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Abstract

Pre-training on public data is an effective method to improve the perfor-
mance for federated learning (FL) with differential privacy (DP). This paper
investigates how large language models (LLMs) trained on public data
can improve the quality of pre-training data for the on-device language
models trained with DP and FL. We carefully design LLM prompts to filter
and transform existing public data, and generate new data to resemble the
real user data distribution. The model pre-trained on our synthetic dataset
achieves relative improvement of 19.0% and 22.8% in next word predic-
tion accuracy compared to the baseline model pre-trained on a standard
public dataset, when evaluated over the real user data in Gboard (Google
Keyboard, a production mobile keyboard application). Furthermore, our
method achieves evaluation accuracy better than or comparable to the
baseline during the DP FL fine-tuning over millions of mobile devices, and
our final model outperforms the baseline in production A/B testing. Our
experiments demonstrate the strengths of LLMs in synthesizing data close
to the private distribution even without accessing the private data, and also
suggest future research directions to further reduce the distribution gap.

1 Introduction

While recent advances of machine learning models significantly benefit from scaling up both
training data and model size (Kaplan et al., 2020; Anil et al., 2023; OpenAI, 2023a; Google,
2023; Touvron et al., 2023), smaller models have advantages in practical deployment due
to inference latency, service cost, and privacy benefits when hosted on the local devices.
User data are particularly effective to improve the performance of relatively small models
targeting a specific task (Hard et al., 2018; Xu et al., 2023; Cho et al., 2024). Privacy-preserving
methods are necessary for training these models using real user data (Bonawitz et al., 2022;
Zhang et al., 2023b). Differential privacy (DP) (Dwork et al., 2006b; 2014), a mathematical
guarantee applied to characterize the learning process, is a widely acknowledged method
to prevent models from memorizing individual user’s information in the training data.
Cross-device federated learning (FL) (McMahan et al., 2017; Kairouz et al., 2021b), where
devices collaboratively learn a model without transferring user data, is popular for limiting
data access.

The usage of large-scale public and private data is important to achieve both privacy and
utility for privacy-preserving methods. Training DP models from scratch to achieve state of
the art utility with meaningful guarantees is challenging (Tramer & Boneh, 2020). Recent
work (Li et al., 2021; Yu et al., 2021) show promising results with much better privacy utility
trade-off by combining pre-training language models (LMs) on public data and fine-tuning
on private data. Public pre-training has become a standard technique for DP training,
FL (Nguyen et al., 2022), and the combination of DP and FL (Xu et al., 2023). In this paper,
we focus on Gboard (Google Keyboard, a production mobile keyboard application), where
small on-device LMs are trained and deployed (Xu et al., 2023). The training pipeline has
two stages (see Figure 1): pre-training using server-side public data, and private fine-tuning
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Figure 1: Overview of our experimental setup. It follows the two-step procedure of training
on-device LMs for Gboard (Xu et al., 2023): 1) pre-training using server-side public data;
followed by 2) fine-tuning on the private user data with DP FL. We use LLMs to synthesize
data to replace the public C4 data (Raffel et al., 2020) in step 1.

over private user data with DP FL. The trained LM is deployed on the users’ mobile devices
to support features such as next word prediction, smart compose, smart completion and
suggestion to improve the users’ typing experience.

Pre-training on the server-side public data is particularly helpful in reducing the number
of training rounds (and hence, the communication and computation cost) needed by DP
FL over the private user data. Intuitively, pre-training allows a model to learn knowledge
shared by the public and private domain, so that the privacy budget can be efficiently
utilized during the private fine-tuning phase to learn important features specific to the
private domain. Therefore, the closer the distribution between the public pre-training data
and the private user data, the more savings in the privacy budget used by the DP FL. In
this work, we explore whether the powerful large LMs (LLMs) can be used to improve the
quality of the server-side pre-training data for Gboard.

LLMs with billions of parameters have achieved impressive performance in the general
language generation and understanding tasks (see, e.g., (Anil et al., 2023; OpenAI, 2023a;
Google, 2023; Touvron et al., 2023) and the references therein). As LLMs are a strong repre-
sentation of their training data1, Wang et al. (2023) asked Can Public Large Language Models
Help Private Cross-device Federated Learning, and explored two approaches: 1) knowledge
distillation (from the teacher LLM to student on-device LM) in pre-training, which signifi-
cantly reduces the public data size and slightly improves the final performance after DP FL
fine-tuning; and 2) distribution matching, which splits the privacy budget in two phases,
and uses an LLM and a FL-trained LM from the first phase to filter the public data for the
second phase. However, both approaches in (Wang et al., 2023) require non-trivial changes
of the current public pre-training and DP FL fine-tuning pipeline. Moreover, Wang et al.
(2023) did not fully exploit LLMs’ emergent ability to generate long text sequences.

In this paper, we propose a simple yet effective method to improve the public data quality
by exploiting the strong generative ability of LLMs. As shown in Figure 1, we carefully
design the prompts to guide LLMs to generate data closer to the target domain. In our case,
the target domain of Gboard is the private user typing data on their mobile phones. We
investigate three types of LLM prompts: 1) filter and 2) transform the public C4 data (Raffel
et al., 2020), and 3) generate diverse chat data by chain-of-thought (Wei et al., 2022) style
prompting. The synthesized data can be directly used as the server-side pre-training data
without extra changes to the DP FL phase, and hence, is simple to deploy in practice.
Furthermore, the synthetic data can be potentially used as the proxy data for other tasks

1Pre-trained LLMs are considered to be public because their training data do not contain the
on-device user data in Gboard. The privacy concerns of LLMs and their training data is an important
independent topic (Brown et al., 2022; Tramèr et al., 2022).
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(e.g., server-side evaluation) or models, which is another advantage over the previous
methods proposed in (Wang et al., 2023).

