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Abstract

What knowledge should a student grasp before001
beginning a new MOOC course? This ques-002
tion can be answered by discovering prerequi-003
site relations of knowledge concepts. In recent004
years, researchers have devoted intensive ef-005
forts to detecting such relations by analyzing006
various types of information. However, there007
are still a few explorations of utilizing student008
behaviors in this task. In this paper, we inves-009
tigate the effectiveness of student behaviors in010
prerequisite relation discovery for course con-011
cepts. Specifically, we first construct a novel012
MOOC dataset to support the study. We then013
verify the effectiveness of student behaviors014
via serving as additional features for existing015
prerequisite relation discovery models. More-016
over, we explore to better utilize student behav-017
iors via graph-based modeling. We hope our018
study could call for more attention and efforts019
to explore the student behavior for prerequisite020
relation discovery.021

1 Introduction022

Since the first edition of Robert Gagne’s Princi-023

ples of Instructional Design (Gagne and Briggs,024

1974) came out, many efforts from pedagogy025

have suggested that students should grasp pre-026

requisite knowledge before moving forward to027

learn subsequent knowledge. Such prerequisite028

relations are described as the dependence among029

knowledge concepts and are crucial for students030

to learn, organize, and apply knowledge (Parkay031

and Hass, 1999). Figure 1 shows an example of032

the prerequisite relations in Massive Open Online033

Courses (MOOCs). For a student who wants to034

learn the concept “Convolutional Neural Network”035

(CS224:video18), he/she is expected to have had036

the knowledge of its prerequisite concepts (“Gradi-037

ent Descent” and “Back Propagation Algorithm”).038

In the era of intelligent education, prerequisite039

relations play an essential role in a series of ed-040

ucational applications such as curriculum plan-041
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Figure 1: An application example of prerequisite rela-
tions. A student who wants to study “Convolutional
Neural Network” can be suggested to follow the pre-
requisite chain (green path) to learn “Gradient Descent”
and “Back Propagation Algorithm” first.

ning (Agrawal et al., 2015), reading list genera- 042

tion (Gordon et al., 2016), etc. As the example of 043

Figure 1, with explicit prerequisite relations among 044

concepts (red), a coherent and reasonable learn- 045

ing sequence can be recommended to the student 046

(green or blue). However, as the quantity of educa- 047

tional resources proliferates, the explosive growth 048

of knowledge concepts make it expensive and inef- 049

fective to obtain fine-grained prerequisite relations 050

by expert annotations (Bergan and Jeska, 1980). 051

Therefore, automatically discovering prerequisite 052

relations becomes a rising topic in recent years. 053

This task is defined as Prerequisite Relation 054

Discovery of Concepts in MOOCs. Despite 055

several attempts on this topic, including extract- 056

ing such relations from the content of MOOC 057

videos (Pan et al., 2017a; Liang et al., 2018) and 058

the preset orders of MOOC resources (Liang et al., 059

2017; Roy et al., 2019), it is still far from sufficient 060

to directly apply these methods in the practical ap- 061

plications due to the following challenges. 062

First, unlike the factual relations of general en- 063

tities (e.g., Bill Gates has the relation founder 064

with Microsoft Inc.), prerequisite relations are more 065

cognitive than factual, which makes it rarely men- 066

tioned explicitly in texts and challenging to be di- 067

rectly captured from MOOC corpus. Second, exist- 068
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ing MOOC resources that are considered to be pre-069

requisite clues are noisy, e.g., the order of MOOC070

videos. As a video usually teaches several concepts,071

it is common that some of these concepts are not072

prerequisites to the ones in later videos. Therefore,073

it is crucial to explore more effective resources to074

help the discovery of prerequisite relations.075

Inspired by the idea from educational psychol-076

ogy that students’ learning behaviors are posi-077

tively related to the cognitive structure of knowl-078

edge (Ausubel, 1968), we conduct an investiga-079

tion on leveraging the video watching behaviors080

of students in the task of discovering prerequisite081

concepts in MOOCs. For supporting the investi-082

gation, we collect student behavior data from real083

MOOC courses and organize expert annotations to084

construct a dataset of sufficient and fine-grained085

prerequisite concept relations. After analyzing typ-086

ical behavior patterns, we verify this information’s087

effectiveness in improving the existing method.088

Furthermore, to explore student behaviors’ better089

modeling, we propose a graph-based solution by090

building concept graphs from student behaviors and091

conducting link prediction on them. Experimental092

results show our proposed method achieves much093

better performance compared with four representa-094

tive baselines. We also provide several empirical095

suggestions for research on related topics.096

Our contributions include: (1) An investigation097

on how to leverage student behaviors to extract098

prerequisite relations of concepts; (2) Proposal099

of an effective graph-based model for enhancing100

prerequisite relation discovery with student behav-101

iors in MOOCs; (3) A manually annotated bench-102

mark of fine-grained prerequisite concepts from103

real courses of MOOC websites1.104

2 Related Work105

Our work mainly follows the efforts in discover-106

ing prerequisite relations among course concepts,107

aiming to detect the dependence of concepts from108

MOOC resources. The task of identifying prereq-109

uisite relations originates from educational data110

mining, which could help in automatic curriculum111

planning (Parkay and Hass, 1999) and other educa-112

tional applications (Romero and Ventura, 2007). In113

the area of education, early works discover general114

prerequisite structures from students’ test perfor-115

mance (Vuong et al., 2011; Scheines et al., 2014;116

Huang et al., 2015), and these early efforts have117

1The dataset will be publicly available after review.

