Chang, and Jun Wang. 2024. Ds-agent: Auto-
mated data science by empowering large language
models with case-based reasoning. arXiv preprint
arXiv:2402.17453.

Md Mahadi Hassan, Alex Knipper, and Shubhra
Kanti Karmaker Santu. 2023. Chatgpt as your per-
sonal data scientist.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,

10

Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al.
2023. Metagpt: Meta programming for multi-agent
collaborative framework. In The Twelfth Interna-
tional Conference on Learning Representations.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli
Ma, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing
Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li,
Kun Kuang, Yang Yang, Hongxia Yang, and Fei Wu.
2024. Infiagent-dabench: Evaluating agents on data
analysis tasks.

Qian Huang, Hongyu Ren, Peng Chen, Gregor Krzmanc,
Daniel Zeng, Percy Liang, and Jure Leskovec. 2023a.
Prodigy: Enabling in-context learning over graphs.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec.
2023b. Benchmarking large language models as ai
research agents.

Shijue Huang, Wanjun Zhong, Jiangiao Lu, Qi Zhu, Ji-
ahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng,
Yasheng Wang, Lifeng Shang, et al. 2024a. Planning,
creation, usage: Benchmarking 1lms for comprehen-
sive tool utilization in real-world complex scenarios.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei
Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. 2024b. Understanding
the planning of 1lm agents: A survey.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren.
2019. Automated machine learning: methods, sys-
tems, challenges. Springer Nature.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts.

Ligiang Jing, Zhehui Huang, Xiaoyang Wang, Wen-
lin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang,
Xinya Du, and Dong Yu. 2024. Dsbench: How far
are data science agents to becoming data science ex-
perts?

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2023. Dspy: Compiling
declarative language model calls into self-improving
pipelines.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li,
and Nan Tang. 2024a. The dawn of natural language
to SQL: are we fully ready? Proc. VLDB Endow.,
17(11):3318-3331.

Ziming Li, Qianbo Zang, David Ma, Jiawei Guo, Tuney
Zheng, Minghao Liu, Xinyao Niu, Yue Wang, Jian
Yang, Jiaheng Liu, Wanjun Zhong, Wangchunshu
Zhou, Wenhao Huang, and Ge Zhang. 2024b. Au-
tokaggle: A multi-agent framework for autonomous
data science competitions.



Siyi Liu, Chen Gao, and Yong Li. 2024a. Large lan-
guage model agent for hyper-parameter optimization.
arXiv preprint arXiv:2402.01881.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi
Jiang, Yuxin Zhang, Ju Fan, Guoliang Li, Nan Tang,
and Yuyu Luo. 2024b. A survey of nl2sql with large
language models: Where are we, and where are we
going? Preprint, arXiv:2408.05109.

Zhaoyang Liu, Zeqiang Lai, Zhangwei Gao, Erfei Cui,
Zhiheng Li, Xizhou Zhu, Lewei Lu, Qifeng Chen,
Yu Qiao, Jifeng Dai, et al. 2023. Controlllm: Aug-
ment language models with tools by searching on
graphs.

Zhengying Liu, Adrien Pavao, Zhen Xu, Sergio Es-
calera, Fabio Ferreira, Isabelle Guyon, Sirui Hong,
Frank Hutter, Rongrong Ji, Julio CS Jacques Ju-
nior, et al. 2021. Winning solutions and post-
challenge analyses of the chalearn autodl challenge
2019. TPAMI.

Killian Lucas. 2023. GitHub - KillianL.ucas/open-
interpreter: A natural language interface
for computers. https://github.com/
KillianLucas/open—-interpreter.

Felix Mohr, Marcel Wever, and Eyke Hiillermeier. 2018.
Ml-plan: Automated machine learning via hierarchi-
cal planning. Machine Learning.

Yousef Mubarak and Ardiansyah Koeshidayatullah.
2023. Hierarchical automated machine learning (au-
toml) for advanced unconventional reservoir charac-
terization. Scientific Reports.

Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023. Creator: Tool creation for
disentangling abstract and concrete reasoning of large
language models.

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang,
Chaoyun Zhang, Fangkai Yang, Hang Dong, Jue
Zhang, Lu Wang, Minghua Ma, Pu Zhao, Si Qin,
Xiaoting Qin, Chao Du, Yong Xu, Qingwei Lin,
Saravan Rajmohan, and Dongmei Zhang. 2023.
Taskweaver: A code-first agent framework.

Xuedi Qin, Yuyu Luo, Nan Tang, and Guoliang Li. 2020.
Making data visualization more efficient and effec-
tive: a survey. VLDB J., 29(1):93-117.

Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A
survey of hallucination in large foundation models.
arXiv preprint arXiv:2309.05922.

Dominik Schmidt, Zhengyao Jiang, and Yuxiang Wu.
2024. Introducing weco aide.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2024. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
hugging face. NeurIPS.

11

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning.

XAgent Team. 2023. Xagent: An autonomous agent for
complex task solving. https://github.com/
OpenBMB/XAgent.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang.
2024. Automl-agent: A multi-agent llm framework
for full-pipeline automl.

Lukas Vierling, Jie Fu, and Kai Chen. 2024. Input
conditioned graph generation for language agents.

Marcel Waldvogel. 2000. Fast longest prefix matching:
algorithms, analysis, and applications. Doctoral dis-
sertation, SWISS FEDERAL INSTITUTE OF TECH-
NOLOGY ZURICH.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024a. Exe-
cutable code actions elicit better 1lm agents.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu,
Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi
Song, Bowen Li, Jaskirat Singh, Hoang H. Tran,
Fuqgiang Li, Ren Ma, Mingzhang Zheng, Bill Qian,
Yanjun Shao, Niklas Muennighoff, Yizhe Zhang,
Binyuan Hui, Junyang Lin, Robert Brennan, Hao
Peng, Heng Ji, and Graham Neubig. 2024b. Open-
hands: An open platform for ai software developers
as generalist agents.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu,
Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi
Song, Bowen Li, Jaskirat Singh, et al. 2024c. Open-
devin: An open platform for ai software developers as
generalist agents. arXiv preprint arXiv:2407.16741.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu,
Xiaojian Ma, and Yitao Liang. 2023a. Describe,
explain, plan and select: Interactive planning with
large language models enables open-world multi-task
agents. In NeurIPS.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jin-
bing Hou, Bowei Zhang, Haowei Lin, Zhaofeng He,
Zilong Zheng, Yaodong Yang, Xiaojian Ma, and
Yitao Liang. 2023b. Jarvis-1: Open-world multi-
task agents with memory-augmented multimodal lan-
guage models. arXiv preprint arXiv:2311.05997.