The quality of our LLM generated data is assessed by running production FL experiments
over the real user data from millions of mobile devices. Compared to the baseline C4 pre-
training data (Xu et al., 2023), the LM pre-trained on our data gives relative improvement of
19.0% and 22.8% in the next word prediction accuracy when evaluated on the real user data
(see Table 3). The LM also achieves superior performance in A/B testing after fine-tuning
with DP FL (see Figure 4). Finally, we show that distribution gap between the public and
private data can be further reduced, if a privately trained LM is available to filter the data.

2 Background

Federated Learning (FL) and Differential Privacy (DP). In cross-device FL, clients such as
mobile devices collaboratively learn a model using the decentralized data. The Federated
Averaging (FedAvg) algorithm and its variants (McMahan et al., 2017; Wang et al., 2021) are
widely used in practice. In each training round (see Figure 2), the server first broadcasts
a global model to a subset of clients; each client then updates their local model with
local data, typically by an SGD optimizer, and sends back the model delta by subtracting
the learned and initial local model weights; the model deltas are aggregated and used
as pseudo gradient on the server to update the global model. After training typically
thousands of rounds, the final model will be deployed on mobile devices for inference.

Server

……

Server aggregates, adds 
noise, and updates model

Train & clip

Figure 2: An FL train-
ing round with DP.

DP provides a quantifiable measurement of the privacy risk of
models memorizing the individual user’s information in the train-
ing data. Combining DP with FL gives an advanced privacy-
preserving training method. DP is achieved by two opera-
tions (McMahan et al., 2018; Kairouz et al., 2021a; Choquette-Choo
et al., 2024; Xu et al., 2023): 1) clipping the l2 norm of each client’s
model delta to control their contribution, and 2) adding noise to the
aggregated deltas on the server. In this paper, we use a production
FL system similar to (Bonawitz et al., 2019) to run DP FL algorithm
to train an on-device LM (see Section 4 for the setup). We fix the
privacy and optimization parameters for fine-tuning with DP FL
and only study the effectiveness of different pre-training public
(proxy) data. See Appendix B for a mathematical description of
the DP definition and details of the algorithms, and Appendix C
for hyperparameters and DP guarantees.

Synthetic Data Generation. Using LLMs to generate synthetic data has shown promising
results in many applications. Taori et al. (2023) used self-instruct (Wang et al., 2022) to fine-
tune LLaMA 7B (Touvron et al., 2023) with synthetic instructions and answers generated
by the large text-davinci-003 model (OpenAI, 2023b) with few-shot prompting. Eldan & Li
(2023); Gunasekar et al. (2023); Li et al. (2023) used GPT-3.5 and GPT-4 models (Ouyang et al.,
2022; Achiam et al., 2023) to generate data to train smaller models of fewer than 2 billion
parameters for coherent storytelling, coding in Python, and common sense reasoning. Yu
et al. (2024b) prompted LLMs with attributes to generate synthetic data similar to an existing
attributed dataset. Zhu et al. (2023); Shu et al. (2023) used LLMs to filter and transform
given text for the rewriting task. In this work, we use LLMs to synthesize data for Gboard,
where the target domain distribution is user typing data on mobiles that are different from
the public data on the web.

Private data can be used in various DP methods to guide LLMs to generate synthetic data
close to the private distribution. These methods assume direct access to the private data
for either directly fine-tuning an LLM (Kurakin et al., 2023; Yue et al., 2023; Yu et al., 2024a;
2023) or measuring the distance between the generated data and private distribution (Xie
et al., 2024). It is challenging to apply these methods in a cross-device FL system due to the
on-device resource limitations and privacy concerns of mobile users. Zhang et al. (2023a)
proposed to prompt LLMs with classification labels to generate synthetic pre-training data
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for FL. The method is designed for classification tasks and is studied for image and speech
data, which cannot be directly applied to learn a language model.

Generating synthetic data to resemble the private domain in the FL setting is an active
research area. Several concurrent papers (Hou et al., 2024; Li et al., 2024) explore data
synthesis methods that require more interactions between the server and the private devices.
This paper studies a simple prompt engineering approach, and provides unique value by
examining the performance of synthesizing data in real-world production FL experiments.

3 Prompt LLMs to Synthesize Private-like Data

We design proper prompts to guide LLMs to process or generate data, so that the resulting
data can be closer to the private target domain, compared to the baseline C4 dataset (Raffel
et al., 2020) used by the current production (Xu et al., 2023). Our target domain distribution
is formed by real-users’ mobile keyboard typing data stored on their mobile devices. For
privacy protection, we cannot directly collect or access the on-device examples. Instead, we
use common sense knowledge to design the LLM prompts. While we focus on English, our
approach can be easily applied to other languages. An instruction-tuned PaLM 2-S (Anil
et al., 2023) is used as the LLM throughout the paper.

Three types of data are synthesized by the LLM: filtered C4, generated chat, and converted
C4. While prompting LLMs to synthesize data has been explored previously as discussed
in Section 2, to the best of our knowledge, we are the first to study this in a production FL
application for private data, and validate its effectiveness by extensive experiments over
millions of mobile phones.

3.1 Filter: Is the Public Example Likely Typed On Mobile Phones?

The public C4 dataset (Raffel et al., 2020) has over 360 million examples (782GB on disk),
and is used as the pre-training data by the current production (Xu et al., 2023). Each example
contains a paragraph of text extracted from a webpage. For each example, the LLM is
prompted to output a binary answer:

“Determine whether the following topic is likely to be discussed by people on their mobile phones. Give
a score of 0 or 1, where 1 means very likely, and 0 means unlikely.”.

