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Abstract

What knowledge should a student grasp before
beginning a new MOOC course? This ques-
tion can be answered by discovering prerequi-
site relations of knowledge concepts. In recent
years, researchers have devoted intensive ef-
forts to detecting such relations by analyzing
various types of information. However, there
are still a few explorations of utilizing student
behaviors in this task. In this paper, we inves-
tigate the effectiveness of student behaviors in
prerequisite relation discovery for course con-
cepts. Specifically, we first construct a novel
MOOC dataset to support the study. We then
verify the effectiveness of student behaviors
via serving as additional features for existing
prerequisite relation discovery models. More-
over, we explore to better utilize student behav-
iors via graph-based modeling. We hope our
study could call for more attention and efforts
to explore the student behavior for prerequisite
relation discovery.

1 Introduction

Since the first edition of Robert Gagne’s Princi-
ples of Instructional Design (Gagne and Briggs,
1974) came out, many efforts from pedagogy
have suggested that students should grasp pre-
requisite knowledge before moving forward to
learn subsequent knowledge. Such prerequisite
relations are described as the dependence among
knowledge concepts and are crucial for students
to learn, organize, and apply knowledge (Parkay
and Hass, 1999). Figure 1 shows an example of
the prerequisite relations in Massive Open Online
Courses (MOOCs). For a student who wants to
learn the concept “Convolutional Neural Network”
(CS224:video18), he/she is expected to have had
the knowledge of its prerequisite concepts (“Gradi-
ent Descent” and “Back Propagation Algorithm”).

In the era of intelligent education, prerequisite
relations play an essential role in a series of ed-
ucational applications such as curriculum plan-
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Figure 1: An application example of prerequisite rela-
tions. A student who wants to study “Convolutional
Neural Network” can be suggested to follow the pre-
requisite chain (green path) to learn “Gradient Descent”
and “Back Propagation Algorithm” first.

ning (Agrawal et al., 2015), reading list genera-
tion (Gordon et al., 2016), etc. As the example of
Figure 1, with explicit prerequisite relations among
concepts (red), a coherent and reasonable learn-
ing sequence can be recommended to the student
(green or blue). However, as the quantity of educa-
tional resources proliferates, the explosive growth
of knowledge concepts make it expensive and inef-
fective to obtain fine-grained prerequisite relations
by expert annotations (Bergan and Jeska, 1980).
Therefore, automatically discovering prerequisite
relations becomes a rising topic in recent years.

This task is defined as Prerequisite Relation
Discovery of Concepts in MOQOCs. Despite
several attempts on this topic, including extract-
ing such relations from the content of MOOC
videos (Pan et al., 2017a; Liang et al., 2018) and
the preset orders of MOOC resources (Liang et al.,
2017; Roy et al., 2019), it is still far from sufficient
to directly apply these methods in the practical ap-
plications due to the following challenges.

First, unlike the factual relations of general en-
tities (e.g., Bill Gates has the relation founder
with Microsoft Inc.), prerequisite relations are more
cognitive than factual, which makes it rarely men-
tioned explicitly in texts and challenging to be di-
rectly captured from MOOC corpus. Second, exist-



ing MOOC resources that are considered to be pre-
requisite clues are noisy, e.g., the order of MOOC
videos. As a video usually teaches several concepts,
it is common that some of these concepts are not
prerequisites to the ones in later videos. Therefore,
it is crucial to explore more effective resources to
help the discovery of prerequisite relations.

Inspired by the idea from educational psychol-
ogy that students’ learning behaviors are posi-
tively related to the cognitive structure of knowl-
edge (Ausubel, 1968), we conduct an investiga-
tion on leveraging the video watching behaviors
of students in the task of discovering prerequisite
concepts in MOOCs. For supporting the investi-
gation, we collect student behavior data from real
MOOC courses and organize expert annotations to
construct a dataset of sufficient and fine-grained
prerequisite concept relations. After analyzing typ-
ical behavior patterns, we verify this information’s
effectiveness in improving the existing method.

Furthermore, to explore student behaviors’ better
modeling, we propose a graph-based solution by
building concept graphs from student behaviors and
conducting link prediction on them. Experimental
results show our proposed method achieves much
better performance compared with four representa-
tive baselines. We also provide several empirical
suggestions for research on related topics.

Our contributions include: (1) An investigation
on how to leverage student behaviors to extract
prerequisite relations of concepts; (2) Proposal
of an effective graph-based model for enhancing
prerequisite relation discovery with student behav-
iors in MOOC:s; (3) A manually annotated bench-
mark of fine-grained prerequisite concepts from
real courses of MOOC websites'.

