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Abstract

Regulatory compliance reporting in the pharmaceutical industry relies on detailed
tables, but these are often under-utilized beyond compliance due to their unstruc-
tured format and arbitrary content. Extracting and semantically representing tabular
data is challenging due to diverse table presentations. Large Language Models
(LLMs) demonstrate substantial potential for semantic representation, yet they
encounter challenges related to accuracy and context size limitations, which are
crucial considerations for the industry applications. We introduce HySem, a
pipeline that employs a novel context length optimization technique to generate
accurate semantic JSON representations from HTML tables. This approach utilizes
a custom fine-tuned model specifically designed for cost- and privacy-sensitive
small and medium pharmaceutical enterprises. Running on commodity hardware
and leveraging open-source models, HySem surpasses its peer open-source models
in accuracy and provides competitive performance when benchmarked against
OpenAI GPT-4o and effectively addresses context length limitations, which is a
crucial factor for supporting larger tables.

1 Introduction

Data tables are essential for facilitating regulatory compliance and financial reporting across industries
such as pharmaceuticals and finance. In the pharmaceutical sector, documents like Annual Product
Quality Reviews (APQRs) often contain complex, ad-hoc structured tables that present significant
challenges for integration into standard databases. While these tables hold valuable information, their
unstructured format renders them non-queryable, hindering automated processing. Our objective is to
convert these table-based assets, often stored in HTML format, into semantic JSON, which enables
direct mapping of the generated JSON keys to the field names of the database schema, facilitating
efficient integration and use in business analytics applications.

Processing real-world tables, particularly those prevalent in industries like pharmaceuticals, is a
highly challenging task. Unlike structured databases with predictable schemas, pharmaceutical tables
often have arbitrary placements of headers and data elements. Headers might appear mid-table, or
there may be multiple, inconsistent levels of headers across different documents. Appendix A.2
Figure 3 illustrates a complex pharmaceutical data table.

The arbitrariness in table presentation renders rule-based approaches ineffective for transforming
HTML tables into semantic JSON. Furthermore, developing and maintaining such algorithms
is costly and does not scale efficiently to handle frequent changes in table formats. In contrast,
large language models (LLMs) can be trained to recognize patterns and relationships within the
data, offering a more robust, scalable and adaptable solution. However, LLMs often encounter
performance challenges when handling complex tabular structures, particularly very long tables that
contain multiple instances of pharma-specific terminology.
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In this paper, we propose HySem, a pipeline designed to accurately transform HTML tables into
semantic JSON representations (refer Appendix A.3 for detailed illustrations of semantic JSON).
Central to our approach is a novel Context Optimiser, which employs a dynamic token pruning
technique to rewrite the input HTML tables. This process reduces the token count while maintaining
the semantic integrity of the data. As a result, HySem can efficiently manage large and complex tables,
including those featuring specialized pharmaceutical terminology, without sacrificing performance.

Our research was motivated by the business needs of small and medium pharmaceutical enterprises,
where cost and data privacy considerations are crucial. Specifically, our key goals are:

• On-Premise Model Deployment: Ensuring all models operate on-premise to maintain
stringent data security standards.

• Compatibility with Commodity Hardware: Enabling models to run efficiently on com-
modity hardware with cost-effective, readily available GPUs.

• Model Size Constraints: Limiting model size to under 10 billion parameters, making it
suitable for GPUs with up to 16 GB of memory.

• Open-Source Software Stack: Leveraging open-source tools and models to minimize costs
and foster accessibility.

Building on these foundational goals, we present the following contributions:

• Context Optimizer: A novel component that efficiently rewrites input data, significantly
reducing token counts and enhancing processing speed.

• Semantic Synthesizer: A custom fine-tuned model designed to produce precise semantic
representations from complex HTML tables.

• Syntax Corrector: An agentic system that identifies and corrects syntax errors in the output
JSON with minimal human oversight.

• Evaluation Methodology: A new framework that evaluates the performance of our approach
using a combination of intrinsic and extrinsic metrics.

2 Methodology

Our proposed LLM Pipeline, HySem, aims to address the challenge of converting unprocessed
raw HTML tables into a semantic JSON data structure while addressing the limitations of LLMs
concerning context length and inference time. By adopting a novel strategy for optimizing the number
of tokens, we aim to meet the industry standards for high accuracy and reduced inference time,
particularly for regulatory compliance reporting.

