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Abstract

A text encoder within Vision-Language Mod-001
els (VLMs) plays a crucial role in translating002
textual input into an embedding space shared003
with images, thereby facilitating the interpre-004
tative analysis of vision tasks through natural005
language. Despite varying significance of dif-006
ferent textual elements within a sentence, de-007
pending on the context or intended purpose,008
efforts to control the prominence of diverse tex-009
tual information when constructing text embed-010
dings have been lacking. This paper proposes011
a framework called Semantic Token Reweight-012
ing, aiming to incorporate Controllability while013
ensuring Interpretability of text embeddings014
(SToRI). SToRI refines the text encoding pro-015
cess in VLMs by differentially weighting se-016
mantic elements based on contextual impor-017
tance, enabling finer control over emphasis re-018
sponsive to user preferences and data-driven in-019
sights. The efficacy of SToRI is demonstrated020
through comprehensive experiments, showcas-021
ing its strength in image retrieval tailored to022
user preferences and its capability in few-shot023
image classification tasks.024

1 Introduction025

As artificial intelligence (AI) systems based on026

deep learning models grow in application in our027

daily lives, their black box nature raises issues of028

transparency, resulting in a demand for enhanced029

interpretability to promote trust in AI systems (Mur-030

doch et al., 2019; Li et al., 2022). Consequently,031

research efforts have been focused on making the032

systems’ decision-making processes more human-033

understandable through various explanatory meth-034

ods (Simonyan et al., 2014; Kim et al., 2018; Goyal035

et al., 2019; Wu and Mooney, 2019). Among the036

various forms of explanation, natural language has037

emerged as an excellent medium due to its human-038

friendly nature and adeptness in managing high-039

level abstractions (Kayser et al., 2021; Sammani040
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Figure 1: Examples of retrieved images through SToRI
with a given text prompt. The order varies depending
on the emphasized (blue) textual information.

et al., 2022). These advantages have led to a grow- 041

ing interest in research that utilizes natural lan- 042

guage for interpretative analysis, extending even 043

to domain of vision tasks (Hendricks et al., 2021; 044

Yang et al., 2023). To facilitate the use of natural 045

language in vision tasks, Vision-Language Mod- 046

els (VLMs) like CLIP (Radford et al., 2021) are 047

commonly deployed to bridge visual information 048

and its linguistic interpretation (Yuksekgonul et al., 049

2023; Yang et al., 2023; Oikarinen et al., 2023). 050

Two encoders of VLMs translate an input image 051

and text into image and text embeddings, respec- 052

tively, which take vectorized forms and coexist in 053

a shared embedding space. 054

Natural language sentences often carry multiple 055

implications, with varying levels of significance 056

that can change based on the desired outcome, even 057

if the text remains unchanged. For instance, when 058
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searching for images using the query ‘a castle sur-059