2 Related Work

Our work mainly follows the efforts in discover-
ing prerequisite relations among course concepts,
aiming to detect the dependence of concepts from
MOOC resources. The task of identifying prereq-
uisite relations originates from educational data
mining, which could help in automatic curriculum
planning (Parkay and Hass, 1999) and other educa-
tional applications (Romero and Ventura, 2007). In
the area of education, early works discover general
prerequisite structures from students’ test perfor-
mance (Vuong et al., 2011; Scheines et al., 2014;
Huang et al., 2015), and these early efforts have

!The dataset will be publicly available after review.

mainly focused on discovering the dependence
among courses or knowledge units. Talukdar and
Cohen (2012) and Liang et al. (2015) further pro-
pose to learn more fine-grained prerequisite rela-
tions, i.e., the prerequisite relations among con-
cepts. In recent years, detecting prerequisite con-
cepts from courses (especially online courses) has
become a rising research topic. Researchers ex-
plore various kinds of methods from matrix op-
timization (Liang et al., 2017), feature engineer-
ings (Pan et al., 2017a) to neural networks (Roy
et al., 2019) to consider the static information of
MOOC:s (course/video) as indispensable clues for
discovering such relations.

There are also some attempts to extract prereq-
uisite relations from other resources, e.g., paper
citation networks (Gordon et al., 2016) and text-
books’ unit sequences and titles (Labutov et al.,
2017). Recently, the user clickstream of Wikipedia
pages (Sayyadiharikandeh et al., 2019) are also
proven to indicate concept dependence. This in-
spires us to improve prerequisite prediction by con-
sidering the user behaviors in MOOCsSs, which con-
tains more behavior details and is relevant to the
cognitive learning process.

3 Problem Formulation

In this section, we give some basic definitions and
formulate the problem of discovering prerequisite
relations among course concepts in MOOC:s.

A MOQOC corpus is composed of courses from
MOOCs, denoted as M = {Cl-}yfl‘, where C; in-
didates the i-th course. Each course includes a
sequence of videos, i.e., C; = [vw]ljczl‘l, where
v;; refers to a video with its subtitles from the
course. And the Student Behavior that we use
in this paper is the Video Watching Behaviors
S = {(u,v,t)}, where each behavior records stu-
dent u € U started to watch the video v at time ¢,
and U is the set of all students.

Course dependence is defined as a prerequisite
relation between courses (Liang et al., 2017), de-
noted as D = {(C;,C;)|C;,C; € M}, which indi-
cates that course C; is a prerequisite course of C;.
This information is often provided by the teachers
when setting up new courses.

Course Concepts are the subjects taught in a
course (e.g., “LSTM” is a concept of the Deep
Learning course). We respectively denote the con-
cepts of a certain video, a course and the whole
MOOC corpus as K¥, K¢ and K. The video con-



cepts K5 = {cl, ey cmm } is the concepts taught
in course video v;;. As a course is consist of several
videos, the course concept Kf = Kf) U... UK} .
And all the concepts of the MOOC corpus is
K=K{U..U IC|CM|.

Discovering prerequisite relation of course
concepts in MOOC:s is formulated as: Given the
MOOC corpus M, course dependence D, stu-
dent behaviors S and the corresponding course
concepts K, the objective is to learn a function
L : K? — {0,1} that maps a concept pair (cq, ¢p),
where ¢4, ¢, € K, to a binary class that indicates
whether ¢, is a prerequisite concept of ¢,

4 The MOOC Dataset

Although there are a few datasets for mining pre-
requisite relations from online courses (Pan et al.,
2017a; Li et al., 2019; Yu et al., 2020), they still
cannot adequately support our investigation due
to the following reasons. (1) Lack of student be-
havioral data: Most of the existing datasets do not
collect relevant student behavior data, and such
data are difficult to supplement due to accessibility.
(2) Sparsity: Datasets with student behavior data,
such as MOOCCube (Yu et al., 2020), only use
distant supervision methods to automatically la-
bel prerequisite relationships. This makes its high-
confidence prerequisite relationships too sparse to
support fine-grained quantitative analysis.
Therefore, with the consideration of user privacy
protection?, we collect data of courses, videos, and
student behaviors from a large MOOC website?,
and organize multi-stage annotations to construct a
fine-grained, rich-connectivity prerequisite dataset.
Stage 1: MOOC Information Collection: We
select 12 sample courses in three domains to col-
lect information of MOOCs, including “Basic
Knowledge of Computer Science” (CS), “Program-
ming Languages” (PL), and “Artificial Intelligence”
(AI). These courses are selected because their con-
cepts are highly relevant, lifting the connectivity
of course concepts in the dataset. Then we col-
lect course and student data in three steps: (1)
downloading all course materials, which include
the video orders and subtitles; (2) obtaining the
video watching logs of students who participated
in these courses during 2017-2019 as user behavior
data source, which could help us to infer a student’s

>The details of data privacy protection, annotation and
quality control can be found in Ethical Section and Appendix.
3 Anonymous for blind review.

