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Abstract

Previous research leveraged Large Language001
Models (LLMs) in numerous ways in the edu-002
cational domain. Here, we show that they can003
be used to answer exam questions simulating004
students of different skill levels and share a005
prompt, engineered for GPT-3.5, that enables006
the simulation of varying student skill levels on007
questions from different educational domains.008
We evaluate the proposed prompt on three pub-009
licly available datasets (one from science ex-010
ams and two from English reading comprehen-011
sion exams) and three LLMs (two versions of012
GPT-3.5 and one of GPT-4), and show that it013
is robust to different educational domains and014
capable of generalising to data unseen during015
the prompt engineering phase. We also show016
that, being engineered for a specific version of017
GPT-3.5, the prompt does not generalise well to018
different LLMs, stressing the need for prompt019
engineering for each model in practical appli-020
cations. Lastly, we find that there is not a direct021
correlation between the quality of the rationales022
obtained with chain-of-thought prompting and023
the accuracy in the student simulation task.024

1 Introduction025

Large Language Models (LLMs) currently repre-026

sent the state of the art in text generation, with027

some capable of generating human-like texts, such028

as GPT-4 (OpenAI, 2023), Llama (Touvron et al.,029

2023; Meta, 2024), and Gemma (Gemma Team and030

DeepMind, 2024). In this work we focus on the031

educational domain, which can massively benefit032

from LLMs (Jeon and Lee, 2023; Kasneci et al.,033

2023; Caines et al., 2023). Specifically, we study034

whether it is possible to leverage LLMs to simu-035

late the response patterns of students of different036

skill levels to exam questions. Previous research037

tried to simulate the responses of human partici-038

pants to surveys with LLMs (Dillion et al., 2023;039

Argyle et al., 2023; Demszky et al., 2023; Aher040

et al., 2023), but nothing similar has been done041

for simulating students answering exam questions. 042

There have been some concerns about the fairness 043

of using LLMs instead of (or in addition to) human 044

survey participants (Harding et al., 2023; Crockett 045

and Messeri, 2023), and we agree that this is an 046

important aspect to consider in the educational do- 047

main, as well. However, we believe that it might 048

be less of an issue with respect to general-domain 049

surveys, due to the factual nature of learning con- 050

tent and exam questions, which are built to evalu- 051

ate domain knowledge and to minimise the effects 052

that the wording has on the students’ outcomes 053

(Yaneva et al., 2019). In this work, we aim at an- 054

swering the following Research Questions. RQ1: 055

can LLMs be prompted to answer Multiple Choice 056

Questions (MCQs) while role-playing as (i.e., sim- 057

ulating) learners of different skill levels, and does 058

this generalise to unseen data?1 RQ2: How do 059

these findings compare across different models? 060

We work primarily on GPT-3.52 and three pub- 061

licly available datasets of science MCQs (ARC) 062

and English reading comprehension MCQs (RACE 063

and CUP&A), and engineer a prompt (referred to 064

as “Reference Prompt” or RP) that leads the LLM 065

to answer exam questions with different levels of 066

accuracy, thus representing students of different 067

skill levels. Also, we observe a small but positive 068

correlation between the difficulty obtained from 069

virtual pretesting with LLMs and the difficulty 070

from pretesting with human learners. Although 071

the prompt was engineered using only GPT-3.5 and 072

one dataset, this behaviour proved generalisable 073

to new questions (also from different educational 074

domains), but not to other LLMs, thus stressing 075

the need for prompt engineering for each model. 076

Lastly, we find that there is not a direct correlation 077

between the quality of the rationales obtained with 078

chain-of-thought prompting and the accuracy of 079

the models in the student simulation task. 080

1Unseen indicates data not used for prompt engineering.
2We use gpt-3.5-turbo-0613, except where explicitly said.
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The code, prompts, and LLM outputs are pub-081

licly available at removed for anonymity, available082

in supplementary material for review.083

2 Methodology084

We proceed in three steps: we i) perform prompt085

engineering to search for the “best” prompt using086

one LLM and one dataset, ii) evaluate its gener-087

alisation capabilities to unseen data and to other088

LLMs, and iii) perform some additional analyses089

of the models’ responses.090

2.1 Prompt engineering091

We perform prompt engineering on GPT-3.5 and092

a dev set subsampled from the ARC dataset (ques-093

tions from science exams), considering only zero-094

shot prompts and temperature=0.3 The LLM is095

prompted to perform MCQ Answering (MCQA)096

simulating students of different skill levels and,097

with each prompt, we ask the model to simulate098

one student level and answer one question. Thus,099

in our setup the LLM is shown only one question at100

a time, without having a view of the whole exam or101

information about its previous responses. Similarly,102

the LLM is asked to simulate one student at a time,103

not to provide in a single response the answers of104

students of different levels. From this initial ex-105

ploration we develop the “reference prompt” (RP),106

which is the one that leads to the best simulation of107

students’ response patterns, according to the met-108

rics defined in 3.2. Specifically, we are looking109

for i) increasing MCQA accuracy for increasing110

simulated levels, and ii) lower accuracy on more111

difficult questions. RP is shown in Table 1.112

2.2 Analysis of generalisation capabilities113

Generalisation to unseen data. We study the114

generalisation capabilities of RP as follows. We115

evaluate it i) on a separate test set from ARC, and116

ii) on RACE and CUP&A, which contain English117

reading comprehension questions4. This approach118

might penalise the LLM, as the prompt was not119

engineered on these datasets, but we argue that it120

is the most appropriate way to study the generali-121

sation capabilities of the proposed method, as it is122

the standard methodology of splitting the dataset123

in dev and test sets.124

3To reduce the variance of the LLM output.
4As shown in Table 1, RP is actually slightly changed,

adding the text of the reading passage and swapping a science
exam with an English reading comprehension exam, to reflect
the different nature of these datasets.