rounded by trees,’ a standard text query might bring060

up relevant images, but the preference on ‘trees’ rel-061

ative to ‘a castle’ could differ based on user intent062

(see Figure 1). Texts rich in detail may benefit063

from selectively emphasizing certain information064

relevant to the task. However, existing methods065

lack the ability to fine-tune the importance given066

to specific pieces of information within text em-067

beddings produced by the text encoders of VLMs.068

This paper endeavors to create text embeddings that069

can incorporate a varying controlled importance of070

each semantic element within a sentence.071

To meet our objective, we introduce a novel072

framework termed Semantic Token Reweighting073

for Interpretable and Controllable textual represen-074

tation (SToRI), which refines the focus on indi-075

vidual semantic components during text embed-076

ding extraction in VLMs. Each semantic element077

is assigned a numerical weight, denoting its sig-078

nificance, and these weights modulate the self-079

attention mechanism in text encoding. The pro-080

posed method makes it possible for the final text081

embedding vector to naturally include the desired082

emphasis on specific semantic elements, allowing083

for controllability. Moreover, the emphasis on par-084

ticular semantic meanings remains within the realm085

of interpretability. SToRI efficiently produces text086

embeddings that reflect the desired focus without087

necessitating the training of new modules.088

Our framework enables text embeddings to be089

tailored in two ways: user-driven and data-driven.090

In the user-driven approach, individuals can set the091

weight for each semantic token, allowing them to092

emphasize the elements they consider most relevant093

and customize the model to fit their preferences,094

as shown in Figure 1. On the other hand, the data-095

driven method derives token weights from training096

on dataset, facilitating the creation of text embed-097

dings that are optimized for specific tasks like im-098

age classification and offer interpretable insights099

into the classifiers derived from texts. These en-100

hancements have been substantiated through eval-101

uation across various image recognition tasks, in-102

cluding image retrieval and few-shot classification.103

Our main contributions are outlined as follows:104

• We propose a novel framework of semantic105

token reweighting, which differentiates the106

importance of textual information during the107

construction of text embeddings in VLMs.108

• Our approach facilitates the customization109

of emphasis on specific semantics, and we 110

demonstrate its usefulness in image retrieval 111

tasks with a new metric for controllability. 112

• We demonstrate that our methodology not 113

only builds improved text classifier in few- 114

shot learning tasks but also unlocks a new 115

dimension of interpretability. 116

2 Preliminary: Text embeddings in CLIP 117

The text encoder of CLIP (Radford et al., 2021), 118

which utilizes a transformer-based architecture, 119

transforms a given text prompt into a single vector 120

through the following process. Initially, a given 121

text prompt is converted into a sequence of text 122

tokens {xi}Ni=1, where N represents the number 123

of the text tokens. Tokens indicating the start and 124

end, [SOS] and [EOS] tokens, are appended at the 125

beginning and the end of the sequence of tokens, 126

resulting in the extended series {xi}N+1
i=0 , with x0 127

and xN+1 representing the [SOS] and [EOS], re- 128

spectively. Each text token is then converted into 129

an embedded input token, and positional embed- 130

ding is added, resulting in the input embedding for 131

the first transformer block {z0i }
N+1
i=0 . For the l-th 132

block of the encoder, the input tokens can be rep- 133

resented as Z l−1 = [zl−1
0 , ..., zl−1

N+1]. The output 134

tokens from the l-th block is given by: 135

Z l = Blockl(Z l−1), (1) 136

where l ∈ [1, L] with the encoder consisting of 137

L blocks. Each block contains a multi-head self- 138

attention mechanism. First, Z l−1 is projected into 139

the query Q, key K, and value V . Then, the atten- 140

tion process is performed as follows: 141

Attention(Q,K, V ) = AV,

s.t. A = softmax(QKT ).
(2) 142

Scaling and masking operations are omitted for 143

simplicity. Through the attention mechanism, to- 144

kens influence each other, and the values of A rep- 145

resent the extent to which they influence one an- 146

other (Vaswani et al., 2017). In general, the final 147

output text embedding of the [EOS] token encapsu- 148

lates the full semantic meaning of the text prompt. 149

This embedding is compared with image embed- 150

dings to assess the degree of correspondence with 151

images once it has been projected into a multi- 152

modal embedding space. 153

A pre-trained CLIP model is commonly em- 154

ployed for image classification, where given an 155
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image, it computes similarity scores with class156

names, which become logits. To adapt the model157

to a specific dataset, fine-tuning is performed by158

minimizing the cross-entropy loss as follows:159

L = LCE(y, sim(ϕT , ϕI)/τ), (3)160

where ϕT and ϕI represent output text and image161

embeddings from two encoders, respectively, and162

τ is a temperature factor.163

3 Method164

Our goal is to adjust the importance of various tex-165

tual elements while encoding a given text prompt166

into a single text embedding vector. To achieve our167

goal, we propose Semantic Token Reweighting,168

which involves adjusting the attention given to in-169

dividual tokens within the text encoding, guided by170

their respective weights. First, in Section 3.1, we171

elaborate on the methodology underlying Semantic172

Token Reweighting. Subsequently, in Section 3.2,173

we introduce two control strategies that leverage174

this technique. Figure 2 presents an overview of175

our comprehensive framework.176

3.1 Semantic Token Reweighting177

In natural language processing, a given text is178

tokenized prior to encoding, resulting in one or179

more tokens. Consequently, to emphasize or de-180

emphasize a particular semantic element, one must181

focus on the corresponding tokens. Henceforth, our182

discussion will center on the process of reweighting183

in terms of these tokens.184

Given a sequence of text tokens {xi}Ni=1, we185

first define a sequence of weights {wi}Ni=1, where186

wi is the level of significance of token xi. Note187

that wi = 1 indicates a typical weight in common188

situations, where xi is neither emphasized nor de-189

emphasized. Our goal is to modulate the impact190

each token has on the final output embedding of191

the text prompt. As elaborated in Section 2, tokens192

interact with each other through attention mech-193

anisms. Each token generates its embedding by194

referencing other tokens, including itself, in pro-195

portion to the attention scores. Consequently, as196

the attention score of a specific token increases,197

its influence on the text embedding becomes more198

substantial. Therefore, we directly multiply the199

weights {wi}Ni=1 to amplify original attention val-200

ues proportionally. From Eq. (2), the weighted201

attention scores can be reformulated as follows:202

âm,n =
wn exp (qmkTn )∑
j wj exp (qmkTj )

, (4)203

MatMul

Attention

MatMul

Scale

Mask

Weighted Softmax

User-driven Control

Data-driven Control

Weight
control

∗

Figure 2: Overview of SToRI. The weights can be deter-
mined through either user-driven or data-driven control.
The weight vector is represented as W = [w1, ..., wN ].