\ CS PL Al \ ALL

#Course 4 4 4 12
#Video 312 222 233 767
#Concept 369 227 377 700
#pair | TPOS 672 673 267 1,612
-ne 1,258 539 218 2,015
#Student 12,094 12,014 3,541 17,587
#Behavior 430,769 337,953 39,136 | 807,858
Kappa 0.765 0.737 0.769 0.754

Table 1: Statistics of our dataset. As course concepts
and students may overlap in different courses, their to-
tal number is not a simple numerical addition.

learning frequency, watching duration, and other
information of a particular video; (3) annotating
the dependence of courses.

Stage 2: Data Processing: Regarding all the
subtitles of selected courses as the MOOC cor-
pus, we employ a widely-used concept extraction
method (Pan et al., 2017b) in MOOC-related tasks
to obtain concept candidates. For each candidate,
two annotators label it as “not course concept”
or “course concept”, and the disagreements are
confirmed by the teacher. Each labeled concept’s
Wikipedia abstract is dumped as side-information
for the reproduction of baseline methods.

Stage 3: Prerequisite Relation Annotation:
We manually annotate the prerequisite relations
among the labeled course concepts. A critical chal-
lenge in the annotation is the giant quantity and
sparsity. If the concept number is n, the candidate
pair number is n(n — 1)/2, which requires ardu-
ous human labeling work. Therefore, we present a
two-step strategy to reduce the workload:

e Step 1: The teacher of the corresponding
course leads the annotators to cluster the concepts
to several groups, which may maintain possible
prerequisite relations. After this step, we get 28
clusters of 700 course concepts, where the largest
contains 210 concepts, and the smallest contains 14
concepts. We organize the following annotations
within these concept clusters.

e Step 2: We generate the candidate concept
pairs within the clusters and sample a small scale
of them as golden standard (300). Then we em-
ploy them to train existing baselines (i.e. MOOC-
RF (Pan et al., 2017b), GlobalF (Liang et al., 2018),
PREREQ (Roy et al., 2019) and CPR-Recover) as
candidate filters. To ensure the Recall, we only
filter out the pair if none of the above classifiers
predict it to be a prerequisite, and preserve the re-
maining pairs into the annotation.
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Figure 2: Four typical patterns when a student watches course videos. The figure shows the proportion of video

pairs that match each pattern in all behaviors.

In the annotation process, two annotators from
corresponding domains are asked to label whether
concept A is a prerequisite of concept B, i.e., the an-
notator need to answer the question of “whether A
is helpful for understanding B”. A pair is labeled as
positive only when the two annotators are in agree-
ment. The statistics of our dataset are shown in
Table 1, where #Course, #Video, #Concept, #Pair,
#Student are the number of corresponding items
and #Behavior is the number of video watching
records. The Kappa statistics of the inter-annotator
agreement is 0.754, showing the reliability of the
annotation results’?.

5 Effectiveness of Student Behavior

In this section, we first explore whether the stu-
dent behaviors in MOOC:s are useful in the task of
discovering prerequisite concepts. To this end, we
present a feature-based method to model student
behaviors and investigate whether this information
can improve the existing methods. The design of
our approach is based on the following cognitive
learning hypothesis:

Hypothesis. Students tend to follow the prerequi-
site cognitive structure to learn new knowledge.

The hypothesis was proposed in educational psy-
chology (Ausubel, 1968), and was widely applied
in prerequisite-driven instructional design (Parkay
and Hass, 1999; Romero and Ventura, 2007). We
extend this hypothesis by analyzing the clues of
the prerequisite concepts implied in student learn-
ing orders. Surprisingly, although MOOC:s preset
the video order, our observation on student behav-
ior data indicates that students often learn MOOC
videos in their own orders. As shown in Figure 2,
we summarize four typical behavior patterns, and
the out-of-pre-order learning behaviors are even
more than half of total (56.72%). To leverage stu-

dent behaviors in this task, we analyze the causes
of these patterns and build several features to model
prerequisite relations from student behaviors.