Generalisation to other LLMs. Prompt engi- 125

neering was performed on gpt-3.5-turbo-0613 but 126

we also experiment on using RP on two differ- 127

ent LLMs, gpt-3.5-turbo-1106 and gpt-4-1106- 128

preview, to see whether the behaviour generalises 129

and is consistent across models. 130

2.3 Additional analyses 131

Question level and answer explanation fields. 132

As shown in Table 1, RP asks the LLM not only to 133

answer the question as a student of a specific level, 134

but also to i) assign a difficulty level to the question 135

(question level in the output JSON) and ii) explain 136

its rationale (answer explanation). Although we 137

added these two fields to RP because they proved 138

helpful in reaching the desired simulation capa- 139

bilities, by leveraging chain-of-thought prompting 140

(Wei et al., 2022), we evaluate them to see whether 141

they can provide useful insights. Specifically, we 142

compare the model-assigned difficulty with the ref- 143

erence difficulty levels available in the datasets, 144

and perform a quantitative and qualitative analy- 145

sis of the explanations to study whether there are 146

meaningful differences between simulated levels 147

and their educational validity. 148

Experiments on different educational scales. 149

RP simulates students on an abstract knowledge 150

scale from one to five, but we also study the effects 151

of using different scales. Specifically, we consider: 152

i) exam marks (A, ..., F) and ii) a non-standardised 153

scale (beginner, intermediate, advanced). 154

3 Experimental Setup 155

3.1 Experimental datasets 156

We experiment with three public datasets. 157

ARC, AI2’s Reasoning Challenge dataset (Clark 158

et al., 2018), is a MCQA dataset of questions from 159

science exams. Each question is assigned a grade 160

(from 3 to 9), which indicates the school grade that 161

the question was built for. Although this is not a 162

direct indication of question difficulty, questions 163

with higher grades are meant for more advanced 164

learners, and the grade has been used as a proxy for 165

question difficulty in previous research (Benedetto, 166

2023). We work on a subsampled portion of the 167

dataset: we use 350 questions as dev set and other 168

350 as test set. Both sets are sampled from the 169

original test split with stratified sampling in order 170

to have in both groups 50 questions for each grade. 171

RACE is a MCQA dataset of questions from En- 172

glish reading comprehension exams. We work on 173
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Table 1: Reference prompt RP for the ARC dataset, the variable {X} in the system message is substituted with one,
two, ..., five to indicate one of five student levels. The reference prompt for RACE and CUP&A is the same, except
two changes done to account for the questions of different type: i) a science exam is swapped with an English
reading comprehension exam and ii) we add Reading passage: “{passage}” to the user prompt (before Question).

SYSTEM:
You will be shown a multiple choice question from a science exam, and the questions in the exam have difficulty levels
on a scale from one (very easy) to five (very difficult). You must assign a difficulty level to the given multiple choice
question, and select the answer choice that a student of level {X} would pick.
Provide only a JSON file with the following structure: {“question level”: “difficulty level of the question”, “answer
explanation”: “the list of steps that the students of level {X} would follow to select the answer, including the misconcep-
tions that might cause them to make mistakes”, “index”: “integer index of the answer chosen by a student of level {X}”}
USER:
Question: “{question}”
Options: “{answer options}”

the version obtained by merging the original RACE174

(Lai et al., 2017) with RACE-c (Liang et al., 2019).175

Each question in the dataset is assigned one of176

three levels (middle, high, college), which indicates177

the school level of the target students. Similarly178

to ARC, although this is not a direct indication of179

question difficulty, it has been used as a proxy for180

it in previous research, middle being the lowest dif-181

ficulty and college the highest, e.g., by Loginova182

et al. (2021). We work on a reduced set of 150183

questions, obtained with stratified sampling from184

the test split, keeping 50 questions per level.185

CUP&A5 (Mullooly et al., 2023), is a MCQA186

dataset of questions from English reading com-187

prehension exams. It contains questions aimed at188

students of different CEFR levels (from B1 to C2).189

We work on a stratified version built by sampling190

50 questions for each CEFR level (200 questions in191

total). Differently from ARC and RACE, it provides192

for all the questions an indication of the actual ques-193

tion difficulty, as obtained from pretesting with real194

learners. This can be compared with the difficulty195

obtained from virtual pretesting with LLMs.196

3.2 Metrics for prompt engineering197

Evaluating whether the LLMs are capable of sim-198

ulating students is not straightforward, especially199

considering the information that is available in pub-200

licly available datasets. Indeed, the ideal evaluation201

would be to compare the response pattern of the202

LLMs with the response patterns of human learn-203

ers, but the latter is unavailable in the three datasets204

we experiment on.6 As an alternative, we evaluate205

each prompt as follows.206

i) We study the MCQA accuracy of the LLMs207

5The Cambridge MCQs Reading Dataset from Cambridge
University Press & Assessment.

6To the best of our knowledge, there are no public datasets
providing both the texts of MCQs and the students’ responses.

when simulating students of different levels; ide- 208

ally, we want a monotonically increasing accuracy 209

curve (i.e., higher role-played levels are more ac- 210

curate). Specifically, we devise an evaluation met- 211

ric to quantitatively compare the accuracy plots 212

obtained with different prompts. The metric com- 213

bines the correlation with the ideal accuracy curve 214

and penalizes non-monotonic behavior in the ac- 215

curacy sequence. Let L = (a1, a2, · · · , a5) be 216

the list of accuracy scores obtained when using 217

one prompt to simulate levels (one, two, ..., five) 218

and I = (0.0, 0.25, 0.5, 0.75, 1.0) the ideal accu- 219

racy curve. We refer with ρL,I to the Pearson’s 220

correlation between the two accuracy curves. The 221

Penalty for Non-Monotonicity (P ) is calculated 222

as:
∑4

i=1

√
|ai+1 − ai| · I(ai+1 < ai), where 223

I(ai+1 < ai) is an indicator function that is 1 when 224

ai+1 < ai and 0 otherwise. Finally, the metric (M ) 225

is the difference between the correlation score and 226

the penalty for non-monotonicity: M = ρL,I − P . 227

ii) We also analyse the MCQA accuracy of dif- 228

ferent simulated levels on questions of different 229

difficulty: given a simulated level, the MCQA ac- 230

curacy should be lower on more difficult questions. 231

4 Results and Analysis 232

4.1 Analysis of the reference prompt 233

Our first step consists in engineering the reference 234

prompt (RP), by iterating over a number of dif- 235

ferent prompts and evaluating them with GPT-3.5 236

on the dev set of ARC. Figure 1 shows how the 237

MCQA accuracy of GPT-3.5 changes depending 238

on the role-played level for five different prompts; 239

all the prompts shown here use non-standardised 240

students’ levels from one to five. The reference 241

prompt (RP), which is the one we selected as best 242

performing on the dev set of ARC, leads to the high- 243

est score according to the metric defined in Section 244
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Figure 1: Comparison of the MCQA accuracy of GPT-
3.5 on the dev split of ARC, when prompted with differ-
ent prompts to simulate students of different levels.

3.2: MRP = 0.91. Compared to RP, i) prompt P1245

(MP1 = 0.73) adds a description about the mean-246

ing of students’ levels; ii) prompt P2 (MP2 = 0.57)247

removes the answer explanation field and adds a248

field for the text of the chosen answer; iii) prompt249

P3 (MP3 = 0.43) adds a description of each level250

to prompt P2; and iv) prompt P4 (MP4 = 0.83),251

the most similar to the reference prompt, renames252

the field answer explanation into motivation. The253

complete prompts are shown in Appendix A.254

A common issue is to have the highest MCQA255

accuracy for intermediate (simulated) levels –256

shown in the figure by prompts P1, P2, and P3257

– and we observed this was often triggered by mi-258

nor changes. Prompt P4 is close to the desired259

behaviour (the trend is monotonic), but it shows260

a significant step in accuracy between simulated261

levels one and two, and then the accuracy almost262

reaches a plateau, which is undesirable, and indeed263

it leads to a lower score with respect to RP. The264

difference between P4 and RP is only a renamed265

field in the output JSON required from the model,266

showing that even minor differences in the prompt267

can lead to relevant differences in the output. To268

have a reference, we also prompted GPT-3.5 to just269

answer the exam questions (without simulating a270

specific level) and obtained an accuracy of 0.92,271

slightly better than the highest simulated level.272

4.2 Generalisation to unseen data273

Figure 2 shows the behaviour of GPT-3.5 with RP274

on the ARC dev and test sets and the two read-275

ing comprehension datasets, RACE and CUP&A.276

The figure shows that the behaviour is qualitatively277

similar, with a monotonically increasing accuracy278

one two three four five
Simulated level
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cy
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ARC (test)
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CUPA