HySem achieves these requirements through a structured pipeline composed of three components:
Context Optimizer (ACO), Semantic Synthesizer (ASS), Syntax Corrector (ASC). ACO employs a
novel methodology for optimizing the context window utilized by HTML tables, enabling processing
of large tables. ASS transforms this optimized HTML table into semantic JSON. ASC reviews the
generated JSON for any syntax errors and outputs a syntactically-valid JSON. Figure 1 illustrates the
Hysem architecture in detail.

2.1 Context Optimizer Subsystem

The limited context size of large language models significantly constrains their ability to effectively
process large tables [17, 36]. Although models with extended context lengths can alleviate this
issue, they may sacrifice accuracy and increase processing times due to the quadratic complexity
of self-attention mechanisms [28, 30, 33]. Recent advancements in Transformer architectures, such
as Linformer [34] and Flash Attention techniques [7], have shown improvements in memory and
time complexity. Nevertheless, the critical need to reduce token count persists, as it is essential for
enabling faster inference times and optimizing the utilization of limited GPU memory, all without
sacrificing model performance.

Our approach to optimizing context length utilization stems from the observation that significant token
inefficiency arises when there is a mismatch between the tokenizer’s vocabulary and domain-specific

2



Figure 1: Hysem Architecture diagram

terminology in the input text. For example, "Amoxycillin," a widely recognized pharmaceutical
medication, is not present in the Llama 3 tokenizer’s vocabulary, leading to its representation by
multiple tokens. In addition to domain-specific terminology, other data types commonly encountered
in real-world tables, such as dates, string identifiers, and proper nouns, often fail to align with the
tokenizer’s vocabulary, further increasing token count and exacerbating inefficiency.

We introduce Context Optimizer, a novel token alignment technique designed to minimize the impact
of "token-vocabulary" misalignment. This approach optimizes token representation by aligning cell
contents in a table with the tokenizer’s vocabulary, thereby reducing the number of tokens required to
represent each cell.

The Context Optimizer operates in 2 phases: Encoding phase where we rewrite the cell contents into
a more compact form and Decoding phase which restores the original contents.

2.1.1 Encoding Phase

In the encoding phase, our process is divided into two primary stages: standard pre-processing and a
specialized token-based encoding method.

Pre-processing Steps

We begin with a set of conventional pre-processing steps. First, we remove tags and attributes from the
HTML tables that do not contribute to semantic understanding, such as those meant for styling. After
this, a minification step is applied, which strips away unnecessary white spaces, further optimizing
the HTML table for encoding.

Token-Based Encoding

Next, we apply our custom token-based encoding technique. The goal here is to represent the
content of each cell with the minimum number of tokens while ensuring that each cell has a unique
representation. The algorithm for this process is detailed in Algorithm 1.

Prior to encoding, we first sort the cells in ascending order based on the number of tokens they
contain. This strategy allows us to resolve potential collisions more easily, as cells with fewer tokens
are processed first. A collision occurs when two distinct cell contents map to overlapping token
sequences.

Our encoding process incorporates several high-level heuristics to enhance efficiency and accuracy:

a. Single Token Preservation: If a cell’s content consists of a single token, it remains unchanged.
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(a) HTML Table before optimization

(b) HTML Table after optimization

Figure 2: An illustration of a table optimized by the Context Optimizer is shown in 2a, presenting
the original HTML table without any optimization. 2b displays the same table after optimization. In
these figures, tokens within each cell are highlighted with distinct colors to facilitate easy observation
of the token count per cell. The tokenization is performed using the LLaMa 3 tokenizer.

b. Multi-Token Optimization: For cells with multiple tokens, we aim to represent the content
using only two tokens whenever possible. This approach addresses the initial attempt of encoding
with a single token, which often compromised semantic richness and resulted in inaccurate JSON
predictions.

c. Bracket Handling: We handle incomplete bracket sequences by checking if a token starts with
an opening bracket (e.g., [, {) and lacks a matching closing bracket. In such cases, we concatenate
subsequent tokens until the bracket is closed. This approach is crucial to prevent syntax errors in the
generated JSON.

Figure 2 offers a detailed illustration of the HTML table before and after optimization. For example,
in Figure 2a the cell content "Theme 1: Women’s knowledge and understanding of preeclampsia" is
tokenized into 15 distinct tokens, represented by various colors. After optimization, the same cell
content transforms into "Theme 1", consuming only 3 tokens as illustrated in Figure 2b.