5.1 Student Behavior Patterns and
Prerequisite Features

We first construct a video watch behavior sequence
S, for each user u from student behavior record
S, where the video watch behaviors are sorted in
time order. Comparing the preset video order of
each C; with S, we summarize four typical pat-
terns of students’ video watching behaviors: Se-
quential Watching, Cross Course Watching, Skip
Watching and Backward Watching as shown in Fig-
ure 2. Before introducing the modeling details, we
first define the behavior patterns as follows.

Definition 1 (Behavior Pattern). A behavior pat-
tern ‘P is formed by one or more video pairs. A
video pair (v;, vj) belongs to a pattern P when it
matches the corresponding conditions.

As the student behavior patterns are at video
level, we infer the prerequisite features of a concept
pair ¢, € K and ¢ € I by considering videos as
bags of course concepts, where K7, IC}’ correspond
to the concepts taught in v;, v, and a concept may
be taught in more than one videos.

Over 72.5% of the students’ behavior records
contain all the four typical patterns in Figure 2,
indicating that they are not accidental. Therefore,
we attempt to speculate the causes of these four
patterns from the cognitive perspective, and build
prerequisite features f to model them.

Sequential Watching Pattern. Sequential
watching indicates that a student watches videos
in the course’s preset video order, which indicates
that the concepts taught in these videos are in accor-
dance with the prerequisite cognitive structure. To
leverage this pattern, we assign prerequisite feature



fT for the concepts c, and c;, as:
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where function Seg(u,v;,v;) = 1 holds when

1) v;, v; are the i-th, j-th videos of a student’s
watching record S, and are in the same course,
Jj >4 2)cg € KY and ¢ € IC}’ (Otherwise
Seq(u, v, vj) = 0).

Considering there are multiple concepts taught

in each video, we employ max (||,

2 ‘) to nor-
malize the feature of a certain concept pair. Further-
more, since the distance between watching videos
corresponds to their relatedness, we employ an
attenuation coefficient of & € (0,1) to capture
distant dependence from long sequences in this
pattern.

Cross Course Watching Pattern. Besides
watching in one course, there is a phenomenon
that some students choose to watch videos in other
courses before continuing on the present study. The
main reason is that the knowledge provided by
other courses’ videos is helpful to study this course.
Hence, cross course watching behavior could re-
flect the dependence between concepts from differ-
ent courses. The prerequisite feature f27) for ¢, and
¢p 1s calculated as:
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uw€elU v;,v; ESy

C .
caacb rS(U7v“’U])| ) (2)

max(|K?], |IC;J )

where function Crs(u,v;,vj) = 1 holds when 1)
v;, v; are the i-th, j-th videos of a student’s record
S, and are in the different courses; 2) ¢, € K and
cp € K (Otherwise Crs(u,v;,vj) = 0).

Skipping Watching Pattern. An abnormal stu-
dent behavior is skipping some videos when learn-
ing a course, which drops a hint that the “skipped
videos” are not so necessary for latter videos’ com-
prehension. Given a student behavior sequence S,
and course video orders C = [v;..v;...], we can de-
tect the skipped video pairs and assign a negative
fgj for the concept pair ¢, and ¢y, as:
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where function Skp(u, v;,vj) = 1 holds when 1)
v;, v; are the i-th, j-th videos of a same course,
and ¢ < j; 2) v; is watched by user u but v; is
not watched; 3) ¢, € K¢ and ¢, € IC;-’ (Otherwise
Skp(u, v, vj) = 0).

Ca7 Cb

Backward Watching Pattern. This pattern
means a student goes back to a video that he/she
watched before. A possible explanation is he/she
jumps back to a video for re-learning prerequisite
knowledge of the current video. Based on this as-
sumption, we adjust the equation for the feature
ff between ¢, and ¢p.

-y >
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where function Bck(u, v;, vj) = 1 holds when 1)
v;, vj are the i-th, j-th videos of a student behav-
ior record S, and ¢ < j; 2) v; is watched again
after vj; 3) ¢, € K} and ¢, € IC;? (Otherwise
Bck(u, vi,vj) = 0).