Zihao Wang, Anji Liu, Haowei Lin, Jiagi Li, Xi-
aojian Ma, and Yitao Liang. 2024d. Rat: Re-
trieval augmented thoughts elicit context-aware rea-
soning in long-horizon generation. arXiv preprint
arXiv:2403.05313.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. NeurIPS.


https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://github.com/KillianLucas/open-interpreter
https://github.com/KillianLucas/open-interpreter
https://github.com/KillianLucas/open-interpreter
https://www.weco.ai/blog/technical-report
https://github.com/OpenBMB/XAgent
https://github.com/OpenBMB/XAgent
https://github.com/OpenBMB/XAgent

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023a. Autogen:
Enabling next-gen llm applications via multi-agent
conversation framework.

Yiran Wu, Feiran Jia, Shaokun Zhang, Qingyun Wu,
Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee,
Richard Peng, and Chi Wang. 2023b. An empirical
study on challenging math problem solving with gpt-
4.

Yupeng Xie, Yuyu Luo, Guoliang Li, and Nan Tang.
2024. Haichart: Human and Al paired visualization
system. Proc. VLDB Endow., 17(11):3178-3191.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom
Griffiths, Yuan Cao, and Karthik Narasimhan. 2024.
Tree of thoughts: Deliberate problem solving with
large language models. NeurIPS.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Ren Kan, Dongsheng Li, and De-
qing Yang. 2024. Easytool: Enhancing llm-based
agents with concise tool instruction.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng,
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin
Cheng, Sirui Hong, Jinlin Wang, et al. 2024a. Aflow:
Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and
Yuqing Yang. 2024b. Mlcopilot: Unleashing the
power of large language models in solving machine
learning tasks.

Shujian Zhang, Chengyue Gong, Lemeng Wu,
Xingchao Liu, and Mingyuan Zhou. 2023a. Automl-
gpt: Automatic machine learning with gpt.

Wengqi Zhang, Yongliang Shen, Weiming Lu, and Yuet-
ing Zhuang. 2023b. Data-copilot: Bridging bil-
lions of data and humans with autonomous workflow.
arXiv preprint arXiv:2306.07209.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Lingi
Song, Mingjie Zhan, et al. 2023. Solving challeng-
ing math word problems using gpt-4 code interpreter
with code-based self-verification.

Yizhang Zhu, Shiyin Du, Boyan Li, Yuyu Luo, and
Nan Tang. 2024. Are large language models good
statisticians? In NeurIPS.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,
Francesco Faccio, Dmitrii Khizbullin, and Jurgen
Schmidhuber. 2024. Language agents as optimizable
graphs.

12



A Broader Impact

Our work has the potential to significantly reduce
the costs associated with a wide range of cus-
tomized data science tasks, empowering profession-
als in the field to enhance their automation capabili-
ties and efficiency. However, the flexibility of tools
integration, while convenient for local code snip-
pets integration, comes with potential risks. For
example, if users provide malicious code intended
for unauthorized system penetration or web attacks,
it could lead to security vulnerabilities. In our ex-
periments, we mitigate this risk by prompting our
Data Interpreter to check the codes before generat-
ing new codes. Additional saftguards against these
risks include collaborating exclusively with LLMs
that adhere to robust safety policies.

B Experiment Details

B.1 Dataset

InfiAgent-DABench InfiAgent-DABench
focuses on evaluating the data analysis capabilities
of agents. It comprises 257 data analysis problems,
categorized into the following seven areas and
their combinations: summary statistics, feature
engineering, correlation analysis, machine learn-
ing, distribution analysis, outlier detection, and
comprehensive data preprocessing. Each category
includes problems with varying difficulty levels.
In the following, we present some specific prompt
cases to provide an intuitive understanding of the
task settings in InfiAgent-DABench.

Machine Learning Benchmark. This dataset en-
compassed eight representative machine learning
tasks categorized into three difficulty levels, rang-
ing from easy (level 1) to the most complex (level
3). Each task was accompanied by data, a concise
description, standard user requirements, suggested
steps, and metrics (see Table 12 in the Appendix).
For tasks labeled as “toy", the data were not divided
into training and test splits, which required the
framework to perform data splitting during model-
ing.

Open-ended Task Benchmarks. To evaluate the
ability to generalize to real-world tasks, we devel-
oped the Open-ended task benchmark, comprising
20 tasks. Each task required the framework to un-
derstand user needs, break down complex tasks,
and execute code. They delineated their require-
ments, foundational data or sources, completion
steps, and specific metrics. The scope was broad,

13

encompassing common needs like Optical Char-
acter Recognition (OCR), web search and crawl-
ing (WSC), automated email replies (ER), web
page imitation (WPI), text-to-image conversion
(T2I), image-to-HTML code generation (12C), im-
age background removal (IBR), and mini-game
generation (MGG). We present about these tasks
in Figure 15 and Figure 16 in the Appendix.

MATH Dataset. The MATH dataset (Hendrycks
et al., 2021) comprises 12,500 problems, with
5,000 designated as the test set, covering various
subjects and difficulty levels. These subjects in-
clude Prealgebra (Prealg), Algebra, Number The-
ory (N.Theory), Counting and Probability (C.Prob),
Geometry, Intermediate Algebra, and Precalculus
(Precalc), with problems categorized from levels
"1" to "5" based on difficulty. Following the set-
ting of Wu et al. (Wu et al., 2023b), we evaluated
four typical problem types (C.Prob, N.Theory, Pre-
alg, Precalc), excluding level-5 geometry problems
from the test set.