mainly focused on discovering the dependence 118

among courses or knowledge units. Talukdar and 119

Cohen (2012) and Liang et al. (2015) further pro- 120

pose to learn more fine-grained prerequisite rela- 121

tions, i.e., the prerequisite relations among con- 122

cepts. In recent years, detecting prerequisite con- 123

cepts from courses (especially online courses) has 124

become a rising research topic. Researchers ex- 125

plore various kinds of methods from matrix op- 126

timization (Liang et al., 2017), feature engineer- 127

ings (Pan et al., 2017a) to neural networks (Roy 128

et al., 2019) to consider the static information of 129

MOOCs (course/video) as indispensable clues for 130

discovering such relations. 131

There are also some attempts to extract prereq- 132

uisite relations from other resources, e.g., paper 133

citation networks (Gordon et al., 2016) and text- 134

books’ unit sequences and titles (Labutov et al., 135

2017). Recently, the user clickstream of Wikipedia 136

pages (Sayyadiharikandeh et al., 2019) are also 137

proven to indicate concept dependence. This in- 138

spires us to improve prerequisite prediction by con- 139

sidering the user behaviors in MOOCs, which con- 140

tains more behavior details and is relevant to the 141

cognitive learning process. 142

3 Problem Formulation 143

In this section, we give some basic definitions and 144

formulate the problem of discovering prerequisite 145

relations among course concepts in MOOCs. 146

A MOOC corpus is composed of courses from 147

MOOCs, denoted asM = {Ci}|M|i=1 , where Ci in- 148

didates the i-th course. Each course includes a 149

sequence of videos, i.e., Ci = [vij ]
|Ci|
j=1, where 150

vij refers to a video with its subtitles from the 151

course. And the Student Behavior that we use 152

in this paper is the Video Watching Behaviors 153

S = {(u, v, t)}, where each behavior records stu- 154

dent u ∈ U started to watch the video v at time t, 155

and U is the set of all students. 156

Course dependence is defined as a prerequisite 157

relation between courses (Liang et al., 2017), de- 158

noted as D = {(Ci, Cj) |Ci, Cj ∈M}, which indi- 159

cates that course Ci is a prerequisite course of Cj . 160

This information is often provided by the teachers 161

when setting up new courses. 162

Course Concepts are the subjects taught in a 163

course (e.g., “LSTM” is a concept of the Deep 164

Learning course). We respectively denote the con- 165

cepts of a certain video, a course and the whole 166

MOOC corpus as Kv, Kc and K. The video con- 167
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cepts Kv
ij =

{
c1, ..., c|Kv

ij|
}

is the concepts taught168

in course video vij . As a course is consist of several169

videos, the course concept Kc
i = Kv

i1 ∪ ... ∪ Kv
i|Ci|.170

And all the concepts of the MOOC corpus is171

K = Kc
1 ∪ ... ∪ Kc

|M|.172

Discovering prerequisite relation of course173

concepts in MOOCs is formulated as: Given the174

MOOC corpus M, course dependence D, stu-175

dent behaviors S and the corresponding course176

concepts K, the objective is to learn a function177

L : K2 → {0, 1} that maps a concept pair (ca, cb),178

where ca, cb ∈ K, to a binary class that indicates179

whether ca is a prerequisite concept of cb.180

4 The MOOC Dataset181

Although there are a few datasets for mining pre-182

requisite relations from online courses (Pan et al.,183

2017a; Li et al., 2019; Yu et al., 2020), they still184

cannot adequately support our investigation due185

to the following reasons. (1) Lack of student be-186

havioral data: Most of the existing datasets do not187

collect relevant student behavior data, and such188

data are difficult to supplement due to accessibility.189

(2) Sparsity: Datasets with student behavior data,190

such as MOOCCube (Yu et al., 2020), only use191

distant supervision methods to automatically la-192

bel prerequisite relationships. This makes its high-193

confidence prerequisite relationships too sparse to194

support fine-grained quantitative analysis.195

Therefore, with the consideration of user privacy196

protection2, we collect data of courses, videos, and197

student behaviors from a large MOOC website3,198

and organize multi-stage annotations to construct a199

fine-grained, rich-connectivity prerequisite dataset.200

Stage 1: MOOC Information Collection: We201

select 12 sample courses in three domains to col-202

lect information of MOOCs, including “Basic203

Knowledge of Computer Science” (CS), “Program-204

ming Languages” (PL), and “Artificial Intelligence”205

(AI). These courses are selected because their con-206

cepts are highly relevant, lifting the connectivity207

of course concepts in the dataset. Then we col-208

lect course and student data in three steps: (1)209

downloading all course materials, which include210

the video orders and subtitles; (2) obtaining the211

video watching logs of students who participated212

in these courses during 2017-2019 as user behavior213

data source, which could help us to infer a student’s214

2The details of data privacy protection, annotation and
quality control can be found in Ethical Section and Appendix.