5.2 Experiment: Enhancing Exiting Methods

To verify our assumption of the accordance of stu-
dent behavior and prerequisite structures, we con-
duct experiments to explore whether the extracted
features f(k = 1,2,3,4) can help discover pre-
requisite relations among concepts. Specifically,
we enhance existing prerequisite discovery mod-
els by adding student behavior features. We select
following typical baselines for the experiments:

e MOOC-RF: A widely-used method (Pan et al.,
2017a), which extracts seven features from the
video and subtitle corpus of MOOCs. We repro-
duce this method and select Random Forest as the
classifier to match its claimed best performance.

e GlobalF: This method (Liang et al., 2018) ex-
tract the graph-based and text-based features for
each concept pair. The graph-based features are
based on Wikipedia Anchor Links, and the text-
features are based on the description of concepts.

e PREREQ: This method (Roy et al., 2019) uti-
lizes course dependence and video orders to find
prerequisite relations through a siamese network.

e LSTM: Recently, some researchers try to uti-
lize neural approaches to extract prerequisite rela-
tions from text. We reproduce the LSTM model in
(Alzetta et al., 2019) to encode the concepts’ texts
as prerequisite features.

For enhancing existing models, we concatenate
the student behavior features f,f (k = 1,2,3,4)
with original features and then utilize the same
classifiers in the respective papers to obtain experi-
mental results.

Result Analysis We summarize the results in
Table 2, where +57 represents the results of models
enhanced with student behavior features. We apply



| P R F1 | A
MOOC-RF 0.749 0.584 0.656 -
MOOC-RF**/ | 0755 0.639 0.691 | +3.5
GlobalF 0.679 0.631 0.650 -
GlobalF+*/ 0.710 0.657 0.680 | +3.0
PREREQ 0468 0.792 0.567 -
PREREQ™*f 0.511 0712 0595 | +2.8
LSTM 0.706 0.743 0.723 -
LSTM*5f 0.707 0.736 0.720 | -0.3

Table 2: Performance of student behavior enhanced
baselines. P, R and F'1 represent precision, recall, and
F1 score respectively, and A represents the improve-
ment of F1 score after adding student behavior features.
+sf: enhanced with student behavior features.

10-fold cross-validation and balance the training
set by oversampling the positive instances*. From
the presented results, we can infer the following in-
sights: 1) Student behaviors are effective in pre-
requisite relation discovery. MOOC-RF, Glob-
alF, and PREREQ gain significant improvement
after adding the extracted student behavior features.
It preliminarily proves that the student behaviors
imply clues of prerequisite concepts and are useful
to prerequisite relation discovery. 2) Shortcom-
ing. Feature-based behavior modeling meets a bot-
tleneck in improving state-of-the-art LSTM-based
baseline. A possible explanation is that the course
concepts and their prerequisite relations naturally
form a dependence graph structure (Gordon et al.,
2016), so the sequence-based LSTM reaches the
limit of performance and is difficult to be effec-
tively improved. Therefore, in the next sections,
we explore how to utilize student behaviors in the
graph structure.

6 Explore Graph-based Modeling of
Student Behavior

Building concept graphs is a common idea in con-
cept mining tasks, including concept extraction and
expansion (Pan et al., 2017b; Yu et al., 2019). Since
the prerequisite relations among concepts are tran-
sitive, i.e., if a—b, b—c then a—c, previous works
also often employ a directed graph to describe the
dependence on a set of concepts (Brunskill, 2011;
Gordon et al., 2016). This inspires us to lever-
age student behaviors better by building a concept
graph, defined as:

“The following experiments are also set up by the same
settings, and more details are in Appendix.
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Figure 3: The framework of our graph-based model.
The nodes of each graph are course concepts. Features
of concepts are the concatenation of the corresponding
node embeddings learned by GCN.

Definition 2 (Concept Graph). A concept graph
G = (K, E) is a weighted directed graph, whose
nodes are course concepts K and each edge e =
(ca — ) € E is associated with a weight we.

Regarding the prerequisite relation learning as
a link prediction problem in a graph, we are able
to leverage the student behavior better by utilizing
Graph Convolutional Networks (GCNs) (Kipf and
Welling, 2017) to model information propagation
of the concepts. Meanwhile, as several types of
MOOC information have been applied to detect
prerequisite concepts in previous research, includ-
ing course dependence (Liang et al., 2017; Roy
et al., 2019), video order (Pan et al., 2017a), we
also design similar concept graphs for these re-
sources. By comparing the model performance of
different graphs, we can explore the role of student
information more fairly (excluding the factors of
the graphical modeling). In this section, we intro-
duce the construction of concept graphs and how
to conduct prerequisite relation learning on them
for employing student behaviors better.

6.1 Concept Graph Construction

As shown in Figure 3, we design a concept graph
G* based on student behaviors as while as G¢ based
on course dependence graph and G based on video
order graph. As the nodes of these concept graphs
are the same course concept /C, the only difference
is the setting of their edges.

