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Abstract

Training Large Language Models (LLMs) in-
curs substantial data-related costs, motivating
the development of data-efficient training meth-
ods through optimised data ordering and selec-
tion. Human-inspired learning strategies, such
as curriculum learning, offer possibilities for
efficient training by ordering data according to
common human learning practices. Despite evi-
dence that curriculum learning improves perfor-
mance of natural language understanding tasks
in fine-tuning LLMs, its application to domain-
specific question-answering remains underex-
plored. In this work, we comprehensively
examine the effectiveness of human-inspired
learning strategies for fine-tuning LLMs in
medical question answering. Our work comple-
ments previous studies by extending the evalu-
ation to non-curriculum-based learning across
multiple language models, using both human-
defined and automated data labels. Our results
show moderate impact in using human-inspired
learning strategies for fine-tuning LLMs, with
maximum accuracy gains of 1.77% per model
and 1.81% per dataset. However, the effec-
tiveness of these learning strategies varies sig-
nificantly across different model-dataset com-
binations, suggesting caution in generalising
human-inspired strategies for fine-tuning lan-
guage models. We also find that curriculum
learning using LLM-defined question difficulty
outperformed human-defined difficulty, high-
lighting the potential of using model-generated
metrics in optimal curriculum design.

1 Introduction

Training Large Language Models (LLMs) incurs
substantial data-related costs both in compute
(Hoffmann et al., 2022; Jeon and Roy, 2022) and
data-collection (Muennighoff et al., 2023; Xue
et al., 2023). Recent efforts have been made to
improve model performance through more efficient
use of the same training data (Sachdeva et al., 2024;

Hase et al., 2024). Building on the historic suc-
cess of human-inspired machine learning methods
(Sayal et al., 2023), human-inspired learning strate-
gies also offer possibilities for organising data or-
dering according to human learning practices to
achieve efficient training.

The most established technique for data ordering
is curriculum learning, in which training samples
are ordered from easiest to hardest (Hase et al.,
2024; Xu et al., 2020). This method has led to
some improvements in general knowledge acquisi-
tion (Lee et al., 2024), natural language reasoning
(Maharana and Bansal, 2022) and information re-
trieval (Penha and Hauff, 2019) benchmarks. In
addition, variations on curriculum learning, such
as interleaving different subject areas have also
been effective for increasing world-knowledge and
commonsense reasoning (Lee et al., 2024).

Despite evidence that curriculum learning im-
proves foundational natural language processing
capabilities in fine-tuning LL.Ms, its application to
domain-specific question-answering remains under-
explored. Medical question-answering, in particu-
lar, is a high-stakes domain requiring accurate infor-
mation retrieval, and several models fine-tuned on
medical data have been recently released to address
this need (Saab et al., 2024; Chen et al., 2023b;
Singhal et al., 2023). Previous studies on curricu-
lum learning have also considered only a single
model and curriculum strategy at a time, which
limits the generalisability of the results (Lee et al.,
2024; Maharana and Bansal, 2022; Xu et al., 2020).
Our study extends previous research by evaluat-
ing a range of human-inspired learning strategies,
including non-curriculum-based ones, across mul-
tiple models and various data labelling scenarios
for fine-tuning LLMs. Through this comprehensive
evaluation, we aim to provide insights into the use-
fulness of human-inspired learning strategies for
optimising the fine-tuning process of LLMs.

Specifically, our contributions are:



* Broad-based evaluation of human-inspired
learning strategies: Unlike previous work
that focused on individual language models
and curriculum learning, we compared four
LLMs of different sizes and architectures,
and extended the analysis to non-curriculum-
based learning strategies. Our findings in-
dicate that effectiveness of human-inspired
learning strategies varies significantly across
different model-dataset combinations.

* Compare machine-generated and human-
generated data labels: We introduced a novel
automated method for annotating question dif-
ficulty and category, using ensemble LLM
responses and text clustering to define the
learning strategies. This approach leverages
pre-trained LLMs to label data, offering a
cost-effective alternative to human annota-
tions. Our findings showed that using LLM-
defined question difficulty yielded improved
performance in curriculum learning compared
to human-defined difficulty.

2 Related Work

Data-efficient fine-tuning on LLMs Data selec-
tion and ordering methods are essential for data-
efficient fine-tuning of LLMs. Sachdeva et al.
(2024) explored data-efficient fine-tuning by assess-
ing training example quality using zero-shot rea-
soning and selecting diverse samples to represent
the data distribution. Das and Khetan (2023) used
unsupervised core-set selection to minimise data re-
quirements while maintaining accuracy. Chen et al.
(2023a) proposed a learning framework that uses an
ordered data sampling algorithm to enable efficient
learning of advanced language processing skills. In
contrast to these approaches that select high-quality
subsets of data, our research focuses on adopting
human-inspired learning strategies for data order-
ing to enhance the efficiency of fine-tuning.