3Anonymous for blind review.

CS PL AI ALL

#Course 4 4 4 12
#Video 312 222 233 767
#Concept 369 227 377 700

#Pair +pos 672 673 267 1,612
-neg 1,258 539 218 2,015

#Student 12,094 12,014 3,541 17,587
#Behavior 430,769 337,953 39,136 807,858
Kappa 0.765 0.737 0.769 0.754

Table 1: Statistics of our dataset. As course concepts
and students may overlap in different courses, their to-
tal number is not a simple numerical addition.

learning frequency, watching duration, and other 215

information of a particular video; (3) annotating 216

the dependence of courses. 217

Stage 2: Data Processing: Regarding all the 218

subtitles of selected courses as the MOOC cor- 219

pus, we employ a widely-used concept extraction 220

method (Pan et al., 2017b) in MOOC-related tasks 221

to obtain concept candidates. For each candidate, 222

two annotators label it as “not course concept” 223

or “course concept”, and the disagreements are 224

confirmed by the teacher. Each labeled concept’s 225

Wikipedia abstract is dumped as side-information 226

for the reproduction of baseline methods. 227

Stage 3: Prerequisite Relation Annotation: 228

We manually annotate the prerequisite relations 229

among the labeled course concepts. A critical chal- 230

lenge in the annotation is the giant quantity and 231

sparsity. If the concept number is n, the candidate 232

pair number is n(n − 1)/2, which requires ardu- 233

ous human labeling work. Therefore, we present a 234

two-step strategy to reduce the workload: 235

• Step 1: The teacher of the corresponding 236

course leads the annotators to cluster the concepts 237

to several groups, which may maintain possible 238

prerequisite relations. After this step, we get 28 239

clusters of 700 course concepts, where the largest 240

contains 210 concepts, and the smallest contains 14 241

concepts. We organize the following annotations 242

within these concept clusters. 243

• Step 2: We generate the candidate concept 244

pairs within the clusters and sample a small scale 245

of them as golden standard (300). Then we em- 246

ploy them to train existing baselines (i.e. MOOC- 247

RF (Pan et al., 2017b), GlobalF (Liang et al., 2018), 248

PREREQ (Roy et al., 2019) and CPR-Recover) as 249

candidate filters. To ensure the Recall, we only 250

filter out the pair if none of the above classifiers 251

predict it to be a prerequisite, and preserve the re- 252

maining pairs into the annotation. 253
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Figure 2: Four typical patterns when a student watches course videos. The figure shows the proportion of video
pairs that match each pattern in all behaviors.