B.2 Evaluation Metrics

In the MATH benchmark (Hendrycks et al., 2021),
accuracy served as the chosen evaluation metric,
aligning with the setting proposed in (Wu et al.,
2023b; Hendrycks et al., 2021).

For the ML-Benchmark, three evaluation met-
rics were utilized: completion rate (CR), normal-
ized performance score (NPS), and comprehensive
score (CS). These metrics provided comprehensive
insights into the model performance and were de-
fined as follows:

Completion rate (CR): In the task requirements
description, there were 1" steps, and the task com-
pletion status of each step was denoted by a score
s, with a maximum score S,,4, of 2 and a mini-
mum score S, of 0. The task completion status
categories were defined as follows: missing (score
of 0), fail (score of 0), success - non-compliant
(score of 1), success-compliant (score of 2), and
optional step (not involved in scoring). To mea-
sure the completion level, we proposed a com-
pletion ratio where the numerator was the sum of
scores s; for each step, and the denominator was
the sum of the maximum possible scores for all
steps (Smaz X T):

T
D1 St

CR = .
Smaz X T

3)

Normalized performance score (NPS): In our
ML-Benchmark, each task was associated with its



- You can utilize pre-defined tools in any code lines from 'Available Tools' in the
form of Python Class.
- You can freely combine the use of any other public packages,

pandas, etc..

like sklearn, numpy,

Each Class tool is described in JSON format. When you call a tool,
from its path first.
{tool_schemas}

import the tool

when the current task is "do data preprocess, like fill missing value, handle
outliers, etc.", the code can be like:

" “python

from metagpt.tools.libs.data_preprocess import FillMissingValue

train_processed = train.copy ()

test_processed = test.copy ()

num_cols = train_processed.select_dtypes (include="number') .columns.tolist ()

if 'label' in num_cols:

num_cols.remove ('label")

fill_missing_value FillMissingValue (features=num_cols,
fill missing_value.fit (train_processed)

train_processed fill _missing _value.transform(train_processed)

test_processed fill missing_value.transform(test_processed)

strategy='mean')

for col in num_cols:

low, high = train_processed[col].quantile([0.01, 0.99])
train_processed|[col] = train_processed|[col].clip(low, high)
test_processed[col] = test_processed[col].clip(low, high)

“end

- Ensure the output new code is executable in the same Jupyter notebook with the
previous tasks code has been executed.

- Always prioritize using pre-defined tools for the same functionality.

- Always copy the DataFrame before processing it and use the copy to process.

Figure 6: One-shot tool usage prompt

evaluation metric, which may vary between tasks,
including metrics such as accuracy, F1, AUC, RM-
SLE, etc. For metrics such as accuracy, F1, and
AUC, we presented the raw values to facilitate com-
parison across identical data tasks. We normalize
all performance values s:

1

1+s
87

, if s is smaller the better
NPS =

otherwise.

This transformation ensured that loss-based metrics
like RMSLE are scaled from O to 1, with higher
normalized performance score values indicating
better performance.

Comprehensive score (CS): To simultaneously
assess both the completion rate of task require-

14

ments and the performance of generated machine
learning models, we calculated the weighted sum
of CR and NPS as follows:

CS = 0.5 x CR + 0.5 x NPS. 5)

Considering the lack of unified performance stan-
dards for Open-ended tasks, we default to NPS = 0
and directly equate CS to CR.

DS-Bench. DS-Bench (Jing et al., 2024), a com-
prehensive benchmark with 466 data analysis and
74 data modeling tasks from Eloquence and Kag-
gle competitions, designed to evaluate data science
agents in realistic settings involving long contexts,
multimodal tasks, large data files, multi-table struc-
tures, and end-to-end data modeling. We followed



the DS-Bench evaluation setup, randomly sampling
64 tasks for data analysis and 10 tasks for data mod-
eling in our experiments.

MLE-Benchmark. MLE-Benchmark (Chan
et al., 2024) assesses Al agents’ capabilities in
machine learning engineering through 75 curated
Kaggle competitions, focusing on model training,
dataset preparation, and experimental execution.
In this paper, we designed MLE-Bench-Lite
for efficient evaluation, selecting eight random
tasks from MLE-Bench and testing them with
a 3-hour time limit per task, in contrast to the
24-hour limit for AIDE (Schmidt et al., 2024) and
OpenDevin (Wang et al., 2024c). The experimental
setup utilized a single 24GB GPU, 125GB
memory, and a 36-core CPU, running gpt-4o
with temperature set to 0.

Table 5: Additional performance comparisons on
ML benchmark. “WR", “BCW", “ICR", “SCTP", and
“SVPC" represent “Wine recognition"", “Breast cancer
wisconsin", “ICR - Identifying age-related conditions",
“Santander customer transaction prediction", and “San-
tander value prediction challenge", respectively. “Avg."
denotes “Average".

Model / Task ‘WR BCW Titanic House Prices SCTP ICR SVPC | Avg.

Completion rate

0.92
1.00
1.00
1.00
1.00
1.00

1.00
0.90
1.00
1.00
1.00
1.00

0.92
0.92
0.83
0.83
0.92
1.00

0.83
0.88
0.88
0.83
1.00
1.00

AutoGen
Openlnterpreter
TaskWeaver
XAgent
OpenDevin

Data Interpreter

0.83
0.85
0.67

0.83
0.91
0.83
0.67
0.83
1.00

0.83
0.88
0.80

0.88
0.90
0.86
0.62
0.96
1.00

1.00
1.00

1.00
1.00

Normalized performance score

1.00
1.00
1.00
1.00
0.96
0.96

AutoGen
Openlnterpreter
TaskWeaver
XAgent
OpenDevin

Data Interpreter

0.97
0.96
0.96
0.94
0.96
0.99

0.82
0.81
0.43

0.88
0.87
0.49

0.82
0.52

0.71
0.25
0.65

0.63 0.83
0.63
0.53
0.28
0.79

0.89

0.17

0.81
0.82

0.87
0.91

0.86
0.89

0.62
0.91

0.45
0.77

B.3 Additional Results

B.3.1 Additional results of ML-benchmark
and Math dataset

For a deeper understanding, Table 5 presents the
results on the ML benchmark for both Completion
Rate and Normalized Performance Score metrics.
Additionally, Table 11 showcases the results of ab-
lation experiments on the ML benchmark, focusing
on the completion rate (CR) and the normalized
performance score (NPS).