Human-inspired learning for fine-tuning Cur-
riculum learning has been widely explored to
fine-tuning language models for general-purpose
natural language tasks. For example, Xu et al.
(2020) demonstrated that defining question diffi-
culty by cross-reviewing the training set with mul-
tiple teacher models and using that curriculum to
fine-tune the BERT large model led to consistent
performance improvements across various natural
language understanding tasks by up to 1.3%. Simi-

larly, Maharana and Bansal (2022) found that fine-
tuning RoBERTa with fixed and adaptive curricula
defined by a teacher model improved performance
on five commonsense reasoning tasks by up to 2%.
In addition, Lee et al. (2024) demonstrated that in-
terleaving the curriculum by subjects outperformed
other curriculum arrangements using Llama 2-13B,
improving on the MMLU benchmark by up to 3%
compared to randomly shuffled data. However,
Campos (2021) found no statistically significant
improvements when evaluating curriculum learn-
ing using a similar difficulty metrics to Xu et al.
(2020) in language modelling. Our work builds on
previous studies by extending the evaluation across
multiple models, learning strategies and data la-
belling scenarios for the task of domain-specific
question answering.

3 Methods

3.1 Experimental design

We conducted a comprehensive investigation into
the optimal data-ordering strategy, inspired by hu-
man learning, for fine-tuning language models in
medical question answering. Our study compared
the effectiveness of five specific human-inspired
learning strategies with a Random Shuffled base-
line (Section 3.2), across four LLMs (Section 3.5)
and three datasets (Section 3.3), resulting in a total
of 24 fine-tuned models (6 strategies x 4 models).
We then evaluated these fine-tuned models on three
different datasets in the medical domain. Addi-
tionally, we implemented human-inspired learning
strategies with model-generated data labels, result-
ing in three distinct data-labelling scenarios (Sec-
tion 3.4). This brings the total to 72 fine-tuned
models.

3.2 Human-inspired learning strategies

Figure 1 defines the five learning strategies using
data orderings that mimic common learning prac-
tices adopted by humans. These strategies are de-
fined based on two data labels: (i) a continuous
measure of question difficulty and (ii) a discrete
category to which each question belongs. In par-
ticular, Blocked Learning and Interleaved Learn-
ing are solely defined by category and are non-
curriculum-based, while the rest use the difficulty
measure to define the curriculum. The design of
the learning strategies was inspired by Lee et al.
(2024), who proposed incorporating blocking and
interleaving practices into the curriculum arrange-
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Figure 1: Human-inspired learning strategies. The five human-inspired learning strategies are demonstrated by
ordering data based on a continuous measure of question difficulty (arranged by arrows) and category (indicated by
block colours), alongside the Random Shuffle baseline. The first row presents non-curriculum-based strategies, and
the second row presents curriculum-based strategies. (i) Blocked Learning: Questions are grouped by category, and
randomised within each group. (ii) Interleaved Learning: Questions are grouped by category, then each category is
randomly divided into three equal parts, and questions from each part are arranged in an interleaved manner. (iii)
Curriculum Learning: Questions are sorted by difficulty in ascending order. (iv) Blocked Curriculum: Questions are
grouped by category, and then arranged in ascending difficulty within each category. (v) Interleaved Curriculum:
Following the Blocked Curriculum arrangement, questions in each category are further divided into three equal

parts, and then interleaved.

ment. We modified their learning strategies by
strictly sorting questions based on continuous val-
ues of question difficulty, instead of categorising
questions into easy, medium, and hard classes, to
avoid arbitrary distinctions between questions of
similar difficulty.

The incorporation of human learning practices
can potentialy improve the effectiveness of LLMs
by structuring their learning process to promote bet-
ter memory retention, generalisation, and prevent
catastrophic forgetting (Luo et al., 2023). Blocked
Learning groups questions by category, similar to
blocked practice in education, where focusing on
one subject at a time before moving to the next
deepens understanding (North et al., 2017; Fazeli
et al., 2017). Interleaved Learning mixes ques-
tions by different categories and revisits them pe-
riodically, similar to interleaved practice in educa-
tion, which mitigates cognitive decay by bringing
up old subjects and improves memory retention
(Carvalho and Goldstone, 2014; Firth et al., 2019).
Curriculum Learning sorts questions from easiest
to hardest, similar to traditional educational cur-
riculum where students build foundational knowl-
edge before tackling more complex tasks (Wang
et al., 2021). Blocked Curriculum combines the
two by sorting questions within each category, al-
lowing learners to build knowledge progressively
in each category (Lee et al., 2024). Interleaved

Curriculum (also called Spiral Curriculum), cy-
cles through categories in rounds with increasing
difficulty, mimicking the process of revisiting sub-
jects with progressively challenging material to re-
inforce learning, and follows a global progression
from simple to complex concepts across categories
(Johnston, 2012).

