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Abstract

Training Large Language Models (LLMs) in-001
curs substantial data-related costs, motivating002
the development of data-efficient training meth-003
ods through optimised data ordering and selec-004
tion. Human-inspired learning strategies, such005
as curriculum learning, offer possibilities for006
efficient training by ordering data according to007
common human learning practices. Despite evi-008
dence that curriculum learning improves perfor-009
mance of natural language understanding tasks010
in fine-tuning LLMs, its application to domain-011
specific question-answering remains underex-012
plored. In this work, we comprehensively013
examine the effectiveness of human-inspired014
learning strategies for fine-tuning LLMs in015
medical question answering. Our work comple-016
ments previous studies by extending the evalu-017
ation to non-curriculum-based learning across018
multiple language models, using both human-019
defined and automated data labels. Our results020
show moderate impact in using human-inspired021
learning strategies for fine-tuning LLMs, with022
maximum accuracy gains of 1.77% per model023
and 1.81% per dataset. However, the effec-024
tiveness of these learning strategies varies sig-025
nificantly across different model-dataset com-026
binations, suggesting caution in generalising027
human-inspired strategies for fine-tuning lan-028
guage models. We also find that curriculum029
learning using LLM-defined question difficulty030
outperformed human-defined difficulty, high-031
lighting the potential of using model-generated032
metrics in optimal curriculum design.033

