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Abstract

Linear classifier probes are frequently utilized to better understand how neural
networks function. Researchers have approached the problem of determining unit
importance in neural networks by probing their learned, internal representations.
Linear classifier probes identify highly selective units as the most important for
network function. Whether or not a network actually relies on high selectivity
units can be tested by removing them from the network using ablation. Surpris-
ingly, when highly selective units are ablated they only produce small performance
deficits, and even then only in some cases. In spite of the absence of ablation ef-
fects for selective neurons, linear decoding methods can be effectively used to
interpret network function, leaving their effectiveness a mystery. To falsify the
exclusive role of selectivity in network function and resolve this contradiction, we
systematically ablate groups of units in subregions of activation space. Here, we
find a weak relationship between neurons identified by probes and those identi-
fied by ablation. More specifically, we find that an interaction between selectivity
and the average activity of the unit better predicts ablation performance deficits
for groups of units in AlexNet, VGG16, MobileNetV2, and ResNet101. Linear
decoders are likely somewhat effective because they overlap with those units that
are causally important for network function. Interpretability methods could be
improved by focusing on causally important units.

1 Introduction

Neural networks play critical roles in everything from driving to systems of justice, but trusting neu-
ral networks in such roles requires understanding how they function. Widespread adoption of neural
networks has raised concerns about trust and bias [[1]]. For example in medicine, the incorporation of
neural networks requires considering how uncertainty in how a decision was made could be argued
to undermine medical authority [2]. The requirement for transparency is so widely recognized it has
begun to be incorporated in regulation [3]]. Improving our understanding of neural network function
is in both the interest of the public and Al development communities. Unfortunately, most methods
used for interpretation have not been strongly linked to neural network function.

One approach to understanding neural network function is to examine how they represent informa-
tion internally [4H8]. Internal representations have been shown to be remarkably useful in interpret-
ing neural networks [9H11]. Linear classifier probes [12] are commonly used as a tool for interpret-
ing [5} [13H15]] and testing internal representations [[16H19]. Although linear probes have utility for
understanding network representations, studies removing (ablating) groups of neurons identified by
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linear probes have inconsistent outcomes. The best way to confirm the causal importance of groups
of neurons is to remove them and see if the network stops performing its function [20], hereafter
called ablation. Performance is not consistently degraded when ablating the units most selective for
the target class (i.e. units that activate more for the target class than other images) [21, 6} 22]]. As
an example, Donnelly and Roegiest [23] ablate a neuron highly selective for sentiment and observe
negligible deficits in performance. This argument can be extended to both training against class
selectivity [24] and for the effect of class selectivity on overall performance [25) 22, |6]]. However,
there are examples in which researchers observed a weak correlation between class selectivity and
ablation deficits [22}[26]]. The significant issue remains that it is difficult to predict the effects caused
by ablating the selective units identified by linear probes.

Most ablation studies of performance remove a single unit at a time or are based on single measures
of importance (activation strength, selectivity, decoding weight, information-theoretic measures,
etc.) [6, 22, 27, 21} 284301, preventing study of the aggregate effects of groups of units. Single unit
ablation avoids the combinatorially difficult problem of choosing which units to group, but results
in small or no changes in performance. Larger performance deficits can be achieved by targeting ag-
gregate groups of units based on a single metric (e.g., selectivity). However, utilizing single units or
single dimensions precludes a systematic exploration of how function and representation vary across
activation space. An approach that accounts for these considerations is warranted. In this work, we
focus on four heavily studied convolutional neural networks: AlexNet, VGG16, MobileNetV2, and
ResNet101. We efficiently group units by their positions in activation space along two dimensions:
average class selectivity and average activation magnitude, to highlight the regions occupied by
function and representation. This paper documents these contributions:

* We demonstrate a reliable and fast method of grouping units in activation space. This
method improves on past clustering work [31] by using a simpler algorithm which clusters
units into groups in activation space.

* We show that many groups of units in activation space produce high linear classification
probe accuracies with higher accuracies for groups of units that are selective for the target
and highly selective for not-the-target.

* We identify a region of activation space in which ablation selectively reduces performance.
This region partially overlaps with parts of activation space that produce strong linear clas-
sification. This partial overlap falsifies the specificity of linear probes for isolating function.

* We show that this region is consistent across four popular convolutional neural networks.

2 Methods

For our experiments, we investigated AlexNet [32], VGG16 [33], MobileNetV2 [34], and
ResNet101 [35]] all pre-trained on ImageNet [36ﬂ We modified these pre-trained networks to in-
clude lambda masking layers which allowed us to selectively ablate individual units or unit groups
in the network. Ablating a unit sets its outgoing activation to zero, preventing information flow
from that unit to the next layer. Our process of relating linear probe accuracies and causal network
performance for unit groups consists of two steps: 1) Selection of unit groups, 2) Measuring linear
probe accuracies and causal performance through ablation, outlined in the following sections.