3.3 Datasets

We fine-tuned on one medical question answer-
ing dataset, and evaluated on three to test gener-
alisation. For fine-tuning, we used the Lekarski
Egzamin Konicowy (LEK) dataset (Bean et al.,
2024), which comprises of questions from the Pol-
ish medical licensing exams'. Unlike other medi-
cal multiple-choice datasets, LEK includes meta-
information about human test takers’ responses for
each question, allowing us to assess question dif-
ficulty based on the actual performance of medi-
cal students. We used the English version of the
questions from the last five exam sittings, between
spring 2021 and spring 2023. The final dataset con-
tains 874 unique questions divided into ten med-
ical categories. For evaluation, we used the LEK
dataset with cross-validation, as well as the official

'The LEK dataset is publically available at https://cem.
edu.pl/
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validation set of MedMCQA (Pal et al., 2022) 2,
and the test set of MedQA (Jin et al., 2020), which
are two popular medical question answering bench-
marks.

3.4 Data labelling scenarios

We tested the effects of learning strategies defined
by the following three data labelling scenarios on
question difficulty and category:

* Difficulty defined by human responses and cat-
egories based on pre-existing labels (already
exists in LEK);

* Difficulty defined by LLM responses and cat-
egories based on pre-existing labels;

¢ Difficulty defined by LLM responses and cat-
egories identified through clustering.

The automated data labels generated by LLM re-
sponses and clustering were tested to extend learn-
ing strategies to unlabelled data, where human an-
notations are expensive to obtain. The details of
automated labelling are described below.

LLM-annotated question difficulty We
prompted several general-purpose and medical
LLMs to answer the questions in the training set,
following the instruction prompt in Section 3.6.
For each LLM, we computed an expected accuracy
score for each question, defined as the probability
that the LLM assigns to the correct choice index.

E[Acc] = P(c) - 1(c = c¥), (1)

where P(c) is the probability assigned to choice
ce€ {AB,C,D,E},and I(c = ¢*)is lif cis
the correct answer ¢*, otherwise 0. Essentially, this
equates to the probability the model assigns to the
correct answer.

The LLM-annotated difficulty for each question
is defined as (I - expected accuracy), averaged
across the LLMs. The LLMs used to compute diffi-
culty on the LEK dataset are GPT-4 Turbo (OpenAl
et al., 2024), GPT-3.5 (Brown et al., 2020), PaLM
2 (Anil et al., 2023), Mixtral 8x7B (Jiang et al.,
2024), Meditron 70B (Chen et al., 2023b), and
Llama 2 70B (Touvron et al., 2023). We present
results using other ensemble models in Appendix
A4

2Following Wau et al. (2023) and Chen et al. (2023b), we

used the validation set as the MedMCQA test set does not
publicly provide answer keys.

Clustering-based question categories To auto-
mate category assignment, we performed text clus-
tering to group questions into semantically similar
clusters, creating question categories based on the
clustering. For clustering, we applied the BioMed-
BERT sentence embedding (Gu et al., 2020) to
the question context and answer choices. We then
used Uniform Manifold Approximation and Pro-
jection (UMAP) (Mclnnes et al., 2020) for di-
mensionality reduction, followed by Hierarchical
Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) (Mclnnes and Healy,
2017). Although UMAP does not preserve pairwise
distances, it retains global structure of data, making
it suitable for clustering purposes. A density-based
algorithm was chosen to handle noisy data and
generate clusters with variable densities without
specifying the number of clusters (Awasthi et al.,
2013). Noise points identified by HDBSCAN were
treated separately as an additional block in Blocked
Learning. The hyperparameters of UMAP and
HDBSCAN hyperparameters were optimised using
Bayesian optimization to minimise the proportion
of data points with a low probability (below 5%) of
belonging to any cluster. The final hyperparameters
for clustering are presented in Appendix A.3.

3.5 Language models

We used four open-source language models for
fine-tuning: TinyLlama 1.1B (Zhang et al., 2024),
Llama 2 7B (Touvron et al., 2023), Llama 2 13B
(Touvron et al., 2023), and Mistral 7B (Jiang et al.,
2023). Our selection ensures that we measure the
effects of learning strategies across three varying
sizes and two different model architectures. The
TinyLlama 1.1B model follows the same architec-
ture and tokenizer as Meta’s Llama 2 models, with
1.1B parameters pre-trained on 3 trillion tokens
(Zhang et al., 2024). For all Llama 2 models, we
used the chat series optimised for dialogue, as they
outperformed the base models in our experiments.
All models were accessed via Hugging Face and
fine-tuned on two NVIDIA RTX 6000 Ada cards.
To optimise memory usage, the models loaded from
Hugging Face were quantised to 4-bits with double
quantization. We did not test larger models due to
the computational costs of repeatedly fine-tuning
large models.