where âm,n represents attention value for n-th 204

value token to be attended by m-th query token. 205

qm and kn represent vector elements of Q and K, 206

respectively. Through this process, we can selec- 207

tively enhance the influence of particular tokens 208

during the attention process by simply changing 209

the corresponding weights. 210

The reweighting process is applied to all blocks 211

following a certain block. Experimentally, we con- 212

firm that the effects are similar regardless of start- 213

ing from any intermediate block. Please refer to 214

Appendix B.3 for further details. 215

3.2 Strategies to Control 216

There are two approaches to determine weights for 217

tokens: user-driven and data-driven control. 218

User-driven control applies to scenarios where 219

the user assigns weights to each token. This method 220

allows user to determine a particular textual in- 221

formation to be emphasized or de-emphasized ac- 222

cording to their intentions, thereby influencing the 223

resulting text embeddings. 224

Data-driven control determines weights by 225

learning from data. This approach is suitable when 226

data is available and we want to obtain text embed- 227

dings that align closely with the data. An illustra- 228

tive task where this can be effectively applied is im- 229

age classification. In image classification, weights 230

are trained using Eq. (3), where ϕT is obtained 231

with âi,j , allowing only {wi}Ni=1 to be updated. 232

Since the weights are trained to build text embed- 233

dings that correspond well to image belonging to 234

their corresponding classes, we can interpret which 235

textual information prominently stands out in the 236

image data with the weights. 237
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4 Experiments238

We evaluate SToRI under two scenarios: user-239

driven and data-driven controls. In the user-240

driven scenario, we demonstrate its application241

in preference-based image retrieval. In the data-242

driven scenario, we show its effectiveness in train-243

ing an enhanced classifier for few-shot image clas-244

sification and interpreting the classifier through its245

weights.246

4.1 User-driven Control247

To assess the effectiveness of SToRI in emphasiz-248

ing or de-emphasizing specific information based249

on applied weights, we compare the ordering of250

retrieved images using text embeddings.251

4.1.1 Experimental Setup252

Dataset. The CelebA dataset (Liu et al., 2015)253

contains over 200K face images, each annotated254

with 40 attributes. Three attributes are chosen to255

create eight categories based on their presence or256

absence. Each category comprises 100 randomly257

selected images, resulting in a total of 800 images.258

For more details, please refer to Appendix A.1.259

Image Retrieval with Preference. We construct260

a text prompt containing the selected attributes.261

For instance, the text prompt becomes ‘a photo262

of a woman with blonde hair, wearing263

eyeglasses’ for the attributes female, blonde hair,264

and eyeglasses. Using the text prompt and attribute265

weights, we obtain a corresponding text embedding266

through SToRI, followed by sorting the images in267

descending order of similarity between their image268

embeddings and the text embedding.269

Model. All experiments are conducted using CLIP270

ViT-L/14 (Radford et al., 2021), where reweighting271

is applied from the 7th block unless specified.272

4.1.2 Metric for Preference Retrieval273

Our primary focus is on observing how adjusting274

weights for specific semantic elements affects the275

image retrieval order. To facilitate this comparison,276

we report the average precision score (AP) and277

precision (P@400) for images with the attributes278

influenced by the adjusted weights. For instance,279

when we modify the weight on ‘eyeglasses’, we280

consider images with eyeglasses as positive sam-281

ples and calculate AP and P@400.282

Additionally, we introduce a novel metric to283

quantify priority in preference retrieval. We gener-284

ate a line plot illustrating the proportion of images285

retrieved for each attribute combination up to the286

with blonde hair: 1.0
wearing eyeglasses: 1.0

with blonde hair: 2.0
wearing eyeglasses: 0.2

Figure 3: Results of preference retrieval using the text
prompt ‘a photo of a woman with blonde hair,
wearing eyeglasses’. The first row shows density
plots with the retrieval order, and the second row visual-
izes the ratio of retrieved samples within each category.
The left column shows results from a plain text prompt,
whereas the right column depicts the results when the
weights are adjusted. Best viewed in color.

AP P@400

Plain (w = 1.0) 0.689±0.052 0.615±0.050

Emphasized 0.708±0.049 0.630±0.048
(w = 1.5) ∆0.020±0.011 ∆0.015±0.010

De-emphasized 0.652±0.063 0.594±0.054
(w = 0.5) ∆-0.037±0.022 ∆-0.021±0.013

Table 1: Retrieval performance on attributes of the
CelebA dataset. The results show mean values with
standard deviation across multiple controlled attributes.

n-th retrieved image (see Figure 4), and calculate 287

the Area Under the Curve (AUC) for each plotted 288

curve. A higher AUC value suggests a faster re- 289

trieval of associated visual attribute set, indicating 290

a higher priority in the retrieval process. 291

4.1.3 Results 292

Initially, we select three attributes, female, blonde 293

hair, and eyeglasses, and observe the ordering of 294

image retrieval as shown Figure 3. With the plain 295

text embedding, the initial bin predominantly con- 296

tains images featuring all selected attributes, fol- 297

lowed by a prevalence of images from the ‘female, 298

no blonde hair, eyeglasses’ category. When the 299

weight on ‘with blonde hair’ increases and 300

on ‘wearing eyeglasses’ decreases, images be- 301
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Modified Prompt Weighting

