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Abstract

Flow-field reconstruction from sparse sensor measurements remains a central chal-
lenge in modern fluid dynamics, as the need for high-fidelity data often conflicts
with practical limits on sensor deployment. On one hand, existing deep learn-
ing—based methods have demonstrated promising results, but they typically rely on
overly simplified assumptions such as 2D domains, predefined governing equations,
synthetic datasets derived from idealized flow physics, and unconstrained sensor
placement. In this work, we address these limitations by studying flow recon-
struction under realistic conditions and introducing a directional transport-aware
Graph Neural Network (GNN) that explicitly encodes both flow directionality and
information transport. On the other hand, conventional sensor placement strate-
gies frequently yield suboptimal configurations. To overcome this, we propose
a novel Two-Step Constrained PPO procedure for Proximal Policy Optimization
(PPO), which jointly optimizes sensor layouts by incorporating flow variability and
accounts for reconstruction model’s performance disparity with respect to sensor
placement. We conduct comprehensive experiments under realistic assumptions
to benchmark the performance of our reconstruction model and sensor placement
policy. Together, they achieve significant improvements over existing methods.

1 Introduction

Flow field reconstruction from sparse sensor data (Berkooz et al., 1993 |Schmid, 2010) has emerged
as a pivotal challenge in modern fluid dynamics, particularly as the demand for high-fidelity measure-
ments clashes with the practical constraints of sensor deployment. Such reconstruction techniques
underpin real-world applications such as aerodynamic shape optimization and active flow control
in aerospace and turbomachinery (Luo et al.,[2017)). With the rapid advancement of deep learning,
leveraging deep learning models to transform limited experimental data into detailed, reliable repre-
sentations of complex flow phenomena has been a promising solution (Zhong et al.| 2023 |Yadav
et al.,[2025; | Xu et al.,|2023; |Jing et al., 2024; L1 et al., [2025)).

On one hand, we note that many existing studies rely on assumptions that may not hold in realistic
scenarios. Specifically, these works commonly assume that: (1) Domain: Experiments are predomi-
nantly conducted in two-dimensional (2D) domains. However, real-world applications take place in
three-dimensional settings. (2) Physics: The governing physical PDEs, such as the Navier—Stokes
equations, are known a priori, which is integrated to inform and constrain the models. Yet, empirical
fluid dynamic data rarely conform precisely to the Navier—Stokes equations (Hadjiconstantinoul 2006}
Stubbel |2020). (3) Datasets: Datasets are usually generated through pseudo-spectral solvers (Orszag,
1969)) or reynolds-averaged Navier-Stokes (RANS) (Tennekes & Lumleyl |1992), but these numerical
solvers rely on simplified assumptions about fluid behavior, yielding datasets that diverge from
real-world fluid dynamics. (4) Sensor Placement: Sensors are assumed arbitrarily placed within
the flow field without influencing the fluid dynamics. In reality, measurement sensors should either
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Table 1: Comparison of related works on problem assumptions.

Paper 3D-Domain Unknown Physics Complex Data Placement Optimization
Zhong et al.|(2023) X X X
Mo & Magri1|(2024) X X X

Yadav et al.|(2025) X X X X
Jing et al.|(2024) X X X X
He et al.|(2022) X X X
Zhang et al.[(2022) X X
Hosseini & Shiri|(2024) X X X X
Zhang et al.|(2025) X X
Shan et al.|(2024) X X X X
Xu et al.|(2023) X X X X

“Ours

remain fixed at the domain boundaries or be advected with the fluid flow. A comprehensive review of
these assumptions is provided in Table[I]

To address this, we generate four three-dimensional (3D) turbulent flow datasets using Direct Numer-
ical Simulation (DNS) in COMSOL (COM| [2020) with varying geometries. The simulations initiate
with a randomly generated velocity field, and the inlet velocity is modeled as both time-dependent
and stochastic. We argue that training on these datasets enables improved transferability to real-world
tasks and yields more reliable evaluation results. Although large-scale, real-world sensor datasets
remain unavailable, we propose that the combination of high-fidelity simulations in COMSOL and
the incorporation of time-dependent, stochastic inlet conditions provide a more faithful representation
of actual fluid phenomena. Further, we restrict sensor placement to the domain boundaries, since
permitting sensors to be advected with the fluid flow leads to their accumulation in vortical regions
and makes reconstruction of other areas infeasible. Thus, we aim to develop a reconstruction
model that can adapt to arbitrary mesh-based geometries without assuming any underlying
PDEs, while confining sensor placement solely to the boundaries.

We propose a directional transport-aware GNN that explicitly encodes directionality and information
transport in the message-passing stage. The explicit parameterization of directional weightings and
transported quantities not only mimics the continuous advection operator in a discrete, mesh-based set-
ting but also corresponds to a learnable interpolation algorithm. This encourages learning meaningful
representations and yields robust imputation capability across various sensor configurations.

One the other hand, we reveal that traditional methods for sensor placements, such as singular
value decomposition (SVD) or QR pivoting (Chmielewski et al., | 2002)), often perform poorly when
integrated with our reconstruction models. We attribute the performance degradation to reconstruction
model’s performance disparity with respect to sensor placement. To address this, we train a PPO
policy that determines optimal sensor configurations and introduce a novel Two Step Constrained
PPO training procedure to enforce sensor constraints. Our policy not only captures variability in
the fluid field but also accounts for model’s performance disparity. Experimental results demonstrate
substantial improvements in reconstruction accuracy when using the learned sensor placements.

Our contributions are as follows: (i) Problem Identification: We introduce a realistic problem
formulation for fluid-field reconstruction and generate extensive datasets that closely mimic real-
world scenarios; (ii) Practical Solution: To tackle fluid field reconstruction on arbitrary mesh-based
geometries, we develop a directional transport-aware GNN that explicitly encodes both directionality
and information transport; (iii) Further Scientific Discoveries: We find that conventional sensor
placement algorithms fail to identify effective sensor locations, and thus we propose a novel Tivo-Step
Constrained PPO training strategy to learn a policy that identifies the optimal placement of sensors;
(iv) Experimental Validation: We conduct comprehensive experiments under realistic assumptions
to validate the superiority of our reconstruction model and sensor placement policy.