2.1 Selection of unit groups

This section outlines a cheap algorithm for grouping important units in activation space, this allows
for all experiments to be run on a laptop, minimizing environmental impact. This algorithm groups
units on a reduced activation space constructed using activation characteristics that were implicated
in performance based on previous ablation studies. To find groups of units important for class-
specific performance in AlexNet, we measured activations for each unit in the network for a set of
2500 images representing 50 classes (e.g., junco bird, brain coral, etc.) drawn from the ImageNet
validation set. We extended our findings to three other networks using a subset of 8 image classes.
We averaged the activity for each unit for our class of interest and across a random subset of other

2AlexNet pre-trained weights from http://github.com/heuritech/convnets-keras. Other pre-
trained models downloaded from http://keras.io/api/applications
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Figure 1: Clustering of units by selectivity and magnitude. a) An example of the reduced activa-
tion space for a target class. The vertical axis measures a unit’s average selectivity for the class. The
horizontal axis measures a unit’s average magnitude of activation. b) We constructed a grid to over-
lay on the activation space so that each grid cell contained the same number of units. ¢) We predict
that the most selective unit groups are important for linear probe and causal network performance.

classes separately for each layer of the network. We then plotted neurons in this two-dimensional
activation space with average activation for our class of interest along one dimension and average
activation for other classes across the other dimension.

We then rotated this space to form two new dimensions: class selectivity and activation magnitude
(Figure [Ta). In this space, class selectivity measures the difference in the average activation of
each unit between our class of interest and other classes. Activation magnitude, on the other hand
measures each unit’s average activation in response to all images. Over this space we constructed a
4x4 grid with rectangular cells. The cells vary in area, but each contains an equal number of units.
These cells were constructed by first partitioning the space into four horizontal strips at intervals
along the selectivity dimension, each with the same number of neurons. These strips were then
individually partitioned into four quadrants each along the magnitude dimension so that each of the
sixteen resulting cells contained the same number of neurons. Controlling for the number of units in
each cell allowed for easy comparisons between cells. Figure[Tb|shows the constructed grid overlaid
on the activation space. Cells were selected one at a time and all the units from that cell were used to
measure linear probing accuracy and causal performance deficits, as outlined in the next subsection.

2.2 Measuring linear probe accuracies and causal performance deficits

To measure linear probe decoding accuracies, we followed the methodology presented in the original
paper [12], fitting linear probes to each cell’s unit group to predict class identities. For comparison,
the importance of each cell’s unit group for class-specific task performance was measured using
ablation. First, before ablation, the network’s baseline performance was recorded. During inference
on each image, classes were ranked according to the magnitude of their corresponding softmax
outputs. For instance, a rank of three for a particular image denotes that the network predicted
that the correct class was the third most likely class given the image. After recording baseline ranks,
every unit in a given cell was ablated using the lambda mask mentioned previously (see Section[2)). A
performance impact score was calculated for each image by measuring how many ranks the correct
class fell compared to baseline, which we refer to as rank deficits. Selective ablation rank deficit
scores were calculated by averaging the performance impact scores across the class of interest. A
network’s top-K classification accuracy depends exclusively on the rank of the correct class, making
the rank deficit score a direct measure of the impact of ablation on network performance.

3 Results

We show grids colored by linear probe accuracies for each image class in our set (rows in Figure
[2a) and for each layer in AlexNet (columns in Figure 2a)). Correspondingly, we show performance
deficit grids colored by rank deficit for each image class and each layer (Figure 2b). The last row
depicts the average grid scores for each layer averaged across all 50 classes. The final column depicts
the average grid scores for each class averaged across all seven layers of AlexNet. In all cases, the
colorbar displays the range in scores for each class. In addition to AlexNet, we show results for



three other networks: VGG16, MobileNetV2, and ResNet101. Figure E] depicts the ablation and
linear probe grid scores averaged across all layers for each network we tested.

3.1 Linear probe accuracy

Linear probe accuracy is somewhat localized in activation space (Figure 2a). In general, across all
eight image classes, unit groups with maximum accuracy scores are located in the most selective
regions of activation space. High linear-probe scores come from cells that are both highly selective
for the target class and highly selective on average for all other classes over the target class. Impor-
tantly, deleting these neurons has no effect on the networks ability to identify the class, as shown in
Figure[2b] Overall, like ablation impacts, decoding accuracies tend to increase with depth.

3.2 Rank deficit score

Rank deficits are localized in activation space. In general, across all image classes, unit groups with
a maximum rank deficit are located in the most selective and most active regions of activation space
(Figure[2b). In general the most selective and active unit group produces rank deficits far greater than
neighboring unit groups. This pattern shows a combination of selectivity and magnitude contribute
to unit importance. This relationship appears discontinuous rather than graded. Even though high
impact cells consistently emerge in the most selective and active regions of activation space, the layer
with the highest impact cell varies across classes. For instance, the junco bird class has the highest
impact cell in the penultimate layer of the network (Dense 2), while the bookcase class shows the
highest rank impacts in Conv 3. Additionally, rank deficit scores vary considerably between layers
and between classes. Ablating the most selective and most active cell in Conv 3 produces a rank
deficit score of nearly 300 for the bookcase class. But, junco class rank deficits never exceed 60.