In the annotation process, two annotators from254

corresponding domains are asked to label whether255

concept A is a prerequisite of concept B, i.e., the an-256

notator need to answer the question of “whether A257

is helpful for understanding B”. A pair is labeled as258

positive only when the two annotators are in agree-259

ment. The statistics of our dataset are shown in260

Table 1, where #Course, #Video, #Concept, #Pair,261

#Student are the number of corresponding items262

and #Behavior is the number of video watching263

records. The Kappa statistics of the inter-annotator264

agreement is 0.754, showing the reliability of the265

annotation results??.266

5 Effectiveness of Student Behavior267

In this section, we first explore whether the stu-268

dent behaviors in MOOCs are useful in the task of269

discovering prerequisite concepts. To this end, we270

present a feature-based method to model student271

behaviors and investigate whether this information272

can improve the existing methods. The design of273

our approach is based on the following cognitive274

learning hypothesis:275

Hypothesis. Students tend to follow the prerequi-276

site cognitive structure to learn new knowledge.277

The hypothesis was proposed in educational psy-278

chology (Ausubel, 1968), and was widely applied279

in prerequisite-driven instructional design (Parkay280

and Hass, 1999; Romero and Ventura, 2007). We281

extend this hypothesis by analyzing the clues of282

the prerequisite concepts implied in student learn-283

ing orders. Surprisingly, although MOOCs preset284

the video order, our observation on student behav-285

ior data indicates that students often learn MOOC286

videos in their own orders. As shown in Figure 2,287

we summarize four typical behavior patterns, and288

the out-of-pre-order learning behaviors are even289

more than half of total (56.72%). To leverage stu-290

dent behaviors in this task, we analyze the causes 291

of these patterns and build several features to model 292

prerequisite relations from student behaviors. 293

5.1 Student Behavior Patterns and 294

Prerequisite Features 295

We first construct a video watch behavior sequence 296

Su for each user u from student behavior record 297

S, where the video watch behaviors are sorted in 298

time order. Comparing the preset video order of 299

each Ci with Su, we summarize four typical pat- 300

terns of students’ video watching behaviors: Se- 301

quential Watching, Cross Course Watching, Skip 302

Watching and Backward Watching as shown in Fig- 303

ure 2. Before introducing the modeling details, we 304

first define the behavior patterns as follows. 305

Definition 1 (Behavior Pattern). A behavior pat- 306

tern P is formed by one or more video pairs. A 307

video pair (vi, vj) belongs to a pattern P when it 308

matches the corresponding conditions. 309

As the student behavior patterns are at video 310

level, we infer the prerequisite features of a concept 311

pair ca ∈ Kv
i and cb ∈ Kv

j by considering videos as 312

bags of course concepts, where Kv
i , Kv

j correspond 313

to the concepts taught in vi, vj , and a concept may 314

be taught in more than one videos. 315

Over 72.5% of the students’ behavior records 316

contain all the four typical patterns in Figure 2, 317

indicating that they are not accidental. Therefore, 318

we attempt to speculate the causes of these four 319

patterns from the cognitive perspective, and build 320

prerequisite features fP to model them. 321

Sequential Watching Pattern. Sequential 322

watching indicates that a student watches videos 323

in the course’s preset video order, which indicates 324

that the concepts taught in these videos are in accor- 325

dance with the prerequisite cognitive structure. To 326

leverage this pattern, we assign prerequisite feature 327
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fP1 for the concepts ca and cb as:328

fP1 (ca, cb) =
∑
u∈U

∑
vi,vj∈Su

α|j−i| · Seq(u, vi, vj)

max(|Kv
i | ,
∣∣Kv

j

∣∣) , (1)329

where function Seq(u, vi, vj) = 1 holds when330

1) vi, vj are the i-th, j-th videos of a student’s331

watching record Su and are in the same course,332

j > i; 2) ca ∈ Kv
i and cb ∈ Kv

j (Otherwise333

Seq(u, vi, vj) = 0).334

Considering there are multiple concepts taught335

in each video, we employ max(|Kv
i | ,
∣∣∣Kv

j

∣∣∣) to nor-336

malize the feature of a certain concept pair. Further-337

more, since the distance between watching videos338

corresponds to their relatedness, we employ an339

attenuation coefficient of α ∈ (0, 1) to capture340

distant dependence from long sequences in this341

pattern.342

Cross Course Watching Pattern. Besides343

watching in one course, there is a phenomenon344

that some students choose to watch videos in other345

courses before continuing on the present study. The346

main reason is that the knowledge provided by347

other courses’ videos is helpful to study this course.348

Hence, cross course watching behavior could re-349

flect the dependence between concepts from differ-350

ent courses. The prerequisite feature fP2 for ca and351

cb is calculated as:352

fP2 (ca, cb) =
∑
u∈U

∑
vi,vj∈Su

α|j−i| · Crs(u, vi, vj)

max(|Kv
i | ,
∣∣Kv

j

∣∣) , (2)353

where function Crs(u, vi, vj) = 1 holds when 1)354

vi, vj are the i-th, j-th videos of a student’s record355

Su and are in the different courses; 2) ca ∈ Kv
i and356

cb ∈ Kv
j (Otherwise Crs(u, vi, vj) = 0).357

Skipping Watching Pattern. An abnormal stu-358

dent behavior is skipping some videos when learn-359

ing a course, which drops a hint that the “skipped360

videos” are not so necessary for latter videos’ com-361

prehension. Given a student behavior sequence Su362

and course video orders C = [v1..vi...], we can de-363

tect the skipped video pairs and assign a negative364

fP3 for the concept pair ca and cb as:365

fP3 (ca, cb) = −
∑
u∈U

∑
vi,vj∈Su

α|j−i| · Skp(u, vi, vj)

max(|Kv
i | ,
∣∣Kv

j

∣∣) ,
(3)366

where function Skp(u, vi, vj) = 1 holds when 1)367

vi, vj are the i-th, j-th videos of a same course,368

and i < j; 2) vj is watched by user u but vi is369

not watched; 3) ca ∈ Kv
i and cb ∈ Kv

j (Otherwise370

Skp(u, vi, vj) = 0).371

Backward Watching Pattern. This pattern 372

means a student goes back to a video that he/she 373

watched before. A possible explanation is he/she 374

jumps back to a video for re-learning prerequisite 375

knowledge of the current video. Based on this as- 376

sumption, we adjust the equation for the feature 377

fP4 between ca and cb. 378

fP4 (ca, cb) =
∑
u∈U

∑
vi,vj∈Su

α|j−i| · Bck(u, vi, vj)