1 Introduction034

Training Large Language Models (LLMs) incurs035

substantial data-related costs both in compute036

(Hoffmann et al., 2022; Jeon and Roy, 2022) and037

data-collection (Muennighoff et al., 2023; Xue038

et al., 2023). Recent efforts have been made to039

improve model performance through more efficient040

use of the same training data (Sachdeva et al., 2024;041

Hase et al., 2024). Building on the historic suc- 042

cess of human-inspired machine learning methods 043

(Sayal et al., 2023), human-inspired learning strate- 044

gies also offer possibilities for organising data or- 045

dering according to human learning practices to 046

achieve efficient training. 047

The most established technique for data ordering 048

is curriculum learning, in which training samples 049

are ordered from easiest to hardest (Hase et al., 050

2024; Xu et al., 2020). This method has led to 051

some improvements in general knowledge acquisi- 052

tion (Lee et al., 2024), natural language reasoning 053

(Maharana and Bansal, 2022) and information re- 054

trieval (Penha and Hauff, 2019) benchmarks. In 055

addition, variations on curriculum learning, such 056

as interleaving different subject areas have also 057

been effective for increasing world-knowledge and 058

commonsense reasoning (Lee et al., 2024). 059

Despite evidence that curriculum learning im- 060

proves foundational natural language processing 061

capabilities in fine-tuning LLMs, its application to 062

domain-specific question-answering remains under- 063

explored. Medical question-answering, in particu- 064

lar, is a high-stakes domain requiring accurate infor- 065

mation retrieval, and several models fine-tuned on 066

medical data have been recently released to address 067

this need (Saab et al., 2024; Chen et al., 2023b; 068

Singhal et al., 2023). Previous studies on curricu- 069

lum learning have also considered only a single 070

model and curriculum strategy at a time, which 071

limits the generalisability of the results (Lee et al., 072

2024; Maharana and Bansal, 2022; Xu et al., 2020). 073

Our study extends previous research by evaluat- 074

ing a range of human-inspired learning strategies, 075

including non-curriculum-based ones, across mul- 076

tiple models and various data labelling scenarios 077

for fine-tuning LLMs. Through this comprehensive 078

evaluation, we aim to provide insights into the use- 079

fulness of human-inspired learning strategies for 080

optimising the fine-tuning process of LLMs. 081

Specifically, our contributions are: 082

1



• Broad-based evaluation of human-inspired083

learning strategies: Unlike previous work084

that focused on individual language models085

and curriculum learning, we compared four086

LLMs of different sizes and architectures,087

and extended the analysis to non-curriculum-088

based learning strategies. Our findings in-089

dicate that effectiveness of human-inspired090

learning strategies varies significantly across091

different model-dataset combinations.092

• Compare machine-generated and human-093

generated data labels: We introduced a novel094

automated method for annotating question dif-095

ficulty and category, using ensemble LLM096

responses and text clustering to define the097

learning strategies. This approach leverages098

pre-trained LLMs to label data, offering a099

cost-effective alternative to human annota-100

tions. Our findings showed that using LLM-101

defined question difficulty yielded improved102

performance in curriculum learning compared103

to human-defined difficulty.104

2 Related Work105

Data-efficient fine-tuning on LLMs Data selec-106

tion and ordering methods are essential for data-107

efficient fine-tuning of LLMs. Sachdeva et al.108

(2024) explored data-efficient fine-tuning by assess-109

ing training example quality using zero-shot rea-110

soning and selecting diverse samples to represent111

the data distribution. Das and Khetan (2023) used112

unsupervised core-set selection to minimise data re-113

quirements while maintaining accuracy. Chen et al.114

(2023a) proposed a learning framework that uses an115

ordered data sampling algorithm to enable efficient116

learning of advanced language processing skills. In117

contrast to these approaches that select high-quality118

subsets of data, our research focuses on adopting119

human-inspired learning strategies for data order-120

ing to enhance the efficiency of fine-tuning.121

Human-inspired learning for fine-tuning Cur-122

riculum learning has been widely explored to123

fine-tuning language models for general-purpose124

natural language tasks. For example, Xu et al.125

(2020) demonstrated that defining question diffi-126

culty by cross-reviewing the training set with mul-127

tiple teacher models and using that curriculum to128

fine-tune the BERT large model led to consistent129

performance improvements across various natural130

language understanding tasks by up to 1.3%. Simi-131

larly, Maharana and Bansal (2022) found that fine- 132

tuning RoBERTa with fixed and adaptive curricula 133

defined by a teacher model improved performance 134

on five commonsense reasoning tasks by up to 2%. 135

In addition, Lee et al. (2024) demonstrated that in- 136

terleaving the curriculum by subjects outperformed 137

other curriculum arrangements using Llama 2-13B, 138

improving on the MMLU benchmark by up to 3% 139

compared to randomly shuffled data. However, 140

Campos (2021) found no statistically significant 141

improvements when evaluating curriculum learn- 142

ing using a similar difficulty metrics to Xu et al. 143

(2020) in language modelling. Our work builds on 144

previous studies by extending the evaluation across 145

multiple models, learning strategies and data la- 146

belling scenarios for the task of domain-specific 147

question answering. 148

3 Methods 149

3.1 Experimental design 150

We conducted a comprehensive investigation into 151

the optimal data-ordering strategy, inspired by hu- 152

man learning, for fine-tuning language models in 153

medical question answering. Our study compared 154

the effectiveness of five specific human-inspired 155

learning strategies with a Random Shuffled base- 156

line (Section 3.2), across four LLMs (Section 3.5) 157

and three datasets (Section 3.3), resulting in a total 158

of 24 fine-tuned models (6 strategies × 4 models). 159

We then evaluated these fine-tuned models on three 160

different datasets in the medical domain. Addi- 161

tionally, we implemented human-inspired learning 162

strategies with model-generated data labels, result- 163

ing in three distinct data-labelling scenarios (Sec- 164

tion 3.4). This brings the total to 72 fine-tuned 165

models. 166

3.2 Human-inspired learning strategies 167

Figure 1 defines the five learning strategies using 168

data orderings that mimic common learning prac- 169

tices adopted by humans. These strategies are de- 170

fined based on two data labels: (i) a continuous 171

measure of question difficulty and (ii) a discrete 172

category to which each question belongs. In par- 173

ticular, Blocked Learning and Interleaved Learn- 174

ing are solely defined by category and are non- 175

curriculum-based, while the rest use the difficulty 176

measure to define the curriculum. The design of 177

the learning strategies was inspired by Lee et al. 178

(2024), who proposed incorporating blocking and 179

interleaving practices into the curriculum arrange- 180
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Figure 1: Human-inspired learning strategies. The five human-inspired learning strategies are demonstrated by
ordering data based on a continuous measure of question difficulty (arranged by arrows) and category (indicated by
block colours), alongside the Random Shuffle baseline. The first row presents non-curriculum-based strategies, and
the second row presents curriculum-based strategies. (i) Blocked Learning: Questions are grouped by category, and
randomised within each group. (ii) Interleaved Learning: Questions are grouped by category, then each category is
randomly divided into three equal parts, and questions from each part are arranged in an interleaved manner. (iii)
Curriculum Learning: Questions are sorted by difficulty in ascending order. (iv) Blocked Curriculum: Questions are
grouped by category, and then arranged in ascending difficulty within each category. (v) Interleaved Curriculum:
Following the Blocked Curriculum arrangement, questions in each category are further divided into three equal
parts, and then interleaved.