3.3 Only a subset of selective unit groups contribute to causal function

We found the units that are the most active while also being selective are the strongest drivers of
performance across all four networks. This pattern is most prominent in AlexNet and VGG16. In
ResNet101 and MobileNetV2, the most selective and active cell continues to serve as the strongest
driver of performance, but unlike VGG16 and AlexNet, other cells become increasingly important.
Particularly, high magnitude cells are consistently important in MobileNetV2. MobileNetV2 and
VGG16 both utilize batch normalization layers which have been shown to spread out class-specific
information across units [22]]. Further investigation is needed to establish explicit links between
regularizers, like batch normalization, representation, and performance.

4 Discussion

In this work, we used a computationally inexpensive method for selecting important groups of units
in neural networks. Ablating these groups revealed a consistent pattern whereby the most important
unit groups emerge in highly selective and highly active areas of activation space. Previous ablation
studies may have failed to identify this pattern for the following reasons. Morcos et al. [6] and
Zhou et al. [22] ablate single units across the whole network based on class selectivity alone, but
not activation magnitude. In Figure[2b] selectivity alone would have a weak effect on performance
because it averages both strong and weak effects, one potential explanation for the weak relationship
between selectivity and performance from [22]]. In contrast, Meyes et al. [21] visualize both class
selectivity and class-specific magnitudes, but not per layer. Since units from early layers are typically
more active and selective, clusters in activation space containing units from all layers lump together
highly selective and active units from later layers with less selective and active units from early
layers. In this way, network-wide groups are too heterogeneous to reveal patterns that exist primarily
at the layer level. This insight is leveraged by Liu et al. [26]] to find highly impactful neurons using
selectivity (and other promising measures) for small MLPs. Here, we show that only the most
selective and active groups of units contribute to causal performance in four large CNNs.

Rather than ablating units, most neural network interpretability studies rely on interpreting function
from internal representations. Alain et al. [12] proposed using linear classifier probes to extract the
semantic concepts learned by specific units. We use linear probes to show that the most selective
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Figure 2: Linear decoding and ablation scores do not match. Figure@) Linear probe scores for
each class (rows) and each layer of AlexNet (columns). For each class and layer combination we
show accuracies obtained from decoding the target class using linear classifier probes on units in
each cell. Figure 2b) Rank deficit scores for each class (rows) and each layer of AlexNet (columns).
For each class and layer combination we show class-specific rank deficits caused by ablating all the
units in each cell of the grid placed on activation space. Highly selective regions, both for the target
class and for all other classes over the target class, consistently produce the highest decoding scores
(2a), whereas highly impactful neurons tend have high class selectivity and magnitude (Zb). Average
effects of class and layer are shown at the edges to assess consistency of a particular pattern.
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Figure 3: High ablation impact and linear probe accuracy neurons occupy different regions
of activation space across four CNNs. Linear probe accuracies (left) and ablation deficit scores
for each network averaged across all layers. For every network, the most selective and active cell
produces the highest selective ablation rank deficits. This pattern is most prominent for AlexNet
(50 classes) and VGG16 (8 classes), where few other cells contribute to performance. However, in
the case of ResNet101 (8 classes) and MobileNet2 (8 classes), other cells can produce high rank
deficits. Linear probe accuracies exhibit a distinctly different pattern whereby highly selective cells
(both for and against the target class) produce the highest decoding accuracies.

units in activation space do indeed contain the most decodable semantic information. However, ab-
lating these highly selective units in activation space does not necessarily produce the largest perfor-
mance deficits. In fact, only a relatively small subset of selective units produce performance deficits.
Across four popular CNNs, high ablation impact neuron groups tend to have both high selectivity
and magnitude. This finding suggests that interpretability methods which rely on linear probes may
be seeking out directions in activation space with only minimal effects on network performance. We
improve on past work by identifying a region of activation space crucial for interpreting function.

5 Limitations

Limitations in this work stem from three assumptions made in our methods. First, we only investi-
gate class-specific selectivity, while other studies have emphasized that class-specific selectivity can
play a different role in network function from low-level feature selectivity [37]. Additionally, other
importance measures (i.e. mutual information [[26]) are not studied here, but should be the focus of
future study. Second, our unit grouping method relies on handpicked hyperparamters that determine
the number of cells and produces cells that contain different numbers of units in each layer, making
it difficult to compare scores across layers. Lastly, we study the performance changes at the output
of the network induced by ablation, while neglecting other causal changes in the rest of the network.

6 Conclusion

This work contributes directly to the interpretability of neural networks. We demonstrate a reliable
and fast method of grouping units in activation space. We identify a region of activation space
in which ablation selectively reduces causal performance, consistent across four popular CNNs.
Surprisingly, we found that important ablation impact units only occupy a relatively small subset
of the activation space covered by selectively important units identified by linear probes. As a
result, interpretability tools that rely on decoding semantic information likely only weakly relate to
performance. Future investigations would benefit from extending this research to more networks
and tasks to uncover theoretical relationships between neural network representation and function.
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