Figure 2: MCQA accuracy of different simulated levels
obtained with the reference prompts and GPT-3.5 on
the test split of ARC and on the RACE and CUP&A
datasets.

for increasing levels. As could be expected, it is 279

slightly worse on the ARC test set than on the dev 280

set: indeed, there is a smaller difference between 281

the accuracy of the three highest simulated levels 282

and this is captured by the metric M , which is 0.86 283

for ARC test (it was 0.91 for dev). Considering the 284

other datasets, CUP&A (which shows an almost 285

ideal trend for the first three levels but then reaches 286

a plateau) scores 0.90, and RACE 0.94. These sim- 287

ilar trends suggest that the behaviour obtained with 288

RP7 and GPT-3.5 is capable of generalising fairly 289

well to previously unseen data, also coming from 290

different educational domains. It is worth noting 291

that the accuracy is generally higher on ARC than 292

on the other two datasets; this might be because it 293

is inherently easier for GPT (indeed, "just" GPT- 294

3.5 has an accuracy of 0.86 on ARC test, 0.78 on 295

RACE and 0.77 on CUP&A) or that we performed 296

prompt engineering on it. 297

Focusing on the second metric defined in Sec- 298

tion 3.2, we plot in Figure 3 the MCQA accuracy 299

of different simulated levels on questions of differ- 300

ent difficulty, separately for the three datasets. The 301

figures show that the trend of increasing MCQA 302

accuracy for increasing simulated levels is visible 303

across question levels and across datasets. Focus- 304

ing on RACE (Figure 3a), if we look at the accuracy 305

of a simulated level on questions of increasing lev- 306

els, we can see that it consistently decreases, with 307

the only exception of student level five on high 308

questions. The same analysis is shown for ARC 309

in Figure 3b.8 The results are not as clean as on 310

7Please note that the reference prompt for RACE and
CUP&A is slightly modified, as described in Table1.

8We show only the odd grades to improve readability.
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(a) RACE, questions of different levels.
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(b) ARC, questions of different grades.
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(c) CUP&A, different difficulty.

Figure 3: Evaluation of the MCQA accuracy of GPT-3.5 on the three datasets when simulating students of different
levels, separately on questions of different difficulty levels (difficulty definition is different in the three datasets).

RACE: indeed, although we can see a general trend311

of increasing accuracy for increasing role-played312

levels, the trend is monotonic only for grade 9;313

grades 3 and 7 have one “drop” that affects mono-314

tonicity (level three and five, respectively), while315

grade 5 has several oscillations. Even though it316

is not always true that the same role-played level317

has lower accuracy on questions of higher grades,318

this trend is mostly visible for all grades, except319

grade 5 which seems to be the most problematic.320

This might also be due to the specific types of321

questions in ARC: indeed, even though most of322

the questions are knowledge questions for which it323

makes sense to define the difficulty, we observed324

that some do not necessarily get more difficult for325

higher grades (e.g., questions about safety equip-326

ment in the lab). Finally, Figure 3c shows the same327

results for CUP&A; in this case, the difficulty is a328

continuous value instead of a discrete one, hence329

we group questions in three difficulty bins. Again,330

the trend of monotonic increase in MCQA accu-331

racy is visible across difficulty levels (with the only332

exceptions of level four for the easier questions and333

level five for the medium difficulty questions), and334

a given simulated level has lower accuracy on more335

difficult questions, with the only exceptions of sim-336

ulated levels one and two on mid-level questions.337

4.3 Virtual pretesting with role-playing LLMs338

CUP&A provides for each question a quantitative339

measurement of difficulty obtained from pretesting340

with human learners. This enables us to evaluate341

the simulation capabilities of the LLM by perform-342

ing virtual pretesting and comparing the difficulty343

obtained from it with the reference value, ideally344

looking for a perfect correlation.9 In our setup,345

9A short premise: at this stage, we are performing virtual
pretesting with only five simulated students (GPT-3.5 role-

the difficulty from virtual pretesting is defined as 346

the fraction of (simulated) students that answer the 347

question wrongly. We observe a positive correla- 348

tion coefficient between the two variables (diffi- 349

culty from virtual and “real” pretesting) of 0.13 350

(pvalue = 0.06), while a random baseline leads to 351

a correlation coefficient of −0.03 (pvalue = 0.62). 352

This correlation might seem low but, to put it in 353

context, we also performed an Item Response The- 354

ory (IRT) simulation (Hambleton et al., 1991). This 355

consists in simulating the responses of five “mock” 356

students of prescribed skill levels to the questions 357

of known difficulty, and doing pretesting with such 358

responses. We consider students’ skills equally 359

spaced in the skill range, which is an ideal scenario 360

(almost) never observed in practice and can be seen 361

as an upper bound. This simulation, whose details 362

are described in Appendix B, led to a correlation 363

of 0.43 (pvalue = 10e−10). This suggests that, 364

although the correlation observed with the LLMs 365

is quite low, it is promising because a five-student 366

pretesting scenario is particularly challenging, es- 367

pecially considering that the LLM is not given any 368

anchoring item to match the simulated skill levels 369

to the difficulty of the items in the exam. 370

4.4 Generalisation to other LLMs 371

To evaluate the generalisation capabilities of the ref- 372

erence prompt to other LLMs, we experiment with 373

a different version of GPT-3.5 (gpt-3.5-turbo-1106) 374

and GPT-4 (gpt-4-1106-preview), and compare the 375

behaviours obtained with them with gpt-3.5-turbo- 376

0613, which is the version used for prompt engi- 377

neering and all the other experiments. The results 378

are shown separately for each dataset in Figure 4. 379

The updated version of GPT-3.5 shows a simi- 380

playing as five students of different levels), which would be
quite a small pretesting sample even with human learners.
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(b) RACE.
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(c) CUP&A.