The overall objective is to use the fewest tokens possible while maintaining uniqueness across all
cell contents. By treating each tokenized cell as a unit, we can reduce the total number of tokens
significantly without losing semantic integrity. A mapping table is maintained to track the original
cell content and its optimized counterpart, facilitating later restoration. The encoded HTML table is
processed by the downstream modules in the HySem pipeline, including the Semantic Synthesizer
and the Syntax Corrector.

2.1.2 Decoding Phase

In the decoding phase, the output generated by the Semantic Synthesizer is decoded to restore the
original lexicon used in the table. Given that the input HTML table is encoded in the Encoding
Phase, the output JSON produced by the Semantic Synthesizer retains these encoded abbreviations
within each of its nodes. Each node of the JSON is restored to its original lexicon by referencing the
mapping table. The resulting JSON is both semantically accurate and more efficiently processed.

A key feature of our Context Optimizer is its dynamic nature, where the mapping of input words to
optimized token sequences, as well as the corresponding decoding process, are entirely driven by the
current input. This process operates without reliance on any pre-defined static mappings.
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Algorithm 1 Token-Based Encoding Algorithm
Input: Table T with n cells {C1, C2, . . . , Cn}, each containing text.
Output: Encoded table T ′ = {E1, E2, . . . , En} with unique token representations.

Sort cells {C1, C2, . . . , Cn} in ascending order based on the number of tokens in each cell.
for each cell Ci ∈ T (after sorting) do

Tokenize Ci: Ti = {t1, t2, . . . , tk} where tj are tokens of Ci.
Apply heuristics to determine the initial encoded form Ei. ▷ Use predefined strategies

if ∃j < i such that Ei = Ej then ▷ Check if a previous encoding Ej is the same as Ei

for tk ∈ {t2, t3, . . . , tk} do
Ei = Ei ∪ tk. ▷ Concatenate additional tokens
if Ei ̸= Ej then

break. ▷ Stop once the encoding is unique
end if

end for
end if
Store the mapping (Ci, Ei).

end for
return encoded table T ′ = {E1, E2, . . . , En}.

2.2 Semantic Synthesizer

Given the LLM’s capability to comprehend deep semantic relationships, HySem adopts the open-
sourced Meta-Llama-3-8B-Base model and fine-tunes it with a manually labeled dataset for trans-
forming HTML tables into semantic JSON.

Concretely, the Semantic Synthesizer ASS accepts a HTML table Hi optimized by the Context
Optimizer, as input and produces JSON Ji as the output in the same encoded semantic space as the
optimized input HTML table. Our initial experiments indicate that adopting Prompt Engineering
to achieve this transformation results in the generation of less accurate JSON representations, as
evidenced by our Intrinsic and Extrinsic evaluations. We found that the LLM is highly sensitive to
prompts and struggles to effectively capture the wide variety present in these tables. We identified
several common failure patterns present in the JSONs generated by the LLM, which are cataloged as
Semantic Failures in Table 1.

To address these failure modes, we fine-tune the LLM to generate JSON representations that
accurately reflect the input HTML table.

Dataset

For our dataset, we require inputs as HTML tables and labels as semantic JSON. We utilize the
following two open-sourced datasets for tabular HTML sources:

PubTabNet: PubTabNet [27] is a large-scale dataset for image-based table recognition, contain-
ing over 568,000 images of tables from scientific papers along with their corresponding HTML
annotations.

FinTabNet: FinTabNet [44] is a dataset specifically designed for recognizing tables in financial
documents, containing over 112,000 tables. Each table instance annotation includes fields such as the
HTML structure and bounding box coordinates, similar to PubTabNet.

For our purposes, we extract the HTML from these sources and hand-label the corresponding JSON
annotations for these tables. We filter tables that fit within the LLM’s context length (8k context
window for Llama3) and select 1,364 HTML tables from both PubTabNet and FinTabNet. We split
the data into 756 training samples and 608 testing samples. We chose these datasets as they are public
and are reasonable representations of the Pharmaceutical and Finance verticals respectively.