ment. We modified their learning strategies by181

strictly sorting questions based on continuous val-182

ues of question difficulty, instead of categorising183

questions into easy, medium, and hard classes, to184

avoid arbitrary distinctions between questions of185

similar difficulty.186

The incorporation of human learning practices187

can potentialy improve the effectiveness of LLMs188

by structuring their learning process to promote bet-189

ter memory retention, generalisation, and prevent190

catastrophic forgetting (Luo et al., 2023). Blocked191

Learning groups questions by category, similar to192

blocked practice in education, where focusing on193

one subject at a time before moving to the next194

deepens understanding (North et al., 2017; Fazeli195

et al., 2017). Interleaved Learning mixes ques-196

tions by different categories and revisits them pe-197

riodically, similar to interleaved practice in educa-198

tion, which mitigates cognitive decay by bringing199

up old subjects and improves memory retention200

(Carvalho and Goldstone, 2014; Firth et al., 2019).201

Curriculum Learning sorts questions from easiest202

to hardest, similar to traditional educational cur-203

riculum where students build foundational knowl-204

edge before tackling more complex tasks (Wang205

et al., 2021). Blocked Curriculum combines the206

two by sorting questions within each category, al-207

lowing learners to build knowledge progressively208

in each category (Lee et al., 2024). Interleaved209

Curriculum (also called Spiral Curriculum), cy- 210

cles through categories in rounds with increasing 211

difficulty, mimicking the process of revisiting sub- 212

jects with progressively challenging material to re- 213

inforce learning, and follows a global progression 214

from simple to complex concepts across categories 215

(Johnston, 2012). 216

3.3 Datasets 217

We fine-tuned on one medical question answer- 218

ing dataset, and evaluated on three to test gener- 219

alisation. For fine-tuning, we used the Lekarski 220

Egzamin Końcowy (LEK) dataset (Bean et al., 221

2024), which comprises of questions from the Pol- 222

ish medical licensing exams1. Unlike other medi- 223

cal multiple-choice datasets, LEK includes meta- 224

information about human test takers’ responses for 225

each question, allowing us to assess question dif- 226

ficulty based on the actual performance of medi- 227

cal students. We used the English version of the 228

questions from the last five exam sittings, between 229

spring 2021 and spring 2023. The final dataset con- 230

tains 874 unique questions divided into ten med- 231

ical categories. For evaluation, we used the LEK 232

dataset with cross-validation, as well as the official 233

1The LEK dataset is publically available at https://cem.
edu.pl/
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validation set of MedMCQA (Pal et al., 2022) 2,234

and the test set of MedQA (Jin et al., 2020), which235

are two popular medical question answering bench-236

marks.237

3.4 Data labelling scenarios238

We tested the effects of learning strategies defined239

by the following three data labelling scenarios on240

question difficulty and category:241

• Difficulty defined by human responses and cat-242

egories based on pre-existing labels (already243

exists in LEK);244

• Difficulty defined by LLM responses and cat-245

egories based on pre-existing labels;246

• Difficulty defined by LLM responses and cat-247

egories identified through clustering.248

The automated data labels generated by LLM re-249

sponses and clustering were tested to extend learn-250

ing strategies to unlabelled data, where human an-251

notations are expensive to obtain. The details of252

automated labelling are described below.253

LLM-annotated question difficulty We254

prompted several general-purpose and medical255

LLMs to answer the questions in the training set,256

following the instruction prompt in Section 3.6.257

For each LLM, we computed an expected accuracy258

score for each question, defined as the probability259

that the LLM assigns to the correct choice index.260

E[Acc] =
∑
c

P (c) · 1(c = c∗), (1)261

where P (c) is the probability assigned to choice262

c ∈ {A,B,C,D,E}, and 1(c = c∗) is 1 if c is263

the correct answer c∗, otherwise 0. Essentially, this264

equates to the probability the model assigns to the265

correct answer.266

The LLM-annotated difficulty for each question267

is defined as (1 - expected accuracy), averaged268

across the LLMs. The LLMs used to compute diffi-269

culty on the LEK dataset are GPT-4 Turbo (OpenAI270

et al., 2024), GPT-3.5 (Brown et al., 2020), PaLM271

2 (Anil et al., 2023), Mixtral 8x7B (Jiang et al.,272

2024), Meditron 70B (Chen et al., 2023b), and273

Llama 2 70B (Touvron et al., 2023). We present274

results using other ensemble models in Appendix275

A.4.276

2Following Wu et al. (2023) and Chen et al. (2023b), we
used the validation set as the MedMCQA test set does not
publicly provide answer keys.