Figure 4: Comparison between the behaviour of gpt-3.5-turbo-0613 (full lines), gpt-3.5-turbo-1106 (dashed lines),
and gpt-4-1106-preview (dotted lines) on the three datasets, when prompted with the reference prompts.

lar behaviour, but there are significant differences.381

For both ARC and RACE the behaviour is arguably382

worse, since the highest MCQA accuracy is not ob-383

tained for level five but instead for level three and384

four respectively, and the model reaches a plateau385

at level three for both datasets. This is also shown386

by the score obtained with the evaluation metric,387

which is 0.63 for ARC and 0.77 for RACE (it was388

0.86 and 0.95 with GPT-3.5, respectively). The be-389

haviour on CUP&A is different, though: the newer390

version performs actually better since it does not391

reach a plateau, and indeed gets a higher score of392

0.96 (it was 0.90). It is also worth remarking that,393

in almost all cases, the newer gpt-3.5-turbo-1106394

leads to higher MCQA accuracy, and a narrower395

range of skill levels for virtual pretesting. These396

results suggest that prompts engineered for a spe-397

cific version of GPT-3.5 should only be used on398

that specific version, as they might work differently399

when used on different versions.400

On the other hand, the behaviour with GPT-4401

is clearly worse: first, the accuracy of the lowest402

level is quite high (above 85% for all datasets), and403

there is not a clear trend of increasing MCQA ac-404

curacy for increasing simulated levels. This is also405

shown by the scores of the monotonicity evaluation,406

which are in all cases worse than GPT-3.5 (0.74407

for ARC, 0.85 for RACE, and 0.68 for CUP&A),408

again supporting the need for performing prompt409

engineering on each model. Also, this aligns with410

the findings from Aher et al. (2023), suggesting411

that advanced models such as GPT-4 might suffer412

of the curse of hyper-accuracy.413

4.5 Additional analyses414

The output obtained with the reference prompt con-415

tains, in addition to the index of the answer choice416

selected by the simulated learner, an indication of417

the question difficulty level (as directly assigned 418

by the LLM) and an explanation of the answer.10 419

Even though these were added during prompt engi- 420

neering because they help in reaching the desired 421

behaviour, we analyse them to understand whether 422

they provide further insights. 423

4.5.1 Analysis of the difficulty level 424

The difficulty level assigned by LLM is on the 425

scale [1; 5]∩N (the same as the simulated learners), 426

which is different from the target difficulty values 427

available in the three datasets. Thus, to compare 428

them, we perform a linear scaling from [1; 5]∩N to 429

the difficulty range used in each dataset ([1; 3] ∩ N 430

in RACE, [3; 7] ∩ N in ARC, [30; 110] in CUP&A). 431

We find that the difficulty level provided by the 432

LLMs cannot be directly used as an indication of 433

question difficulty with the current prompt, and 434

this holds true for the three datasets and the three 435

versions of GPT we are experimenting on. The 436

majority of questions are given difficulty values in 437

{2, 3, 4}, with levels 1 and 5 almost never being 438

assigned. Also, the LLMs are not consistent in 439

this difficulty classification task and different dif- 440

ficulty levels are assigned to the same questions, 441

possibly due to the request of simulating students 442

of different skill levels. In terms of average error, 443

the observed MAPE (Mean Absolute Percentage 444

Error) ranges from the 12.81 for GPT-3.5-1106 on 445

CUP&A to the 32.70 of GPT-4 on RACE. A more 446

detailed analysis is shown in Appendix C. 447

4.5.2 Analysis of the explanations 448

We study the explanations provided by the LLMs 449

both quantitatively and qualitatively. 450

10“the list of steps that a student of level {X} would follow
to select the answer, including the misconceptions that might
cause them to make mistakes.”
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Figure 5: Confusion matrix obtained with the model
for predicting the simulated level from the explanation
(GPT-3.5, ARC).

For the quantitative analysis, we build a clas-451

sifier to estimate the simulated level from the ex-452

planation provided by the LLM. A high accuracy453

in this level prediction task would suggest that the454

explanations are significantly different between the455

different simulated levels. To improve the inter-456

pretability of the predictor, we use TF-IDF (Man-457

ning et al., 2008) weights as features and a Logis-458

tic Regression model for the classification; the pa-459

rameters of both are selected with cross-validation460

(parameters are listed in Appendix D.1).11 Consid-461

ering the explanations provided by GPT-3.5, the462

accuracy ranges from 0.41 for RACE to 0.55 for463

CUP&A, while considering GPT-4 it ranges from464

0.52 to 0.58 (the random baseline is 0.20), sug-465

gesting that indeed there is a significant difference466

between the explanations for different simulated467

levels, and this is greater for GPT-4 than for GPT-468

3.5. Also, the confusions matrices show that pre-469

diction error is generally small: Figure 5 shows470

the confusion matrix for GPT-3.5 and ARC, but the471

trend is similar across the two models and three472

datasets (the other matrices are in Appendix D).473

We then collect for each simulated level the474

most relevant n-grams, according to the prediction475

models, and analyse how their frequency changes476

across simulated levels. Table 2 focuses on the477

ARC dataset,12 and shows the five most relevant478

n-grams for simulated levels one and five (for GPT-479

11Prior to this analysis, we remove any explicit reference to
the simulated level from the explanation.

12Results for the other datasets are shown in Appendix D.

Simulated level

Relevant n-grams on
e

tw
o

th
re

e

fo
ur

fiv
e

GPT-3.5
would likely choose 186 216 66 21 5
may think that 64 30 21 7 5
however is not 18 3 6 1 1
may not understand 16 4 1 0 0
might not consider 15 4 2 0 0
would choose option 21 17 38 77 104
would understand that 8 17 44 60 49
would know that 5 22 74 142 136
misconc. that could 2 5 3 3 13
it is important 9 21 8 18 19

GPT-4
not fully understand 146 26 0 0 0
might not understand 50 3 0 0 0
at would likely 61 42 26 21 5
but would likely 58 26 1 0 0
might not know 47 20 1 0 0
therefore correct is 1 4 22 74 96
would not be 0 9 18 15 39
would know that 7 82 97 130 114
would recognize that 7 58 77 94 87
other option are 4 11 14 23 32

Table 2: Number of relevant n-grams in the explanations
provided by the LLMs for different simulated levels,
ARC (misconc. is abbreviation for misconception).

3.5 and GPT-4). Indeed the explanations often (but 480

not always) follow a trend of using wording related 481

to knowledge and understanding for higher levels, 482

and the opposite for lower simulated levels. Also, i) 483

the trend is arguably more visible for GPT-4 and ii) 484

most of the relevant features are not shared between 485

the two models, suggesting that the explanations 486

are significantly different between them. 487

The results of this quantitative analysis show 488

that the explanations are different for different sim- 489

ulated levels and they often follow meaningful pat- 490

terns in term of the knowledge that learners of in- 491

creasing levels are expected to have. Also, GPT-4 492

seems to provide better explanations than GPT-3.5, 493

although this does not lead to a better behaviour in 494

the simulation task, as shown in Section 4.4.13 495

We also qualitatively analysed some of the ex- 496

planations, and indeed observed some differences 497

between different simulated levels. An example 498

is shown in Table 3, where it is visible that level 499

one simulated with GPT-3.5 makes a reasonable 500

mistake, while levels three and five get the correct 501

answer. The full list of explanations is available in 502

the supplementary material. 503

13This is in line with previous research suggesting that the
rationales created with e.g., chain-of-thought are not necessar-
ily used in the downstream task (Pfau et al., 2024).
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Sim. Answer explanation from GPT-3.5
level
one A student of level one would choose the answer ’muscle cells’ because they might think that muscles are

responsible for feeling heat and pressure. However, the correct answer is ’nerve cells’ because they are the cells
that transmit signals to the brain to interpret sensations like heat and pressure.

three A student of level three would select the answer ’nerve cells’ because they have a basic understanding of the
human body and know that nerve cells are responsible for transmitting signals related to heat and pressure. [...]

five A student of level five would choose the answer ’nerve cells’ because nerve cells are responsible for detecting
and transmitting sensations such as heat and pressure to the brain. [...]