3.6 Supervised fine-tuning

Instruction prompt We used zero-shot prompt-
ing for each question, starting with the following



instruction:

Answer the following multiple-choice question
by giving the most appropriate response. The
answer should be one of [A, B, C, D, E].

This was followed by the question context and
the multiple-choice answers. The response tem-
plate began with ‘Answer:’, and the correct answer
index was learned to be predicted as the next token
during fine-tuning. Our zero-shot prompt structure
is designed to reflect typical exam instructions and
serves as a baseline for performance. The same
prompt structure was used for inference, where the
correct answer index was masked and predicted.

Fine-tuning method We employed the QLoRA
(Dettmers et al., 2023) method for parameter-
efficient fine-tuning of the linear layers in the
LLMs. During fine-tuning, we disabled automatic
data shuffling in PyTorch and trained the entire data
sequence in a single epoch to maintain the speci-
fied learning order. Repeating the training across
multiple epochs would violate the learning strategy
design outlined in Figure 1; for example, looping
through a Blocked practice multiple times would
effectively turn it into an Interleaved practice. We
also tried repeating the samples three times within
each block to simulate multiple batches while main-
taining the learning order, and obtained similar
results to those with no data repetition. The hy-
perparameters used for fine-tuning each model are
provided in Appendix A.3. To ensure fair com-
parisons, all learning strategies applied to a model
used the same hyperparameters selected by grid
search on the Random Shuffle baseline.

3.7 Model evaluation

Metrics for evaluation As we are dealing with
multiple-choice questions with single-label an-
swers, we relied on the LLMs to generate the next
token as one of the option indexes [A, B, C, D,
E] following the instruction prompt in Section 3.6.
We used greedy decoding as the model’s generated
answer and compared it to the true answer to deter-
mine the accuracy score. To evaluate the effective-
ness of learning strategies for fine-tuning, we calcu-
lated the maximal accuracy gain as the difference
in accuracy score between the best-performing
learning strategy and the Random Shuffle baseline.

Evaluation on learning strategies The accuracy
score for each learning strategy and the Random
Shuffle baseline was calculated by sampling each

strategy five times and averaging the results. To
ensure consistent comparisons, the category orders
used in Blocked and Interleaved strategies remain
consistent across all five samples.

4 Results and Discussion

4.1 Impact of fine-tuning with
human-inspired learning strategies

Table 1 presents the accuracy scores for all learning
strategies averaged across either datasets or mod-
els. Among the three data labelling scenarios, all
learning strategies on average achieved a positive
accuracy gain over Random Shuffle. The highest
model-wise accuracy gain was 1.77%, and the high-
est dataset-wise accuracy gain was 1.81% (Table
2). Among the four models considered, TinyLlama-
1.1B consistently demonstrated the highest accu-
racy gains (1.40%, 1.44%, and 1.77%) in all three
sets of data labels. Following the definition of max-
imal accuracy gain (Section 3.7), the average max-
imal accuracy gain was 0.94% across models and
1.02% across datasets, both achieved with LLM-
defined difficulty and pre-existing categories (Table
2).

Data labelling scenarios

Max accuracy gain | (a) (b) (c)

Top in models 1.40 1.44 1.77
Top in datasets 1.13 1.81 1.15
Average by models | 0.94 0.94 0.80
Average by datasets | 0.83 1.02 0.74

Table 2: Maximal accuracy gains in models and
datasets. The maximal accuracy gain (in %) for a
model or dataset is calculated as the difference between
the best-performing learning strategy and the Random
Shuffle baseline in Table 1. This table presents the maxi-
mal accuracy gains in models and datasets for three data
labelling scenarios: (a) Human-defined difficulty and
pre-existing categories, (b) LLM-defined difficulty and
pre-existing categories, and (c) LLM-defined difficulty
and clustered categories. Top in models and Average by
models indicate the highest and average maximal accu-
racy gains across models, respectively. Similarly, Top
in datasets and Average by datasets indicate the highest
and average maximal accuracy gains across datasets.