The filtered dataset has only 136GB on disk (around 30B tokens), about 17% of the original
English C4 dataset, and is named LLM-filter-C4-136G. Table 1 lists a few positive and
negative examples, showing that the LLM can understand the given example, and follow
the instruction to make reasonable decisions for filtering.

In LLM-filter-C4-136G
“Beginners BBQ Class Taking Place in Missoula! Do you want to get better at ...”
“I thought I was going to finish the 3rd season of the Wire tonight ...”
“Weekend fun isn’t just for humans. Dogs love to get out and enjoy some time away ...”
“One of the biggest games in the world is now available on smartphones ...”
Not in LLM-filter-C4-136G
“Discussion in ’Mac OS X Lion (10.7)’ started by axboi87, Jan 20, 2012 ...”
“Foil plaid lycra and spandex shortall with metallic slinky insets. Attached metallic ...”
“How many backlinks per day for new site? Discussion in ’Black Hat SEO’ started ...”
“BANGALORE CY JUNCTION SBC to GONDIA JUNCTION G train timings, routes ...”

Table 1: Positive and negative C4 examples determined by the LLM over the query “whether
the following topic is likely to be discussed by people on their mobile phones” (Section 3.1).

3.2 Prompt to Directly Generate Chat

We exploit the generative ability of LLMs to directly generate synthetic chat data. The key
challenge is to ensure that the generated data are diverse (Gunasekar et al., 2023; Eldan & Li,
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2023; Yu et al., 2024b). To improve diversity, we design the following prompts with seven
variables:

“Imagine you are a [GENDER] at age [AGE]. You are using the [CHAT-APP] APP to message
[RECEIVER] on your mobile phone on the [TIME] of a [DAY]. You want to chat about the following
topic: [TOPIC]. Generate the conversation between you and your message receiver. Do not include
information other than the conversation.”.

Among the seven variables, five of them are sampled from a predefined set of categorical
values, and two (RECEIVER and TOPIC) are self-generated by the LLM inspired by the
chain-of-thought prompting (Wei et al., 2022). As shown in Figure 3, for given values of
(AGE, GENDER, TIME, DAY, CHAT-APP), we first use LLM to generate a list of message
receivers. Then we set RECEIVER to each value in the generated list, and use LLM again to
generate a list of message topics. We post-process the generated list of receivers and topics
to remove any duplications. Finally, we loop over the TOPIC in the generated list, and use
LLM to generate the conversations.

Choose values from predefined categories: e.g., GENDER=female, AGE=30, 
TIME=night, DAY=Christmas, CHAT-APP=Telegram

Query: “Imagine you are a female at age 30, …. 
Generate a list of potential message receivers.”

Query: “Imagine you are a female at age 30, …. 
Generate a list of potential message topics.”

Query: “Imagine you are a female at age 
30, …. Generate the conversation…”

LLM

LLM

LLM

For each value in generated list, 
set it as RECEIVER (e.g., mom)

For each value in generated list, set 
it as TOPIC (e.g., Merry Christmas)

**Me**: Merry Christmas, Mom!
**Mom**: Merry Christmas! I'm 
so grateful to have you in my life.
**Me**: …
**Mom**: …

Figure 3: Overview of the procedure designed to increase the diversity of generated chat
data. Given values for (AGE, GENDER, TIME, DAY, CHAT-APP), we sequentially use LLM
to generate receivers, topics, and conversations (see details in Section 3.2).

We describe the predefined values of the five variables, and LLM prompts used to generate
the other two variables (RECEIVER and TOPIC).

• AGE: Uniformly sampled from 15 to 55, and 3 age groups: “between 55 and 59”,
“between 60 and 64”, and “over 65”.

• GENDER: “male”, and “female”.
• TIME: “morning”, “afternoon”, and “night”.
• DAY: 11 common holidays (e.g., “New Year’s Day”), a special “vacation day”, and

28 values in the format “[WEEKDAY] in the [SEASON]” where “WEEKDAY” can
take 7 values from “Monday” to “Sunday”, and “SEASON” can take 4 values from
“spring” to “winter”.

• CHAT-APP: “Android Messages”, “Facebook Messenger”, “Snapchat”, “Insta-
gram”, “WhatsApp”, “Discord”, and “Telegram”. As a sanity check of LLM’s
knowledge, we’ve asked the LLM to describe the differences between those popular
chat apps, and verified that the answers are reasonable.

• RECEIVER: Given values for AGE, GENDER, TIME, DAY, and CHAT-APP, we ask
the LLM to generate a list of message receivers: “Imagine you are a [GENDER] at age
[AGE]. You are using the [CHAT-APP] APP to message someone on your mobile phone on
the [TIME] of a [DAY]. Generate a list of potential message receivers.”.

• TOPIC: Given values for AGE, GENDER, TIME, DAY, CHAT-APP, and a RECEIVER
value generated by the LLM, we ask the LLM again to generate a list of topics:
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“Imagine you are a [GENDER] at age [AGE]. You are using the [CHAT-APP] APP to
message [RECEIVER] on your mobile phone on the [TIME] of a [DAY]. Generate a list of
potential message topics.”.

We use top-k sampling (Fan et al., 2018) with k = 40 and temperature 0.2. A higher
temperature usually gives a longer list of candidate receivers and topics. Because of the
resource limitations, we choose a fixed temperature and leave the exploration of other
sampling parameters or methods such as (Holtzman et al., 2020) as future work. The
generated chat data has 19GB on disk (around 4B tokens), containing about 30 million
multi-turn conversations (see Table 5 in the Appendix for a few examples).