B.4 Overhead Analysis

We compared our token cost (average per task) and
inference time (average per task) across the ML-
Benchmark, Open-ended Task Benchmark, MATH

15

Table 6: Additional performance comparisons on
MATH dataset. “Avg." and “Std." denotes “Average",
“Standard Deviation" respectively.

Category MathChat  AutoGen ) Data ln_terpreler -

Avg. Triall Trail2 Trail3 Std.(%)
C.Prob 0.52 0.59 0.68 0.70 0.66 0.68 2.05
N.Theory 0.60 0.66 0.82 0.81 0.82 0.82 0.99
Prealg 0.60 0.63 0.74 0.73 0.75 0.75 1.20
Precalc 0.19 0.12 0.29 0.28 0.30 0.29 1.13

Dataset, and InfriAgent-DABench, while also re-
porting our performance. Our framework demon-
strates state-of-the-art performance with competi-
tive efficiency.

Table 7: Overhead analysis on MATH Dataset.“Cost"
represents the total cost in USD, “Time" indicates the
total execution time in seconds, “Avg." denotes “Aver-

"

age".

Model / Metric ‘ Cost ($)} Time (s)| Accuracy?
AutoGen 0.242 120.99 0.500
Data Interpreter 0.336 211.57 0.633

Table 8: Overhead analysis on InfriAgent-
DABench.“Cost" represents the total cost in USD,
“Time" indicates the total execution time in seconds,
“Avg." denotes “Average".

Model / Metric ‘ Cost ($)} Time (s), Accuracy?

AutoGen (gpt-40) 0.112 42.42 88.72
AutoGen (gpt-4-0613) 0.423 45.69 71.49
Data Interpreter (gpt-40) 0.017 49.44 94.93
Data Interpreter (gpt-4-0613) 0.311 51.09 73.55

In specific domains such as MATH Dataset (See
Table 7) and InfriAgent-DABench (See Table 8),
Data Interpreter consistently shows superior accu-
racy (63.3% and 94.93% respectively) while main-
taining competitive efficiency, as demonstrated
in Table 7 and Table 8. Notably, on InfriAgent-
DABench, our approach achieves better perfor-
mance with lower cost (0.017 USD vs. 0.112 USD)
compared to AutoGen.

On ML-Benchmark (See Table 9), Data Interpreter
achieves the highest comprehensive score (0.95)
among all frameworks, though with moderate cost
(0.84 USD) and inference time (237.31s), as shown
in table 9. While frameworks like Openlnterpreter
achieve lower costs (0.21 USD) through one-time
code generation, they show inferior performance
0.77).

In Table 10, for Open-ended tasks, Data Interpreter
significantly outperforms baselines with a compre-



Table 9: Overhead analysis on ML Benchmark.
“SCTP", and “SVPC" represent “ICR - Identifying age-
related conditions", “Santander customer transaction
prediction”, and “Santander value prediction challenge",
respectively. “Cost" represents the total cost in USD,
“Time" indicates the total execution time in seconds,
“Avg." denotes “Average".

Model/Task | Titanic  House ~ ICR  SCTP  SVPC | Avg.
Cost ($)|

AutoGen 0.08 0.25 0.19 0.48 0.58 0.32
Openlnterpreter 0.26 0.15 0.27 0.18 0.21 0.21
OpenDevin 2.66 3.01 3.35 3.24 2.78 3.01
TaskWeaver 0.35 0.38 0.36 0.29 0.48 0.37
XAgent 21.15 17.16 27.81 14.12 20.23 20.09
Data Interpreter 0.65 0.84 0.76 0.54 1.41 0.84
Time (s)]

AutoGen 124.71 84.11 13691  280.60  244.04 174.07
Openlnterpreter 116.66 132.00 170.00  239.00  296.00 190.73
OpenDevin 164.00 133.00 148.00  282.00  212.00 187.80
TaskWeaver 109.76  279.25 15197 18213 119.62 168.55
XAgent 5400.00 5107.00 5400.00 6023.00 9000.00 | 6186.00
Data Interpreter | 168.01 193.21 184.77 24439  396.17 | 23731
Comprehensive Scoret

AutoGen 0.87 0.86 0.83 0.77 0.73 0.86
Openlnterpreter 0.86 0.87 0.68 0.58 0.44 0.77
OpenDevin 0.87 0.94 0.93 0.73 0.73 0.88
TaskWeaver 0.63 0.68 0.34 0.74 0.48 0.69
XAgent 0.42 042 0.00 0.34 0.01 0.45
Data Interpreter 0.91 0.96 0.94 0.96 0.89 0.95

Table 10: Overhead comparison on Open-ended
Tasks. “OCR”, “WSC", “WPI”, and “IBR” repre-
sent “Optical Character Recognition”, “Web Search and
Crawling”, “Web Page Imitation”, and “Image Back-
ground Removal”, respectively. “Cost” represents the
total cost in USD, “Time” indicates the total execution

time in seconds, “Avg.” denotes “Average”.