Our graph construction stage’s main idea is to
assign edge weight for each concept pair in these



graphs. After calculating all edges’ weights in a
graph, we only preserve the edges with positive
weights, for they are helpful for relation reasoning.

Concept Graph Based on Student Behavior.
To build concept graph from student behaviors, a
straightforward idea is to model the prerequisite
clues by combining the extracted features in Sec-
tion 5. Hence, we assign the weight w; for the edge
e = (cq — ¢p) in this graph G* as:

log(|U1)
il

4
wi =3 7 (Caren) x ®)
=1

where f7 (i = 1,2, 3, 4) denotes the features of the
concept ¢, and ¢, from the four behavior patterns.
log(|U])/ |U| is used to normalize the weight to
combine with other two user-independent graphs.

Except for student behaviors, we also build con-
cept graphs for existing static MOOC prerequisite
clues through similar methods, including the de-
pendence among courses and the preset order of
videos. By modeling these information, we can
more fairly compare the contribution of these clues
in graphs and explore whether they can be inte-
grated to further enhance the model.

Concept Graph Based on Course Dependence.
Course dependence is widely used in prerequisite
learning. When a course is certain to be a prereq-
uisite course of another one, there must be depen-
dence relations between some of their concepts.
So we build a concept graph G¢ based on course
dependency to exploit this information. Suppose
cq and ¢y are respectively concepts of course C;
and C;, for an edge e = (¢, — ¢3) of this concept
graph, we can calculate its weight w¢ as:

CD(C,’, C])

el el (6)
max (|5, [K5])

c
we =
C;,CjEM

where function CD(C;,C;) = 1 only when pair
(C;i,Cj) is in course dependence set D (otherwise
CD(C;, C;j) = 0). We also use max(|Kf|, |Kf|) to
normalize such information to concept-level.
Concept Graph Based on Video Order. Video
order indicates the dependence between videos. In
general, the previous videos in a course are help-
ful for the latter ones (Roy et al., 2019) and such
dependence is stronger when two videos are closer.
Based on this assumption, when calculating the
weight for the concept graph G” based on video
order, we also apply the attenuation coefficient v
to obtain edge weight w! for the edge e between

concept ¢, and cy:

Vo(u7 Vi, ’Uj)

. =il VO, Vi, ;)
We = Z Z @ max(|K?], ‘Kﬂ)y @

ueU v;,v; €Sy

where function VO(v;,v;) = 1 only when 1) v;,
v; are the i-th, j-th videos of a same course; 2)
cq € K} and ¢, € KY (otherwise vO(vj,v;) = 0).

6.2 Prerequisite Relation Learning

After building concept graphs G¢, G¥, and G°, we
utilize GCNs to reason prerequisite relations in
these graphs. In particular, we initialize the adja-
cency matrix A of the graph and the feature ma-
trix X of the concept nodes for each graph. The
adjacency matrix A, with a size of |K|?, can be
derived from edge weights, e.g., for the adjacency
matrix A® of the student behavior graph G°, we
have A, = wg, where w; is the weight of edge
e = (¢; — ¢;). And the || xd sized feature matrix
X of the concept nodes in all graphs is initialized
by a pre-trained d-dimension language model , i.e.,
X, is the word embedding of the text concept c;.
The training of GCNs on our directed concept
graphs follows the propagation rule shown below,
which is an adapted version for directed graphs:

Z=D"'Axe, ®)

where O is a matrix of filter parameters, Z is the
convolved signal matrix, Z; = h; is the graph
embedding of concept ¢;, ﬁii => i /L'j and the
Laplacian is A = Iy + A. The other settings are
the same with (Kipf and Welling, 2017).

After the graph-training stage, we input the
graph embeddings h,,h;, of a concept pair (cq, )
into a two-layer MLP followed with a sigmoid func-
tion to do classification:

Pr(L(ca,cp) = 1) = o(max(0, (ha ® hs)W1)W2), (9)

where Pr is the probability, o(-) is the sigmoid
function, W7 € R24%4 and Wy € R4 are train-
able matrices, and & denotes vector concatenation.

6.3 Experiment: Graph-based Modeling

We conduct experiments on our newly presented
dataset and apply the same settings to evaluate the
performance of our proposed graph-based method.

Table 3 summarizes the comparing results of dif-
ferent methods. T denotes G¢ and GV are used,
+5 denotes only G? is used, and +cwvs denotes all
the three graphs are used. We analysis the perfor-
mance in the following aspects: (1) Advantage of



Model | P R n

MOOC-RF*f | 0.755 0.639 0.691
GlobalFts/ 0.710 0.657 0.680
PREREQ™*f 0.511 0.712  0.595
LSTM 0.706 0.743 0.723
GCNtev 0.789 0.792  0.790
GCNT* 0.762 0.784 0.772
GCNtevs 0.792 0.814 0.802

Table 3: Overall performance. **/: enhanced with stu-
dent behavior features (Section 5.1); T<¥: G¢ and GV
are used; T%: only G* is used; T¢%: all G¢, G¥ and G*
are used.