Modest improvement of human-inspired learn-
ing strategies over Random Shuffle Overall,
adopting a human-inspired learning strategy can
yield an accuracy gain over Random Shuffle for
any model or dataset when an appropriate learn-



Table 1: Accuracy scores across models and datasets. The accuracy scores (in %) for applying the human-inspired
learning strategies in three data labelling scenarios shown in Tables (a)-(c). The scores are averaged across datasets
and models. In the Models columns, accuracy scores are averaged across the three datasets for each model. In the
Datasets columns, accuracy scores are averaged across the four models for each dataset. Learning strategies (in
gray) in Tables (b) and (c) indicate unchanged results from Table (a) due to unchanged data labels. Abbreviations:
TinyLla. = TinyLlama model, Blocked Curri. = Blocked Curriculum, Interleaved Curri. = Interleaved Curriculum,
AVG = average.

Strategy Models Datasets
TinyLla. Llama2 Llama2 Mistral | LEK Med MedQA | AVG
1.1B 7B 13B 7B MCQA
Random Shuffle |20.40 38.71 42.57 47.97 43.55 36.28 32.40 37.41
Curriculum 19.79 39.05 43.68 47.31 44.68 36.36 31.35 37.46
Blocked 20.47 38.46 42.83 48.10 43.99 36.45 31.97 37.47
Blocked Curri. 21.80 38.32 42.57 47.10 43.84 36.46 32.05 37.45
Interleaved 21.74 38.87 42.79 48.88 44.18 37.04 32.99 38.07
Interleaved Curri. | 21.10 38.10 42.69 48.04 43.81 36.44 32.20 37.48
(a) Data labels: human-defined difficulty and pre-existing categories.
Strategy Models Datasets
TinyLla. Llama2 Llama?2 Mistral | LEK Med MedQA | AVG
1.1B 7B 13B 7B MCQA
Random Shuffle | 20.40 38.71 42.57 47.97 43.55 36.28 32.40 37.41
Curriculum 20.88 39.21 42.82 48.39 44.36 36.86 32.26 37.83
Blocked 20.47 38.46 42.83 48.10 43.99 36.45 31.97 37.47
Blocked Curri. 21.84 37.89 42.67 48.71 43.64 37.20 32.51 37.78
Interleaved 21.74 38.87 42.79 48.88 44.18 37.04 32.99 38.07
Interleaved Curri. | 21.67 38.98 43.02 49.32 44.22 38.09 3243 38.25
(b) Data labels: LLM-defined difficulty and pre-existing categories.
Strategy Models Datasets
TinyLla. Llama2 Llama2 Mistral | LEK Med MedQA | AVG
1.1B 7B 13B 7B MCQA
Random Shuffle |20.40 38.71 42.57 47.97 43.55 36.28 32.40 37.41
Curriculum 20.88 39.21 42.82 48.39 44.36 36.86 32.26 37.83
Blocked 20.95 38.23 43.09 47.94 43.22 36.77 32.67 37.55
Blocked Curri. 21.50 38.39 43.00 47.62 43.12 3743 32.32 37.62
Interleaved 2217 38.23 43.03 47.77 43.61 373 32.41 37.80
Interleaved Curri. | 20.74 38.45 43.01 47.87 43.33 37.34 31.88 37.52

(c) Data labels: human-defined difficulty and clustered categories.

ing strategy is used. However, the optimal learn-
ing strategy is not consistent, which we will dis-
cuss in Section 4.2. The maximal accuracy gains
are consistent in scale with the impact of curricu-
lum learning found in some previous studies (up
to 2%) (Maharana and Bansal, 2022; Xu et al.,
2020), but are slightly lower than those reported
by Lee et al. (Lee et al., 2024). Using similar
Blocked and Interleaved Curriculum for fine-tuning

Llama-13B on general knowledge tasks, their study
showed Interleaved Curriculum consistently out-
performed Blocked Curriculum, improving World
Knowledge and Commonsense Reasoning bench-
marks by 3.28% and 1.73%. We suspect two main
reasons for the differences in results: a broader
curriculum span and a clearer categorisation of dif-
ficulty levels. First, Lee et al. (Lee et al., 2024)
used a synthetic dataset covering a wide range of



subjects from secondary to graduate school lev-
els, whereas our dataset focuses solely on grad-
uate school medical exams, offering a narrower
curriculum range. Additionally, they categorised
questions into distinct difficulty levels of remem-
bering, understanding, and applying knowledge
based on Bloom’s taxonomy (Bloom et al., 1956),
while our medical questions are more semantically
similar and lack such clear distinctions in difficulty.
These factors likely contribute to the better perfor-
mance of LLMs in curriculum-based learning in
their study.