max(|Kv
i | ,
∣∣Kv

j

∣∣) , (4) 379

where function Bck(u, vi, vj) = 1 holds when 1) 380

vi, vj are the i-th, j-th videos of a student behav- 381

ior record Su, and i < j; 2) vi is watched again 382

after vj ; 3) ca ∈ Kv
i and cb ∈ Kv

j (Otherwise 383

Bck(u, vi, vj) = 0). 384

5.2 Experiment: Enhancing Exiting Methods 385

To verify our assumption of the accordance of stu- 386

dent behavior and prerequisite structures, we con- 387

duct experiments to explore whether the extracted 388

features fPk (k = 1, 2, 3, 4) can help discover pre- 389

requisite relations among concepts. Specifically, 390

we enhance existing prerequisite discovery mod- 391

els by adding student behavior features. We select 392

following typical baselines for the experiments: 393

•MOOC-RF: A widely-used method (Pan et al., 394

2017a), which extracts seven features from the 395

video and subtitle corpus of MOOCs. We repro- 396

duce this method and select Random Forest as the 397

classifier to match its claimed best performance. 398

• GlobalF: This method (Liang et al., 2018) ex- 399

tract the graph-based and text-based features for 400

each concept pair. The graph-based features are 401

based on Wikipedia Anchor Links, and the text- 402

features are based on the description of concepts. 403

• PREREQ: This method (Roy et al., 2019) uti- 404

lizes course dependence and video orders to find 405

prerequisite relations through a siamese network. 406

• LSTM: Recently, some researchers try to uti- 407

lize neural approaches to extract prerequisite rela- 408

tions from text. We reproduce the LSTM model in 409

(Alzetta et al., 2019) to encode the concepts’ texts 410

as prerequisite features. 411

For enhancing existing models, we concatenate 412

the student behavior features fPk (k = 1, 2, 3, 4) 413

with original features and then utilize the same 414

classifiers in the respective papers to obtain experi- 415

mental results. 416

Result Analysis We summarize the results in 417

Table 2, where +sf represents the results of models 418

enhanced with student behavior features. We apply 419
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P R F1 ∆

MOOC-RF 0.749 0.584 0.656 -
MOOC-RF+sf 0.755 0.639 0.691 +3.5

GlobalF 0.679 0.631 0.650 -
GlobalF+sf 0.710 0.657 0.680 +3.0

PREREQ 0.468 0.792 0.567 -
PREREQ+sf 0.511 0.712 0.595 +2.8

LSTM 0.706 0.743 0.723 -
LSTM+sf 0.707 0.736 0.720 -0.3

Table 2: Performance of student behavior enhanced
baselines. P , R and F1 represent precision, recall, and
F1 score respectively, and ∆ represents the improve-
ment of F1 score after adding student behavior features.
+sf : enhanced with student behavior features.

10-fold cross-validation and balance the training420

set by oversampling the positive instances4. From421

the presented results, we can infer the following in-422

sights: 1) Student behaviors are effective in pre-423

requisite relation discovery. MOOC-RF, Glob-424

alF, and PREREQ gain significant improvement425

after adding the extracted student behavior features.426

It preliminarily proves that the student behaviors427

imply clues of prerequisite concepts and are useful428

to prerequisite relation discovery. 2) Shortcom-429

ing. Feature-based behavior modeling meets a bot-430

tleneck in improving state-of-the-art LSTM-based431

baseline. A possible explanation is that the course432

concepts and their prerequisite relations naturally433

form a dependence graph structure (Gordon et al.,434

2016), so the sequence-based LSTM reaches the435

limit of performance and is difficult to be effec-436

tively improved. Therefore, in the next sections,437

we explore how to utilize student behaviors in the438

graph structure.439

6 Explore Graph-based Modeling of440

Student Behavior441

Building concept graphs is a common idea in con-442

cept mining tasks, including concept extraction and443

expansion (Pan et al., 2017b; Yu et al., 2019). Since444

the prerequisite relations among concepts are tran-445

sitive, i.e., if a→b, b→c then a→c, previous works446

also often employ a directed graph to describe the447

dependence on a set of concepts (Brunskill, 2011;448

Gordon et al., 2016). This inspires us to lever-449

age student behaviors better by building a concept450

graph, defined as:451

4The following experiments are also set up by the same
settings, and more details are in Appendix.

MLP classifier

Based on
Course dependence

Based on
Video Order

Based on
Student Behavior

Output

Graph Features of A Graph Features of B

Concept A

Concept B

A

B

A

B

Heterogeneous
Concept Graphs

Figure 3: The framework of our graph-based model.
The nodes of each graph are course concepts. Features
of concepts are the concatenation of the corresponding
node embeddings learned by GCN.

Definition 2 (Concept Graph). A concept graph 452

G = (K, E) is a weighted directed graph, whose 453

nodes are course concepts K and each edge e = 454

(ca → cb) ∈ E is associated with a weight we. 455

Regarding the prerequisite relation learning as 456

a link prediction problem in a graph, we are able 457

to leverage the student behavior better by utilizing 458

Graph Convolutional Networks (GCNs) (Kipf and 459

Welling, 2017) to model information propagation 460

of the concepts. Meanwhile, as several types of 461

MOOC information have been applied to detect 462

prerequisite concepts in previous research, includ- 463

ing course dependence (Liang et al., 2017; Roy 464

et al., 2019), video order (Pan et al., 2017a), we 465

also design similar concept graphs for these re- 466

sources. By comparing the model performance of 467

different graphs, we can explore the role of student 468

information more fairly (excluding the factors of 469

the graphical modeling). In this section, we intro- 470

duce the construction of concept graphs and how 471

to conduct prerequisite relation learning on them 472

for employing student behaviors better. 473

6.1 Concept Graph Construction 474

As shown in Figure 3, we design a concept graph 475

Gs based on student behaviors as while as Gc based 476

on course dependence graph and Gv based on video 477

order graph. As the nodes of these concept graphs 478

are the same course concept K, the only difference 479

is the setting of their edges. 480

Our graph construction stage’s main idea is to 481

assign edge weight for each concept pair in these 482
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graphs. After calculating all edges’ weights in a483