We also created additional hand-labeled datasets to address the custom needs of the industry using
the proprietary customer supplied data. These proprietary datasets are used to fine-tune models that
use Semantic Synthesizer LLM as the base model.
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Failure Mode Example
Lexical errors "Characteristics" in place of "Characteristic"
Missing words "123" instead of "123 (n=25)"
Missing entire rows An entire row under a subheading missed
Misaligned keys/values A cell value placed under a different parent key
Merged Cells "95% CI": ["- 211.5", "69.0"]⇒ "95% CI": "- 211.5\n69.0"
Unicode errors "0.88 (0.53 \u2013 1.33)"⇒ "0.88 (0.53 - 1.33)"

Table 1: Semantic Failures

Failure Mode Description
Missing List Enclosure The output is expected to be a list of dictionaries, but the LLM

generated the dictionaries without enclosing them in a list.
Unmatched Curly Braces The JSON output is missing one or more curly braces, resulting

in an incomplete or unbalanced JSON structure.
Missing Commas The JSON output is missing one or more commas, leading to

improperly formatted JSON.
Incorrect Placement of Quotes For long numeric strings that include commas, such as

123,456,789, the expected output should enclose the entire string
in quotes. Instead, the output incorrectly inserts quotes within
the numeric string, producing a format like 123,"456,789".

Table 2: Structural Failures

2.3 Syntax Corrector

Syntax errors in the LLM-generated JSON output render the table unusable for further processing,
such as ingestion into databases. Consequently, correcting these syntax errors is a critical functionality,
especially for enabling automated workflows in industrial settings. To address these challenges, we
developed a Syntax Corrector, based on reflective agentic framework.

Specifically, the Syntax Corrector Asc accepts a syntactically invalid JSON Ji as input and produces
a syntactically valid JSON Jv through iterative refinement. Through self-reflection [13, 23, 20, 3, 26],
Asc iteratively refines the JSON output until a syntactically valid result is achieved or the maximum
number of iterations is reached. The algorithm for this process is detailed in Algorithm 2 of Appendix
A.5. Table 2 displays the common syntax error patterns observed in the LLM output.

3 Evaluation Methodology

For the accurate transformation of HTML tables into semantic JSON, two key objectives must be
satisfied. First, content preservation: all strings from the HTML table cells must exactly occur in the
JSON output, ensuring no information is lost during the conversion. Second, semantic accuracy: the
generated JSON must accurately represent the hierarchical and relational structure of the original
HTML table.

Building on this foundation, we develop intrinsic and extrinsic evaluation methods to measure the
content and semantic accuracy of the JSON produced by HySem. Appendix A.4 provides detailed
illustrations for intrinsic and extrinsic evaluation methods.

3.1 Intrinsic Evaluation

In intrinsic evaluation, we assess the representation of content from HTML cells in the generated
JSON. We parse the HTML using Beautiful Soup to extract the set of all the cell contents present in
the HTML input, denoted as Hset = {c1, c2, . . . , cm}. Similarly, we take the set of all elements in
the JSON, denoted as Jset = {e1, e2, . . . , en}
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To evaluate if each content item ci from Hset is present in Jset, we define an indicator function
I(ci ∈ Jset):

I(ci ∈ Jset) =

{
1 if ci ∈ Jset,
0 otherwise.

The Intrinsic Score (ISC) is then computed as:

ISC =

∑m
i=1 I(ci ∈ Jset)

m
.

Here, m denotes the cardinality ofHset.

3.2 Extrinsic Evaluation

Extrinsic evaluation assesses the semantic structure of the JSON by evaluating its ability to answer
targeted questions. This method avoids direct comparison to the ground truth JSON (Gt), which can
vary in representation. Instead, we systematically validate the structure by formulating questions that
probe specific semantic elements: In order to form a minimalistic set of questions that validate the
structure, we leverage the paths from the root node to each leaf node in the JSON. The number of
paths corresponds to the number of leaf nodes. Let P denote the set of these paths. Formally, we
define P as:

P = {pi | pi = (n1, n2, . . . , nk−1)}

Here, (n1, n2, . . . , nk) represents a sequence of nodes starting from the root node n1 till a leaf node
nk in the JSON structure. For each path pi ∈ P , we prompt an LLM (Mq) with Gt and pi as inputs,
instructing it to generate a single question Qi. This question is targeted so that the value at the leaf
node of the path is the expected answer Ke.

An Evaluator LLM (Meval) takes as input the HySem-generated JSON (Jp), a question (Qi), and the
expected answer (Ke). The Evaluator LLM predicts an answer (Kp) and compares its prediction with
the expected answer (Ke), all in a single pass through the LLM.