2 Related Work

Al for Computational Fluid Dynamics (CFD) Recent advances in machine learning have led to
various learning-based surrogate models for accelerating scientific discoveries (L1 et al., 2025; [Huang
et al 2024b; [Wang et al.| [2024). In the study of flow field reconstruction, |[Zhong et al.| (2023)
leverages a combination of MLP with CNN to reconstruct unsteady vortical flow fields near airfoils.
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Figure 1: Overall framework of the proposed method. The directional transport-aware reconstruction
GNN M, takes boundary sensor inputs and infers missing field values through message passing
with explicit directional alignment and information transport. A two-stage PPO training procedure
identifies optimal sensor placements via a penalized stage that softly enforces sensor-count constraints
through rewards, followed by a constrained stage where sampling from a constrained probability
distribution ensures compliance with sensor limits.

He et al.| (2022) introduces the Flow Completion Network, which employs GNNs to reconstruct both
structured and unstructured data. |[Hosseim1 & Shiri| (2024); Shan et al.| (2024); | Yadav et al | (2025)); [ Xu
et al.[ (2023)); Jing et al.| (2024)) leverages underlying physics or PDE to develop physics-informed
neural networks for enhancing reconstruction quality. Mo & Magri|(2024) injects artificial noise into
sensor data and develops a physics-constrained CNN for reconstruction. For deep learning-based
optimal sensor placement, Marcato et al.| (2023) employ differentiable programming to integrate
sensor placement into the training of a neural network model. Nonetheless, this method is constrained
by a fixed number of sensors and makes the assumption that sensors can be positioned arbitrarily
without interfering with the fluid dynamics.

3 The Fluid Field Reconstruction Model

Problem Statement Let G = (V, E) be a graph representing a discretized mesh of the domain
boundary, where each vertex v; € V corresponds to a node in the mesh and each edge e; ; €
captures the local connectivity among these nodes. Each node is characterized by a feature vector
v; = [u;, p;, a;], where u; € R? denotes the velocity, p; € R denotes the pressure, and a; € {0,1}
is a binary mask indicating the availability of sensor. @; = 1 implies that the velocity and pressure at
node ¢ are known (i.e., a sensor is present), while a; = 0 indicates that these values must be imputed
and u; and p; are randomly generated. Our objective is to develop a reconstruction model My that
takes the graph G as input and outputs estimated values [@;, p;] for all nodes where a; = 0.

Directional Transport-Aware GNN This problem is substantially more complex due to the absence
of known governing equations, the use of irregular 3D geometries, and the restriction of sensors
to boundaries. Our proposed model is based on an Encoder-Processor-Decoder framework. It
is designed to handle these challenges by learning flexible, geometry-aware representations that
generalize across diverse domains without relying on explicit physical priors. In the encoding stage,
we employ three distinct MLPs denoted by £p,qsk5 Enodes Ecdge to embed the node and edge features
into latent space. Formally,

di — g’mask (ai)a 'E»? <~ gnode(“i”pini)a é?J — gedge(ei,j)v (1)

where || denotes concatenation. Next, we introduce the directional transport-aware processor that
integrates the notion of directionality and information transport into the message-passing framework.
In our approach, the directional information, d, is computed as the inner product between a node’s
latent representation and its corresponding edge features. This inner product quantifies the degree
of alignment of a node with respect to the direction of information transfer, thereby acting as a
proxy for the node’s contribution to feature reconstruction. The computed directional score is then



used to weigh the differences between the latent states of adjacent nodes, effectively capturing the
information transported from node i to node j. The resulting directional transport function, 7T, is
parameterized by MLPs, and, subsequently, a node aggregation function, S, synthesizes the weighted
edge messages to update the latent state of each node.
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We apply L layers of this processor with residual connections. Finally, the decoder D uses one MLP

to map each node embedding v} to the desired output space: [w;, p;] = D(vE).

Remark 1 (Connection to advection operator) The design of the processor is closely connected to
the advection operator. Advection describes the transport of properties, such as heat or pollutants, via
the bulk motion of a fluid. Mathematically, this process is typically characterized by the operator
v - Vi, where v denotes the velocity and ¢ is the field being transported.

Our d encodes the direction of information flow, acting in the role of v. The difference between
neighboring latent states, ﬂffl — ﬁffl, serves as a discrete analogue to the spatial gradient. By com-
bining these two quantities, we recreate the behavior of the advection operator in high-dimensional

latent spaces and thereby enable efficient information propagation within the processor.

Remark 2 (Connection to interpolation algorithm) Our processor can be viewed as a learnable inter-
polation operator. In a generic interpolation scheme, one writes v; <= > ;e n(;) b(vi, v;, €i,5)q(vi, v)),
where v; is the interpolated value, b(v;, v;, e; ;) is the weight assigned to neighbor j, and g(v;, v;) is
the contribution of node j. In our formulation, the weight function is the directional information, d,
while the neighboring contribution is the difference between the latent states. We also include self-
contribution by defining b(v;, v;, €;.;)q(v;, v;) = v;. Rather than performing a fixed weighted sum,
our processor replaces these terms with learnable MLP-based embeddings for both the transported
information and the aggregation step.

Remark 3 (Connection to conventional message passing GNNs) Compared to conventional
message passing GNNs, which typically concatenate node and edge information and process with
MLPs, our method explicitly incorporates the directionality of information flow. This explicit
encoding facilitates the learning of more meaningful representations, as it encourages the propagation
of information along physically motivated pathways.

4 Sensor Placement Optimization

Building upon the directional transport-aware reconstruction model described above, we explore
methodologies for optimal sensor placement aimed at further enhancing reconstruction accuracy.