3.3 Transform: Convert Public Example into Chat on Mobile Phones

Pre-training Data % of en-US
(suffix is data size) vocab covered
C4-782G (baseline) 99.6%
LLM-filter-C4-136G 99.6%
LLM-syn-chat-29G 99.0%

- direct prompt 79.3%
- convert C4 to chat 99.0%

LLM-mix-166G 99.9%

Table 2: Percentage of words in the on-device
LM vocabulary covered by pre-training data.

Despite carefully designing the LLM
prompts, the chat data generated by di-
rectly prompting the LLM (Section 3.2)
can be less diverse than the C4 dataset.
In Table 2, we compute the percentage
of words in the vocabulary that have ap-
peared in the dataset. The vocabulary
contains 30K words and is used by the
on-device LM over the en-US (United
States) population. If a word does not
appear in the pre-training data, then the
corresponding word embedding will not
be learned during the pre-training phase.
Therefore, a higher vocabulary coverage is usually desired. The synthetic chat data given
by directly prompting the LLM has a lower vocabulary coverage 79.3% than the raw and
filtered C4 datasets (both have 99.6%).

Motivated by this observation, we apply another approach to generate synthetic chat data:
transform the LLM filtered C4 dataset (obtained in Section 3.1) into conversations. For each
filtered C4 example, we ask the LLM to:

“Convert the following article to a conversation that you may message over your mobile phone.
Generate the conversation. Include as many details as possible.”.

Due to the resource constraints, only 20% of the filtered C4 examples are converted to
conversations. The resulting dataset has about 10GB size (around 2B tokens) and 10 million
multi-turn conversations (see Table 6 in the Appendix for a few examples). As shown in
Table 6, despite its small size, this dataset inherits a good vocabulary coverage 99.0% from
the original C4.

3.4 Combine Filtered, Generated and Transformed Synthetic Data

We combine the 19GB data directly generated by LLM in Section 3.2 and the 10GB data
transformed from C4 in Section 3.3, and obtain a chat dataset of 29GB with about 40 million
multi-turn conversations. We name it LLM-syn-chat-29G. It exploits the generative ability
of LLMs to synthesize chat to resemble the private user data in Gboard. Intuitively, the
generated chat may have a distribution closer to the target distribution than the C4 data (see
some evidence in Section 5). However, as we will show in Section 4.1, the LM trained on the
LLM-syn-chat-29G alone achieves slightly lower accuracy than LLM-filter-C4-136G when
evaluated on the real user data, possibly due to the diversity issue. Therefore, we combine
LLM-syn-chat-29G and LLM-filter-C4-136G into LLM-mix-166G. We also tried different
ratios when combining the two datasets (e.g., half from synthetic chat and half from filtered
C4), and found that simply combining all the data works the best.
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4 Experiments

As described in (Hard et al., 2018; Xu et al., 2023), our on-device LM is a one-layer
LSTM (Hochreiter & Schmidhuber, 1997; Greff et al., 2016) with 670 hidden units, em-
bedding dimension 96, and a 30K-size word-level vocabulary. The LM has about 6M
parameters. As shown in Figure 1, we follow (Xu et al., 2023; Xu & Zhang, 2024) to train
the LM in two steps: 1) server-side pre-training, and 2) fine-tuning with FL and DP. In DP
FL fine-tuning, we run on a production FL system (Bonawitz et al., 2019) with the real user
data. Experiments are performed over two populations of the mobile devices: United States
(i.e., the “en-US” population) and India (i.e., the “en-IN” population).

To participate in a training round in cross-device FL system, the mobile devices have to
satisfy local criteria such as being charging and connecting to unmetered network (Bonawitz
et al., 2019; Huba et al., 2022), and minimum separation time across rounds (Xu et al., 2023).
The total number of available devices are estimated to be around 13M for en-US and 8M for
en-IN. Note that the exact population size is unknown as devices are not tracked or logged
in the system.

4.1 Pre-training with Public Data on the Server

We use the standard cross entropy loss, and train the LM with Adam optimizer (Kingma
& Ba, 2014) using 0.001 learning rate and 10−9 epsilon. The LM is trained for around 150K
steps with batch size 20K. See Appendix C for more hyperparameter tuning details.

We evaluate the pre-trained LM on the decentralized user data in the en-US and en-IN
populations. We use federated evaluation to aggregate metrics from multiple rounds of
participated mobile devices. In each evaluation round, a subset of devices will receive
the pre-trained LM and run evaluation on their data, and then the server aggregates the
evaluation metrics from these devices. Minimum separation time criteria is enforced to
guarantee different devices are chosen across rounds. The next word prediction (NWP)
evaluation accuracy is reported in Table 3 with the following observations:

• Pre-training on the synthetic chat data LLM-syn-chat-29G gives a lower accuracy
than pre-training on the filtered C4 “LLM-filter-C4-136G”, potentially because that
the synthetic chat has smaller size and lower diversity as discussed in Section 3.3.

• Combining the filtered C4 and the synthetic chat data gives the best pre-training
dataset “LLM-mix-166G”, which achieves 22.8% and 19.0% relative improvement
over the baseline C4 data for the en-US and en-IN populations, respectively.

Discussion on the quality measure. Evaluating the quality of the generated data is a
common challenge. It is even more challenging when the target domain is the private user
data, because we need to be extremely careful on privacy protection. In this work, we
measure the data quality by training an on-device LM and using federated evaluation to
aggregate a single scalar value of NWP accuracy. Developing practical privacy-preserving
methods to measure the distribution similarity between the server-side data and the private
on-device data is an important future work. A related work is (Hou et al., 2023), which
proposes a method FreD to measure the distance between a server-side dataset and the
private on-device data, and use it to select the best server-side dataset for pre-training.
Applying FreD in practice and combining with our synthetic data approach is an interesting
direction for future work. Note that this requires careful allocation of privacy budgets in
FreD and federated fine-tuning.