Model /Task | OCR ~ WSC WPl  IBR | Avg.
Cost ($))

AutoGen 0.10 0.18 0.43 0.48 0.30
Openlnterpreter 0.28 0.08 0.15 0.07 0.15
OpenDevin 1.27 1.88 1.26 1.24 1.41
Data Interpreter | 0.275 0.69 0.23 0.18 0.34
Time (s)]

AutoGen 68.85 5728 15446  79.26 | 90.05
Openlnterpreter 133.00 109.00 102.00 68.00 | 103.00
OpenDevin 190.00 196.00 94.00 146.00 | 156.50
Data Interpreter | 77.00 293.00 65.00 34.00 | 117.25
Comprehensive Scorel

AutoGen 0.67 0.65 0.26 1.00 0.65
Openlnterpreter 0.50 0.30 0.36 1.00 0.54
OpenDevin 0.60 0.87 0.16 1.00 0.66
Data Interpreter | 0.85 0.96 1.00 1.00 0.95

hensive score of 0.953, maintaining reasonable cost
(0.34 USD) compared to OpenDevin (1.41 USD)
and AutoGen (0.30 USD).

16

B.4.1 Ablation Study

Here we provide detailed ablation study results on
core modules.

Table 11: Ablation on core modules. Evaluated with
CR, NPS and CS on ML-Benchmark. “IGR" stands
for Iterative Graph Refinement, and “PNG" denotes
Programmable Node Generation. “ICR", “SCTP", and
“SVPC" represent “ICR - Identifying age-related condi-
tions", “Santander customer transaction prediction”, and
“Santander value prediction challenge", respectively.

Code execution IGR PNG ‘ House Prices SCTP  SVPC  ICR ‘ Avg.

Completion rate

v 0.58 0.33 0.67 033 | 048
v ' 1.00 1.00 092 088 | 095
v v v 1.00 1.00 1.00  1.00 | 1.00
Normalized performance score
v 0.43 0 0.64 0 0.27
v v 091 0.82 0.68  0.60 | 0.75
v v v 0.91 0.89 077 091 | 0.87
Comprehensive score
v 0.51 0.17 0.66  0.17 | 037
v ' 0.96 0.91 0.80  0.74 | 0.85
v v v 0.96 0.95 089 096 | 0.94

C Additional Examples
C.1 An Example of Task Graph

Here is the prompt used to generate the task graph.
Here is an example of a task graph. The user
requirement is: “This is a dataset featuring sen-
sor readings from industrial machines, aimed at
predicting machine operational status (normal or
faulty). Visualize the analysis and prediction re-
sults with high-quality graphs. Train data path:
{train_path}, eval data path: {eval_path}.”

C.2 Prompts for Action Graph

Data Interpreter utilizes LLMs to generate an ac-
tion graph for each task. For each task node, we
maintain the execution context and task graph state
via plan status, and generate executable code using
the following prompt:

C.3 Example of Dynamic Task Graph
Refinement

This section details how Data Interpreter resolves
task failures and refines the task graph dynamically.
Initially, the task graph is created as described in
Appendix C.1. When encountering task execution
failures (e.g., Task 4: feature engineering), Data
Interpreter utilizes a reflection-based debugging
prompt (REFLECTION_PROMPT) to iteratively
analyze errors and propose improved implementa-
tions.



PLAN_PROMPT

Figure 7: Prompt for task graph generator

After repeated failures (e.g., three unsuccessful
attempts to execute the action graph), Data Inter-
preter restructures the task graph: Tasks 1-3 remain
unchanged, but Task 4 is simplified to basic feature
creation, a new Task 5 for feature selection is intro-
duced, and subsequent tasks (e.g., original Task 5
becoming Task 6) are automatically reindexed with
updated dependencies, as shown below:

C.4 Runtime Results of Task Graph

We provide three distinct runtime results of our
Data Interpreter, to offer an in-depth demonstra-
tion of its capabilities. These results meticulously
showcase the intricacies of the task graph, action
graph, and the overall graph typology, as shown
in Figure 12.

C.5 Additional Results of Open-ended Tasks

We present the results by Data Interpreter of sev-
eral Open-ended tasks in: tasks 4, 14, and 15 in
Figure 13.

C.6 Result of Data Visualization

Figure 14 illustrates the results of the data analysis
and visualization using Data Interpreter.

17

D Details of Datasets
D.1 Open-ended Task Details

Figures 15 and 16 showcase several typical Open-
ended tasks in the following illustrations. For each
task, we include the necessary data, user require-
ments, and the assessment pipeline.

D.2 ML-Benchmark Dataset Description

Here are the details of the ML-Benchmark dataset.
We collect several typical datasets from Kaggle!
and machine learning. Details are in Table 12

"https://www.kaggle.com/



"task_id": lllll,
"dependent_task_ids": [],

"instruction": "Perform data loading and preliminary exploration of the
train and eval datasets. Fill missing values and apply MinMax scaling.",
"task_type": "eda"
by
{
"task_id": "2",
"dependent_task_ids": [
l‘lll
1,
"instruction": "Conduct correlation analysis and provide descriptive
statistics.",
"task_type": "eda"
by
{
"task_id": "3",
"dependent_task_ids": [
lVl"
1,
"instruction": "Perform outlier detection using Isolation Forest to identify
and handle anomalies.",
"task_type": "eda"
}y
{
"task_id": "4",
"dependent_task_ids": [
|l2ll,
"3"
1,
"instruction": "Execute feature engineering, including General Selection,

Target Mean Encoding, and Variance Based Selection to prepare features for model
training.",

"task_type": "feature_engineering”
b
{
"task_id": "5",
"dependent_task_ids": [
"4"
1,
"instruction": "Split the data and train predictive models using Random
Forest and XGBoost.",
"task_type": "model_train"
by
{
"task_id": "e6",
"dependent_task_ids": [
||5ll
1,
"instruction": "Evaluate the model's performance and generate an evaluation
report.",
"task_type": "model_ evaluate"
b
{
"task_id": "7",
"dependent_task_ids": [
||5ll’
||6"
1,
"instruction": "Visualize the analysis and prediction results, including
classification reports and confusion matrix, and serialize the model.",
"task_type": "visualization"

}

Figure 8: Task graph example
18



GRAPH_STATUS = """
## Finished Tasks
### code

" ‘python
{code_written}

### execution result
{task _results}

## Current Task
{current_task}

## Task Guidance

Write complete code for 'Current Task'. And avoid duplicating code from 'Finished
Tasks', such as repeated import of packages, reading data, etc.