SToRI
(a) (b)

Modified Prompt Weighting
CLIP ViT-L/14

OpenCLIP ViT-L/14 MetaCLIP ViT-L/14

SToRI
CLIP ViT-L/14CLIP ViT-B/16

a photo of a woman with blonde hair, wearing eyeglasses
1-

CLIP ViT-L/14

weight on ‘with blonde hair’

CLIP ViT-L/14

weight on ‘with blonde hair’

Figure 4: AUC scores from preference retrieval with varying weights. The text prompt is ‘a photo of a
woman with blonde hair, wearing eyeglasses’. (a) The weights on ‘with blonde hair’ and ‘wearing
eyeglasses’ are w and (1− w), respectively, which are adjusted simultaneously in opposite direction. (b) Only
the weight on ‘with blonde hair’ is adjusted. Best viewed in color.

longing to ‘female, blonde hair, no eyeglasses’ are302

retrieved more prominently. This suggests that the303

‘blonde hair’ gains more representation in the text304

embedding through reweighting. The groups with305

two or more mismatched attributes still rank lower,306

indicating that our method preserves the meanings307

of the original text while appropriately reflecting308

the intention of emphasis and de-emphasis.309

We conduct quantitative validation across vari-310

ous text prompts. Table 1 presents AP and P@400311

scores while controlling weights on attributes. We312

generate image pools and text prompts from three313

selected attributes. The reported scores are based314

on adjusting the weight for one specific attribute,315

considering the images containing that attribute316

as positive samples. Various combinations of at-317

tributes, totaling 20 text prompts, are used to obtain318

scores, and their averages and standard deviations319

are reported. Further details are in Appendix A.1.320

The results show that modifying the weight of to-321

kens corresponding to a specific attribute in the text322

prompt results in faster retrieval of images with323

that attribute (both scores become higher) when324

the weight increases and slower retrieval when de-325

creases (both scores become lower). This shows326

that adjusting the weight influences the creation of327

text embeddings, effectively highlighting or down-328

playing the corresponding attribute.329

Figure 4(a) demonstrates the effects of weight330

control on the AUC scores for the retrieval of331

each category. As the weight assigned to the332

‘with blonde hair’ increases and the weight 333

for ‘wearing eyeglasses’ decreases, there is a 334

noticeable rise in the AUC scores for the two cate- 335

gories that have blonde hair but no eyeglasses. In 336

contrast, categories characterized by the absence 337

of blonde hair and the presence of eyeglasses see 338

a reduction in their AUC scores. When the weight 339

assigned to ‘with blonde hair’ is set to zero, 340

the differentiation between the ‘female, blonde hair, 341

eyeglasses’ and ’female, no blonde hair, eyeglasses’ 342

categories is effectively eliminated, resulting in re- 343

markably similar AUC scores. The effect of weight 344

control is consistent across different CLIP models, 345

such as CLIP ViT-B/16, CLIP ViT-L/14, Open- 346

CLIP (Cherti et al., 2023), and MetaClip (Xu et al., 347

2023). This shows that SToRI enables the emphasis 348

or de-emphasis of specific semantics within a text 349

when constructing text embeddings across various 350

models, showcasing its versatility. 351

4.1.4 Comparison to Prompt weighting 352

We compare SToRI with prompt weighting, a tech- 353

nique often used in text-to-image generation via 354

Stable Diffusion (Rombach et al., 2022). Prompt 355

weighting multiplies weights by the difference in 356

output token embeddings when provided with a text 357

prompt versus an empty one. Unlike Stable Diffu- 358

sion, which utilizes all output token embeddings, 359

we aim to build a vector form of text embedding 360

from [EOS] token. Therefore, we modify prompt 361

weighting for use at an intermediate layer, which 362

we refer to as modified prompt weighting. 363
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Method Text ImageNet DTD Flowers102 SUN397 Caltech101 Food101 AVG

1shot
TaskRes Base 75.95±0.03 55.40±0.27 81.16±0.44 68.10±0.16 94.28±0.11 90.30±0.10 77.53
TaskRes Base+CuPL 74.69±0.04 65.66±0.82 90.07±0.79 73.52±0.49 95.89±0.57 90.35±0.36 81.70
SToRI (Ours) Base+CuPL 76.68±0.15 65.82±0.98 89.05±0.58 72.88±0.20 96.27±0.67 91.34±0.12 82.01