4.2 Fine-tuning with Differentially Private Federated Learning

After pre-training on the server in Section 4.1, we follow the recommended practices in (Xu
et al., 2023) to fine-tune the LM using a production FL system (Bonawitz et al., 2019). For
more details about the federated training algorithm and DP accounting, see Section 2 and
Appendix B.
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Pre-training Data NWP Accuracy NWP Accuracy
(suffix is data size) on user data (en-US) on user data (en-IN)
C4-782G (baseline) 0.1182 ± 0.0002 0.0441 ± 0.0004
LLM-filter-C4-136G 0.1425 ± 0.0004 0.0491 ± 0.0005
LLM-syn-chat-29G 0.1308 ± 0.0002 0.0401 ± 0.0004
LLM-mix-166G 0.1452 ± 0.0003 (+22.8%) 0.0525 ± 0.0005 (+19.0%)

Table 3: Next word prediction (NWP) accuracy evaluated on user data in the United States
(en-US) and India (en-IN) population. The LMs are trained on the server-side data as
described in Section 4.1, i.e., only pre-training and no fine-tuning on user data. For each
LM, we run federated evaluation at three different times during a week (each run lasts for a
day collecting metrics from more than 100K devices). Mean and standard deviation over
the three federated evaluation runs are reported. LMs pre-trained on LLM-mix-166G data
achieves the best accuracy with 22.8% and 19.0% relative improvement over the baseline.

(a) (b)

smooth

Figure 4: NWP evaluation accuracy for fine-tuning models with DP FL over the real mobile
devices in the (a) United States and (b) India populations. Compared to the baseline of pre-
training on C4, the LM pre-trained on LLM synthetic data achieves higher initial accuracy,
and also maintains superior or comparable accuracy during the fine-tuning process.

As the FL training proceeds, we run federated evaluation of the trained LMs over a different
set of devices (i.e., the holdout set) in the same population, and report the NWP evaluation
metrics in Figure 4. We highlight the following observations:

• Compared to the baseline (C4 pre-trained LM), the LM pre-trained on LLM data has
a higher accuracy at training round 0. This is consistent with the metrics reported
in Table 3, which are potentially aggregated from more devices across multiple
federated evaluation rounds.

• During the FL training, the LM pre-trained on the LLM data maintains superior
(over the en-US population) or comparable evaluation accuracy (over the en-IN
population). Specifically, to reach the 0.17 accuracy on the en-US population, our
method needs around 600 rounds while the the baseline needs around 1100 rounds
(i.e., almost 2x more), giving a significant saving in the communication and compu-
tation cost and an improvement in the privacy guarantees.

A/B testing. After fine-tuned with DP FL, we conduct live A/B testing to measure the
LM performance in the production environment. Specifically, we measure two metrics:
WMR (Word Modified Ratio, i.e., the ratio of words being modified during typing or after
committed) and WPM (Word Per Minute, i.e., the number of committed words per minute).
For fairness, the LMs in A/B testing have the same privacy guarantees, achieved by using
the same noise multiplier, same number of clients per round, same minimum separation
time, and same number of training rounds (see Appendix C.3 for more details). For en-US,
the FL fine-tuned English LM pre-trained on LLM data improves over the baseline WMR by
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0.64% and WPM by 0.11%. For en-IN, the FL fine-tuned English LM pre-trained on LLM
data improves over the baseline WMR by 0.05% and WPM by 0.04%. These improvements,
especially in en-US, are significant for improving the users’ mobile typing experience.

Discussion on en-US vs en-IN. Our LLM synthetic data is more effective in the en-US
population than the en-IN population. This indicates that the synthetic data may be less
similar to the real user typing data in India. An interesting direction of future work is to see
if using target country/region in the LLM prompts can help synthesize better data.

5 Improve Synthetic Data with Fine-tuned On-device LM

Data (suffix is size) NWP accuracy
C4-782G (baseline) 0.1182 ± 0.0002
LLM-mix-166G 0.1452 ± 0.0003
LLM-prox-32G 0.1509 ± 0.0004

LLM-prox-32G data size
Total 32GB (19% LLM-mix-166G)

- Filter C4 17GB (12% LLM-filter-C4-136G)
- Syn chat 15GB (52% LLM-syn-chat-29G)

Table 4: Left table compares the NWP accuracy evaluated over the en-US population for
LMs trained on different datasets. We follow the same federated evaluation process as in
Table 3. The filtered LLM data achieve higher accuracy compared to the unfiltered LLM-
mix-166G, despite having a much smaller size of 32GB as shown in the Right table. Results
on the en-IN population can be found at Appendix D.

So far we only use the common sense knowledge to prompt the LLM to synthesize data
closer to the private distribution of user typing data in Gboard. While the LLM-based
synthetic data provide impressive gains compared to the C4 baseline in pre-training as
shown in Table 3, the on-device LM still benefits a lot from fine-tuning over the real user
data as shown in Figure 4. This indicates a gap between the distribution of the LLM-based
synthetic data and that of the real user data. In this section, we present a preliminary
study of a simple strategy to close the gap, without changing the privacy-preserving way
of accessing private data. Specifically, we ask the following question: can we reduce the
distribution gap by using a fine-tuned on-device LM from Section 4.2 to filter the data?