Traditional Approach We evaluate sensor placements by applying two greedy column-selection
strategies: QR pivoting and D-optimality (Manohar et al.l 2018). Details on implementation and
experimental results are in Appendix [G] These methods incur substantially higher reconstruction
errors than uniformly distributed sensors. Deep learning models often exhibit performance disparity.
Although a sensor placement strategy may be ideal for capturing flow-field variability, our reconstruc-
tions model may reconstruct this configuration with lower accuracy than they do for other placements.
An effective sensor placement strategy must address both the variability of the fluid field and the
reconstruction model’s differential subgroup performance. Thus, we aim to train a policy to account
for these two factors in sensor placement.

Problem Statement Given a reconstruction model My, we aim to learn a policy 7, (a|G) that takes
a mesh G containing complete fluid field information as input and outputs a probability parameter
p; € [0,1] of a Bernoulli distribution for each node ¢ for its sensor placement. We interpret a
random variable a; ~ Bernoulli(p;) such that @; = 1 if node 7 has a sensor and a; = 0 otherwise.
The policy aims to maximize the reward under such actions, which is the negation of the Mean
Squared Error (MSE) of the reconstructed velocity and pressure. The objective function is defined
as R(a|G) = —MSE[{9; | 0; = Mp(G(a)),a; = 0}, {v;|a; = 0}]. We impose the constraint
> 12‘1 a; = k|V|, where |V| denotes the cardinality of the set and k& € [0, 1] denotes the proportion
of the mesh nodes that contains a sensor. Empirical results show that increasing the number of
sensors consistently improves reconstruction accuracy. Therefore, instead of imposing an upper
bound on sensor count, we enforce the exact number of sensors via this equality constraint. The
placement strategy is constrained to assign sensors exclusively to predefined nodes, rather than



Algorithm 1 Two Step Constrained PPO

Require: Initial policy parameters ¢y, initial value function parameters ¢
1: # Penalized Training
forw=1,...,7T1 do
Collect D,, = {(Gy,aq))} by running my, (a | G).
Compute penalized reward R = R — \(k|V| — ||a||2)? and advantage estimates A®.
Compute log 74, (a | G) and compute ratio r(¢).

Update policy: 11 = argmaxy rp— Y., 1(1(111(1(7“(¢)A7““7 clip(r(¢), 1—¢, 1+¢) A“’).

S Uk Wy

7 Fit value function ¢, 11 = argming p—1 > . (Valuey (G) — 7%’“’)2.

8: end for

9: # Constrained Training

10: for w =T1,...,T5 do

11:  Collect D,, = {(Gu,ay,))} by running constrained 74, (a | G,17a = k|V]).
12:  Compute reward R" and advantage estimates A™.

13:  Estimate log s, (a | G,1Ta = k|V|) and compute ratio r(¢).

14:  Update policy: ¢,+1 = argmaxg |D—1| Y Ca min(r(d))Aw, clip (r(qﬁ), 1—e1 +e) Aw).

15:  Fit value function ¢,41 = argminy ﬁ > 6o (Valuey (G) — R“’)2.

16: end for

allowing arbitrary locations, thereby reflecting practical deployment considerations in real-world
scenarios. The objective is formally defined as
[V
Maximize Eqr,[R(a | G)] subjectto > a; =k|V]. 3)
i=1
We utilize the Proximal Policy Optimization (PPO) algorithm (Schulman et al.,2017), and decompose
this problem into two parts: (1) How to sample from 7, while respecting the constraints and (2) How

to compute the log probability log 7, (a | leg a; = k|V|).

4.1 Constrained Sampling

We first address the problem of sampling from the constrained distribution. Sampling from discrete
distributions has been investigated in the literature. In particular, the Gumbel-softmax approach
(Jang et al.| 2017; [ Maddison et al.| |2017) leverages continuous relaxations to reparameterize the
categorical distribution by perturbing the class logits with Gumbel noise and passing them through a
temperature-scaled softmax. Extending this idea, reparameterizable subset sampling (Xie & Ermon)
2019) generalizes the Gumbel-softmax trick to k-subset sampling, thereby rendering it amenable to
backpropagation. Moreover, recent work by |Ahmed et al.|(2023)) employs dynamic programming to
sample exactly from the constrained distribution.

The sampling strategy from|Ahmed et al.|(2023)) necessitates constructing a dynamic programming
table of 7r¢(2‘lz|1 a; = k|V|) with varying |V| and k|V'|, which runs in O(k|V'|?) complexity. Then,
the sampling algorithm runs in O(|V|) complexity. We refer the readers to|Ahmed et al.| (2023) for
additional details. However, this method becomes computationally infeasible when applied to meshes
with many nodes. Consequently, we adopt the Gumbel approach with top-k|V'| selection (Kool et al.|
2020). For each node v;, we sample independent Gumbel noise and compute the perturbed scores:

s; =logp; + ¢; with g; ~ Gumble(0, 1). )

Then, we select the indices corresponding to the top-k|V| largest values:
a = Top-k|V| indices of {st}‘l‘ill ) 5)

This procedure runs in O(|V|log k|V|) with min-heap streaming. Since PPO does not require
differentiation through the sample, we avoid the O(k|V'|?) complexity incurred by differentiable
Gumble k|V|-subset sampling by Xie & Ermon|(2019).

Assuming perfect parallelization, the vectorized complexity of computing the dynamic programming
table in|/Ahmed et al.| (2023) can reach O(log k|V|log |V'|), while sampling achieves O(log |V]). In



contrast, the Gumbel approach with top-k|V| selection attains O(log |V'|) vectorized complexity,
offering a significantly faster alternative.