Clustering-based question categories To auto- 277

mate category assignment, we performed text clus- 278

tering to group questions into semantically similar 279

clusters, creating question categories based on the 280

clustering. For clustering, we applied the BioMed- 281

BERT sentence embedding (Gu et al., 2020) to 282

the question context and answer choices. We then 283

used Uniform Manifold Approximation and Pro- 284

jection (UMAP) (McInnes et al., 2020) for di- 285

mensionality reduction, followed by Hierarchical 286

Density-Based Spatial Clustering of Applications 287

with Noise (HDBSCAN) (McInnes and Healy, 288

2017). Although UMAP does not preserve pairwise 289

distances, it retains global structure of data, making 290

it suitable for clustering purposes. A density-based 291

algorithm was chosen to handle noisy data and 292

generate clusters with variable densities without 293

specifying the number of clusters (Awasthi et al., 294

2013). Noise points identified by HDBSCAN were 295

treated separately as an additional block in Blocked 296

Learning. The hyperparameters of UMAP and 297

HDBSCAN hyperparameters were optimised using 298

Bayesian optimization to minimise the proportion 299

of data points with a low probability (below 5%) of 300

belonging to any cluster. The final hyperparameters 301

for clustering are presented in Appendix A.3. 302

3.5 Language models 303

We used four open-source language models for 304

fine-tuning: TinyLlama 1.1B (Zhang et al., 2024), 305

Llama 2 7B (Touvron et al., 2023), Llama 2 13B 306

(Touvron et al., 2023), and Mistral 7B (Jiang et al., 307

2023). Our selection ensures that we measure the 308

effects of learning strategies across three varying 309

sizes and two different model architectures. The 310

TinyLlama 1.1B model follows the same architec- 311

ture and tokenizer as Meta’s Llama 2 models, with 312

1.1B parameters pre-trained on 3 trillion tokens 313

(Zhang et al., 2024). For all Llama 2 models, we 314

used the chat series optimised for dialogue, as they 315

outperformed the base models in our experiments. 316

All models were accessed via Hugging Face and 317

fine-tuned on two NVIDIA RTX 6000 Ada cards. 318

To optimise memory usage, the models loaded from 319

Hugging Face were quantised to 4-bits with double 320

quantization. We did not test larger models due to 321

the computational costs of repeatedly fine-tuning 322

large models. 323

3.6 Supervised fine-tuning 324

Instruction prompt We used zero-shot prompt- 325

ing for each question, starting with the following 326
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instruction:327

Answer the following multiple-choice question
by giving the most appropriate response. The
answer should be one of [A, B, C, D, E].

328

This was followed by the question context and329

the multiple-choice answers. The response tem-330

plate began with ‘Answer:’, and the correct answer331

index was learned to be predicted as the next token332

during fine-tuning. Our zero-shot prompt structure333

is designed to reflect typical exam instructions and334

serves as a baseline for performance. The same335

prompt structure was used for inference, where the336

correct answer index was masked and predicted.337

Fine-tuning method We employed the QLoRA338

(Dettmers et al., 2023) method for parameter-339

efficient fine-tuning of the linear layers in the340

LLMs. During fine-tuning, we disabled automatic341

data shuffling in PyTorch and trained the entire data342

sequence in a single epoch to maintain the speci-343

fied learning order. Repeating the training across344

multiple epochs would violate the learning strategy345

design outlined in Figure 1; for example, looping346

through a Blocked practice multiple times would347

effectively turn it into an Interleaved practice. We348

also tried repeating the samples three times within349

each block to simulate multiple batches while main-350

taining the learning order, and obtained similar351

results to those with no data repetition. The hy-352

perparameters used for fine-tuning each model are353

provided in Appendix A.3. To ensure fair com-354

parisons, all learning strategies applied to a model355

used the same hyperparameters selected by grid356

search on the Random Shuffle baseline.357

3.7 Model evaluation358

Metrics for evaluation As we are dealing with359

multiple-choice questions with single-label an-360

swers, we relied on the LLMs to generate the next361

token as one of the option indexes [A, B, C, D,362

E] following the instruction prompt in Section 3.6.363

We used greedy decoding as the model’s generated364

answer and compared it to the true answer to deter-365

mine the accuracy score. To evaluate the effective-366

ness of learning strategies for fine-tuning, we calcu-367

lated the maximal accuracy gain as the difference368

in accuracy score between the best-performing369

learning strategy and the Random Shuffle baseline.370

Evaluation on learning strategies The accuracy371

score for each learning strategy and the Random372

Shuffle baseline was calculated by sampling each373

strategy five times and averaging the results. To 374

ensure consistent comparisons, the category orders 375

used in Blocked and Interleaved strategies remain 376

consistent across all five samples. 377

4 Results and Discussion 378

4.1 Impact of fine-tuning with 379

human-inspired learning strategies 380

Table 1 presents the accuracy scores for all learning 381

strategies averaged across either datasets or mod- 382

els. Among the three data labelling scenarios, all 383

learning strategies on average achieved a positive 384

accuracy gain over Random Shuffle. The highest 385

model-wise accuracy gain was 1.77%, and the high- 386

est dataset-wise accuracy gain was 1.81% (Table 387

2). Among the four models considered, TinyLlama- 388

1.1B consistently demonstrated the highest accu- 389

racy gains (1.40%, 1.44%, and 1.77%) in all three 390

sets of data labels. Following the definition of max- 391

imal accuracy gain (Section 3.7), the average max- 392

imal accuracy gain was 0.94% across models and 393

1.02% across datasets, both achieved with LLM- 394

defined difficulty and pre-existing categories (Table 395

2). 396

Data labelling scenarios
Max accuracy gain (a) (b) (c)
Top in models 1.40 1.44 1.77
Top in datasets 1.13 1.81 1.15
Average by models 0.94 0.94 0.80
Average by datasets 0.83 1.02 0.74

Table 2: Maximal accuracy gains in models and
datasets. The maximal accuracy gain (in %) for a
model or dataset is calculated as the difference between
the best-performing learning strategy and the Random
Shuffle baseline in Table 1. This table presents the maxi-
mal accuracy gains in models and datasets for three data
labelling scenarios: (a) Human-defined difficulty and
pre-existing categories, (b) LLM-defined difficulty and
pre-existing categories, and (c) LLM-defined difficulty
and clustered categories. Top in models and Average by
models indicate the highest and average maximal accu-
racy gains across models, respectively. Similarly, Top
in datasets and Average by datasets indicate the highest
and average maximal accuracy gains across datasets.