Specifically, {guidance}

moon

Action_Graph_ Prompt = """
# User Requirement
{project_requirement }

# Plan Status
{plan_status}

# Tool Info
{tool_info}

# Constraints

— Take on Current Task if it is in Plan Status, otherwise, tackle User Requirement
directly.

— Ensure the output new code 1s executable in the same Jupyter notebook as the
previous executed code.

- Always prioritize using pre-defined tools for the same functionality.

# Output

While some concise thoughts are helpful, code is absolutely required. Always output
one and only one code block in your response. Output code in the following
format:

‘python

your code

mon

Figure 9: Prompt for action graph generator

19



REFLECTION_PROMPT = """

[example]

Here is an example of debugging with reflection.
{debug_example}

[/example]

[context]
{context}

[previous impl]:
{previous_impl}

[instruction]

Analyze your previous code and error in [context] step by step, provide me with
improved method and code. Remember to follow [context] requirement. Don't forget
to write code for steps behind the error step.

Output a json following the format:

‘T 'json

{{
"reflection": str = "Reflection on previous Implementation”,
"improved impl": str = "Refined code after reflection.”,

}}

mnn

Figure 10: Prompt for reflection and debugging

"task_id": "4",
"dependent_task_ids": [
"2",
||3ll
1,
"instruction": "Create engineered features from sensor readings",
"task_type": "feature_engineering"
by
{
lltask_idH: "5",
"dependent_task_ids": [
||4",
1,
"instruction": "Perform feature selection using statistical methods and
importance analysis",
"task_type": "feature_engineering"

by
{

"task_id": "e",
"dependent_task_ids": [
|l4ll’
"5"
1,
"instruction": "Train a predictive model to determine machine status",
"task_type": "model_train"
by

Figure 11: Example of refined task graph

20



Thisi i i P ] o e T e e ,CSSand JSinonego,and  Thisisamath problem: Suppose that a $30$-digit integer $N$ is composed of thirteen §7$s and
o faulty). i i i i ina file.The image path: {img_path}. NOTE: All d seventeen §3s. What i $NS is divided by $3657
i icti i ine's status. Vi been fully i igured.

analysis and prediction results. Train data path: {train_path}, eval data path: {eval_path}.

Task Graph Action Graph Task Graph Action Graph Task Graph : Action Graph

1Data Exploration 1Image Exploration 1 calculate Sum
ReadCsv FillMissingValue  MinMaxScale Image Analyze Sum of digits
5 Correlation Analys 2Image To Webpage
O g Correlation DescriptiveStatistics Generate HTML code Generate CSS code Generate JS code Modulo
3 Outliers Detection 3 Verify Ope=ton

IsolationForest

Q Verify HTML code

4 Feature l
Engineering O O O 4save
OH ¥ General TargetMean VarianceBased O *

Verify CSS code _ Verify HTML code

31dentify Results

SaveHTMLcode  SaveCSScode ~Save HTML code

Selection Encoder Selection

O{O RandomForest
(O xGBoost

l Datasplitting

@

4 Combine Remainders

5 Model Training (& code & result

Final Remainer

orign Generation
Code & Result

Love up i th rgest A1 8 . communty

ML commanity

Evaluation ()

7Visualization

., ClassificationReport

Modelserialization

a=

A=

ConfusionMatrix

. HTML
Problem solving Graph

8 e =

Problem solving Graph

Problem Solving Graph B codesresult

—t—

O
AOOC

e vt 38

[OJrask  [OJaction  [B)data  [OJnode

[OJRequirement > Execution — Dependency Relation

(a) Machine Learning Problem (b) Open-ended Problem (c) Mathematical Problem

Figure 12: Runtime examples of Data Interpreter: machine learning, webpage imitation, and math problem
solving

tagpt scraping i scrape_web_playwright

target_url

html_content scrape_web_playwright(url=target_url)

print(html_content[ 1[:500])
Title Scroll to Fetch More (Shown 500 Records)Click to Fetch All

Conf. Confidence

R. Rating RO. Avg. Initial & A R. Avg. Rating Mean Conf. Avg. Con

31 Turning large language models into cognitive models 8888 3555 6750:1.25 800 450
34 Curiosity-driven Red-teaming for Large Language Models 8888 3334 575 :2.25 8.00 325
35 Large Language Models to Enhance Bayesian Optimization 8888 5333 575 0:2.25 800 350
57 GenSim: Generating Robotic Simulation Tasks via Large Language Models 8888 4334 750 8:0.50 8.00 350 Spotlight
7 MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models 88,88 44,43 7.25 0:0.75 800 375 Spotlight
84 Step-Back Prompting Enables Reasoning Via Abstraction in Large Language Models 8,88 433 6.670:1.33 800 33 Posig
85 Large Language Models are Efficient Learners of Noise-Robust Speech Recognition 6,8,8,10 4434 800 4:0.00 8.00 375
108 Amortizing intractable inference in large language models 58,8,10 43,44 7.25 4:0.50 775 375
131 Generative Adversarial Inverse Multiagent Learning 6,6,8,10 2233 675 8:075 7.50 250
191 DP-OPT: Make Large Language Model Your Differentially-Private Prompt Engineer 6888 3344 5.50 4:2.00 7.50 350
198 Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning 6888 3,442 675:075 7.50 325
219 ToolChain*: Efficient Action Space Navigation in Large Language Models with A* Search 6,8,8,8 4533 675 0:075 7.50 375
250 OctoPack: Instruction Tuning Code Large Language Models 688 3,45 733 8:0.00 733 400
273 Evaluating Large Language Models at Evaluating Instruction Following 688 343 7.33 4:0.00 7.33 333
275 LoftQ: LoRA-Fine-Tuning-aware Quantization for Large Language Models 688 44,4 8.00 4:-0.67 733 4.00
289 ( ReL Strkes Back: Explitng Activation Sparsty i Large Language Models 688 434 5.67 4:1.67 733 367
333 Large Language Models Are Not Robust Multiple Choice Selectors 5888 4324 675 8:0.50 7.5 325
342 AffineQuant: Affine Transformation Quantization for Large Language Models 5888 4534 425 8:3.00 7.25 4.00
353 Dola: Decoding by Contrasting Layers Improves Factuality in Large Language Models  5,8,8,8 3,444 650 8:0.75 7.25 375
379 L2MAC: Large Language Model Automatic Computer for Unbounded Code Generation  6,6,8,8,8 343,44 6.60 8:0.60 7.20 360
380 Beyond Memorization: Violating Privacy via Inference with Large Language Models 66,888 35424 7.20 2:0.00 7.20 360
425 Retrieval meets Long Context Large Language Models 66,6888 433344 6.838:0.17 7.00 350
438 Grounding Multimodal Large Language Models to the World 6,688 44,44 675 8:0.25 7.00 4.00
493 LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models 6,688 3,443 6.678:0.33 7.00 350
Unveiling the Pitfalls of Knowledge Editing for Large Language Models 6,688 3343 650 8:0.50 7.00 325