Note that the goal of this preliminary study is not training new on-device LMs as in
Section 4.2, instead, the goal is to see if we can use an existing privately-trained LM to obtain
a better server-side dataset. This new dataset can be of independent interest for server-side
tasks such as research simulation in the datacenter, and improving server-side models
that cannot be easily fine-tuned with DP FL. The process of obtaining this new server-side
dataset (i.e., using an existing privately-trained LM to filter the original data) does not incur
extra privacy cost, following the post-processing property of differential privacy. We did
not use this new dataset to further pre-train an on-device LM, and fine-tune it with DP
FL as in Section 4.2. We can potentially adopt the mid-training approach in (Wang et al.,
2023), which will complicate the standard production pipeline and need specialized privacy
accounting.

For each example in the LLM-mix-166G dataset, we compute 3 values: 1) OOV rate: the
percentage of tokens not in the LM vocabulary; 2) pre-trained LM score: the average log-
likelihood computed by the LM trained on LLM-mix-166G as in Section 4.1; 3) fine-tuned
LM score: the average log-likelihood computed by the LM pre-trained on LLM-mix-166G
and fine-tuned over real user data with DP FL as in Section 4.2. Examples satisfying the
following conditions are kept in the filtered LLM data (see Appendix C for more details):
OOV rate ≤ 0.6; fine-tuned LM score ≥ 5; fine-tuned LM score ≥ pre-trained LM score.

After filtering LLM-mix-166G, the data size is decreased to 32GB (around 7B tokens). We
use LLM-prox-32G to represent this new proxy dataset. We follow the same step described in
Section 4.1 to measure the quality of LLM-prox-32G: train an LM from scratch on the data,
and then perform federated evaluation over the real user data. As shown in Table 4, on
the en-US population, LLM-prox-32G further improves the accuracy from 0.1452 to 0.1509
compared to LLM-mix-166G, and achieves much higher accuracy than the baseline C4. This
indicates that the filtered data have higher quality, despite only having 19% of the original
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LLM-mix-166G data. Table 4 also shows that a larger fraction of LLM filtered C4 examples
are filtered out compared to the synthetic chat data, which potentially indicates that the
majority of the LLM filtered C4 are less similar to the private user data.

6 Conclusion

Inspired by recent advances in generative LLMs, this work studies how LLMs can help
differentially private federated learning for training small on-device models. In particular,
we focus on Gboard (Google Keyboard, a production mobile keyboard application) where
the task is to learn a small on-device LM using the private user typing data. Our work
provides evidence that even with no access to the private data, common sense knowledge
and careful prompt design can help guide LLMs to synthesize data similar to the target
domain. Effectiveness of our method is verified by extensive FL experiments over the
real-world user data from the millions of mobile devices.

Our results suggest a few interesting directions of future work, including developing more
privacy-preserving quality measures, investigating other LLM prompting strategies such
as adding the country/region information, and different sampling methods, as already
pointed out in Section 4.1, Section 4.2, and Section 3. Moreover, given the promising results
from the preliminary study in Section 5, further investigation on improving the quality of
proxy data with guaranteed privacy-preserving methods can be a rewarding direction.
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Example 1
LLM query:
Imagine you are a female at age 23. You are using the Android Messages APP to message
your family on your mobile phone on the afternoon of a vacation day. You want to chat
about the following topic: I can’t wait to come home and tell you all about it.
Generate the conversation between you and your message receiver. Do not include
information other than the conversation.
LLM output:
**Me:** Hey mom, I’m having so much fun on vacation! I can’t wait to come home and
tell you all about it.
**Mom:** That’s great to hear! I’m so glad you’re enjoying yourself.
**Me:** I am! I’ve been swimming, sunbathing, and exploring the island. I’ve also made
some new friends.
**Mom:** That sounds like a lot of fun! I’m sure you’ll have some great stories to tell us
when you get home.
**Me:** I know I will! I’m also looking forward to seeing you and dad again.
**Mom:** We’re looking forward to seeing you too! Have a safe trip home.
**Me:** I will. Love you!
**Mom:** Love you too!
Example 2
LLM query:
Imagine you are a male at age 50. You are using the WhatsApp APP to message your
therapist on your mobile phone on the afternoon of a Monday in the autumn.
You want to chat about the following topic: I’m feeling overwhelmed and don’t know
how to cope. Generate the conversation between you and your message receiver.
Do not include information other than the conversation.
LLM output:
Therapist: Hi [client name], how are you doing today?
Client: I’m not doing so well. I’m feeling overwhelmed and I don’t know how to cope.
Therapist: What’s been going on that’s making you feel overwhelmed?
Client: Well, a lot of things. I’m having trouble at work, my relationship is on the rocks,
and I’m just not feeling like I’m good enough.
Therapist: It sounds like you’re going through a lot right now. It’s understandable that
you’re feeling overwhelmed.
Client: I just don’t know what to do. I feel like I’m drowning.
Therapist: It’s okay to feel overwhelmed. It’s not easy to deal with all of this at once.
Client: I know, but I don’t know how to make it stop.
Therapist: There are a few things you can do to help cope with feeling overwhelmed.
One thing is to talk to someone you trust, like a friend, family member, or therapist.
Talking about what you’re going through can help you feel less alone and can give you
some perspective. Another thing you can do is to take some time for yourself each day.
This could mean taking a walk, reading a book, or spending time in nature. Taking
some time to relax and de-stress can help you feel more in control. Finally, it’s important
to remember that you’re not alone. There are people who care about you and want to
help. If you’re feeling overwhelmed, reach out for help.There are resources available to
help you cope with stress and anxiety.
Client: Thank you. I’ll try to do those things.
Therapist: You’re welcome. I’m here for you if you need anything.