2shot
TaskRes Base 76.03±0.00 55.52±0.48 81.50±0.62 69.53±0.14 94.54±0.05 90.49±0.05 77.93
TaskRes Base+CuPL 75.55±0.04 66.45±1.57 92.38±0.69 75.69±0.29 96.96±0.27 90.64±0.38 82.95
SToRI (Ours) Base+CuPL 77.36±0.23 66.37±1.01 91.56±0.60 75.75±0.04 97.15±0.13 91.49±0.24 83.28

4shot
TaskRes Base 76.16±0.02 55.85±0.12 81.65±0.28 71.15±0.09 94.58±0.09 90.44±0.05 78.31
TaskRes Base+CuPL 76.42±0.03 70.76±1.12 93.22±0.37 77.20±0.08 97.40±0.21 91.45±0.15 84.41
SToRI (Ours) Base+CuPL 77.90±0.05 69.03±1.48 92.46±0.09 76.89±0.02 97.39±0.08 91.68±0.07 84.22

8shot
TaskRes Base 76.87±0.05 58.14±0.07 86.82±0.19 74.52±0.07 96.17±0.08 91.12±0.07 80.60
TaskRes Base+CuPL 77.97±0.02 73.42±0.86 98.17±0.25 77.54±0.16 97.00±0.28 91.27±0.11 85.89
SToRI (Ours) Base+CuPL 78.38±0.13 72.03±0.60 97.51±0.43 78.34±0.13 96.98±0.29 90.50±0.05 85.62

16shot
TaskRes Base 77.34±0.03 61.47±0.16 90.85±0.21 76.01±0.24 96.75±0.07 91.30±0.10 82.29
TaskRes Base+CuPL 79.18±0.10 77.05±0.65 99.07±0.11 78.98±0.10 97.65±0.23 91.49±0.08 87.24
SToRI (Ours) Base+CuPL 79.03±0.13 74.94±0.10 98.55±0.23 79.61±0.11 97.43±0.20 91.18±0.10 86.79

Table 2: Accuracy (%) on few-shot classification with CLIP ViT-L/14. The results include mean values with
standard deviation across three runs. The results of TaskRes are reproduced.

As depicted in Figure 4(a), the modified prompt364

weighting influences the significance of tokens sim-365

ilarity to SToRI. However, the change in AUC is not366

gradual; it remains nearly static when weights fall367

below 0.5 or above 1.5. As shown in Figure 4(b),368

even when the weight for ‘with blonde hair’369

increases significantly, STORI consistently raises370

the AUC for the category ‘female, blonde hair,371

no eyeglasses’. In contrast, the AUC with mod-372

ified prompt weighting initially increases but sub-373

sequently decreases, indicating augmented weight374

fails to heighten emphasis. This could stem from375

the scaling of intermediate embeddings which,376

when overextended, surpasses the scale that the377

text encoder is pre-trained to deal with, lessen-378

ing the intended effect of emphasis. SToRI, on379

the other hand, adjusts normalized attention scores380

within the self-attention mechanism, ensuring that381

as weight escalates, the relevant tokens consistently382

obtain attention scores approaching 1, thus preserv-383

ing the desired impact.384

4.2 Data-driven Control385

We train weights that best represent each dataset386

for the image classification task.387

4.2.1 Experimental Setup388

Datasets. We use various benchmarks for few-389

shot learning i.e., ImageNet (Deng et al., 2009),390

DTD (Cimpoi et al., 2014), SUN397 (Xiao391

et al., 2010), Flowers102 (Nilsback and Zisser-392

man, 2008), Caltech101 (Fei-Fei et al., 2004), and393

Food101 (Bossard et al., 2014). We use CUB (Wah394

et al., 2011) dataset for analysis on interpretation.395

Text Prompts. We use text descriptions for each 396

class which are provided by CuPL (Pratt et al., 397

2023). For the ImageNet and SUN397 datasets, 398

due to the large number of total prompts, we use 10 399

text prompts for each class, selected based on their 400

similarity with training set. We average the text 401

embeddings from multiple text prompts to build 402

one text embedding for each class. We refer the text 403

embedding for image classifier as a text classifier. 404

Model. All experiments use CLIP ViT-L/14, with 405

reweighting applied from the 7th block onward. 406

Implementation Details. We set the logarithm of 407

the weight as the parameter to be trained in order to 408

constrain the weights to non-negative values. Each 409

text prompt has its own individual set of weights. 410

4.2.2 Few-shot Classification 411

Experimental Details. Following TaskRes (Yu 412

et al., 2023), we evaluate our method by training 413

with 1/2/4/8/16 examples (shots) per class from 414

the training sets, respectively, and testing on the 415

comprehensive test sets. For further details, please 416

refer to Appendix A.2. 417

Comparison. To evaluate the capability of the text 418

classifier obtained through SToRI to perform few- 419

shot image classification, we conduct a compara- 420

tive analysis of the prediction performance between 421

SToRI and TaskRes (Yu et al., 2023). TaskRes 422

is a recent method for few-shot image classifica- 423

tion, which trains class-specific residual embed- 424

dings added to initial text embeddings to create 425

new classifiers. Such residual embeddings exist in 426

uninterpretable space, rendering the final classifier 427
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ZigzaggedHoneycombedGauzy

Banded Cobwebbed Lined

1

0

Figure 5: Text prompts and corresponding weights are provided as examples after training. The intensity of the red
shading reflects the weight assigned, with darker shades indicating higher weights. For visualization, the weights
are normalized to sum up 1. The figures on the right display an example image for each class.