4.2 Constrained Log Probability

We now address the problem of computing the log probability log 74(a | Z 1 a; = k|V|)
By Bayes’ rule, it can be expressed as log 7T¢(CL | Z'V‘ a; = k|V|) = logmy(a )[Z 1 a; =
EIV]] — log 7r¢(2| a; = k|V), where [Zl 1 a; = k|V|] denotes an indicator function. The term
log 7r¢(z ia; = k|V|) appears intractable (Ahmed et al.,2023), since a brute force computation
would entail O( ( k‘\‘(/”)) complexity. An efficient method proposed by Ahmed et al.{(2023) leverages
dynamic programming to compute this log probability exactly with O(k|V'|?). However, even this
improvement remains computationally prohibitive within the context of our problem.

To address this issue, we employ the saddle point approximation (Daniels| |1954) to estimate the log

probability log wd)(Z‘ 1@; = k|V|). The saddle point approximation provides a highly accurate
method for approximating any probability distribution function and is particularly effective for the
distribution of the sum of independent random variables. In the Bernoulli setting, where there are |V|
independent Bernoulli variables with parameters p;, we define the cumulant generating function as

V]
= Zlog (1—p; +pie'). (6)
i=1
Consequently, the probability can be approximated by
V]
Zm—leI —e=————cxp (Y(t") — k"), @)

2T l/)” (t* )

where t* is the saddle pomt found by solving ¢ (t*) = k|V|. In practice, it is determined using a
differentiable numerical root-finding algorithm, such as Newton-Raphson, over a finite number of
iterations. We present the approximation complexity below. The linear complexity and vectorized
log complexity are very favorable in our problem setting, where the number of mesh points could be
extremely large. We refer the readers to Appendix [D|for detailed proof.

Proposition 1 (Saddle Point Approximation Complexity). Suppose a; ~ Bernoulli(p;). When the
probability m)(lel a; = k|V|) is approximated using the saddle point method, the algorithmic
complexity of computing m4(a | Z|V1 a; = k|V|) is O(|V|). Assuming perfect parallelization, the
vectorized complexity can achieve O(log |V

Additionally, we establish an error bound for the approximation, with the proof presented in Ap-
pendix [E] This bound indicates that the relative error diminishes as the number of nodes grows, which
is especially beneficial for our problem.

Proposition 2 (Saddle Point Approximation Error Bound). Let a; ~ Bernoulli (pZ) Then, the
asymptotic relative error in wy(a | Elv‘l a; = k|V|) when approxzmatlng 7T¢(E i1a; = k|V])
using the saddle point approximation is given by my(a | Zl 1a; = k|V|) = 7y(a | Zlvl a; =

EIV]) ( -0 (m)) , where Tg(a | Z‘Lvll a; = k|V|) denotes the ground truth probability and
7p(a | Z‘Vll a; = k|V|) denotes our approximated probability.

4.3 Algorithm

With (1) sampling from the constrained distribution and (2) estimating the log probability addressed,
the intuitive solution is to integrate them into the standard PPO algorithm. However, at such a high
dimensionality, we observed that initiating the training with a constrained policy for a randomly
initialized model is overly restrictive, leading to a failure to learn. Consequently, we propose a
Two-Step Constrained PPO training procedure.

In the first stage, the PPO is trained in an unconstrained manner, meaning that both the sampling and
log probability computations are performed without enforcing any constraints. To softly enforce the
constraints, we adopt a penalized objective function as presented in Proposition [3]

Proposition 3 (Penalized Reward Function (from |Liu et al.| (2024)). Let a € {0,1}™ and assume
that constraint is 17 a = k|V'|. Assume the reward function R is Lipschitz with respect to a. Then,



if a* optimizes the reward R, it also optimizes R = R — M(k|V| — ||a||3)2, for all A > 0, and the
optimal reward of R is equivalent to R.

Although converting a constrained optimization problem into its penalized form has been widely
studied (Boyd & Vandenberghe| 2004; Bertsekas) [1999), these approaches typically require the
convexity of the original objective function to ensure equivalence in the global optimizer. In light
of recent work on non-convex optimization theory (Liu et al., |2024), we show that as long as the
objective function, in this case, R, is Lipschitz, the penalization formulation ensures the global
maximizer of R is also the global maximizer for R, which provides a theoretical guarantee for
our training procedure. Since R represents MSE of the reconstructed data from our reconstruction
network My, the Lipschitz assumption merely requires that the gradient of the MSE is differentiable
with respect to the input of M. This is a reasonable assumption given that training My demands
non-exploding gradients, and the Lipschitz condition holds in our experimental domain.

After training under the penalized reward setting for 7} iterations, we switch to constrained train-
ing, where we sample a from the constrained distribution using the Gumble Top-k|V'| discussed
in Section {f.T] and compute the constrained log probability using saddle point approximation in
Section[d.2] The complete algorithm is provided in Algorithm [I] During inference, we sample from
the constrained distribution using Gumble Top-k|V/|.

5 Experiment

Dataset Four three-dimensional turbulent flow datasets were generated using DNS in COMSOL
(COM, 2020). The datasets comprise variations in four distinct geometries: (1) Sphere with variable
radius, (2) Ellipsoid with varying semi-axis lengths, (3) Cylinder with varying height and radius,
and (4) NACA 4-digit airfoil with varying chord length and thickness. The initial velocity field was
randomly generated, while the inlet velocity was modeled as time-dependent and stochastic, expressed
asu(zx,t) = f(x,t,0) + h(x, ©)e;, where f(x,t, O) specifies the prescribed inlet velocity at each
spatial location and h(x,®) controls the magnitude of the random noise term. © contains the
parameters of the geometries. Although these datasets were generated by numerical simulation, they
effectively mimic the dynamic behavior observed in actual turbulent flows. Code and datasets are
available at|Github.

Task Setup and Baselines We evaluate our proposed directional transport-aware GNN (DTA-
GNN) on all datasets under varying sensor placement configurations. Specifically, two sensor
distribution strategies are considered: (i) Uniform, in which sensors are evenly distributed across the
computational domain, and (ii) Random, in which sensor locations are selected randomly. For each
strategy, sensor densities of 5%, 10%, 20%, and 30% of the total mesh points are used.