Table 5: Example conversations generated by directly prompting the LLM described in
Section 3.2. Note the both the receiver and topic shown in the LLM query above are also
generated by the LLM in separate queries.

A Synthetic Chat Examples

Table 5 and Table 6 show examples of synthetic chat by direct generation (Section 3.2) and
converting C4 (Section 3.3), respectively.
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Example 1
LLM query:
Convert the following article to a conversation that you may message over your mobile
phone. Generate the conversation. Include as many details as possible.
Our hobby is our dogs (and Ragdoll cats). They are first and foremost our companions
and we love to train with them Obedience and Agility. If everything regarding health
and temperament checks out, we breed them after carefully selecting an appropriate
mate. The puppies are raised in our living room and socialized to all kinds of regular
household sights and sounds.
LLM output:
**Me:** Hey, I saw your ad for the puppies for sale. I’m interested in learning more
about them.
**You:** Great! Our dogs are our hobby and we love to train them in obedience and
agility. We only breed them after carefully selecting an appropriate mate and raising
the puppies in our living room so they’re socialized to all kinds of regular household
sights and sounds.
**Me:** That sounds great! What kind of dogs do you have?
**You:** We have a variety of breeds, including Golden Retrievers, Labrador
Retrievers, and Poodles.
**Me:** I’m interested in a Golden Retriever. Do you have any available?
**You:** Yes, we have a litter of Golden Retriever puppies that will be ready to go
home in a few weeks.
**Me:** Can I come by to see them?
**You:** Sure, just let me know when you’re available.
**Me:** I’m free tomorrow afternoon.
**You:** Great, I’ll see you then.
**Me:** Looking forward to it!
Example 2
LLM query:
Convert the following article to a conversation that you may message over your mobile
phone. Generate the conversation. Include as many details as possible.
Five teachers from the Netherlands came over this week to see our school and how our
education system works in England. They were so impressed with our children and the
way we do things here at Ramridge. It was interesting to learn about their school
system too!
LLM output:
**Me:** Hey, did you hear about the five teachers from the Netherlands who came to
visit our school this week?
**Friend:** No, I didn’t! What were they here for?
**Me:** They wanted to see our school and how our education system works in England.
They were really impressed with our children and the way we do things here at Ramridge.
**Friend:** That’s great! I’m glad they had a good experience.
**Me:** Me too. It was also interesting to learn about their school system. It’s a lot
different from ours.
**Friend:** In what ways?
**Me:** Well, for one thing, they start school at a much younger age. And they have a
lot more emphasis on STEM subjects.
**Friend:** That’s interesting. I wonder if it’s more effective than our system.
**Me:** I don’t know. It’s hard to say. But it’s definitely worth looking into.
**Friend:** Yeah, I agree. It sounds like they’re doing some things right.
**Me:** Definitely. I’m glad we had the opportunity to learn from them.
**Friend:** Me too. It was a great experience.

Table 6: Example conversations generated by asking LLM to convert filtered C4 examples
into chats (see Section 3.3 for more details).
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B Formal DP Definition and DP FL Algorithm

DP provides a quantifiable measurement of the privacy risk of models memorizing the
individual user’s information in training data. We provide a formal definition of (ε, δ)−
DP (Dwork et al., 2006a; 2014),

Definition B.1 ((ε, δ)-Differential Privacy). A randomized algorithmM satisfies (ε,δ)-DP
for D if for any two neighboring datasets D, D′ and for all S ⊂ Range(M):

Pr[M(D) ∈ S ] ≤ eε Pr[M(D′) ∈ S ] + δ.

DP can be combined with FL for advanced privacy-preserving training method, where the
neighboring datasets D, D′ are defined by changing all the data of a user device.

The Federated Averaging (FedAvg) algorithm and its variants (McMahan et al., 2017; Wang
et al., 2021) are widely used in practical FL systems. In training round t of generalized
FedAvg, the server first broadcasts a global model wt to a subset of clients; each client i then
updates their local model θ with their local data, typically by a SGD optimizer, and sends
back the model delta between learned and initial local model weights ∆t

i = θt
i − wt;the

model deltas are aggregated ∆t = ∑i ∆t
i and used as pseudo gradient on the server to

update the global model. After training typically thousands of rounds, a final model can be
deployed on mobile devices. DP is achieved by clipping the l2 norm of the model delta to
control the contribution of each client, and then adding noise to the aggregated deltas on
the server. The recent DP-Follw The Regularized Leader (DP-FTRL) (Kairouz et al., 2021a;
Choquette-Choo et al., 2024) algorithms add correlated noise across rounds to achieve strong
privacy and utility at the same time, which are used in training production on-device LMs
in cross-device FL (Xu et al., 2023). We use the tree aggregation DP-FTRL (Kairouz et al.,
2021a) in the generalized FedAvg following (Xu et al., 2023), as detailed in algorithm 1.