graph, we only preserve the edges with positive484

weights, for they are helpful for relation reasoning.485

Concept Graph Based on Student Behavior.486

To build concept graph from student behaviors, a487

straightforward idea is to model the prerequisite488

clues by combining the extracted features in Sec-489

tion 5. Hence, we assign the weightws
e for the edge490

e = (ca → cb) in this graph Gs as:491

ws
e =

4∑
i=1

fPi (ca, cb)×
log(|U |)
|U | , (5)492

where fPi (i = 1, 2, 3, 4) denotes the features of the493

concept ca and cb from the four behavior patterns.494

log(|U |)/ |U | is used to normalize the weight to495

combine with other two user-independent graphs.496

Except for student behaviors, we also build con-497

cept graphs for existing static MOOC prerequisite498

clues through similar methods, including the de-499

pendence among courses and the preset order of500

videos. By modeling these information, we can501

more fairly compare the contribution of these clues502

in graphs and explore whether they can be inte-503

grated to further enhance the model.504

Concept Graph Based on Course Dependence.505

Course dependence is widely used in prerequisite506

learning. When a course is certain to be a prereq-507

uisite course of another one, there must be depen-508

dence relations between some of their concepts.509

So we build a concept graph Gc based on course510

dependency to exploit this information. Suppose511

ca and cb are respectively concepts of course Ci512

and Cj , for an edge e = (ca → cb) of this concept513

graph, we can calculate its weight wc
e as:514

wc
e =

∑
Ci,Cj∈M

CD(Ci, Cj)
max(|Kc

i | ,
∣∣Kc

j

∣∣) , (6)515

where function CD(Ci, Cj) = 1 only when pair516

(Ci, Cj) is in course dependence set D (otherwise517

CD(Ci, Cj) = 0). We also use max(|Kc
i | ,
∣∣∣Kc

j

∣∣∣) to518

normalize such information to concept-level.519

Concept Graph Based on Video Order. Video520

order indicates the dependence between videos. In521

general, the previous videos in a course are help-522

ful for the latter ones (Roy et al., 2019) and such523

dependence is stronger when two videos are closer.524

Based on this assumption, when calculating the525

weight for the concept graph Gv based on video526

order, we also apply the attenuation coefficient α527

to obtain edge weight wv
e for the edge e between528

concept ca and cb: 529

wv
e =

∑
u∈U

∑
vi,vj∈Su

α|j−i| · VO(u, vi, vj)

max(|Kv
i | ,
∣∣Kv

j

∣∣) , (7) 530

where function VO(vi, vj) = 1 only when 1) vi, 531

vj are the i-th, j-th videos of a same course; 2) 532

ca ∈ Kv
i and cb ∈ Kv

j (otherwise VO(vi, vj) = 0). 533

6.2 Prerequisite Relation Learning 534

After building concept graphs Gc, Gv, and Gs, we 535

utilize GCNs to reason prerequisite relations in 536

these graphs. In particular, we initialize the adja- 537

cency matrix A of the graph and the feature ma- 538

trix X of the concept nodes for each graph. The 539

adjacency matrix A, with a size of |K|2, can be 540

derived from edge weights, e.g., for the adjacency 541

matrix As of the student behavior graph Gs, we 542

have As
ij = ws

e, where ws
e is the weight of edge 543

e = (ci → cj). And the |K|×d sized feature matrix 544

X of the concept nodes in all graphs is initialized 545

by a pre-trained d-dimension language model , i.e., 546

Xi is the word embedding of the text concept ci. 547

The training of GCNs on our directed concept 548

graphs follows the propagation rule shown below, 549

which is an adapted version for directed graphs: 550

Z = D̂−1ÂXΘ, (8) 551

where Θ is a matrix of filter parameters, Z is the 552

convolved signal matrix, Zi = hi is the graph 553

embedding of concept ci, D̂ii =
∑

j Âij and the 554

Laplacian is Â = IN + A. The other settings are 555

the same with (Kipf and Welling, 2017). 556

After the graph-training stage, we input the 557

graph embeddings ha,hb of a concept pair (ca, cb) 558

into a two-layer MLP followed with a sigmoid func- 559

tion to do classification: 560

Pr(L(ca, cb) = 1) = σ(max(0, (ha ⊕ hb)W1)W2), (9) 561

where Pr is the probability, σ(·) is the sigmoid 562

function, W1 ∈ R2d×d and W2 ∈ Rd×1 are train- 563

able matrices, and ⊕ denotes vector concatenation. 564

6.3 Experiment: Graph-based Modeling 565

We conduct experiments on our newly presented 566

dataset and apply the same settings to evaluate the 567

performance of our proposed graph-based method. 568

Table 3 summarizes the comparing results of dif- 569

ferent methods. +cv denotes Gc and Gv are used, 570
+s denotes only Gs is used, and +cvs denotes all 571

the three graphs are used. We analysis the perfor- 572

mance in the following aspects: (1) Advantage of 573
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Model P R F1