Blue headed Vireo   vs  Warbling Vireo

White eyed Vireo

Warbling Vireo

Blue headed Vireo    vs  White eyed Vireo 1

0

Blue headed Vireo

Figure 6: Text prompts and their corresponding weights are presented after training with the CUB dataset. The
more intense the shade of red, the greater the weight assigned. In each scenario, the text classifier is trained to
discriminate two classes. The weights for the same text prompts vary depending on the class to be distinguished.

also uninterpretable. In contrast, SToRI trains only428

weights, indicating the degree to which each se-429

mantic element within a given sentence should be430

emphasized, thus maintaining interpretability.431

Ensuring interpretability, SToRI achieves per-432

formance comparable to TaskRes, as presented in433

Table 2. “Base” refers to custom text prompts in-434

cluding class names, which are generally used in435

few-shot image classification tasks with CLIP (Yu436

et al., 2023). We use both base and CuPL text437

prompts, with weights trained exclusively on CuPL.438

In the 1/2-shot setting, SToRI generally outper-439

forms TaskRes across most datasets. In the 4/8/16-440

shot setting, it exhibits only a marginal difference,441

achieving nearly similar performance. This indi-442

cates that SToRI provides substantial flexibility to443

text embeddings, enabling it to be an enhanced text444

classifier that effectively represents image data.445

4.2.3 Interpretability446

Interpretation with Trained Weights. After train-447

ing for an image classification task, we analyze448

the trained weights. Figure 5 presents examples of449

text prompts and the corresponding trained weights450

for each token within the DTD dataset. We have451

crafted the text prompts. We can discern that452

banded is associated with an emphasis on words453

like multiple and stripes. For gauzy, terms such 454

as translucent and light are emphasized, and 455

cobwebbed are notably associated with the word 456

spider web. As illustrated by the images corre- 457

sponding to each category, high weight values are 458

assigned to important semantic tokens. This shows 459

that SToRI can learn text embeddings that effec- 460

tively represent the data in a data-driven control 461

context, and the trained weights can offer novel 462

insights for interpretation. 463

Does Optimization Occur in Interpretable 464

Space? To ensure interpretability of text embed- 465

dings through data-driven control optimization, we 466

conduct two experiments: an analysis on trained 467

classifiers with different class compositions and an 468

assessment of the effect of nonsensical text tokens. 469

The role of classifier is to distinguish one class 470

from others. Thus, even for classifiers within the 471

same class, the critical distinguishing features can 472

vary depending on the alternative categories be- 473

ing compared. Figure 6 shows two text classifiers 474

trained on the CUB dataset for two distinct pairs: 475

Blue headed Vireo versus Warbling Vireo, and Blue 476

headed Vireo versus White eyed Vireo. The text 477

prompts for each class are generated with the at- 478

tribute labels from the dataset. When contrast- 479

ing Blue headed Vireo with the Warbling Vireo, 480

7



Text Caltech101 SUN397

CuPL 97.42±0.23 79.54±0.12
CuPL+Nonsensical tokens 97.30±0.15 79.11±0.10

Table 3: Accuracy (%) on 16-shot image classification.