To benchmark our approach, we compare it against several baselines. First, two naive interpolation
methods, Mean and k-Nearest Neighbors (KNN), are included. Additionally, we compare with
DiffusionPDE (Huang et al.,|2024a)) and OFormer (Li et al.|[2023)), both of which have demonstrated
strong performance in PDE forward modeling with partial-observation. Considering that our data are
mesh-based, we also include MeshGraphNets (Pfaff et al.,2021)) and Graph Kernel Operator (GKO)
(L1 et al., |2020), which are recognized for their excellent performance in mesh-based PDE forward
simulation. Moreover, Flow Completion Network (FCN) (He et al.,2022), designed specifically for
sparse sensor measurement interpolation, is also considered in our experiments. The details of these
baseline implementations are provided in the Appendix [C} Performance is quantified using the MSE
of the normalized VelOCity and pressure fields MSE([ﬁnormalizeda f)normalized] ) [unorma]izeda pnormalized])-

5.1 Main Results

We present the results in Table[2] Across all four geometries and under both uniform and random
sensor placement strategies, our model consistently achieves the lowest reconstruction error, often
by a wide margin. We also observe that several baselines, including FCN, DiffusionPDE, and
MeshGraphNets, achieve strong performance under particular sensor placement strategies on certain
datasets. However, our reconstruction model is able to achieve consistent improvements across
different shapes, sensor densities, and distributions, which demonstrates that our approach more
effectively captures underlying flow field and yields robust predictions even in highly under-sampled
regimes. In the most challenging NACA 4-digit scenario, our model is able to achieve approximately
10% improvements in many placement strategies.


https://github.com/RuoyanLi2002/Flow-Field-Reconstruction-with-Sensor-Placement-Policy-Learning.git

Mean KNN  OFormer GKO FCN  MeshGraphNets DiffusionPDE || DTA-GNN
5% Uniform || > 10* 221413 9571 10819  8.367 5.612 9.923 5.534
10% Uniform || > 10* 121.119 4400  6.745  6.153 3.537 3.755 3.092
20% Uniform || > 10* 72916  7.285  4.877  4.856 4.280 2.283 1.724
§ 30% Uniform || > 10* 53369  2.532 4346 4754 3.537 1775 1.204
& | 5% Random || > 10% 419.095 18.614 15879  9.654 8.741 8.978 7.180
10% Random || > 10* 220.894 10494 12410 7.655 4541 5.872 4.110
20% Random || > 10* 120537 6460  7.305  6.998 2.778 2.730 2.155
30% Random || > 10% 88.131  3.681 5121  4.927 1.563 1.687 1.446
5% Uniform || > 10* 248.818 28.395 63.162 69.162 53.003 68.809 21.306
10% Uniform || > 10* 136.951  20.380  49.931  41.602 18.105 43315 9.676
- | 20% Uniform || > 10* 85819  17.231 45390 28.203 9.612 14.055 7.083
S | 30% Uniform || > 10* 67.111 16384 42.654 15.146 9.112 12.128 6.310
§ 5% Random || > 10% 492,094 60.837 140.946 41.612 53.010 99.697 39.033
10% Random || > 10* 238.163 25.683  73.284 29.975 27.494 57.804 14.175
20% Random || > 10* 132324 16.882 53.019 10.513 15.684 11.450 10.116
30% Random || > 10% 98768  15.197 48.623 10.267 10.705 7.728 5.930
5% Uniform || > 10* 195235 24.665 32.694 25983 16.684 24.340 15.901
10% Uniform || > 10* 124.619 21.659 27479 21.511 8.353 16.612 7.932
_ | 20% Uniform || > 10* 53977 14011 24583  16.765 2.622 5.310 2.299
3 | 30% Uniform || > 10* 28973 6368 23610 11.656 2.331 3311 1.913
'31 5% Random || > 10* 355989 51.832 48321 53.574 46.980 43.895 43.723
10% Random || > 10%* 195.992 15717 21.446 28.640 14.091 14.193 12.797
20% Random || > 10* 108.420 8732  12.358 26.532 6.123 6.346 5.765
30% Random || > 10% 73905  7.091  10.955 18.663 2.895 3.134 2.152
5% Uniform || > 10* 1735205 65.524 87.756 102914 78.421 72.974 59.308
10% Uniform || > 10* 1110.690 44.384 72311 88.425 74.549 66.277 43.647
S | 20% Uniform || > 10*  769.226 ~ 31.714  54.879  52.877 32.596 50.627 28.173
3 | 30% Uniform || > 10* 656280  30.634 46273 49.116 29.817 44358 24.883
S | 5% Random || > 10* 2623.504 148.324 156.791 113.718 103.126 97.781 97.076
= | 10% Random > 10% 1438934 57.024 92245 71.875 62.337 60.306 56.224
20% Random || > 10% 1028.617 46.368  77.994  55.630 48519 49.497 44.748
30% Random || > 10% 816.640 29.923 55475 44.426 31.806 29912 29.803

Table 2: Comparison MSE scaled by 10~ across multiple datasets and sensor placement schemes.

Parameter Efficiency Besides the performance gain, we also show that our model is parameter
efficient. We present the number of parameters for various models in Table [3]

5.2 Sea Surface Temperature

We evaluate our reconstruction model on NOAA OISST V2 Model MSE
weekly mean sea surface temperature dataset recorded from De- ECN 15.761
cember 31, 1989 through January 29, 2023 (Reynolds et al., ee '

; ) . DiffusionPDE 7.969

2008) at a 1° x 1° spatial resolution and with sensors at 10%
. . . MeshGraphNets 8.176

of the grid locations. We train on 80% of the data, use 10% for
L c .. . . DTA-GNN 6.853
validation and the remaining 10% for testing. We compare with - -
three strong baselines from Section % FCN, DiffusionPDE, Figure 2: Comparison of different

bl

and MeshGraphNets. As shown in Ta our approach achieves models on the global ocean surface
a relative improvement of 14.01% in MSE over the strongest t€émperature dataSQet. All numbers
competing method DiffusionPDE. are scaled by 107=.