MOOC-RF+sf 0.755 0.639 0.691
GlobalF+sf 0.710 0.657 0.680
PREREQ+sf 0.511 0.712 0.595
LSTM 0.706 0.743 0.723

GCN+cv 0.789 0.792 0.790
GCN+s 0.762 0.784 0.772
GCN+cvs 0.792 0.814 0.802

Table 3: Overall performance. +sf : enhanced with stu-
dent behavior features (Section 5.1); +cv: Gc and Gv
are used; +s: only Gs is used; +cvs: all Gc, Gv and Gs
are used.

P R F1

GCN+cv -8.5 -11.1 -9.9
GCN+s -7.7 -11.8 -9.8
GCN+cvs -10.5 -14.5 -12.6

Table 4: Absolute performance decline when dropping
the edge weights of the concept graphs.

Graph-based Modeling. GCN-based models per-574

form better than previous state-of-the-art methods,575

which indicates that modeling concept dependence576

in graphs is effective. The prerequisites can be577

obtained through proper reasoning, and develop a578

more advanced graph-based model is a promising579

direction. (2) The effectiveness of Student Behavior580

in Graph Modeling. GCN+s performs better than581

LSTM and has a competitive performance among582

all baselines. Further, GCN+cvs performs better583

than GCN+cv, which indicates that except for the584

improvement of graph-based modeling, the student585

behavior is still beneficial in advanced attempts of586

prerequisite relation discovery.587

6.4 Analysis of Graph Modeling588

As the graph modeling further improve the perfor-589

mance, we present experimental results to analyze590

the role of its different components. And more591

experimental discussions are in Appendix.592

Necessity of Edge Weights. We set all the edge593

weights to 1 to convert the three concept graphs594

into unweighted ones, and present the correspond-595

ing results in Table 4. The performance of all the596

three GCN-based models declines severely, espe-597

cially the most competitive GCN+cvs, indicating598

the necessity of edge weights.599

Impact of Different Behavior Patterns. We600

also investigate the impact of four behavior pat-601

terns by only using some patterns when building602

graph Gs. The changes in performance after adding603

Pattern P R F1

Seq. +0.6 +0.5 +0.5
Crs. +0.3 +2.1 +1.2
Skp. +0.1 +2.3 +1.1
Bck. +0.1 +2.6 +1.3

Table 5: Performance improvement of GCN+cvs com-
pared with GCN+cv when only using one type of stu-
dent behavior pattern while building the concept graph
Gs. Seq: sequential watching, Crs: cross course watch-
ing, Bck: backward watching, and Skp: skip watching.

part of the features are shown in Table 5, which pro- 604

vides some insights for understanding the student 605

behaviors: (1) Sequential watching covers high- 606

quality prerequisite concept pairs, resulting in a 607

significant improvement of the precision (P ). How- 608

ever, such a pattern is not so effective for those do 609

not match with the preset order of courses, result- 610

ing in relatively small improvement of recall (R); 611

(2) The other three patterns, improves recall signif- 612

icantly, indicating that they are complementary for 613

discovering prerequisite relations those not covered 614

by sequential watching; (3) Therefore, the four be- 615

havior patterns are complementary, and all of them 616

are helpful for discovering prerequisite concepts. 617

7 Conclusion and Future Work 618

In this work, we conduct an investigation on em- 619

ploying the students’ video watching behaviors in 620

the task of discovering prerequisite relations of con- 621

cepts in MOOCs. To support the study, we collect 622

student behaviors and conduct data annotations to 623

build a novel dataset for this task. After analyzing 624

the typical patterns, we propose a feature-based 625

method and experimentally verify the student be- 626

haviors’ effectiveness in enhancing existing models. 627

Then we propose a graph-based method and exper- 628

imentally show that GCNs are more beneficial to 629

model student behaviors. 630

We also present several promising future direc- 631

tions, including 1) A more detailed analysis of the 632

relationship between user behavior and prerequi- 633

site concepts, e.g., divide the typical patterns into a 634

finer-grained level for analysis. 2) More advanced 635

graph-based models to discover high-quality pre- 636

requisite relations, e.g. employing graph attention 637

mechanism in this task. 3) Developing more in- 638

teractive applications to collect more kinds of user 639

behaviors for prerequisite relation discovery, such 640

as learning path recommendation, games, etc. 641
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Ethical Consideration642

Our datasets are from real MOOC scenarios. There-643

fore, we carefully consider the legitimacy of the644

data and the protection of user privacy during the645

whole process of collection.646

Certification and User privacy. All data col-647

lected is licensed by the platform. Considering648

the protection of user privacy, we strictly abide649

by the agreement between the platform and the650

users, remove sensitive personal information, and651

anonymize the users into UserIDs. Meanwhile, we652

utilize static masking techniques (Ghinita et al.,653

2007) for further data security protection.654
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A Data Annotation and Quality Control795