Table 3: An example of how the answer explanation from GPT-3.5 changes depending on the simulated levels (we
show only the most relevant parts of the explanations due to the lack of space). The question is: “What helps skin
feel heat and pressure?”. The answer options: [‘muscle cells’, ‘blood cells’, ‘nerve cells’, ‘bone cells’].

4.5.3 Analysis of different educational scales504

We study the effect of using different educational505

scales instead of the one to five used in the ref-506

erence prompt RP, by prompting GPT-3.5 with a507

modified version of RP to consider i) exam marks508

(A, B, C, D, F) and ii) a non-standardised scale509

(beginner, intermediate, advanced). In both cases,510

the results are very good for all datasets, leading511

to monotonic accuracy curves with almost linear512

increases (especially for ARC) and high scores ac-513

cording to the metric M (between 0.97 and 0.99),514

supporting the finding that LLMs might be capable515

of simulating different levels. The accuracy curves516

and prompts are shown in Appendix E.517

5 Related Work518

Previous research discussed the possibility of using519

LLMs instead of (or in addition to) human partici-520

pants in surveys (Dillion et al., 2023; Argyle et al.,521

2023; Demszky et al., 2023), and studied whether522

LLMs can be prompted to show human-like be-523

haviours in a series of task (Aher et al., 2023).524

However, it is not agreed whether this is actually525

a good practice. Indeed, some researchers argue526

that LLMs cannot (and should not) replace human527

research participants (Harding et al., 2023; Crock-528

ett and Messeri, 2023). We mostly agree with the529

latter, but believe that exam simulations are a dif-530

ferent application scenario, as knowledge-based531

exam questions are built to assess students knowl-532

edge in an objective (as much as possible) manner.533

Still, possible biases of this approach will have to534

be studied before an application in the real world.535

An approach like the one proposed by Beck et al.536

(2023) (i.e., using LLMs as a preliminary step be-537

fore the human annotations) might be adopted in538

education, for instance pretesting with human learn-539

ers only a fraction of the original items.540

Previous research also discussed profusely the541

potential of LLMs in education (Jeon and Lee, 542

2023; Kasneci et al., 2023; Caines et al., 2023). 543

Closer to our work, previous research experimented 544

on Knowledge Tracing with LMs (Liu et al., 2022), 545

but without using them for simulating students. 546

Also related to the current work is the previous 547

research of question difficulty estimation with NLP 548

(AlKhuzaey et al., 2023; Benedetto et al., 2023; Ro- 549

goz and Ionescu, 2024), especially when performed 550

in an unsupervised manner (Loginova et al., 2021). 551

Indeed, the students simulation we propose in this 552

paper could be used as an alternative to previous 553

approaches for difficulty estimation. 554

6 Conclusions and future work 555

In this paper, we have shown that it is possible 556

to prompt GPT-3.5 to simulate students of dif- 557

ferent levels, and the reference prompt we have 558

engineered proved capable of generalising across 559

datasets. However, even though the prompt seems 560

to generalise well to unseen data, it does not seem 561

to generalise to different LLMs, thus stressing the 562

need for prompt engineering for each model. Al- 563

though we found some strong indications that it 564

might be possible to simulate students of different 565

levels with LLMs, there are questions still to be 566

addressed. For a better simulation, one could try to 567

use retrieval augmented generation (RAG) (Lewis 568

et al., 2020) on topic specific documents to better 569

define the level of the role-played student. For a 570

better virtual pretesting, it will be needed to have 571

a larger set of simulated students. Also, it might 572

be helpful to simulate whole exams, instead of one 573

question at a time as we did here. Future work 574

could also iterate on the reference prompt, possi- 575

bly using automatic prompt optimization (Pryzant 576

et al., 2023), and experiment with open models, 577

which is particularly relevant since specific ver- 578

sions of closed LLMs can become deprecated. 579
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7 Limitations580

This work uses LLMs to simulate the responses581

of students to exam questions and, therefore, any582

decision taken upon these simulations is at risk of583

being biased, due to the intrinsic biases in LLMs.584

This risk is mitigated by the fact that exam ques-585

tions are built to assess domain knowledge, but it586

is still present. Focusing on the aspects that are587

specific to the educational domain, it might happen588

that LLMs reproduce response patterns (and errors)589

only of a fraction of the population of students, sim-590

ilarly to how using LLMs for surveys oversamples591

WEIRD14 participants (Apicella et al., 2020). If592

this is the case, virtual pretesting done with LLMs593

would not account for all the other students who594

make different errors. An example in language595

learning is the fact that students from different L1s596

(i.e., first language), tend to make different mis-597

takes. If LLMs reproduce the errors of specific L1s598

only, this might disadvantage learners with specific599

backgrounds. This is a common challenge in exam600

item writing, and even human experts struggle with601

it. Possible ways to address this are i) to perform602

pretesting with the desired population of learners603

and analyse whether their responses are aligned604

with the ones from the models, and ii) look for bi-605

ases with the Marked Personas approach proposed606

by Cheng et al. (2023).607

An important point that we have raised in this608

paper is that the results do not seem to generalise609

across LLMs, as prompts which were very effec-610

tive on gpt-3.5-turbo-0613 did not work as well on611

gpt-3.5-turbo-1106 and, especially, GPT-4 (gpt-4-612

1106-preview). This is a significant concern from a613

practitioner’s perspective, since any process based614

on a similar approach might become unusable as615

soon as there is a new version of the LLM and the616

older one is deprecated, and suggests that moving617

towards open LLMs could be a better alternative.618

It is worth mentioning that one of the limitations619

of this approach is the instability of the prompts,620

and the fact that minor changes to the input prompt621

might lead to major differences in behaviour. This622

is a common issue with LLMs, and could be par-623

tially mitigated by performing automatic prompt624

optimization as mentioned in the conclusions.625

Lastly, the training dataset of GPT* models is626

not precisely known, and one might think that this627

could affect the results shown in this work. Indeed,628

ARC and RACE provide some information about629

14Western, Educated, Industrialized, Rich, Democratic.