Modest improvement of human-inspired learn- 397

ing strategies over Random Shuffle Overall, 398

adopting a human-inspired learning strategy can 399

yield an accuracy gain over Random Shuffle for 400

any model or dataset when an appropriate learn- 401
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Table 1: Accuracy scores across models and datasets. The accuracy scores (in %) for applying the human-inspired
learning strategies in three data labelling scenarios shown in Tables (a)-(c). The scores are averaged across datasets
and models. In the Models columns, accuracy scores are averaged across the three datasets for each model. In the
Datasets columns, accuracy scores are averaged across the four models for each dataset. Learning strategies (in
gray) in Tables (b) and (c) indicate unchanged results from Table (a) due to unchanged data labels. Abbreviations:
TinyLla. = TinyLlama model, Blocked Curri. = Blocked Curriculum, Interleaved Curri. = Interleaved Curriculum,
AVG = average.

Strategy Models Datasets
TinyLla. Llama 2 Llama 2 Mistral LEK Med MedQA AVG
1.1B 7B 13B 7B MCQA

Random Shuffle 20.40 38.71 42.57 47.97 43.55 36.28 32.40 37.41
Curriculum 19.79 39.05 43.68 47.31 44.68 36.36 31.35 37.46
Blocked 20.47 38.46 42.83 48.10 43.99 36.45 31.97 37.47
Blocked Curri. 21.80 38.32 42.57 47.10 43.84 36.46 32.05 37.45
Interleaved 21.74 38.87 42.79 48.88 44.18 37.04 32.99 38.07
Interleaved Curri. 21.10 38.10 42.69 48.04 43.81 36.44 32.20 37.48

(a) Data labels: human-defined difficulty and pre-existing categories.

Strategy Models Datasets
TinyLla. Llama 2 Llama 2 Mistral LEK Med MedQA AVG
1.1B 7B 13B 7B MCQA

Random Shuffle 20.40 38.71 42.57 47.97 43.55 36.28 32.40 37.41
Curriculum 20.88 39.21 42.82 48.39 44.36 36.86 32.26 37.83
Blocked 20.47 38.46 42.83 48.10 43.99 36.45 31.97 37.47
Blocked Curri. 21.84 37.89 42.67 48.71 43.64 37.20 32.51 37.78
Interleaved 21.74 38.87 42.79 48.88 44.18 37.04 32.99 38.07
Interleaved Curri. 21.67 38.98 43.02 49.32 44.22 38.09 32.43 38.25

(b) Data labels: LLM-defined difficulty and pre-existing categories.

Strategy Models Datasets
TinyLla. Llama 2 Llama 2 Mistral LEK Med MedQA AVG
1.1B 7B 13B 7B MCQA

Random Shuffle 20.40 38.71 42.57 47.97 43.55 36.28 32.40 37.41
Curriculum 20.88 39.21 42.82 48.39 44.36 36.86 32.26 37.83
Blocked 20.95 38.23 43.09 47.94 43.22 36.77 32.67 37.55
Blocked Curri. 21.50 38.39 43.00 47.62 43.12 37.43 32.32 37.62
Interleaved 22.17 38.23 43.03 47.77 43.61 37.3 32.41 37.80
Interleaved Curri. 20.74 38.45 43.01 47.87 43.33 37.34 31.88 37.52

(c) Data labels: human-defined difficulty and clustered categories.

ing strategy is used. However, the optimal learn-402

ing strategy is not consistent, which we will dis-403

cuss in Section 4.2. The maximal accuracy gains404

are consistent in scale with the impact of curricu-405

lum learning found in some previous studies (up406

to 2%) (Maharana and Bansal, 2022; Xu et al.,407

2020), but are slightly lower than those reported408

by Lee et al. (Lee et al., 2024). Using similar409

Blocked and Interleaved Curriculum for fine-tuning410

Llama-13B on general knowledge tasks, their study 411

showed Interleaved Curriculum consistently out- 412

performed Blocked Curriculum, improving World 413

Knowledge and Commonsense Reasoning bench- 414

marks by 3.28% and 1.73%. We suspect two main 415

reasons for the differences in results: a broader 416

curriculum span and a clearer categorisation of dif- 417

ficulty levels. First, Lee et al. (Lee et al., 2024) 418

used a synthetic dataset covering a wide range of 419
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subjects from secondary to graduate school lev-420