Hypothesis: Verifying each leaf node in the JSON is sufficient to confirm the structure’s accuracy. If
the JSON is incorrect, it will fail to answer questions about these leaf nodes accurately.

The Evaluator LLM computes the score for the i-th question-answer pair as follows:

Meval(pi) =

{
1 if Kp = Ke,
0 otherwise.

The Extrinsic Score (ESC) is computed as:

ESC =
1

|P|
∑
pi∈P

Pred(pi).

4 Results

We present the results of HySem, measured on 608 testing samples manually annotated from the
open-sourced FinTabNet and PubTabNet datasets. The performance of our pipeline was evaluated
using both intrinsic and extrinsic metrics, as described in the previous section, ensuring a thorough
and well-rounded assessment. The results demonstrate that HySem delivers competitive performance
compared to industry-leading models and outperforms popular open-source LLMs while excelling
significantly in terms of token efficiency.

4.1 Baselines and Benchmarking

Our method uses LLaMA-3-Base as the foundational LLM, which we fine-tune to enhance perfor-
mance for our specific table transformation task. To assess the improvements gained, we benchmarked
HySem against popular open-source and proprietary models, including Meta LLaMA-3-8B-Instruct,
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Model Intrinsic Score Extrinsic Score
Meta-Llama-3-8B-Instruct 66.25 84.42
Phi-3-Medium-128K-Instruct 56.78 82.39
GPT-4o 93.43 90.15
HySem (Ours) 91.12 88.39

Table 3: Benchmarking Results

Description Metric
Number of test samples 608
Number of tokens before Token-based Encoding (A) 366608
Number of tokens after Token-based Encoding (B) 224082
Token Efficiency(%) 38.87

Table 4: Token Efficiency Metrics

Microsoft Phi-3-Medium-128K-Instruct, and OpenAI GPT-4o. Table 3 shows our benchmarking
results.

LLaMA-3-8B-Instruct: HySem surpasses LLaMA-3-8B-Instruct by over 25% in intrinsic accuracy
and 3.97% in extrinsic scores, proving that our task-specific fine-tuning significantly enhances the
model’s capabilities.

Phi-3-Medium-128K-Instruct: The Phi-3 model displayed weak performance on intrinsic metrics
but fared better in extrinsic evaluations, achieving 82.39%. HySem outperformed Phi-3 in both areas,
demonstrating its superiority as a fine-tuned model specialized for this task.

GPT-4o: While GPT-4o demonstrates superior overall accuracy metrics, largely due to extensive
training on diverse datasets, particularly involving HTML and XML table formats [28], HySem
maintains a competitive edge. Although trailing by 2% in accuracy, HySem offers substantial
advantages such as on-premise deployment on commodity hardware, cost-effectiveness, and enhanced
data privacy—essential requirements for many enterprises.

4.2 Token Reduction Efficiency

We evaluated the token reduction efficiency of HySem’s Context Optimizer, which enhances token
usage while maintaining semantic accuracy. HySem improves model efficiency, resulting in faster
inference times and reduced computational overhead.

Token Efficiency is defined as:

Token Efficiency =

(
1− B

A

)
× 100 (1)

Table 4 shows that HySem achieves over 38% token efficiency, reflecting a substantial reduction
in the token count required for processing, thereby enhancing the LLM inference throughput. The
results demonstrate significant benefits gained with using our Token-based encoding method.

5 Conclusion and Future Work

We successfully implemented the HySem LLM Pipeline, which generates semantic JSON output
from HTML tables. The Context Optimizer significantly improved context utilization, enabling us
to process larger tables. Currently, we are piloting our product with a well-known pharmaceutical
enterprise that operates multiple production plants and serves a global customer base. This model
powers several downstream applications, including analytics from regulatory compliance documents
and the automatic creation of these documents. Our future work includes supporting even larger
tables that span multiple pages, developing techniques to improve processing speed, and building
custom models for other verticals.
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A Appendix

A.1 Related Works

LLMs for Tabular Data

Tables are a fundamental method for presenting structured information across various industrial
applications, including regulatory information in the pharmaceutical industry and financial reports for
businesses. Some shared characteristics and inherent challenges in tables as mentioned by [9] include
Heterogeneity [5], Sparsity, Context-based interconnection [18], Lack of prior knowledge [4, 5], etc.
Recent advancements in Large Language Models [1, 14, 31, 8] have shown promise in addressing
these challenges for various table related tasks. Some table related tasks and techniques include
entity matching and data-imputation [16, 15], tabular Q&A [6, 35, 41, 25], schema augmentation
[22], Serialization [39, 37], Table Manipulation [40], Table Understanding [19], Prompt Engineering
[43, 45], Table RAG [29]. Role-play [42].