striped is attributed a high weight. However,481

when distinguished from the White eyed Vireo, the482

weight on striped becomes low and grey is at-483

tributed a high weight. Note that White eyed Vireo484

also have striped wings. These terms highlight the485

prominent differences between each unique pairing486

of the classes.487

Table 3 reports the 16-shot classification per-488

formance when nonsensical text tokens are added.489

We randomly sample five tokens from the set of490

three rare tokens (Ruiz et al., 2023), namely ‘sks’,491

‘pll’, and ‘ucd’, and add them to the end of all492

the original texts from CuPL. The inclusion of rare493

tokens does not contribute meaningful information494

to build a text classifier; it simply extends the num-495

ber of tokens and trainable parameters. As a result,496

the performance when rare tokens are added did497

not surpass that without their addition. This demon-498

strates that adoption of the tokens without semantic499

meaning does not contribute to performance im-500

provement. These findings support that data-driven501

control, achieved through attention modulation for502

tokens with semantic meaning, facilitates the cre-503

ation of text embeddings that effectively represent504

the data, thereby ensuring the interpretability of505

text embeddings.506

5 Related Works507

VLMs and Interpretability. In recent vision508

tasks, interpretative analysis in natural language509

becomes popular rather than relying solely on vi-510

sual form. For this purpose, VLMs have com-511

monly been employed to connect the image feature512

space with the text feature space used for expla-513

nation. Kim et al. (2023) utilized VLMs to get514

concept activation vector (Kim et al., 2018) in vi-515

sion model. Yuksekgonul et al. (2023) and Oikari-516

nen et al. (2023) leveraged VLMs to determine517

whether concepts defined in text are present in im-518

ages. Menon and Vondrick (2023) formulated text519

prompts for image classes using Large Language520

Models and employed them for zero-shot classifica-521

tion with VLMs. These approaches simply utilize522

the shared embedding space of existing VLMs. In523

contrast, our method introduces a new dimension524

of interpretability by providing controllability over 525

the focus of textual information, thereby enhancing 526

its interpretative utility. 527

Few-shot Image Classification. VLMs exhibit 528

promising performance in image recognition tasks, 529

leading to the development of various few-shot 530

learning approaches. CoOp (Zhou et al., 2022b) 531

and CoCoOp (Zhou et al., 2022a) are represen- 532

tative methods based on prompt tuning. Tip- 533

Adapter (Zhang et al., 2022) integrates an extra 534

adapter unit following the encoders. TaskRes (Yu 535

et al., 2023) involves training task-specific resid- 536

ual text embeddings for each category. These ap- 537

proaches incorporate extra trainable parameters 538

outside an interpretable framework, thereby not 539

ensuring interpretability. 540

Enrich Textual Representation. In text-to-image 541

generation, several approaches have been devel- 542

oped to enrich textual representation. Prompt 543

weighting1 is a common technique in Stable Dif- 544

fusion (Rombach et al., 2022), which multiplies 545

weights to individual output token embeddings 546

prior to supplying them to the image generation 547

model. Prompt-to-Prompt controls cross-attention 548

between noise images and text embeddings (Hertz 549

et al., 2022). Additionally, Ge et al. (2023) pro- 550

posed a richer text editor that allows users to define 551

various input conditions for image generation, such 552

as coloring and footnotes. While prior works have 553

focused on image generation, our work pioneers 554

enriched textual representations for image recog- 555

nition, utilizing novel single vector construction. 556

This distinctive approach establishes a new avenue 557

for incorporating linguistic context in visual under- 558

standing. 559

6 Conclusion 560

We introduce a novel framework that enables the 561

reweighting of importance of semantic tokens in 562

text embedding. This approach is a novel means of 563

adapting the explanatory power of natural language 564

in vision tasks. Our user-driven and data-driven 565

controls empower users to dictate the emphasis 566

on specific terms and facilitate the tuning of text 567

embeddings for classification while ensuring inter- 568

pretability. Our approach can be easily applied to 569

any model based on attention, and has potential 570

scalability in various vision tasks and multi-modal 571

tasks, given the widespread use of VLMs. 572

1https://huggingface.co/docs/diffusers/using-
diffusers/weighted_prompts
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7 Limitations573

Our method is focusing on controlling the attention574

of each semantic element within a given natural575

language sentence, rather than generating new tex-576

tual information. Therefore, one of the limitations577

of our method is its dependence on the richness and578

quality of the given texts. For example, when using579

data to train a classifier, if the given text lacks suffi-580

cient rich information, adjusting the attention may581

not sufficiently enlarge the text embedding space.582

This difficulty in expanding the embedding space583

makes it challenging to establish a basis for im-584

proving classification performance and explaining585

data.586

Additionally, we do not consider the inherent587

black box characteristics of VLMs. However, if588

this model has undergone sufficient testing and is589

deemed reliable, the advantage of our method lies590

in additional optimization and control being in a591

reliable and controllable space.592

8 Ethics Statement593

Our goal is to employ contollability when building594

text embeddings. This enables for users to em-595

phasize or deemphasize a certain part of textual596

information and improving text embeddings for vi-597

sion tasks, ensuring interpretability. We believe598

this work can be used to build trustful AI systems599

by providing natural language interpretation.600
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A Experimental Details791