P R R

GCNTev -85 -11.1  -99
GCNTs 77 -118 -9.8
GCN*evs | .10.5 -145 -12.6

Table 4: Absolute performance decline when dropping
the edge weights of the concept graphs.

Graph-based Modeling. GCN-based models per-
form better than previous state-of-the-art methods,
which indicates that modeling concept dependence
in graphs is effective. The prerequisites can be
obtained through proper reasoning, and develop a
more advanced graph-based model is a promising
direction. (2) The effectiveness of Student Behavior
in Graph Modeling. GCN™# performs better than
LSTM and has a competitive performance among
all baselines. Further, GCNT'$ performs better
than GCN 1Y, which indicates that except for the
improvement of graph-based modeling, the student
behavior is still beneficial in advanced attempts of
prerequisite relation discovery.

6.4 Analysis of Graph Modeling

As the graph modeling further improve the perfor-
mance, we present experimental results to analyze
the role of its different components. And more
experimental discussions are in Appendix.

Necessity of Edge Weights. We set all the edge
weights to 1 to convert the three concept graphs
into unweighted ones, and present the correspond-
ing results in Table 4. The performance of all the
three GCN-based models declines severely, espe-
cially the most competitive GCNT% indicating
the necessity of edge weights.

Impact of Different Behavior Patterns. We
also investigate the impact of four behavior pat-
terns by only using some patterns when building
graph G°. The changes in performance after adding

Pattern | P R n

Seq. +0.6 +0.5 +0.5
Crs. +03 421 +1.2
Skp. +0.1 423 +1.1
Bcek. +0.1 +2.6 +1.3

Table 5: Performance improvement of GCNT¢V* com-
pared with GCNT<Y when only using one type of stu-
dent behavior pattern while building the concept graph
G*. Seq: sequential watching, Crs: cross course watch-
ing, Bck: backward watching, and Skp: skip watching.

part of the features are shown in Table 5, which pro-
vides some insights for understanding the student
behaviors: (1) Sequential watching covers high-
quality prerequisite concept pairs, resulting in a
significant improvement of the precision (). How-
ever, such a pattern is not so effective for those do
not match with the preset order of courses, result-
ing in relatively small improvement of recall (R);
(2) The other three patterns, improves recall signif-
icantly, indicating that they are complementary for
discovering prerequisite relations those not covered
by sequential watching; (3) Therefore, the four be-
havior patterns are complementary, and all of them
are helpful for discovering prerequisite concepts.

7 Conclusion and Future Work

In this work, we conduct an investigation on em-
ploying the students’ video watching behaviors in
the task of discovering prerequisite relations of con-
cepts in MOOC:s. To support the study, we collect
student behaviors and conduct data annotations to
build a novel dataset for this task. After analyzing
the typical patterns, we propose a feature-based
method and experimentally verify the student be-
haviors’ effectiveness in enhancing existing models.
Then we propose a graph-based method and exper-
imentally show that GCNs are more beneficial to
model student behaviors.

We also present several promising future direc-
tions, including 1) A more detailed analysis of the
relationship between user behavior and prerequi-
site concepts, e.g., divide the typical patterns into a
finer-grained level for analysis. 2) More advanced
graph-based models to discover high-quality pre-
requisite relations, e.g. employing graph attention
mechanism in this task. 3) Developing more in-
teractive applications to collect more kinds of user
behaviors for prerequisite relation discovery, such
as learning path recommendation, games, etc.



Ethical Consideration

Our datasets are from real MOOC scenarios. There-
fore, we carefully consider the legitimacy of the
data and the protection of user privacy during the
whole process of collection.

Certification and User privacy. All data col-
lected is licensed by the platform. Considering
the protection of user privacy, we strictly abide
by the agreement between the platform and the
users, remove sensitive personal information, and
anonymize the users into UserIDs. Meanwhile, we
utilize static masking techniques (Ghinita et al.,
2007) for further data security protection.
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A Data Annotation and Quality Control

Annotation. The group of annotators consists of
1 experienced CS professor, 2 CS Ph.Ds, and 8 Stu-
dents who finished these courses. We also employ
the teachers of our selected courses as consultants
to deal with the disagreements in the annotation
process. The annotation requires each course pair
to be labeled by two students. If there are conflicts,
two Ph.D. students will further label the result. And
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the final results are confirmed by the professor and
corresponding teachers.