Annotation. The group of annotators consists of796

1 experienced CS professor, 2 CS Ph.Ds, and 8 Stu-797

dents who finished these courses. We also employ798

the teachers of our selected courses as consultants799

to deal with the disagreements in the annotation800

process. The annotation requires each course pair801

to be labeled by two students. If there are conflicts,802

two Ph.D. students will further label the result. And803

the final results are confirmed by the professor and 804

corresponding teachers. 805

Data quality. The data quality includes the qual- 806

ity of the annotation and student behavior data. 807

From our experience, the annotation of prerequi- 808

site is not easy to determine a perfect standard. E.g., 809

"Stack" and "Queue": Grasping one of them indeed 810

help the understanding of the other, but someone 811

may think these two concepts are not prerequisite. 812

We finally control the Kappa over 0.7, which indi- 813

cates a good quality of the final prerequisite dataset 814

with the help of corresponding teachers, students 815

and our multi-round annotate-check annotation pro- 816

cess. 817

Meanwhile, to alleviate the noises introduced by 818

users’ random operations, we filter out the student 819

behavior data by: (i) Remove students who have 820

less than 2 elective courses and watch less than 10 821

videos. (ii) Delete behavior records that the student 822

who watched less than 30% of the video. 823

B Implementation Details 824

Running Environment The experiments in this 825

paper are conducted on a single Linux server with 826

an Intel(R) Xeon(R) CPU E5-2669 v4 @ 2.20GHz, 827

256G RAM, and 8 NVIDIA GeForce TITAN X 828

(Pascal). The codes of our proposed models are 829

implemented with Pytorch 1.3.1 in Python 3.7. 830

Experimental Settings When training the 831

GCNs for evaluation, we utilize a dropout with 832

drop rate 0.2. All hyper-parameters are tuned on 833

the validation set. The word vectors of all baseline 834

methods are initialized using BERT (Devlin et al., 835

2019). As the training dataset is not big, we reduce 836

the dimensionality of these word vectors by PCA 837

to prevent overfitting. The attenuation coefficient 838

α is set to 0.3. 839

C Model Analysis 840

Attenuation Coefficient α. It is a parameter to 841

model the impact of long-range dependence on the 842

concept relationships. As shown in Figure 4, α 843

is effective in reducing noises for student behav- 844

ior modeling. As for the settings of the combined 845

graph model, the performance is more stable with 846

different α. Both GCN+s and GCN+cvs perform 847

best under the setting of a 0.3 α. GCN+cv perform 848

best with a 0.7 α but it is not so sensitive to this 849

hyper-parameter. Since α affect the state of the con- 850

structed graph, and the overall performance trend 851
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of the three models does not change, we choose 0.3852

as the setting value to keep the built graphs same853

in our experiments.854

Qualitative Analysis. Furthermore, we manu-855

ally analyze which previous error cases are cor-856

rected by graph modeling, and find some fascinat-857

ing phenomena. Here we list 30 sampled cases858

in Table 6 as the supplement of Qualitative anal-859

ysis. Compared with one of the strongest base-860

line LSTM, graph modeling perform better in two861

main cases: (1) Hypernymy(41.3%) (e.g. “Linked862

list”-“Doubly linked list”), which has been dis-863

cussed as an important cause of prerequisite re-864

lation in previous work (Liang et al., 2015). As865

the hypernymy relations are organized in a di-866

rected acyclic graph(usually a tree), the graph mod-867

eling can capture the global features better. (2)868

Theory-Application pairs(27.4%) (e.g. “Instant869

messaging”-“Advanced mobile phone network”).870

Such concept pairs have no apparent structural or871

semantic features like others, which is the main872

reason that baselines cannot handle such cases well.873

As our method can figure them out, we conjecture874

that such improvement is provided by the proper875

modeling of student behaviors.876
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Figure 4: Effect of α.
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Type ConceptA ConceptB

Hypernymy

Ethernet Switched Ethernet
Ethernet Fast Ethernet

Data Encryption Standard Advanced Encryption Standard
Maximum Global Maximum
Linked List Single Linked List
Linked List Doubly Linked List

Iterative Loop Iterative Calculation
Recurrence Relationship Recursion

Computer Vision Image Classification
Tree Algorithm Tree Search Algorithm

Depth First Search Eight Queens Problem
Linear Regression Linear Regression Model
Network Attacks Replay Attack

Data Meta Data

Theory-Application

Divide Factorization
Effective digits Run Length Coding

Continuous Time System Kalman Filter
Scheduling Strategy Resource Allocation
Reasoning Method Automatic Reasoning
System Structure Service Data Unit

Multiple Input/ Multiple Output Digital Subscriber Line Access Multiplexer
Interconnection Network One-Arm router

Fourier Transform Convolution

Other

Transitivity Inequality
White Box Testing Integration Testing

Computational Complexity Graphical Method
Network Delay Instant Messaging

Conditional Distribution Posterior Distribution
Feasible Solution NP Hard Problem

Binary Assembly Language

Table 6: The baselines’ error cases corrected by graph modeling We divide them into three categories.
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