LLMs and HTML

Recent research has explored various uses of HTML to enhance NLP tasks. [21, 38] utilize LLMs
for Web Navigation tasks involving HTML input formats. [2] developed the HyperText Language
Model (HTLM), which leverages HTML’s structural elements to improve tasks like zero-shot
summarization and question answering. Their approach utilizes HTML for structured prompting
and template-based guidance but is largely confined to standard NLP tasks and assumes predefined
HTML structures, such as <title> elements. [11] focused on HTML understanding through tasks like
semantic classification, description generation, and autonomous web navigation. They identified the
context window length as a significant bottleneck, noting that even models supporting longer token
sequences struggle with performance degradation when processing larger snippet sizes.

In contrast to the aforementioned works, our approach focuses not merely on HTML, but specifically
on the more complex domain of HTML tables particularly Pharmaceutical tables, which present
significant challenges due to their hierarchical and relational structure. HTML tables often contain
multi-level headers, rowspan and colspan attributes, and intricate relationships between cell elements,
making their transformation into a semantic format far more demanding. Our work uniquely tackles
this complexity by performing a table transformation task, converting HTML tables into semantic
JSON. This transformation is further enhanced by our Context Optimizer, which efficiently reduces
token usage while preserving the intricate relationships between table elements. Unlike previous
approaches, which focus on predefined HTML structures, our method handles the complexities of
tables dynamically, ensuring both structural accuracy and computational efficiency. To the best of
our knowledge, this is the first approach to transform complex HTML tables into semantic JSON in
a context-length optimized manner.

Context Optimization for Tables in LLMs

Recent advancements in context-length optimization have primarily focused on improving LLM
performance for text-based tasks [24, 10, 12], but limited work has been done to address the unique
challenges presented by tables. [28] tackled context length limitations by serializing tables into text
formats. While these methods help fit table data within the model’s context window, serialization
can lead to the loss of structural nuances and detailed information. In contrast, [32] introduces
a novel encoding method tailored for spreadsheet data. While effective in reducing token usage
and computational costs, it addresses a different use-case (spreadsheets) compared to our work
(HTML tables). Additionally, the encoding method primarily leverages format and structure based
optimisations, whereas our approach rewrites the input to ensure alignment with the tokenizer.

Our approach specifically targets HTML tables of arbitrary structure, ensuring that hierarchical
and relational elements are preserved during HTML to JSON transformation task. By utilizing our
Context Optimizer, we ensure semantic integrity is maintained even during token pruning, unlike
text-based methods where reducing detail (e.g., abbreviating "potassium clavulanate" to "potassium")
would alter the meaning. This is a significant advantage in transforming HTML tables into semantic
JSON without compromising accuracy.
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A.2 Complex Pharmaceutical Data Table

Figure 3: This table compares various dosage regimens of Glucophage and Glu-
cophage XR. The challenge in converting it to semantic JSON lies in its nested
categories, including dosage, measurement types, and time points. Each combina-
tion of dose, metric, time point, and statistical details (mean change, confidence
intervals) must be accurately mapped to database schema keys. Ensuring data
integrity while managing variability in column structures (e.g., different dosage
forms, units, and confidence interval ranges) is essential for creating a usable
semantic representation.

A.3 Semantic JSON

In our paper, the term "Semantic JSON" refers to a JSON representation where the keys are
designed to accurately mirror the hierarchical structure of the JSON tree and align directly with the
database schema. This ensures that the JSON output is not only well-structured but also semantically
meaningful. Figure 5 provides an example of such a Semantic JSON output, as generated by Hysem.