Data quality. The data quality includes the qual-
ity of the annotation and student behavior data.
From our experience, the annotation of prerequi-
site is not easy to determine a perfect standard. E.g.,
"Stack" and "Queue": Grasping one of them indeed
help the understanding of the other, but someone
may think these two concepts are not prerequisite.
We finally control the Kappa over 0.7, which indi-
cates a good quality of the final prerequisite dataset
with the help of corresponding teachers, students
and our multi-round annotate-check annotation pro-
cess.

Meanwshile, to alleviate the noises introduced by
users’ random operations, we filter out the student
behavior data by: (i) Remove students who have
less than 2 elective courses and watch less than 10
videos. (ii) Delete behavior records that the student
who watched less than 30% of the video.

B Implementation Details

Running Environment The experiments in this
paper are conducted on a single Linux server with
an Intel(R) Xeon(R) CPU E5-2669 v4 @ 2.20GHz,
256G RAM, and 8 NVIDIA GeForce TITAN X
(Pascal). The codes of our proposed models are
implemented with Pytorch 1.3.1 in Python 3.7.

Experimental Settings When training the
GCNs for evaluation, we utilize a dropout with
drop rate 0.2. All hyper-parameters are tuned on
the validation set. The word vectors of all baseline
methods are initialized using BERT (Devlin et al.,
2019). As the training dataset is not big, we reduce
the dimensionality of these word vectors by PCA
to prevent overfitting. The attenuation coefficient
ais set to 0.3.

C Model Analysis

Attenuation Coefficient o. It is a parameter to
model the impact of long-range dependence on the
concept relationships. As shown in Figure 4, «
is effective in reducing noises for student behav-
ior modeling. As for the settings of the combined
graph model, the performance is more stable with
different . Both GCN™* and GCN“¢ perform
best under the setting of a 0.3 c. GCNT? perform
best with a 0.7 « but it is not so sensitive to this
hyper-parameter. Since « affect the state of the con-
structed graph, and the overall performance trend



of the three models does not change, we choose 0.3
as the setting value to keep the built graphs same
in our experiments.

Qualitative Analysis. Furthermore, we manu-
ally analyze which previous error cases are cor-
rected by graph modeling, and find some fascinat-
ing phenomena. Here we list 30 sampled cases
in Table 6 as the supplement of Qualitative anal-
ysis. Compared with one of the strongest base-
line LSTM, graph modeling perform better in two
main cases: (1) Hypernymy(41.3%) (e.g. “Linked
list”-“Doubly linked list”), which has been dis-
cussed as an important cause of prerequisite re-
lation in previous work (Liang et al., 2015). As
the hypernymy relations are organized in a di-
rected acyclic graph(usually a tree), the graph mod-
eling can capture the global features better. (2)
Theory-Application pairs(27.4%) (e.g. “Instant
messaging”’-“Advanced mobile phone network™).
Such concept pairs have no apparent structural or
semantic features like others, which is the main
reason that baselines cannot handle such cases well.
As our method can figure them out, we conjecture
that such improvement is provided by the proper
modeling of student behaviors.
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Figure 4: Effect of .



Type ConceptA ConceptB
Ethernet Switched Ethernet
Ethernet Fast Ethernet
Data Encryption Standard Advanced Encryption Standard
Maximum Global Maximum
Linked List Single Linked List
Linked List Doubly Linked List
Hypernymy Iterative Loop Iterative Calculation
Recurrence Relationship Recursion
Computer Vision Image Classification
Tree Algorithm Tree Search Algorithm
Depth First Search Eight Queens Problem
Linear Regression Linear Regression Model
Network Attacks Replay Attack
Data Meta Data
Divide Factorization
Effective digits Run Length Coding

Theory-Application

Continuous Time System
Scheduling Strategy
Reasoning Method
System Structure

Multiple Input/ Multiple Output

Interconnection Network

Kalman Filter
Resource Allocation
Automatic Reasoning
Service Data Unit
Digital Subscriber Line Access Multiplexer
One-Arm router

Fourier Transform Convolution
Transitivity Inequality
White Box Testing Integration Testing
Computational Complexity Graphical Method
Other Network Delay Instant Messaging

Conditional Distribution
Feasible Solution
Binary

Posterior Distribution
NP Hard Problem
Assembly Language

Table 6: The baselines’ error cases corrected by graph modeling We divide them into three categories.
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