4.2 Generalisation of human-inspired
learning strategies across contexts

As shown in Table 1, the accuracy gains over Ran-
dom Shuffle varied significantly between models,
and the best learning strategy was not consistent
across models and datasets. Taking the case where
we used human-defined difficulty and predefined
categories as data labels (Table 1a), Curriculum
Learning was the best learning strategy for Llama
2 7B and Llama 2 13B (+0.34 and +1.11), but failed
to outperform the Random Shuffle for the other two
models (-0.61 and -0.66). Among the four models,
three different best learning strategies were iden-
tified, each achieving maximal accuracy gains for
one or two models. However, only one strategy,
Interleaved Learning, consistently outperformed
Random Shuffle across all models. A similar pat-
tern was observed in accuracy gains in datasets.
Overall, Curriculum Learning scored the best strat-
egy most often (8 out of 21 times), followed by
Interleaved Learning (Table 1).

Variation of best learning strategy across mod-
els Most previous studies used a single model to
examine the effectiveness of curriculum learning,
consistently showing performance improvements
on several data benchmarks (Xu et al., 2020; Maha-
rana and Bansal, 2022; Lee et al., 2024). However,
our study found that the best learning strategy for
one model may not be optimal for another and may
not even outperform the Random Shuffle baseline.
Additionally, a strategy that consistently outper-
forms Random Shuffle across all models may not
be the best for any specific model. Therefore, the
effectiveness of a learning strategy for one model
does not necessarily generalise to others.

Variation of best learning strategy across
datasets We found that no single learning strat-
egy was consistently the best across all datasets,

even that strategy outperformed Random Shuffle on
all datasets. This contrasts with the results of Lee et
al. (Lee et al., 2024), where they found Interleaved
Curriculum was consistently the best-performing
strategy across multiple datasets compared to oth-
ers. This discrepancy may be due to differences in
experimental design, as discussed in Section 4.1.
Although our results show that Interleaved Curricu-
lum achieved the highest accuracy gain (+0.66) in
Figure 2a, the margin of improvement compared
to Lee et al. (Lee et al., 2024) was considerably
smaller.

4.3 Performance of curriculum-based
learning with LL.M-defined difficulty

With pre-existing categories, we observed a modest
accuracy increase in all curriculum-based learning
strategies (Curriculum Learning, Blocked Curricu-
lum, Interleaved Curriculum) when switching from
human-defined to LLM-defined difficulty (Figure
2). With human-defined difficulty and pre-existing
categories, only Interleaved Learning showed a no-
ticeable accuracy improvement (+0.66) over Ran-
dom Shuffle (Figure 2a). Upon switching to LLM-
defined difficulty, there was an increase in accu-
racy across all three curriculum-based strategies:
Curriculum Learning (+0.05 to +0.42), Blocked
Curriculum (+0.04 to +0.37) and Interleaved Cur-
riculum (+0.07 to +0.84) (Figure 2b). For each
dataset, switching to LLM-defined difficulty re-
sulted in the greatest increases for MedMCQA in
Blocked Curriculum (+0.18 to +0.92) and Inter-
leaved Curriculum (+0.16 to +1.81). For MedQA,
the greatest increase was observed in Curriculum
Learning (-1.05 to -0.14) (Appendix A.2). As a
further evidence, we fine-tuned the MedQA train-
ing set (11.4k data) with the Mistral 7B model,
the best-performing model among the four, using
LLM-defined difficulty and clustered categories
in an additional experiment (Appendix A.4). We
again observed that Curriculum Learning (+0.70)
consistently outperformed other learning strategies
across all three datasets (Table 5). On the other
hand, switching to clustered categories for fine-
tuning had less noticeable effects on improving
any specific learning strategy compared to using
pre-existing categories (Figure 2c).

Potential of using LLM-defined difficulty for
curriculum design These results indicate that
using LLM responses to automatically generate a
difficulty measure can enhance the effectiveness
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Figure 2: Averaged accuracy gains for the learning strategies. Each bar plot shows the accuracy gains (in %)
over Random Shuffle, averaged over all model-data combinations for each learning strategy under the three data

labelling scenarios.

of curriculum-based learning strategies, leading
to more noticeable improvements. This aligns
with the findings of previous studies that used
language-model-ranked difficulty to define curricu-
lum yielding consistent accuracy gains (Maharana
and Bansal, 2022; Xu et al., 2020). These results
suggest that model-generated difficulty may be a
better indicator for training LLLMs and highlight
the potential of LLM-defined difficulty as a cost-
effective alternative to human annotations for im-
proved curriculum design.

4.4 Conclusions and future work

Our study conducted a comprehensive evaluation
of fine-tuning LLMs with human-inspired learn-
ing strategies in medical question answering, fo-
cusing on four key dimensions: learning strate-
gies, models, datasets, and data labelling scenarios.
The main findings are as follows: First, human-
inspired learning strategies showed moderate im-
pacts, with the maximum accuracy gains of 1.77%
per model and 1.81% per dataset. This indicates
some transferability of human learning behaviours
to LLMs in this task for data-efficient fine-tuning.
Second, there was significant variability in the ef-
fectiveness of learning strategies across different
models and datasets, with no single strategy uni-
versally outperforming the others. This suggests
caution when generalising human-inspired learning
strategies, as effectiveness for one model or dataset
does not necessarily translate to others. Third, us-
ing LLM-defined difficulty metrics led to moder-

ate accuracy improvements in the performance of
curriculum-based learning strategies compared to
human-defined difficulty. This highlights the po-
tential of developing model-generated difficulty
metrics to improve curriculum design over human-
defined ones.