els, whereas our dataset focuses solely on grad-421

uate school medical exams, offering a narrower422

curriculum range. Additionally, they categorised423

questions into distinct difficulty levels of remem-424

bering, understanding, and applying knowledge425

based on Bloom’s taxonomy (Bloom et al., 1956),426

while our medical questions are more semantically427

similar and lack such clear distinctions in difficulty.428

These factors likely contribute to the better perfor-429

mance of LLMs in curriculum-based learning in430

their study.431

4.2 Generalisation of human-inspired432

learning strategies across contexts433

As shown in Table 1, the accuracy gains over Ran-434

dom Shuffle varied significantly between models,435

and the best learning strategy was not consistent436

across models and datasets. Taking the case where437

we used human-defined difficulty and predefined438

categories as data labels (Table 1a), Curriculum439

Learning was the best learning strategy for Llama440

2 7B and Llama 2 13B (+0.34 and +1.11), but failed441

to outperform the Random Shuffle for the other two442

models (-0.61 and -0.66). Among the four models,443

three different best learning strategies were iden-444

tified, each achieving maximal accuracy gains for445

one or two models. However, only one strategy,446

Interleaved Learning, consistently outperformed447

Random Shuffle across all models. A similar pat-448

tern was observed in accuracy gains in datasets.449

Overall, Curriculum Learning scored the best strat-450

egy most often (8 out of 21 times), followed by451

Interleaved Learning (Table 1).452

Variation of best learning strategy across mod-453

els Most previous studies used a single model to454

examine the effectiveness of curriculum learning,455

consistently showing performance improvements456

on several data benchmarks (Xu et al., 2020; Maha-457

rana and Bansal, 2022; Lee et al., 2024). However,458

our study found that the best learning strategy for459

one model may not be optimal for another and may460

not even outperform the Random Shuffle baseline.461

Additionally, a strategy that consistently outper-462

forms Random Shuffle across all models may not463

be the best for any specific model. Therefore, the464

effectiveness of a learning strategy for one model465

does not necessarily generalise to others.466

Variation of best learning strategy across467

datasets We found that no single learning strat-468

egy was consistently the best across all datasets,469

even that strategy outperformed Random Shuffle on 470

all datasets. This contrasts with the results of Lee et 471

al. (Lee et al., 2024), where they found Interleaved 472

Curriculum was consistently the best-performing 473

strategy across multiple datasets compared to oth- 474

ers. This discrepancy may be due to differences in 475

experimental design, as discussed in Section 4.1. 476

Although our results show that Interleaved Curricu- 477

lum achieved the highest accuracy gain (+0.66) in 478

Figure 2a, the margin of improvement compared 479

to Lee et al. (Lee et al., 2024) was considerably 480

smaller. 481

4.3 Performance of curriculum-based 482

learning with LLM-defined difficulty 483

With pre-existing categories, we observed a modest 484

accuracy increase in all curriculum-based learning 485

strategies (Curriculum Learning, Blocked Curricu- 486

lum, Interleaved Curriculum) when switching from 487

human-defined to LLM-defined difficulty (Figure 488

2). With human-defined difficulty and pre-existing 489

categories, only Interleaved Learning showed a no- 490

ticeable accuracy improvement (+0.66) over Ran- 491

dom Shuffle (Figure 2a). Upon switching to LLM- 492

defined difficulty, there was an increase in accu- 493

racy across all three curriculum-based strategies: 494

Curriculum Learning (+0.05 to +0.42), Blocked 495

Curriculum (+0.04 to +0.37) and Interleaved Cur- 496

riculum (+0.07 to +0.84) (Figure 2b). For each 497

dataset, switching to LLM-defined difficulty re- 498

sulted in the greatest increases for MedMCQA in 499

Blocked Curriculum (+0.18 to +0.92) and Inter- 500

leaved Curriculum (+0.16 to +1.81). For MedQA, 501

the greatest increase was observed in Curriculum 502

Learning (-1.05 to -0.14) (Appendix A.2). As a 503

further evidence, we fine-tuned the MedQA train- 504

ing set (11.4k data) with the Mistral 7B model, 505

the best-performing model among the four, using 506

LLM-defined difficulty and clustered categories 507

in an additional experiment (Appendix A.4). We 508

again observed that Curriculum Learning (+0.70) 509

consistently outperformed other learning strategies 510

across all three datasets (Table 5). On the other 511

hand, switching to clustered categories for fine- 512

tuning had less noticeable effects on improving 513

any specific learning strategy compared to using 514

pre-existing categories (Figure 2c). 515

Potential of using LLM-defined difficulty for 516

curriculum design These results indicate that 517

using LLM responses to automatically generate a 518

difficulty measure can enhance the effectiveness 519

7



Figure 2: Averaged accuracy gains for the learning strategies. Each bar plot shows the accuracy gains (in %)
over Random Shuffle, averaged over all model-data combinations for each learning strategy under the three data
labelling scenarios.