To highlight the effectiveness of our approach, we compare the outputs generated by other models,
namely Meta-Llama-3-8B-Instruct and Microsoft-Phi-3-128K-Instruct, as illustrated in Figures 6 & 7
respectively. These illustrations show how the JSON representations from these models differ from
ours, particularly in terms of hierarchical accuracy and schema alignment.
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Figure 4: Sample Table to illustrate Semantic JSON

HySem output versus Meta LLama 3 8B Instruct and Microsoft Phi 3 128K Instruct

The sample illustrates that the Llama 3 output has missed certain fields, such as ’Slipped Side’ and
’Non-slipped Side.’ In contrast, Phi 3 has introduced several errors, including misplacing values
under the incorrect hierarchy. For instance, the p-value of 0.717 is erroneously placed under the
’range_values’ subtree for the ’Non-slipped Side.’

Figure 5: Hysem JSON Figure 6: LlaMa3 JSON Figure 7: Phi3 JSON
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A.4 Evaluation Methodology Illustrations

The performance of HySem is assessed using both intrinsic and extrinsic evaluation methods. Intrinsic
evaluation focuses on how accurately the input HTML strings are converted to JSON, while extrinsic
evaluation assesses how effectively the semantic structure is preserved.

Figure 8: Sample of HTML Table for illustration

For the given HTML table, the HySem generated semantic JSON and the ground-truth (GT) JSON
are as below.

Figure 9: Hysem JSON Figure 10: GT JSON
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The Intrinsic Evaluator’s evaluation results are presented in Table 5. Here, each unique cell content
of the original HTML table is compared directly to the nodes of the JSON.

We initially used metrics to measure how well the JSON preserved the "frequency" of each string from
the HTML. However, this method presented problems. For e.g., a cell content could appear repeatedly
in the JSON for each row entry, unlike its single occurrence in the HTML. This discrepancy can skew
the accuracy of metrics based on string frequency.

To address this, we simplified the approach by ensuring each unique string from the HTML appears
at least once in the JSON. While it’s a reasonable estimate of performance, we recognise that this is
an area for future improvement.

Cell Content Presence in Hysem JSON (Yes/No)
"Gum use" ✓
"Time" ✓
"Baseline" ✓
"Polyol" ✓
"Subjects (n)" ✓
"90" ✓
"Mean ± SD" ✓
"5.32 ± 0.43" ✓
"Xylitol" ✓
"89" ✓
"5.41 ± 0.35" ✓
"p value one-way ANOVA" ✓
"0.29" ✓
"6 months" ✓
"79" ✓
"5.22 ± 0.21" ✓
"77" ✓
"5.33 ± 0.46" ✓
"0.31" ✓
"12 months" ✓
"72" ✓
"5.33 ± 0.42" ✓
"71" ✓
"5.16 ± 0.42" ✓
"0.03" ✓
"No-gum use" ✓
"24 months" ✓
"64" ✓
"5.33 ± 0.46" ✓
"66" ✓
"5.15 ± 0.64" ✓
"0.04" ✓
"<0.01" x
"0.42" x
Intrinsic Score: 94.11%

Table 5: Intrinsic Evaluation results

The Extrinsic evaluation measures the semantic accuracy of the LLM generated JSON. In the
example table, there are 21 unique paths from the root node to each leaf node of the GT JSON. As
mentioned, the number of paths is equal to the number of leaf nodes. LLM (Mq) accepts GT JSON
and a path and outputs a single question such that the expected answer is the leaf node of the path.
Table 6 illustrates the paths, corresponding LLM generated questions and the GT answer.
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Path Question GT Answer
Gum use > Time > Baseline
> Polyol > Subjects (n)

What is the number of subjects in the base-
line group that used gum containing polyol?

90

Gum use > Time > Baseline
> Polyol > Mean ± SD

What is the average amount of gum used by
subjects at baseline, with a standard devia-
tion?

5.32 ± 0.43

Gum use > Time > Baseline
> Xylitol > Subjects (n)

What is the number of subjects in the base-
line group that used Xylitol?

89

Gum use > Time > Baseline
> Xylitol > Mean ± SD

What is the average amount of Xylitol used
by subjects at baseline, with a standard de-
viation?

5.41 ± 0.35

Gum use > Time > Baseline
> p value one-way ANOVA

What is the p-value of the one-way ANOVA
test for the baseline data?

0.29

Gum use > 6 months >
Polyol > Subjects (n)

What is the number of subjects in the group
that used gum for 6 months and was given
polyol?

90

Gum use > 6 months >
Polyol > Mean ± SD

What is the mean value of gum usage after
6 months for polyol?

5.22 ± 0.21

Gum use > 6 months > Xyli-
tol > Subjects (n)

What is the number of subjects in the group
that used Xylitol for 6 months?