Figure [3]illustrates representative reconstructions for both summer and winter seasons. In addition
to accurately recovering the large-scale seasonal cycle and major ocean gyre structures, our model



also succeeds at resolving the much smaller-scale temperature anomalies that arise from equatorial
upwelling, coastal current meanders, and tropical instability waves. These fine-scale features play
an outsized role in modulating air—sea heat fluxes and driving interannual phenomena such as El
Nifio—Southern Oscillation. Our model accurately reconstructs both the global trend and these small,
dynamically driven variations with high fidelity. We present additional visualizations in Appendix [N]

16 2 16
dege dege

Figure 3: Visualization of ground truth sea surface temperature data and reconstructed sea surface
temperature data. The first row corresponds to ground truth data and the second row corresponds to
reconstructed data from DTA-GNN.

5.3 Optimal Sensor Placement

We further enhance the reconstruction accuracy of our model by identifying optimal sensor locations.
After training the reconstruction model M, as described in Sectior[3.1] we incorporate it into the
reward function of the Two Step Constrained PPO. We refer the readers to Appendix [F] for training
and model hyperparameters. We consider two standard baselines, uniform placement and random
placement, and assume that 10% of the mesh points have sensors.

Figurdd] reports the MSE of the reconstructed data for each method. Our sensor placement policy
achieves approximately a 15% reduction in MSE relative to uniformly placed sensors. The perfor-
mance gain can be attributed to concentrating sensors in regions of fluid high variability, such as
high velocity and pressure gradient. Additionally, our policy accounts for performance disparity in
reconstruction models. By explicitly optimizing for both criteria, our policy achieves significant
improvements in reconstruction accuracy.

DTA GNN DTA-GNN DTA-GNN DTA-GNN DTA-GNN DTA-GNN DTA-GNN DTA-GNN DTA-GNN 00 5TA-GNN DTA-GNN DTA-GNN
+Uniform +Random +PPO +Uniform +Random +PPO +Uniform +Random +PPO +Uniform +Random

(a) Sphere (b) Ellipsoid (c) Cylinder (d) NACA 4 digits

Figure 4: Comparison of sensor placement schemes across datasets. We assume that 10% of the mesh
points have sensors. All numbers are scaled by 10~%.

6 Conclusion

We introduce a realistic problem formulation for fluid-field reconstruction and design a directional
transport—aware GNN that achieves superior reconstruction accuracy across multiple datasets and
sensor-placement configurations. We observe that conventional sensor placement algorithms often
fail to identify optimal sensor locations, and we propose a Two Stage Constrained PPO training
procedure to train a sensor placement policy that yields additional improvements.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The main claims reflect the paper’s contributions and scope.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: They are discusses in the Appendix and Conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The poofs are provided in the Appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The model and training hyperparameters are discusses in the Appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All code and data will be made publicly available.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: They are specified in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Statistical significance is considered.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: They are provided in the Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work conforms with the NeurIPS Code of Ethics
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader impacts are discusses in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: This work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: They are explicitly mentioned and properly respected.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: The code and data will be released on github.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

Our work uses datasets simulated with DNS in Comsol and adopts time-dependent and stochastic inlet
velocity to better reflect real-world scenarios. Since there are no large-scale CFD datasets collected
from the real world, we believe that our simulated datasets better represent real-world scenarios.
However, we acknowledge that models trained using such simulated datasets could have performance
degradation when inferring on real-world datasets. The performance degradation could be attributed
to the inaccuracies from real-world sensors. Future work could focus on conducting extensive
real-world experiments to collect real-world datasets and enhance the real-world applicability of
related works.

B Broader Impacts

Our reconstruction framework and optimal sensor placement strategy offer transformative potential
across aerospace, automotive, and environmental engineering. In the aerospace sector, for example, it
can dramatically reduce wind tunnel testing time by inferring complete flow fields from just a handful
of strategically positioned probes. In automotive design, it paves the way for rapid, cost-effective
aerodynamic optimization by filling in the gaps between sparse on-vehicle measurements.

By accurately reconstructing full CFD fields from partial observations, our approach lowers both
the logistical and financial barriers to advanced flow analysis. It enables engineers and researchers
to iterate designs more quickly, run fewer physical experiments, and integrate real-time monitoring
into digital-twin platforms. Ultimately, this work democratizes access to high-fidelity flow data,
accelerates research and development cycles, and fosters deeper scientific insight across multiple
disciplines.

C Baseline and Model Implementation Detail

OFormer We adopt the model from |Li et al.| (2023). The hidden dimension is set to 64. We add
a separate MLP in the encoder to encode the binary mask indicating sensor placement. The mask
encoder latent dimension is set to 16. The number of attention blocks is set to 2. The models are
trained with batch size 16 for 300 epochs. We use a cosine annealing learning rate with a starting
learning rate at 1 x 10~ to an end learning rate at 1 x 1075,

GKO We adopt the model from Li et al.| (2020). We add a separate MLP in the encoder to encode the
binary mask indicating sensor placement. The mask encoder latent dimension is set to 16. We choose
width=256 and depth=6. The models are trained with batch size 16 for 300 epochs. We use a cosine
annealing learning rate with a starting learning rate of 1 x 10~* to end learning rate at 1 x 10~°.