A.1 User-driven Control792

We initially select 11 attributes with a zero-shot793

classification performance of AUROC 0.75 or794

higher with CLIP on test set. For zero-shot classifi-795

cation, we create text prompt for each attribute and796

calculate AUROC using the similarity between the797

test set images and the text prompt. For example,798

when evaluating the attribute smiling, we use the799

text prompt ‘a photo of a smiling person’.800

Among the identified 11 attributes, we create com-801

binations of three attributes, each including either802

female or male. We filter out the combinations803

where all eight categories contain fewer than 100804

images. We conduct image retrieval with total 20805

numbers of text prompts based on the combinations806

of attributes, as shown in Table 5.807

A.2 Data-driven Control808

We follow the data split outlined in CoOp (Zhou809

et al., 2022b), conducting tests on the official test810

set of each dataset and the validation set of the811

ImageNet dataset. We use Adam optimizer with812

the cosine learning rate scheduler (Loshchilov and813

Hutter, 2017) following the training scheme of814

TaskRes (Yu et al., 2023). The learning rate is set815

to 1×10−2 for the ImageNet and SUN397 datasets,816

0.1 for the Food101 dataset and for 8/16-shot sce-817

narios on the DTD and Flower102 datasets, and818

5× 10−2 for the other datasets. The weight decay819

is set to 0. When reproducing TaskRes, the learning820

rate is set to 2× 10−5 for the ImageNet dataset and821

2× 10−4 for the other datasets. The weight decay822

is set to 0.005 and α is set to 0.5. 1/2/4-shot train-823

ing is done with 100 epoch and the other is done824

with 200 epoch for all datasets. All experiments are825

implemented using PyTorch (Paszke et al., 2017),826

and we use official code base released by Yu et al.827

(2023) to reproduce TaskRes.828

We use all the datasets and models solely for829

academic research purposes and do not employ830

them for improper intentions.831

B Additional Experimental Results832

B.1 Additional Examples for Interpretation833

Figures 7 and 8 present examples of text prompts834

and the corresponding trained weights for each835

token within the ImageNet and DTD datasets, re-836

spectively. Higher weights are assigned to word837

tokens that effectively represent images.838

Method Plain Text Embeddings SToRI

Relative Run Time 1.00 1.02

Table 4: Relative compuational cost

B.2 Computational Cost 839

We calculate runtime for apply SToRI compared 840

to plain text embeddings, as reported in Table 4. 841

The experiment is done on RTX A5000 and the 842

reported values are mean values from 28K runs. 843

Since SToRI only multiplies predefined weights 844

when calculating attention scores, the runtime does 845

not significantly differ from that of plain text em- 846

beddings. 847

B.3 Position for Reweighting 848

Figure 9(a) compares the changes in AUC scores 849

when we start reweighting at various positions. The 850

reweighting process is applied to all blocks follow- 851

ing a specific block. There is not a significant differ- 852

ence when we initiate token reweighting at interme- 853

diate positions. However, when token reweighting 854

is applied to all blocks (from 1st block), a sharp 855

bend is observed at 0.1 when the weight decreases. 856

This is unlike other cases, which show a smooth 857

decrease or increase in all scenarios. It is presumed 858

that this abrupt occurrence is due to tokens in the 859

specified position being completely disregarded 860

when the weight becomes 0, leading to sudden 861

gaps in those areas. 862

Figure 9(b) illustrates that when reweighting is 863

applied only within a single specific intermediate 864

block, the effects of emphasis or de-emphasis are 865

scarcely observed. This suggests that if reweight- 866

ing is confined within a single intermediate block, 867

its effects in the subsequent blocks are counter- 868

acted, indicating that it should be applied in the 869

subsequent blocks to emphasize or de-emphasize 870

semantic tokens. 871
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Selected Attriutes Text prompts

Female/Male, Smiling, Bangs a photo of a smiling [woman/man] with bangs
Female/Male, Smiling, Blond Hair a photo of a smiling [woman/man] with blond hair
Female/Male, Smiling, Gray Hair a photo of a smiling [woman/man] with gray hair
Female/Male, Smiling, Wearing Hat a photo of a smiling [woman/man] wearing hat
Female/Male, Smiling, Eyeglasses a photo of a smiling [woman/man] wearing eyeglasses
Female/Male, Bangs, Wearing Hat a photo of a [woman/man] with bangs, wearing hat
Female/Male, Bangs, Eyeglasses a photo of a [woman/man] with bangs, wearing eyeglasses
Female/Male, Blond Hair, Eyeglasses a photo of a [woman/man] with blond hair, wearing eyeglasses
Female/Male, Gray Hair, Eyeglasses a photo of a [woman/man] with gray hair, wearing eyeglasses
Female/Male, Wearing Hat, Eyeglasses a photo of a [woman/man] wearing hat and eyeglasses

Table 5: All combinations of attributes and corresponding text prompts.

1

0

Red king crabGreat grey owl

Tiger shark Electrical ray

Figure 7: Text prompts and corresponding weights on the ImageNet dataset are provided as examples after training
with data. For visualization, the weights are normalized to sum up 1. The figures on the right display an example
image for each class.

1

0

PerforatedSwirlyPolka-dotted

Bubbly Dotted Cracked

Figure 8: Text prompts and corresponding weights on the DTD dataset are provided as examples after training with
data. For visualization, the weights are normalized to sum up 1. The figures on the right display an example image
for each class.

From 2nd blockFrom 1st block From 7th block
(a)

At 7th block
(b)

Figure 9: The change of AUC scores for preference retrieval with weight control when diversifying blocks that
semantic token reweighting is applied. (a) The results when reweighting is applied within the subsequent blocks as
well. (b) The result when reweighting is applied within a single block.
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