of curriculum-based learning strategies, leading520

to more noticeable improvements. This aligns521

with the findings of previous studies that used522

language-model-ranked difficulty to define curricu-523

lum yielding consistent accuracy gains (Maharana524

and Bansal, 2022; Xu et al., 2020). These results525

suggest that model-generated difficulty may be a526

better indicator for training LLMs and highlight527

the potential of LLM-defined difficulty as a cost-528

effective alternative to human annotations for im-529

proved curriculum design.530

4.4 Conclusions and future work531

Our study conducted a comprehensive evaluation532

of fine-tuning LLMs with human-inspired learn-533

ing strategies in medical question answering, fo-534

cusing on four key dimensions: learning strate-535

gies, models, datasets, and data labelling scenarios.536

The main findings are as follows: First, human-537

inspired learning strategies showed moderate im-538

pacts, with the maximum accuracy gains of 1.77%539

per model and 1.81% per dataset. This indicates540

some transferability of human learning behaviours541

to LLMs in this task for data-efficient fine-tuning.542

Second, there was significant variability in the ef-543

fectiveness of learning strategies across different544

models and datasets, with no single strategy uni-545

versally outperforming the others. This suggests546

caution when generalising human-inspired learning547

strategies, as effectiveness for one model or dataset548

does not necessarily translate to others. Third, us-549

ing LLM-defined difficulty metrics led to moder-550

ate accuracy improvements in the performance of 551

curriculum-based learning strategies compared to 552

human-defined difficulty. This highlights the po- 553

tential of developing model-generated difficulty 554

metrics to improve curriculum design over human- 555

defined ones. 556

Future work could investigate the impacts of 557

alternative clustering algorithms for fine-tuning. 558

Given the broadness of clustering algorithms, a 559

careful data sampling design could still lead to im- 560

proved LLM performance. For example, Shao et al. 561

(Shao et al., 2024) proposed ClusterClip Sampling, 562

which balances common and rare samples during 563

language model training based on clustered data 564

distribution, outperforming random sampled data 565

by 1%-2%. In addition, experiments could be ex- 566

tended to evaluate larger language models, such as 567

those with 70B parameters, and specialised LLMs 568

like medically fine-tuned models, to assess how 569

model size and the amount of pre-trained knowl- 570

edge affect the impact of learning strategies. Fu- 571

ture experiments could also explore the temporal 572

process of fine-tuning, investigating whether easy 573

questions are answered correctly first and how the 574

spectrum of correctly answered questions evolves 575

throughout the fine-tuning process. 576

5 Limitations 577

We identify several limitations in our study design 578

which may lead to result variations. First, we only 579

ran the experiment five times for each learning 580

strategy, and more repetitions would be needed for 581

8



establishing more precise confidence intervals and582

statistical testing. Second, the LLM-defined diffi-583

culty measure relies on the choices of LLMs for584

response collection, and the results for clustered585

categories heavily depend on the clustering algo-586

rithm and its hyperparameters, both of which may587

introduce result variations. Third, the relatively588

small size of the LEK dataset for fine-tuning may589

limit the revelation of effects from learning strate-590

gies that may only emerge with more data points591

and longer training time. For example, the bene-592

fits of Interleaved Learning might become apparent593

over longer revision intervals and more frequent re-594

vision, which our dataset might not fully capture in595

the evaluation. Similarly, the span of question diffi-596

culties in the LEK dataset may be insufficient for ef-597

fective Curriculum Learning. Future research could598

explore a curriculum that encompasses a broader599

spectrum of questions, spanning from fundamental600

medical concepts to advanced-level knowledge.601
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A Appendix966

A.1 Accuracy differences from Random967

Shuffle968

We presented the accuracy differences (in %) of969

each learning strategy compared to the Random970

Shuffle baseline in Table 6, which follows a similar971

format to Table 1.972

A.2 Accuracy gains by dataset973

We presented a fine-grained analysis of the accu-974

racy gains of learning strategies across each dataset975

in Figure 4, as an extension to Figure 2.976

A.3 Hyperparameters for fine-tuning and 977

clustering 978

We presented the hyperparameters for fine-tuning 979

and clustering. For fine-tuning models, the fixed 980

hyperparameters are as follows: For QLora, the pa- 981

rameters were set as r = 16, α = 64 and dropout 982

was set to 0.1. The optimizer used was AdamW. 983

The learning rate decay followed a linear scheduler, 984

the warmup steps were set to 0 and the maximum 985

sequence length was set to 512. Table 3 shows the 986

model-varying hyperparameters selected by grid 987

search for each model. Table 4 shows the hyper- 988

parameters for clustering with UMAP and HDB- 989

SCAN, where the hyperparameters were selected 990

using Bayesian Optimization within the specified 991

ranges. 992

Table 3: Model-varying hyperparameters for fine-
tuning on LEK. The hyperparameters were selected
by grid search for each model on the Random Shuffle
baseline. For fine-tuning Mistral 7B on the MedQA
training set (Appendix A.4), we changed the learning
rate to 1e-7 and kept the same batch size and gradient ac-
cumulation step. Abbreviations: TinyLla. = TinyLlama
model, Grad accum. = gradient accumulation steps.

TinyLla. Llama 2 Llama 2 Mistral
1.1B 7B 13B 7B

Learning rate 5e-4 5e-5 1e-4 1e-4

Batch size 16 4 4 4

Grad accum. 1 2 2 2

Table 4: Hyperparameters for clustering. Range
specifies the range of parameters for hyperparameter
search, Set specifies the hyperparameter value chosen
by Bayesian Optimization.