FCN We adopt the model from He et al.[(2022). The model consists of three graph convolution layers
and two spatial gradient attention layers. The latent dimension is set to 64 with a separate MLP to
encode the binary mask indicating sensor placement. The mask encoder latent dimension is set to 16.
The models are trained with batch size 16 for 300 epochs. We use a cosine annealing learning rate
with a starting learning rate at 1 x 10~* to an end learning rate at 1 x 1075,

DiffusionPDE We adopt the model from Huang et al.|(2024a)). The score network in DiffusionPDE
has been modified by incorporating message-passing graph neural networks, addressing the limitation
that the original UNet architecture in DiffusionPDE is not directly compatible with mesh data. We
include 6 message passing layers with latent size 64. The encoder is the same as our methods. We
use 4 layers of MLPs with relu activation functions for each encoder block. The latent dimension
for the encoding of the binary mask is 16 and the other encoder’s latent dimensions are 64. For
diffusion parameters, S, = 0.0001 and B, = 0.02. The total number of diffusion steps is 1000.
The models are trained with batch size 16 for 300 epochs. We use a cosine annealing learning rate
with a starting learning rate at 1 x 10~* to an end learning rate at 1 x 107°.

MeshGraphNets We adopt the model from |Pfaff et al.|(2021). We include 6 message passing layers
with latent size 64. The encoder is the same as our methods. We use 4 layers of MLPs with relu
activation functions for each encoder block. The latent dimension for the encoding of the binary
mask is 16 and the other encoder’s latent dimensions are 64. The decoder consists of a single 4-layer
MLP with relu activation functions. The models are trained with batch size 16 for 300 epochs. We
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use a cosine annealing learning rate with a starting learning rate of 1 x 10~* to end learning rate at
1 x 1075,

Ours We include 6 message passing layers with latent size 64. We use 4 layers of MLPs with relu
activation functions for each encoder block. The latent dimension for the encoding of the binary
mask is 16 and the other encoder’s latent dimensions are 64. The decoder consists of a single 4-layer
MLP with relu activation functions. The models are trained with batch size 16 for 300 epochs. We
use a cosin5e annealing learning rate with a starting learning rate at 1 x 10~ to an end learning rate
atl x 107°.

Model Parameters We present the number of parameters for different models in the following table:

Model # parameters
OFormer 727,316
GKO 336,228
FCN 388,836
DiffusionPDE 317,236
MeshGraphNets 315,412
Ours 266,260

Table 3: Comparison of parameter counts for various models.

D Proof of Proposition [I]

Suppose a; ~ Bernoulli(p;). The cumulative generating function and its derivatives have closed
form:

V]
U(t) = log (1 - pi + pie') ®)
=1
/ Vi e
Y ()= ; Toipe ©)
V] ¢
"o pie'(1 — pi)
V0= g o e (10)

i=1

(1)

Their evaluations all cost O(|V]). Newton’s method converges quadratically, so to reach an error
tolerance €, we need O(loglog(1)). Thus, the overall runtime is O(|V|loglog(1)). Since we
specify a fixed precision and a maximum number of iterations (this is chosen to be a small number,
since Newton Raphson generally converges fast), the runtime becomes O(|V]). For vectorized
computation, computing (t), 1 (), and 3" () take O(log |V'|) complexity and the overall runtime
becomes O(log |V ).

E Proof of Proposition 2|

Let a; ~ Bernoulli(p;). Then,

Al vl
a a — _ p@)[3;l ai = k|V]]
p( |; ;= k[V]) S
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In the standard asymptotic regime, the relative error in the likelihood estimated using the saddle point
approximation is of order ‘—‘1,| (Goodman, [2022). Then,

\4 VI g — klV
plal Y a = k)~ — PO AV
: Pz ai = K[V) (1 + O(77))
V] 1
pla | a;, =k|V|))——
Z 1+ O(w7)
By Taylor Expansion,
V] V]

alzaz—lel alzaz—lel )1 - (m))

F Hyperparameters for Optimal Sensor Placement

The actor and critic network consists of 6 layers of message-passing GNNs with latent dimension 128.
The value predicted by the critic is taken as the mean of the decoded graph. A from the penalized
reward function is taken as 0.00015. The number of gradient descent steps is 5, and we adopt a clip
value of 0.2. We train under the penalized scheme for 1500000 steps (77 = 1500000) and under the
constrained scheme for 500000 steps (75 = 2000000). We employ a cosine learning rate for both
actor and critic with a starting learning rate 1 x 10~° and end learning rate 1 x 10~".

G Additional Experiment Results on Optimal Sensor Placement

Techniques that determine sensor placement through QR pivoting and SVD assume that high-
dimensional states can be effectively represented by latent low-dimensional structures, an inherent
compressibility that enables sparse sensing. In particular, a high-dimensional state x € R" is
often assumed to have a compact representation in a suitable transform basis ® € R"™*", so that
x = ®s, where s € R" is sparse and and < n. The objective is to design a measurement matrix
C € RP*™ with a small number p < n of optimized measurements, such that the measurement
vector y = C'x € RP enables accurate reconstruction of s, and consequently .

We provide the reconstructed MSE in Table [] tested in the Sphere dataset. We notice that the
reconstruction MSE from sensor locations determined by QR Pivoting and d-optimal is significantly
higher than uniform or randomly placed sensors. Note that for randomly placed sensors, we randomly
sample sensor locations for every frame of the data and then feed it into the reconstruction network,
whereas the sensor locations for QR Pivoting and d-optimal are fixed for the entire trajectory.

Method MSE
Uniform 3.092
Random 4.110

QR Pivoting  6.988
d-optimal 6.309

Table 4: Comparison of sensor locations on Sphere datasets with sensor density of 10%. We report
the MSE scaled by 1074,

H Independence Assumption of Random Variables

We assume that the random variables are independent. This assumption is reasonable because each
sensor provides measurements only at its specific location, and the removal of one sensor does not
directly influence the others. However, when the total number of sensors is constrained, statistical
correlation is introduced through the equality constraint.
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I Experiments on Turbulence Data

We compare our proposed DTA-GNN against three strong baselines, FlowCompletionNetwork
(FCN), DiffusionPDE, and MeshGraphNets, on two benchmark datasets: Kolmogorov Flow and
Taylor-Green Vortex. Both datasets are generated via high-resolution numerical simulations using a
pseudo-spectral solver governed by the incompressible Navier—Stokes equations. The Kolmogorov
Flow dataset features a time-dependent sinusoidal external forcing and is simulated at a Reynolds
number of 2000. The Taylor-Green Vortex dataset is initialized from its analytical solution and
perturbed with Gaussian noise to produce a variety of flow trajectories. Simulations are carried out at
a Reynolds number of 1500. The performance of each method on these datasets is summarized in the
table below:

Table 5: Performance comparison on Kolmogorov Flow.