Future work could investigate the impacts of
alternative clustering algorithms for fine-tuning.
Given the broadness of clustering algorithms, a
careful data sampling design could still lead to im-
proved LLM performance. For example, Shao et al.
(Shao et al., 2024) proposed ClusterClip Sampling,
which balances common and rare samples during
language model training based on clustered data
distribution, outperforming random sampled data
by 1%-2%. In addition, experiments could be ex-
tended to evaluate larger language models, such as
those with 70B parameters, and specialised LLMs
like medically fine-tuned models, to assess how
model size and the amount of pre-trained knowl-
edge affect the impact of learning strategies. Fu-
ture experiments could also explore the temporal
process of fine-tuning, investigating whether easy
questions are answered correctly first and how the
spectrum of correctly answered questions evolves
throughout the fine-tuning process.

5 Limitations

We identify several limitations in our study design
which may lead to result variations. First, we only
ran the experiment five times for each learning
strategy, and more repetitions would be needed for



establishing more precise confidence intervals and
statistical testing. Second, the LL.M-defined diffi-
culty measure relies on the choices of LLMs for
response collection, and the results for clustered
categories heavily depend on the clustering algo-
rithm and its hyperparameters, both of which may
introduce result variations. Third, the relatively
small size of the LEK dataset for fine-tuning may
limit the revelation of effects from learning strate-
gies that may only emerge with more data points
and longer training time. For example, the bene-
fits of Interleaved Learning might become apparent
over longer revision intervals and more frequent re-
vision, which our dataset might not fully capture in
the evaluation. Similarly, the span of question diffi-
culties in the LEK dataset may be insufficient for ef-
fective Curriculum Learning. Future research could
explore a curriculum that encompasses a broader
spectrum of questions, spanning from fundamental
medical concepts to advanced-level knowledge.
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A Appendix

A.1 Accuracy differences from Random
Shuffle

We presented the accuracy differences (in %) of
each learning strategy compared to the Random
Shuffle baseline in Table 6, which follows a similar
format to Table 1.

A.2 Accuracy gains by dataset

We presented a fine-grained analysis of the accu-
racy gains of learning strategies across each dataset
in Figure 4, as an extension to Figure 2.
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A.3 Hyperparameters for fine-tuning and
clustering

We presented the hyperparameters for fine-tuning
and clustering. For fine-tuning models, the fixed
hyperparameters are as follows: For QLora, the pa-
rameters were set as r = 16, o = 64 and dropout
was set to 0.1. The optimizer used was AdamW.
The learning rate decay followed a linear scheduler,
the warmup steps were set to 0 and the maximum
sequence length was set to 512. Table 3 shows the
model-varying hyperparameters selected by grid
search for each model. Table 4 shows the hyper-
parameters for clustering with UMAP and HDB-
SCAN, where the hyperparameters were selected
using Bayesian Optimization within the specified
ranges.

Table 3: Model-varying hyperparameters for fine-
tuning on LEK. The hyperparameters were selected
by grid search for each model on the Random Shuffle
baseline. For fine-tuning Mistral 7B on the MedQA
training set (Appendix A.4), we changed the learning
rate to le-7 and kept the same batch size and gradient ac-
cumulation step. Abbreviations: TinyLla. = TinyLlama
model, Grad accum. = gradient accumulation steps.

TinyLla. | Llama 2 | Llama 2 | Mistral
1.1B 7B 13B 7B
Learning rate | Se-4 Se-5 le-4 le-4
Batch size 16 4 4 4
Grad accum. |1 2 2 2

Table 4: Hyperparameters for clustering. Range
specifies the range of parameters for hyperparameter
search, Set specifies the hyperparameter value chosen
by Bayesian Optimization.

LEK MedQA
Range | Set | Range Set
UMAP Number of | [8,20] |15 |[5, 30] 5
Neighbours
Number of |[3,15] |5 |[3,20] 17
Components
HDBSCAN | Minimum [25,35] |25 | [200, 250] | 202
Cluster Size

A.4 Results for fine-tuning on MedQA

As a further experiment, we presented the results
for fine-tuning the MedQA training set (11.4k data)
with the Mistral 7B model. We used LLM-defined
difficulty and clustered categories, as the MedQA
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dataset does not contain pre-existing medical cate-
gories medqa. The LLMs used to compute the dif-
ficulty metrics are Mixtral 8x7B mixtral, Meditron
70B meditron, Llama 2 70B llama2 and Jamba
jamba.