Algorithm 1 FedAvg (McMahan et al., 2018) with DP-FTRL (Kairouz et al., 2021a) for DP FL

input : clients per round m, learning rate on client ηc and on server ηs, momentum β = 0.9,
total number of rounds T, noise multiplier for model delta z, clip norm C

Initialize model w0 with pretraining
Initialize momentum buffer P̄0 = 0
Initialize DP tree state T with zC

for each round t = 1, 2, . . . , T do
Qt ← (at least m users for this round)
for each user i ∈ Qt in parallel do

∆t
i ← ClientUpdate(i, wt−1)

Pt, T ←PrivateSum(Pt−1, T , 1
m ∑i∈Qt ∆t

i)

P̄t = βP̄t−1 + Pt, wt ← w0 + ηs P̄t

function ClientUpdate(i, θ)
G ← (user i’s local data split into
batches)
for batch g ∈ G do

θ ← θ − ηc∇`(θ; g)
∆← θ − θ0

∆′ ← ∆ ·min
(

1, C
||∆||

)
return ∆′

C Hyperparameter Tuning and DP Guarantees

C.1 Hyperparameters for pre-training (Section 4.1)

The LM is trained in an auto-regressive manner. Before pre-training, we pre-process the
datasets and treat each turn in multi-turn chats as a single training example, and each
sentence in the filtered C4 data as a single training example. The learning rates are tuned
among {0.0001, 0.001, 0.01} and epsilons are tuned among {10−7, 10−8, 10−9}. For all the
pre-training datasets, 150K steps are enough for the training to converge. Pre-training for
fewer (e.g., 100K) or more (e.g., 200K) steps did not help the evaluation accuracy over the
real user data.
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C.2 Hyperparameters for filtering LLM data (Section 5)

The fine-tuned LM score was tuned over three thresholds {6, 5, 4}. We also compared
with and without the constraint of fine-tuned LM score ≥ pre-trained LM score, and found
that adding the constraint slightly helps. The OOV rate was chosen based on a manual
inspection over the examples with very high fine-tuned LM scores and very low pre-trained
LM scores (these examples usually have low quality and high OOV rate).

C.3 Reporting privacy guarantees

This section clarifies the nuances of the DP guarantees following the guidelines outlined in
(Ponomareva et al., 2023, Sec. 5.3). The main differences compared to (Xu et al., 2023) is the
usage of the public data in pre-training, and the exact DP guarantees for model training. We
include the entire checklist for completeness.

1. DP setting. This is a central DP guarantee where the service provider is trusted to
correctly implement the mechanism.

2. Instantiating the DP Definition

(a) Data accesses covered: The DP guarantee applies to all well-behaved clients2 in
a single training run. We do not account for hyperparameter tuning, or the
selection of the final model checkpoint using evaluation metrics or A/B testing
in our guarantees. Public data such as C4 (Raffel et al., 2020; Xue et al., 2020) or
LLM-based synthetic data, are used for pre-training.

(b) Final mechanism output: Only the final model checkpoint is released for pro-
duction deployment, however the mechanism’s output is technically the full
sequence of privatized gradients, and so the guarantee also applies at this
level, and hence all intermediate models are protected (including those sent to
devices participating in federated learning).

(c) Unit of privacy. Device-level DP is considered, i.e., the notion of adjacency
is with respect to arbitrary training datasets on each client device, and the
device might have an arbitrarily large local dataset containing arbitrary training
examples. For user’s with a single device, this corresponds directly to user-
level DP; for devices shared with multiple users, this provides a stronger notion
of DP than user-level; for a user with multiple devices that happen to both
participate in training the model, the notion is weaker, but group privacy can
be used to obtain a user-level guarantee.

(d) Adjacency definition for “neigbouring” datasets: We use the zero-out defini-
tion (Kairouz et al., 2021a). This is a a special form of the add-or-remove
definition, where neighboring data sets differ by addition/removal of a single
client. In the absence of a client at any training step, we assume that the client’s
model update gets replaced with the all zeros vector. This assumption enforces
a subtle modification to the traditional definition of the add/remove notion of
DP which allows neighboring data sets to have the same number of records.

3. Privacy accounting details

(a) Type of accounting used: Both ρ−zCDP (Bun & Steinke, 2016) accounting, and
PLD accounting (DP Team, 2022) for (ε, δ)−DP are used.

(b) Accounting assumptions : Each client only participates limited times during the
training, and there are at least a min-separation number of rounds between
two consecutive participation of a client. Client participation is enforced by a
timer on clients in the cross-device FL system.

(c) The formal DP statement: The en-IN Gboard LM with 1200 rounds has
0.42−zCDP, which can be transformed to (ε = 5.95, δ = 10−10)−DP using

2Clients that faithfully follow the algorithm including participation limits. Due to the design of
the algorithm, a mis-behaved client does not adversely affect the DP guarantee of any well-behaved
clients.
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PLD accounting (DP Team, 2022). This is improved from (Xu et al., 2023) be-
cause a larger min separation is achieved. The en-US Gboard LM with 1200
rounds has 0.5−zCDP, and alternatively, (ε = 6.55, δ = 10−10)−DP

(d) Transparency and verifiability: We use the open-sourced core implementation
code in TensorFlow Federated and Tensorflow Privacy. Key portions of the
cross-device FL system are also open sourced.

D More Experimental Results

We repeat the same experimental procedure in Section 5 for the en-IN population, and
report the results in Table 7. Compared to the en-US results in Table 4, on the en-IN
population, filtering the LLM data by FL-trained LM does not seem to help reduce the
distribution gap between the LLM data and the real user data. This is possibly because that
the LLM-mix-166G overlaps less with en-IN data distribution, as discussed in Section 4.2.

Data NWP accuracy
C4-782G (baseline) 0.0441 ± 0.0004
LLM-mix-166G 0.0525 ± 0.0005
Filtered LLM data 0.0518 ± 0.0004

Filtered LLM data size
Total 32GB (19% LLM-mix-166G)

- Filter C4 18GB (13% LLM-filter-C4-136G)
- Syn chat 14GB (48% LLM-syn-chat-29G)

Table 7: Left table compares the NWP accuracy evaluated over the en-IN population for
LMs trained on different datasets. We follow the same federated evaluation process as
in Table 3. The filtered LLM data achieve similar accuracy compared to the unfiltered
“LLM-mix-166G”, while having a much smaller size (32GB vs 166GB as shown in the Right
table).
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