question difficulty, and this might be leveraged in 630

some way by the model to adapt its responses to 631

question difficulty. We believe that it is not the 632

case, since the CUP&A dataset was released very 633

recently – it is more recent than the training data 634

used in all the models considered in this work – and 635

the findings are consistent across datasets. 636
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A List of prompts: Analysis of the802

reference prompt803

Table 4 shows the text of the four prompts that are804

compared to the reference prompt (RP) in Section805

4.1 and whose behaviour is shown in Figure 1. The806

four prompt, similarly to RP, ask the LLMs to sim-807

ulate students of five different skill levels (from808

one to five) and to produce an output in JSON for-809

mat. The JSON fields that the LLMs are asked to810

produce are different between the prompts.811

B IRT simulation812

In Section 4.3 we presented the results obtained813

with an IRT simulation, to show an upper threshold814

for the correlation between the difficulties obtained815

from pretesting and the target values (i.e., the ones816

available in the CUP&A dataset) when having a817

very small population of five students.818

IRT (Item Response Theory) (Hambleton et al.,819

1991) is a mathematical framework used in educa-820

tional settings to estimate the latent traits of stu-821

dents and questions (e.g., skills and difficulties)822

involved in an exam. The simplest model, named823

“Rasch model” (Rasch, 1961), associates a skill824

level to each student and a difficulty level to each825

question; more complex models take into consid-826

eration additional latent traits (Loken and Rulison,827

2010), such as the probability of correct answer by828

guessing.829

IRT provides a function (named item response830

function) to compute the probability that a given831

student i correctly answers a given question j:832

Pcorrect = cj +
1− cj − s

1 + e−aj(θi−bj)
(1)833

where i) θ is the skill level associated to the stu- 834

dent, ii) b the difficulty of the question, iii) a the 835

discrimination of the question, iv) c a guess factor 836

(to account for the fact that students might get the 837

correct answer in a MCQ by randomly guessing), 838

and v) s a slip factor to account for skilled stu- 839

dents that might make mistakes due to temporary 840

distraction or fatigue. 841

IRT is commonly used for pretesting exam ques- 842

tions (i.e., to estimate the latent traits of new items 843

before using them to assess students). However, 844

it can also be used, as we do in this paper, to 845

simulate how mock students of known skill lev- 846

els would answer questions of known difficulty. 847

Specifically, we simulate a population of five stu- 848

dents with skill levels uniformly distributed in the 849

range [30; 110], which is the “known” range of dif- 850

ficulty in CUP&A, answering the question in the 851

exam. We use the following parameters for the 852

IRT simulation: i) the difficulty values available in 853

the CUP&A dataset, ii) discrimination a = 1, iii) 854

guess c = 0.25, and iv) slip s = 0.05. Given these 855

simulation parameters, we proceed as follows for 856

all student-question pairs ij. 857

• We estimate the probability Pij that student i 858

will correctly answer question j according to 859

the item response function. 860

• We generate a random number r uniformly 861

distributed in [0; 1].15 862

• If Pij ≥ r we mark the question as correctly 863

answered, otherwise we mark it as wrongly 864

answered. 865

• Measure the fraction of wrong answers for 866

each question (i.e., estimate its difficulty). 867

• Compute the correlation between the this dif- 868

ficulty and the target value available in the 869

dataset. 870

C Analysis of the difficulty levels assigned 871

by the LLMs 872

This section complements 4.5.1 by providing a 873

more detailed analysis of the difficulty level di- 874

rectly provided by the LLM in the “question level” 875

field of the output JSON. 876

As we have mentioned previously, both GPT-3.5 877

and GPT-4 are not consistent in this difficulty clas- 878

sification task, assigning different difficulty values 879

15Using random.uniform from numpy.
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Table 4: List of prompts showed in Figure 1 in Section 4.1, where they are compared with the reference prompt. For
all prompts, the student levels we consider are [‘one’, ‘two’, ‘three’, ‘four’, ‘five’].

ID Prompt
P1 SYSTEM:

You will be shown multiple choice questions from a science exam. The questions in the exam have difficulty levels
on a scale from one (very easy) to five (very difficult). Similarly, the students can be identified with skill levels
from one (low level student) to five (very skilled student). The level of students is defined such that a student of a
certain level can answer most of the questions of lower levels, and almost none of the question of higher levels.
You must assign a difficulty level to the given multiple choice question, and select the answer choice that a student
of level {X} would pick. Provide only a JSON file with the following structure: {“level”: “difficulty level of the
question”, “index”: “integer index of the answer chosen by a student of level {X}”, “text”: “text of the answer
chosen by the student”}
USER:
Question: “{question}”
Options: “{answer options}”

P2 SYSTEM:
You will be shown multiple choice questions from a science exam. The questions in the exam have difficulty levels
on a scale from one (very easy) to five (very difficult).
You must assign a difficulty level to the given multiple choice question, and select the answer choice that a student
of level {X} would pick. Provide only a JSON file with the following structure: {“level”: “difficulty level of the
question”, “index”: “integer index of the answer chosen by a student of level {X}”, “text”: “text of the chosen
answer”}
USER:
Question: “{question}”
Options: “{answer options}”

P3 SYSTEM:
You will be shown multiple choice questions from a science exam. The questions in the exam have difficulty levels
on a scale from level one (very easy) to level five (very difficult). Similarly, each student can be given a skill level:
level one represents the least skilled students, who answer most questions wrongly, and level five represents the
most skilled students, who can correctly answer even the most difficult items.
You must assign a difficulty level to the given multiple choice question, and select the answer choice that a student
of level {X} would pick. Provide only a JSON file with the following structure: {“level”: “difficulty level of the
question”, “index”: “integer index of the answer chosen by a student of level {X}”, “text”: “text of the chosen
answer”}
USER:
Question: “{question}”
Options: “{answer options}”

P4 SYSTEM:
You will be shown multiple choice questions from a science exam. The questions in the exam have difficulty levels
on a scale from one (very easy) to five (very difficult). You must assign a difficulty level to the given multiple
choice question, motivating your choice, and select the answer choice that a student of level {X} would pick.
Provide only a JSON file with the following structure: {“level”: “difficulty level of the question”, "motivation":
"reason why you assigned that difficulty level", “index”: “integer index of the answer chosen by a student of level
{X}”, “text”: “text of the chosen answer”}
USER:
Question: “{question}”
Options: “{answer options}”
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to the same question, even though we are using880

temperature=0; this might be side-effect of the881

simulated student level mentioned in the prompt.882

Also, the difficulty levels output by the LLMs do883

not cover the whole range of levels specified in the884

prompt (“...difficulty levels from one (very easy) to885

five (very difficult)...”). Table 5 shows (separately886

for for GPT-3.5, GPT-4, and each dataset) the fre-887

quency with which each level is assigned to one888

of the exam questions. The table proves the incon-889

sistency of the LLMs in performing this task, with890

a distribution that varies greatly when simulating891

different skill levels. It is worth noting that in some892

cases the LLMs produce outputs which are not a893

difficulty value in the required format; when this894

happens, we ignore the output for this analysis.895

The fact that the difficulty values directly pro-896

vided by the LLMs are not usable as a measurement897

of the difficulty of exam items is also shown in Fig-898

ure 6 and Figure 7, which display the evaluation899

metrics – MAPE (Mean Absolute Percentage Error)900

and R2 score – obtained with the two LLMs on the901

three datsets.16 Both figures show that the results902

are not satisfactory, with large MAPE values and903

R2 scores mostly negative or close to 0, and there904

is not a clear difference between the two models,905

nor between the datasets, nor between the different906

simulated levels (shown with different colours in907

the bar plot).908

D Additional analysis of the explanations909

This Section complements Section 4.5.2 by provid-910

ing a more detailed analysis of the explanations911

provided by the LLMs.912

We start by showing the results of the evaluation913

of the accuracy of the prediction model trained to914

predict the simulated level from the explanations915

provided by the LLMs. The figures from Figure 8916

to Figure 12 show the confusion matrices obtained917

for the three datasets and the two models.17 The918

figures show that, in most cases, the largest values919

are on the diagonal (or close to it), showing that920

the prediction model we implemented is overall921

capable of correctly estimating the simulated level922

from the explanations. This is also supported by923

16As mentioned in Section 4.5.1, before computing these
metrics we perform a linear scaling from [1; 5] ∩ N to the
difficulty range used in each dataset ([1; 3] ∩ N in RACE,
[3; 7] ∩ N in ARC, [30; 110] in CUP&A).