intricate deta vibrant colors, : ng

tool import SDEngine

Init the
d_engine DEngi

load for t

.construct_p

Figure 13: Image background removal / text-to-image / web search and crawling by Data Interpreter

21



Figure 14: Data analysis and visualization capabilities of Data Interpreter

(wocrawera |

Scenario Description: Scan all the necessary fields and amounts from the given file and then create an Excel sheet with the extracted data

User Requirement: This is an English invoice image.

Your goal is to perform OCR on the image, extract the total amount from ocr result and save as table, using PaddleOCR.
The PaddleOCR environment has been fully installed, try to use Paddleocr as much as possible.

Image path: ./workspace/CORD _test/image/receipt 00001.png

Pipeline Requirement:

1.Load and read images from a given folder/path

2.Install OCR tools/software

3.Using OCR tools/software to extract necessary fields and amounts
4.Collect results and convert them to a DataFrame

5.Save the result in a csv/xlsx forma

Performance Requirement: Recall / Precision / Accuracy

Data:
- Task 1: - Task 2: ) - Task 3:

PHO CAP11AL
107 State Street
Montpelier Vermont
802 225 6183 e

24-2017 06:59 PM
045656
Gy it

Scenario Description: Crawling and organizing web form information

Data: -

Pipeline Requirement:

1.0pen target URL

2.Select and filter the required information

3.Download or transform the data, convert them into a specified format
4.Output in a tabular form

Performance Requirement: Recall / Precision / Accuracy

User Requirement:

- Task 4:

Get data from “paperlist” table in https://papercopilot.com/statistics/iclr-statistics/iclr-2024-statistics/, and save it to a csv file. paper title must
include ‘multiagent’ or ‘large language model".

notice: print key variables

-

Figure 15: Open-ended task cases (OCR and web search and crawling). We present task 4, omitting similar
tasks for brevity.

22



(5) Image Background Removal (Task 14)

Scenario Description: Remove the background of a given image

User Requirement: This is an image, you need to use python toolkit rembg remove the background of the image. image path:'./data/Ixt.jpg'; save
path:'./data/Ixt_result.jpg'

Data:

Pipeline Requirement:

1. Read a local image

2. Install image background removal tools/software

3. Using background removal tools/software to remove the background of the target image
4. Save the new image

Performance Requirement: Correctness

(6) Text2Img (Task 15)

Scenario Description: Use SD tools to generate images
User Requirement: I want to generate an image of a beautiful girl using the stable diffusion text2image tool, sd_url=""
Data: -

Pipeline Requirement: -

Performance Requirement: -

(7) Image2Code (Task 16-17)
Scenario Description: Web code generation

User Requirement:

- Task 16:

This is a image. First, check if the path exists, then convert the image to webpage code including HTML, CSS and JS in one go, and finally save
webpage code in a file.The image path: ./medium.png .NOTE: All required dependencies and environments have been fully installed and
configured.

- Task 17:
This is a image. First, check if the path exists, then convert the image to webpage code including HTML, CSS and JS in one go, and finally save
webpage code in a file.The image path: ./gemini.png .NOTE: All required dependencies and environments have been fully installed and configured.

Data: (Task 16-17 in order)

O¥ Medium )
Stay curious. e Welcome to
S e SRt the Gemini era
Pipeline Requirement: -
Performance Requirement: -
\ S

Figure 16: Open-ended task cases (image background removal, text-to-image, and image-to-code)

23



* AsOTeAd J[ds\oSuoyTeyd

suuose xardwod -uonotpaid-an[ea-1opueiues\ioselep, :yred eiep [ead ‘ Aso-urenjds\aSusfeyo-uonoipaid
10§ 9[qEINS ‘SUWN[0d -onjeA-1opuejues\joselep, :yed vjep urel], “elep [eA2 oy uo gISIAY Moday 198
G ‘o1qe) 9SuIs -1e) oYy 101paxd 0) Surpepowr pue ‘Sureaursus aimedy ‘Surssadordord eep ‘sisk[eue
‘uorssaidar ‘sanfea vIEp WIOJIJ 98T} 9y SI UWN[0D 19518} Y, “IPWOISNo [enudjod yors 10j suon
AISINI ¢ uorssaISoy uonoesuen Sunoipaid Ansnpup -oesuen) Jo an[eA oy 1o1paid 0} SI [2OF INOX  “JASEIEP [BIOUBUY S JOWOISND B ST SIYL, an[eA Iopuejues 80