We observed that Curriculum Learning consis-
tently outperformed other learning strategies across
all three datasets (Table 5). Curriculum Learning
also showed the highest accuracy gain over Ran-
dom Shuffle (+0.70) compared to other learning
strategies when averaged across all datasets (Fig-
ure 3).

Strategy LEK th%lA MedQA | AVG
Random Shuffle |44.38 | 41.67 50.57 |45.54
Curriculum 45.40 | 42.19 51.14 |46.24
Blocked 4476 | 41.70 50.71 |45.72
Blocked Curri. 44.64 | 41.89 50.64 |45.72
Interleaved 44.65| 41.75 50.87 |45.76
Interleaved Curri. | 44.92 | 42.06 50.73 | 45.90

Table 5: Accuracy scores of Mistral 7B fine-tuned on
MedQA. The accuracy scores (in %) were computed
with LLM-defined difficulty and clustered categories as
data labels.

+0.70

Blocked +0.36
Curriculum

+0.22

|:| Interleaved +0.18 +0.18

Interleaved
Curriculum

LLM-defined difficulty
+ cluster categories

Figure 3: Averaged accuracy gains of Mistral 7B fine-
tuned on MedQA. The bar plot shows the accuracy
gains (in %) over Random Shuffle for each learning
strategy, averaged across all datasets.
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Table 6: Accuracy differences compared to Random Shuffle baseline. The accuracy differences (in %) of
each learning strategy compared to Random Shuffle in three data-labelling scenarios shown in Tables (a)-(c).
The accuracy difference for each model or dataset is calculated relative to the Random Shuffle baseline in Table
1. Learning strategies in gray in Tables (b) indicate unchanged results from Table (a) due to unchanged data
labels. Abbreviations: TinyLla. = TinyLlama model, Blocked Curri. = Blocked Curriculum, Interleaved Curri. =
Interleaved Curriculum, AVG = average.

Strategy Models Datasets
TinyLla. Llama2 Llama?2 Mistral | LEK Med MedQA | AVG

1.1B 7B 13B 7B MCQA
Curriculum -0.61 0.34 1.11 -0.66 1.13 0.08 -1.05 0.05
Blocked 0.07 -0.25 0.26 0.13 0.44 0.17 -0.43 0.06
Blocked Curri. 1.40 -0.39 0.00 -0.87 0.29 0.18 -0.35 0.04
Interleaved 1.34 0.16 0.22 0.91 0.63 0.76 0.59 0.66
Interleaved Curri. | 0.70 -0.61 0.12 0.07 0.26 0.16 -0.20 0.07

(a) Data labels: human-defined difficulty and pre-existing categories.

Strategy Models Datasets
TinyLla. Llama2 Llama2 Mistral | LEK Med MedQA | AVG
1.1B 7B 13B 7B MCQA
Curriculum 0.48 0.50 0.25 0.42 0.81 0.58 -0.14 0.42
Blocked 0.07 -0.25 0.26 0.13 0.44 0.17 -0.43 0.06
Blocked Curri. 1.44 -0.82 0.10 0.74 0.09 0.92 0.11 0.37
Interleaved 1.34 0.16 0.22 0.91 0.63 0.76 0.59 0.66

Interleaved Curri. | 1.27 0.27 0.45 1.35 0.67 1.81 0.03 0.84
(b) Data labels: LLM-defined difficulty and pre-existing categories.

Strategy Models Datasets
TinyLla. Llama2 Llama2 Mistral | LEK Med MedQA | AVG
1.1B 7B 13B 7B MCQA
Curriculum 0.48 0.50 0.25 0.42 0.81 0.58 -0.14 0.42
Blocked 0.55 -0.48 0.52 -0.03 -0.33 0.49 0.27 0.14
Blocked Curri. 1.10 -0.32 0.43 -0.35 -0.43 1.15 -0.08 0.21
Interleaved 1.77 -0.48 0.46 -0.20 0.06 1.11 0.01 0.39
Interleaved Curri. | 0.34 -0.26 0.44 -0.10 -0.22 1.06 -0.52 0.11

(c) Data labels: human-defined difficulty and clustered categories.
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Figure 4: Averaged accuracy gains for the learning strategies across datasets. Each bar plot shows the accuracy
gains (in %) for learning strategies over Random Shuffle across datasets. The results in each bar plot were
averaged across models. Figures (a)-(c) represent three data labelling scenarios: (a) Human-defined difficulty with
pre-existing categories; (b) LLM-defined difficulty with pre-existing categories; (¢) LLM-defined difficulty with
clustered categories.
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