77

Gum use > 6 months > Xyli-
tol > Mean ± SD

What is the mean value of Xylitol at 6
months, along with its standard deviation?

5.33 ± 0.46

Gum use > 6 months > p
value one-way ANOVA

What is the p-value of the one-way ANOVA
test for the comparison between Polyol and
Xylitol at 6 months?

0.31

Gum use > 12 months >
Polyol > Subjects (n)

How many subjects were in the group that
used gum for 12 months and had a polyol
treatment?

72

Gum use > 12 months >
Polyol > Mean ± SD

What is the average value of gum use for 12
months with polyol, along with its standard
deviation?

5.33 ± 0.42

Gum use > 12 months > Xyl-
itol > Subjects (n)

What is the number of subjects in the group
that used Xylitol for 12 months?

71

Gum use > 12 months > Xyl-
itol > Mean ± SD

What is the mean value of Xylitol at 12
months, along with its standard deviation?

5.16 ± 0.42

Gum use > 12 months > p
value one-way ANOVA

What is the p-value of the one-way ANOVA
test for the comparison at 12 months?

0.03

No-gum use > 24 months >
Polyol > Subjects (n)

How many subjects were in the group that
did not use gum and had a follow-up at 24
months, with a focus on polyol?

64

No-gum use > 24 months >
Polyol > Mean ± SD

What is the mean value of gum usage after
24 months for subjects using polyol, along
with its standard deviation?

5.33 ± 0.46

No-gum use > 24 months >
Xylitol > Subjects (n)

How many subjects were in the group that
did not use gum and had data collected at
24 months, with a focus on xylitol?

66

No-gum use > 24 months >
Xylitol > Mean ± SD

What is the mean value of Xylitol at 24
months for subjects with no gum use, along
with its standard deviation?

5.15 ± 0.64

No-gum use > 24 months >
p value one-way ANOVA >
Polyol > Mean ± SD

What is the mean difference in standard de-
viation of ’p value one-way ANOVA’ for
’Xylitol’ for ’Polyol’ at 24 months in a
group with no gum use?

0.42

No-gum use > 24 months >
p value one-way ANOVA >
Xylitol > Mean ± SD

What is the mean difference in standard de-
viation of ’p value one-way ANOVA’ for
’Xylitol’ at ’24 months’ under ’No-gum
use’?

< 0.01

Table 6: Paths, Questions and GT Answers of Extrinsic Evaluation
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The evaluator LLM (Meval), predicts an answer, given the LLM-generated JSON, a single question,
and the expected answer as inputs. It then compares its prediction with the expected answer to
generate a score, all in a single pass through the LLM. Table 7 shows the predicted answers and the
extrinsic scores computed for each question, along with the overall extrinsic score.

Predicted Answer Score
90 1

5.32 ± 0.43 1

89 1

5.41 ± 0.35 1

0.29 1

90 1

5.22 ± 0.21 1

77 1

5.33 ± 0.46 1

0.31 1

72 1

5.33 ± 0.42 1

71 1

5.16 ± 0.42 1

0.03 1

64 1

5.33 ± 0.46 1

66 1

5.15 ± 0.64 1

0.04 0

0.03 0
Extrinsic Score 90.47%

Table 7: Extrinsic Evaluation results

A.5 Syntax Corrector: Algorithm

Our Semantic Synthesizer incorporates a custom fine-tuned model specialized in generating JSON
outputs. However, occasional syntax errors may occur in the generated output. The Syntax Corrector,
part of the HySem pipeline, handles these erroneous JSONs by performing LLM-assisted auto-
correction via self-reflection. We instruct the LLM with the following prompt:
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"The JSON given below contains syntax errors. Your task is to correct
them and provide the corrected output. Provide ONLY the corrected output,
without any additional explanation. ’input_string’: {json_input}"

Algorithm 2 presents the syntax correction algorithm.

Algorithm 2 Syntax Corrector

Require: Syntactically invalid JSON Jinvalid from LLM
Ensure: Syntactically valid JSON Jvalid

1: Jcurrent ←Jinvalid
2: iterations← 0
3: while syntax errors in Jcurrent and iterations < max_iterations do
4: if Jcurrent is syntactically invalid then
5: Jcurrent ←Asv(Jcurrent)
6: end if
7: iterations← iterations + 1
8: end while
9: Jvalid ←Jcurrent

10: return Jvalid
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