17Please note that we train a separate prediction model for
each dataset-LLM pair; the parameters used for GridSearchCV
are shown in Section D.1.

GPT-3.5
Sim. “question level”

Dataset Level 1 2 3 4 5
one 20 226 87 12 0
two 17 187 104 14 0

ARC three 2 255 18 41 0
four 3 152 182 12 0
five 4 137 178 24 0
one 3 86 59 2 0
two 1 69 77 2 0

RACE three 0 107 12 29 0
four 0 46 102 0 0
five 0 35 101 11 0
one 0 107 93 0 0
two 0 73 127 0 0

CUP&A three 0 111 69 20 0
four 0 18 182 0 0
five 0 10 178 12 0

GPT-4
Sim. “question level”

Dataset Level 1 2 3 4 5
one 40 261 46 1 0
two 18 302 27 0 0

ARC three 16 304 29 0 0
four 18 290 41 0 0
five 53 272 23 0 0
one 26 93 29 2 0
two 4 124 21 0 0

RACE three 2 91 54 3 0
four 3 63 72 11 0
five 8 82 47 11 0
one 0 94 100 5 1
two 0 122 78 0 0

CUP&A three 0 42 153 5 0
four 0 19 140 41 0
five 0 39 127 34 0

Table 5: Distribution of the difficulty level that is as-
signed, in the “question level” of the output JSON, to
each question by the LLMs (shown GPT-3.5 and GPT-4)
when simulating different student levels. This table does
not analyse the predictive capabilities of the LLMs, but
highlights the instability of the “question level” field at
varying simulated level.
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Figure 6: Mean Average Percentage Error (MAPE) eval-
uation of the “difficulty level” produced by the LLMs
in the output JSON, separately for different models,
datasets, and simulated student levels (the latter indi-
cated with different colours in the bar graph). The tar-
get value is the difficulty level available in the three
datasets (grade for ARC, level for RACE, and difficulty
for CUP&A), and the predicted value the difficulty level
output in the “difficulty level” field of the JSON pro-
duces by the LLMs.
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Figure 7: R2 score evaluation of the “difficulty level”
produced by the LLMs in the output JSON, separately
for different models, datasets, and simulated student lev-
els (the latter indicated with different colours in the bar
graph). The target value is the difficulty level available
in the three datasets (grade for ARC, level for RACE,
and difficulty for CUP&A), and the predicted value the
difficulty level output in the “difficulty level” field of
the JSON produces by the LLMs.
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Figure 8: Confusion matrix obtained with the model
for predicting the simulated level from the explanation
(GPT-4, ARC).

Dataset
Model ARC RACE CUP&A

GPT-3.5 0.43 0.41 0.55
GPT-4 0.58 0.52 0.52

Table 6: Accuracy in the task of simulated level predic-
tion from the explanation for the two models and the
three datasets.

the prediction accuracy values we observed, which 924

are shown in Table 6 (the random baseline is 0.20). 925

Both results indicate that the explanations provided 926

by both GPT-3.5 and GPT-4 are significantly dif- 927

ferent for different simulated levels. 928

In the main body of text we have shown which 929

are the most relevant n-grams (according to the 930

prediction models) for each simulated level, con- 931

sidering the ARC dataset (Table 2). The analysis 932

showed that there seems to be a trend such that 933

wording related to “knowledge” is more frequent 934

in higher simulated levels, while wording related 935

to “uncertainty” and “mistakes” is more common 936

in the lowest simulated level, and this is more visi- 937

ble with GPT-4. As a complement to that analysis, 938

we show here the results obtained, separately for 939

GPT-3.5 and GPT-4, for the two reading compre- 940

hension MCQs datasets: RACE (in Table 7) and 941

CUP&A (in Table 8). In both cases, we show the 942

five most relevant n-grams according to i) GPT-3.5 943

and simulated level one, ii) GPT-3.5 and level five, 944

iii) GPT-4 and level one, and iv) GPT-4 and level 945

five. 946
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Figure 9: Confusion matrix obtained with the model
for predicting the simulated level from the explanation
(GPT-3.5, RACE).
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Figure 10: Confusion matrix obtained with the model
for predicting the simulated level from the explanation
(GPT-4, RACE).
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Figure 11: Confusion matrix obtained with the model
for predicting the simulated level from the explanation
(GPT-3.5, CUP&A).
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Figure 12: Confusion matrix obtained with the model
for predicting the simulated level from the explanation
(GPT-4, CUP&A).

15



Simulated level

Relevant n-grams on
e

tw
o

th
re

e

fo
ur

fiv
e

GPT-3.5
might choose option 39 7 7 0 0
most likely choose 15 0 0 0 0
because it is 41 33 33 16 16
confused by mention 4 2 2 0 0
option that match 4 2 2 0 1
read passage carefully 0 0 0 23 40
would carefully read 0 0 0 0 13
information in passage 2 4 4 9 20
would understand that 0 0 0 10 26
would easily understand 0 0 0 16 17

GPT-4
might struggle with 27 1 0 0 0
might focus on 29 2 1 0 0
likely look for 44 8 0 0 0
passage directly state 11 3 2 3 5
for keywords in 26 4 0 0 0
would first identify 0 0 0 6 28
would likely not 0 1 2 9 21
is correct because 2 2 5 10 14
supported by text 11 16 21 23 21
passage and identify 1 0 8 10 8

Table 7: Number of relevant n-grams in the explanations
provided by the LLMs for different simulated levels,
RACE. We show the five most relevant (according to
the prediction models) n-grams for simulated levels one
and five and the two models.