* ASYTeAS II[dS\SuOnIpuOd
-pajejar-ae-Knuapr-nnjeseiep, (yed e1ep [2Ad ¢ Aso uren J1ds\SuonIpuod-paje[aI-age
-Kmuapr-1orgeserep, :yied elep urel], "elep [EAD ) UO 2100 T Modoy 1e3Ie) oy
101pa1d 0) Surpepow pue ‘Funeaurdus ammes) ‘Juissadordaid eiep ‘sisk[eur eiep wioj

aqe) 93urs -10d "Sse[D ST uwn[od 1331} AYJ, "SUONIPUOD ISAY) JO JUO YIIM PISOUSEIP U22q Jou
‘swoydwiAs ypeay jo sey 1o sey 102[qns e Ioyioym 1o1paid 01 SI [e03 INOX  'SUONIPUOD paje[aI-afe 221
4 T uoneoyIsse[) uoneayIsse[d Kreurg Ansnpug 0) PaYUI] SONSLIAIOLIRYD [I[eaY paziwkuour K1y I9A0 YIIm JISLIEP [ROIPAW B ST STy, Surkynuapy - YOI L0
* AsO'TeAd Jds\uonorpaid-uonoesuen
-Iawoisno-1apurjuesyleserep, yed vep [ead © Aso'uren-ijds\uonoipaid-uonsesuen
dqer -Iowo)sno-1apueues\1aselep, :ped elep utel], EIep [eAd oY) uo DNV Hodoy “105Ie)
S[3urs ‘suonoesuen oy Jo1paxd 03 Surepowr pue ‘Furesurdus ammed) ‘Surssaoordard eiep ‘siskfeue erep
1ow0Isnd 1o1paid o) wlIoyed 193181 9Y) SI UWNjod 133Ie) AYJ, "AIMNJ AY) Ul Uondesurs dYIdads € ayew
onvy z UONBOYISSE[D) uoneoyIsse[d Areurg Ansnpup 14 S10WO0ISND YOIy 101paid 0) SI [20S INOX "J9seIep [eIOUBUY S JOWOISND B ST SIYJ,  JOWOISn) IOpuelueS 9
* ASO'[eAd J[ds\sanbruyod)
-uorssaI3aI-pasueape-saorid-asnoy\jaseiep, :yed elep [ead © Aso uren jjds\sanbruyoa)
d1qe -UuoIssaISa1-pasueApe-saotid-asnoy\eseiep, :yied eiep urely, ‘eiep [ead ay) uo doud
9[3uis ‘uorssardar $3BS PAAIISQO ) Jo wipLe3o] ay) pue anjea pajorpaid ayy Jo wiypLeso] ay) usamlaq
‘soynque Kradoxd ASINY Moday 198181 o) 101paxd 01 Suropowr pue ‘SurieourSus axmes) ‘Surssaoord-aid
y3noxy saoud vIRp ‘SISA[RUR BIEP WLIOJIdJ "OJLIJI[ES ST uwnjoo 1951e) o], 'SeImjeaj sit uo paseq
FISINI z uoIssaIgay asnoy Sunorpaig Jouuidog Kyradoad e jo ooud ares ay 101paid 0) st [vo3 oK pue ‘Jaserep 2oud asnoy e ST Sy, $9011 9SnOH S0
* ASO'TeAS T II[dS\OTURIINIASRIRD,
yied e1ep [eAd < Asouren [ds\orueinyeseep, yied BJep ulRL], “BIEP [BAD o) UO Kovl
Jqer -nooe 1odoy 1e81e) oy 101pard 01 Surpepowr pue ‘SunesurSus armeay ‘Surssooord
S[Suls ‘[BAIAINS JO -o1d eiep ‘SISA[eUe BIEp WIOJId] "POAIAING ST UWN[OD 195IR) AU, "SIWOIINO [BAIAINS
20V z eOlISSe[D) uonesyIsse[o Areurg Jouurdog 108uassed 101paid 01 st (203 INOA pue 9aseIep [BAIAINS J9Fudssed dwuwlL, B ST SIYL orueL], 0
JueuSiew
10 uStuaq jorpaid 03
uoneoyIsse[o Areuiq KoeInooe uonEpIEA MOYS PUE ‘(UONEPI[eA SB 9(7) S1951e) 101paid 01 [opour
20V I uonesYISSe[) ‘yqd 1oy djqeing Koy, © uren “0[d © 9pn[oul “)aseIEp 190UL)) ISLAIF UISUOISIAY UIRIDYS UO SISA[RUE BIep uny I1090UR) IseaIg €0
uorssaiar pue
uonesyisse[o adwis Koranooe uonoIpald moys pue 13s 153} St 9,()7 YIMm Sse[d aulm Jorpaid o)
20V 1 UONBOYISSE[D) V{4 1oy [qeang Kof, [opow © uren pue o[d e apnjour 19seiep UoNIuS09I AUIAY UIBI[YS UO SISK[RUR BIRp Uy uonIuS021 AUIA 20
uoI1ssa1501 pue
uoneoyisse[o s[dwis
1 vada ‘Vad 1oy dqeing Ko, 101d & Surpn[our Joseep SLI] WIBA[YS UO SISA[eUE B1ep uny Sy 10
oup  Amoyjig adAJ, ysel, uonduosa iesereq  od£[, 19seieqg bay 1esn SweN 19seIRq ar

‘pasn oaw pue ‘Kynoyyrp ‘adAy ysel ‘adA) 19seiep
‘syuowaIInbar 1osn paepuels ‘uondrrosap ‘weu Jaseiep SuIpn[our Jaseiep JIewyoudg-TIA Ul Jo s[reled ] 9[qeL

24



	Introduction
	Related Work
	Methodology
	Hierarchical Graph Modeling
	Iterative Graph Refinement
	Programmable Node Generation

	Experiments
	Experimental setup
	Main Results
	Ablation Study

	Conclusion
	Limitations
	Ethics Statement
	Broader Impact
	Experiment Details
	Dataset
	Evaluation Metrics
	Additional Results
	Additional results of ML-benchmark and Math dataset

	Overhead Analysis
	Ablation Study


	Additional Examples
	An Example of Task Graph
	Prompts for Action Graph
	Example of Dynamic Task Graph Refinement
	Runtime Results of Task Graph
	Additional Results of Open-ended Tasks
	Result of Data Visualization 

	Details of Datasets
	Open-ended Task Details
	ML-Benchmark Dataset Description