LEK MedQA
Range Set Range Set

UMAP
Number of [8, 20] 15 [5, 30] 5

Neighbours
Number of [3, 15] 5 [3, 20] 17

Components
HDBSCAN Minimum [25, 35] 25 [200, 250] 202

Cluster Size

A.4 Results for fine-tuning on MedQA 993

As a further experiment, we presented the results 994

for fine-tuning the MedQA training set (11.4k data) 995

with the Mistral 7B model. We used LLM-defined 996

difficulty and clustered categories, as the MedQA 997
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dataset does not contain pre-existing medical cate-998

gories medqa. The LLMs used to compute the dif-999

ficulty metrics are Mixtral 8x7B mixtral, Meditron1000

70B meditron, Llama 2 70B llama2 and Jamba1001

jamba.1002

We observed that Curriculum Learning consis-1003

tently outperformed other learning strategies across1004

all three datasets (Table 5). Curriculum Learning1005

also showed the highest accuracy gain over Ran-1006

dom Shuffle (+0.70) compared to other learning1007

strategies when averaged across all datasets (Fig-1008

ure 3).1009

Strategy LEK
Med

MCQA MedQA AVG
Random Shuffle 44.38 41.67 50.57 45.54

Curriculum 45.40 42.19 51.14 46.24
Blocked 44.76 41.70 50.71 45.72

Blocked Curri. 44.64 41.89 50.64 45.72

Interleaved 44.65 41.75 50.87 45.76

Interleaved Curri. 44.92 42.06 50.73 45.90

Table 5: Accuracy scores of Mistral 7B fine-tuned on
MedQA. The accuracy scores (in %) were computed
with LLM-defined difficulty and clustered categories as
data labels.

Figure 3: Averaged accuracy gains of Mistral 7B fine-
tuned on MedQA. The bar plot shows the accuracy
gains (in %) over Random Shuffle for each learning
strategy, averaged across all datasets.
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Table 6: Accuracy differences compared to Random Shuffle baseline. The accuracy differences (in %) of
each learning strategy compared to Random Shuffle in three data-labelling scenarios shown in Tables (a)-(c).
The accuracy difference for each model or dataset is calculated relative to the Random Shuffle baseline in Table
1. Learning strategies in gray in Tables (b) indicate unchanged results from Table (a) due to unchanged data
labels. Abbreviations: TinyLla. = TinyLlama model, Blocked Curri. = Blocked Curriculum, Interleaved Curri. =
Interleaved Curriculum, AVG = average.

Strategy Models Datasets
TinyLla. Llama 2 Llama 2 Mistral LEK Med MedQA AVG
1.1B 7B 13B 7B MCQA

Curriculum -0.61 0.34 1.11 -0.66 1.13 0.08 -1.05 0.05
Blocked 0.07 -0.25 0.26 0.13 0.44 0.17 -0.43 0.06
Blocked Curri. 1.40 -0.39 0.00 -0.87 0.29 0.18 -0.35 0.04
Interleaved 1.34 0.16 0.22 0.91 0.63 0.76 0.59 0.66
Interleaved Curri. 0.70 -0.61 0.12 0.07 0.26 0.16 -0.20 0.07

(a) Data labels: human-defined difficulty and pre-existing categories.

Strategy Models Datasets
TinyLla. Llama 2 Llama 2 Mistral LEK Med MedQA AVG
1.1B 7B 13B 7B MCQA

Curriculum 0.48 0.50 0.25 0.42 0.81 0.58 -0.14 0.42
Blocked 0.07 -0.25 0.26 0.13 0.44 0.17 -0.43 0.06
Blocked Curri. 1.44 -0.82 0.10 0.74 0.09 0.92 0.11 0.37
Interleaved 1.34 0.16 0.22 0.91 0.63 0.76 0.59 0.66
Interleaved Curri. 1.27 0.27 0.45 1.35 0.67 1.81 0.03 0.84

(b) Data labels: LLM-defined difficulty and pre-existing categories.

Strategy Models Datasets
TinyLla. Llama 2 Llama 2 Mistral LEK Med MedQA AVG
1.1B 7B 13B 7B MCQA

Curriculum 0.48 0.50 0.25 0.42 0.81 0.58 -0.14 0.42
Blocked 0.55 -0.48 0.52 -0.03 -0.33 0.49 0.27 0.14
Blocked Curri. 1.10 -0.32 0.43 -0.35 -0.43 1.15 -0.08 0.21
Interleaved 1.77 -0.48 0.46 -0.20 0.06 1.11 0.01 0.39
Interleaved Curri. 0.34 -0.26 0.44 -0.10 -0.22 1.06 -0.52 0.11

(c) Data labels: human-defined difficulty and clustered categories.
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Figure 4: Averaged accuracy gains for the learning strategies across datasets. Each bar plot shows the accuracy
gains (in %) for learning strategies over Random Shuffle across datasets. The results in each bar plot were
averaged across models. Figures (a)-(c) represent three data labelling scenarios: (a) Human-defined difficulty with
pre-existing categories; (b) LLM-defined difficulty with pre-existing categories; (c) LLM-defined difficulty with
clustered categories.

(a)

(b)

(c)
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