Simulated level

Relevant n-grams on
e

tw
o

th
re

e

fo
ur

fiv
e

GPT-3.5
might choose option 34 10 3 0 0
most likely choose 110 19 3 1 0
might think that 27 12 1 0 0
her work because 0 1 2 2 2
her what sing 1 1 1 1 1
would pick option 0 1 9 10 24
because would understand 0 0 0 0 6
he was unsure 2 0 1 1 2
he had not 1 1 1 1 1
he is concerned 1 1 2 1 1

GPT-4
might struggle with 80 2 0 0 0
might focus on 35 4 1 0 0
however correct is 44 14 9 4 2
struggle with abstract 58 0 0 0 0
in question and 30 6 3 1 0
would first identify 0 0 0 2 33
which is not 7 12 12 13 16
need carefully analyze 0 0 1 7 14
therefore correct is 9 17 38 48 62
other option are 16 13 19 28 33

Table 8: Number of relevant n-grams in the explanations
provided by the LLMs for different simulated levels,
CUP&A. We show the five most relevant (according to
the prediction models) n-grams for simulated levels one
and five and the two models.
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Figure 13: Evaluation of GPT-3.5 when simulating stu-
dents of grade [A, B, C, D, F] on the three datasets.

D.1 Parameters for GridSearchCV 947

The parameters used for training the predictors of 948

simulated level from the explanations are the fol- 949

lowing: 950

• ’tfidf__ngram_range’:[(1, 1), (1, 2), (1, 3), 951

(2,3), (2,2), (3,3)], 952

• ’tfidf__max_df’: [0.1, 0.2, 0.3, 0.4, 0.5], 953

• ’tfidf__min_df’: [ 0.005, 0.01 ,0.015, 0.02], 954

• ’logistic__C’: [0.1, 0.5, 1, 10], 955

• ’logistic__penalty’: [’l1’, ’l2’]. 956

E Analysis on different educational scales 957

This section complements Section 4.5.3 by show- 958

ing the accuracy plots obtained with the different 959

educational scales, the full list of scores accord- 960

ing to the metrics to evaluation monotonicity (M ), 961

and the prompts used for these experiments. The 962

goal of this analysis is to perform a preliminary 963

exploration of whether it might be possible to use 964

different educational scales from the one to five 965

used in the reference prompt RP. 966

E.1 Exam grades (marks): A, B, C, D, F 967

Figure 13 shows the MCQA accuracy obtained 968

when prompting GPT-3.5 to simulate students that 969

got different exam grades, from A (best score) to 970

F (worst score). The plot shows a really good be- 971

haviour across datasets, with the MCQA accuracy 972

decreasing towards simulated students of lower 973

skills, and it is particularily good for the ARC 974

dataset. This is also shown by the scores obtained 975

with the evaluation metric M , which are shown in 976

Table 9. This result is particularly interesting since 977
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ARC RACE CUP&A
M score 0.99 0.98 0.97

Table 9: M scores obtained when prompting GPT-3.5
to simulate students that got different exam marks, sep-
arately on the three datasets.
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Figure 14: Evaluation of GPT-3.5 when simulating stu-
dents of beginner, intermediate, and advanced levels on
the three datasets.

the LLM does not have view of the whole exam,978

but is given only one question at a time, without979

any information about its responses to the other980

questions of the exam. The updated prompts used981

for this analysis are presented in Table 11, showing982

in bold the differences with respect to the reference983

prompt (RP).984

E.2 Abstract scale: beginner, intermediate,985

advanced986

The results obtained when prompting GPT-3.5 to987

simulate the student levels beginner, intermedi-988

ate, and advanced are shown in Figure 14. For989

all datasets, we can observe the desired mono-990

tonic trend of increasing MCQA accuracy for in-991

creasing simulated levels, and this is also shown992

by the scores obtained with the evaluation metric,993

shown in Table 10. The updated prompts used994

for this analysis are presented in Table 12, showing995

in bold the differences with respect to the refer-996

ence prompt (RP). The results obtained with these997

updated prompts support the finding that LLMs998

ARC RACE CUP&A
M score 0.97 0.98 0.98

Table 10: M scores obtained when prompting GPT-
3.5 to simulate beginner, intermediate, and advanced
students, separately on the three datasets.

(specifically GPT-3.5, in our experiments) might 999

indeed be used to simulate students of different 1000

levels, although future work is needed to precisely 1001

control the accuracy obtained with each simulated 1002

level. 1003
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Table 11: Prompts used for the experiments on exam marks analysed in Figure 13 in Section E.1. The first prompt is
used on ARC, the second on RACE and CUP&A. In bold the parts that are different from the reference prompts.

Prompt Student levels
SYSTEM:
You will be shown a multiple choice question from a science exam, and the questions in the exam
have difficulty levels on a scale from one (very easy) to five (very difficult). You must assign a
difficulty level to the given multiple choice question, and select the answer choice that a grade {X}
student would pick.
Provide only a JSON file with the following structure: {“question level”: “difficulty level of the
question”, “answer explanation”: “the list of steps that a grade {X} student would follow to select
the answer, including the misconceptions that might cause them to make mistakes”, “index”: “integer
index of the answer chosen by a grade {X} student”}
USER:
Question: “{question}”
Options: “{answer options}”

[A, B, C, D, F]

SYSTEM:
You will be shown a multiple choice question from an English reading comprehension exam, and the
questions in the exam have difficulty levels on a scale from one (very easy) to five (very difficult).
You must assign a difficulty level to the given multiple choice question, and select the answer choice
that a grade {X} student would pick.
Provide only a JSON file with the following structure: {“question level”: “difficulty level of the
question”, “answer explanation”: “the list of steps that a grade {X} student would follow to select
the answer, including the misconceptions that might cause them to make mistakes”, “index”: “integer
index of the answer chosen by a grade {X} student”}
USER:
Reading passage: “{context}”
Question: “{question}”
Options: “{answer options}”

[A, B, C, D, F]

Table 12: Prompts used for the experiments on the additional qualitative scale ([beginner, intermediate, advanced])
analysed in Figure 14 in Section E.2. The first prompt is used on ARC, the second on RACE and CUP&A. In bold
the parts that are different from the reference prompts.

Prompt Student levels
SYSTEM:
You will be shown a multiple choice question from a science exam, and the questions in the exam
have difficulty levels on a scale from one (very easy) to five (very difficult). You must assign a
difficulty level to the given multiple choice question, and select the answer choice that {X} student
would pick.
Provide only a JSON file with the following structure: {“question level”: “difficulty level of the
question”, “answer explanation”: “the list of steps that {X} student would follow to select the answer,
including the misconceptions that might cause them to make mistakes”, “index”: “integer index of
the answer chosen by {X} student”}
USER:
Question: “{question}”
Options: “{answer options}”

[a beginner, an inter-
mediate, an expert]

SYSTEM:
You will be shown a multiple choice question from an English reading comprehension exam, and the
questions in the exam have difficulty levels on a scale from one (very easy) to five (very difficult).
You must assign a difficulty level to the given multiple choice question, and select the answer choice
that {X} student would pick.
Provide only a JSON file with the following structure: {“question level”: “difficulty level of the
question”, “answer explanation”: “the list of steps that {X} student would follow to select the answer,
including the misconceptions that might cause them to make mistakes”, “index”: “integer index of
the answer chosen by {X} student”}
USER:
Reading passage: “{context}”
Question: “{question}”
Options: “{answer options}”

[a beginner, an inter-
mediate, an expert]
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