Method 5% Random 10% Random 20% Random 30% Random
Ours 9.484 8.537 4.510 3.443
FCN 10.547 9.1557 5.109 4.690
DiffusionPDE 11.214 9.458 6.699 4.703
MeshGraphNets 10.180 9.283 5.271 4.137

Table 6: Performance comparison on Taylor Green Vortex.

Method 5% Random 10% Random 20% Random 30% Random
Ours 6.749 4.856 2.643 1.267
FCN 8.430 6.354 3.590 2.825
DiffusionPDE 8.898 5.348 3.142 1.974
MeshGraphNets 9.801 5.677 3.119 2.831

J Generalisability Experiments

We evaluate the generalization capability of our proposed DTA-GNN by training it on the Ellipsoid
dataset and testing it on the Sphere dataset. Notably, the Ellipsoid dataset contains no sphere
geometries, ensuring that the test domain represents a previously unseen configuration. Furthermore,
the two datasets differ in their inlet velocity profiles, resulting in entirely distinct flow fields. Despite
these differences, as shown in the table below, DTA-GNN demonstrates strong generalization
performance under these shifted conditions. In all test scenarios, except for the 30% Random setting
(x% Random refers to sensors randomly distributed at X% of the mesh points), DTA-GNN consistently
outperforms all baseline models, maintaining superior accuracy on the unseen flow distributions.

Dataset MSE (trained on this dataset) Generalization MSE % Drop
5% Random 7.180 7.650 6.54%
10% Random 4.110 4.468 8.71%
20% Random 2.155 2.328 8.03%
30% Random 1.446 1.574 8.86%

K Ablation Studies on DTA-GNN

We conduct ablation studies in the following table. ABL_d means DTA-GNN without directional
information in the message passing stage. ABL_diff means DTA-GNN without the difference between
neighboring latent states. We simply concatenate the neighboring latent states and multiply with the
direction information. MeshGraphNets corresponds to removing both the directional information and
difference between neighboring latent states.

Based on these results, we draw three key conclusions: (1) Directional information plays a critical role
when sensor density is low or when sensors are placed randomly, as some regions may lack sufficient
sensor coverage. (2) Relying solely on the difference between neighboring latent states is suboptimal,
as this approach does not capture edge attributes or directional cues essential for accurate information
transfer. (3) Simply concatenating neighboring latent states leads to a moderate drop in performance,
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Dataset MeshGraphNets ABL_d ABL_diff DTA-GNN
5% Uniform 78.421 75.124 63.162 59.308
10% Uniform 74.549 59.064 52.294 43.647
20% Uniform 32.596 30.368 30.660 28.173
30% Uniform 29.817 26.923 27.497 24.883
5% Random 103.126 155.466 101.878 97.076
10% Random 62.337 73.355 60.536 56.224
20% Random 48.519 49.210 48.622 44,748
30% Random 31.806 32.389 30.943 29.803

indicating that explicitly computing transported information is beneficial. Nevertheless, since message
passing networks can still approximate difference operators, the performance degradation is less
severe than when directional information is entirely removed.

L Ablation Studies on Two-Step Constrained PPO

We report the ablation studies on Two-Step Constrained PPO in the following table. Penalized PPO
refers to the first stage, where we use a penalized objective function to guide the model toward the
constraints. During inference, we use Gumble Top-k to strictly enforce the equality constraints.
Constrained PPO refers to the second stage, where we use Gumble Top-k for sampling and saddle
point approximation for computing the log probability. Two-Step PPO without Saddlepoint Approx
refers to the original Two-Step Constrained PPO, but removing saddle point approximation in the
second stage. In the second stage, we use unconstrained log probability.

Shape Penalized PPO  Constrained PPO  without Saddlepoint Approx
Sphere 3.270 19.280 3.178
Ellipsoid 11.002 31.647 10.629
Cylinder 9.490 55.014 9.575
Airfoil 46.431 327.966 44.103

From these results, we draw several important conclusions: (1) As discussed in the main paper,
initiating constrained training from a randomly initialized policy is overly restrictive and substantially
limits the model’s performance. (2) Although the penalized training in the first stage helps guide
the model toward a reasonable sensor placement strategy, it does not strictly enforce the equality
constraint. Consequently, when combined with a constraint-compliant sampling strategy during
inference, its performance degrades. (3) Accurately computing the log probability in the second-stage
constrained training is essential. Without the saddle point approximation, as in the Two-Step PPO
without Saddle Point Approximation, the model fails to outperform even the baseline of uniformly
placed sensors.

M Hardware Specification

We implement all models in PyTorch. All experiments are run on servers/workstations with the
following configuration:

* 80 CPUs, 503G Mem, 8 x NVIDIA V100 GPUs.

48 CPUs, 220G Mem, 8 x NVIDIA TITAN Xp GPUs.
96 CPUs, 1.0T Mem, 8 x NVIDIA A100 GPUs.

64 CPUs, 1.0T Mem, 8 x NVIDIA RTX A6000 GPUs.
224 CPUs, 1.5T Mem, 8 x NVIDIA L40S GPUs.
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N Additional Experiment Results on Sea Surface Temperature
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Figure 5: Visualization of ground truth sea surface temperature data and reconstructed sea surface
temperature data. The first column corresponds to ground truth data and the second column corre-
sponds to reconstructed data from our reconstruction model.
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