
Under review as submission to TMLR

CW-CNN & CW-AN: Convolutional Networks and Attention
Networks for CW-Complexes

Anonymous authors
Paper under double-blind review

Abstract

We present a novel framework for learning on CW-complex structured data points. Recent
advances have discussed CW-complexes as ideal learning representations for problems in
cheminformatics. However, there is a lack of available machine learning methods suitable for
learning on CW-complexes. In this paper we develop notions of convolution and attention
that are well defined for CW-complexes. These notions enable us to create a Hodge informed
neural network that can receive a CW-complex as input. We illustrate and interpret this
framework in the context of supervised prediction.

1 Introduction

1.1 Complexes

Succinctly, a cell complex is an object in a category obtained by successively gluing together cells using
pushouts. More formally, Whitehead (1949) defined them in the following way.
Definition 1.1. A cell complex K, or alternatively a complex, is a Hausdorff space which is the union of
disjoint open cells e, en, en

i subject to the condition that the closure ēn of each n-cell, en ∈ K is the image of
a fixed n-simplex in a map f : σn → ēn such that

(1) f |σn − ∂σn is a homeomorphism onto en

(2) ∂en ⊂ Kn−1, where ∂en = f∂σn = ēn − en and Kn−1 is the (n − 1)-section of K consisting of all
the cells whose dimensionalities do not exceed n− 1.

A CW-complex is a cell complex that has the weak topology and is closure finite. A complex K is said
to be closure finite if and only if K(e) is a finite subcomplex, for every cell e ∈ K. We say K has the
weak-topology if and only if a subset X ⊂ K is closed provided X ∩ ē is closed for each cell e ∈ K. To
construct a CW-complex, we inductively glue cells together. More formally, Hatcher (2002) describes how we
construct a finite CW-complex X as follows. Initially, we start with a collection of zero cells X0 = {e0

i }N
i=0.

X0 is called the 0-skeleton. Then, for all j ∈ {1, . . . , n} we take a collection of j-cells {ej
i }N

i=0 and glue their
boundaries to points in the j − 1 skeleton using continuous attaching maps ϕj

i : ∂ej
i → Xj−1. Each j-cell is a

topological space. Essentially, a CW-complex is constructed by taking a union of a sequence of topological
spaces ø = X−1 ⊂ X0 ⊂ X1 ⊂ · · · such that each Xj is obtained by attaching j-cells to Xj−1. In the
language of category theory, we often think of the topology on finite CW-complex X as the direct limit of the
diagram X−1 ↪→ X0 ↪→ X1 ↪→ · · · ↪→ Xk for some k ∈ N. CW-complexes generalize the notion of a graph. A
1-dimensional CW-complex is a regular graph without loops. Moreover, every topological space is weakly
homotopy equivalent to a CW-complex.

1.2 Learning on CW-complexes

Consider the following learning problem. Suppose we are presented with a dataset D = {(xi, yi)}n
i=1 where xi

is a CW-complex, yi ∈ Rd, and n, d ∈ N. Then, the task of learning a function F such that yi = F(xi) + ϵ,
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where ϵ is some error, naturally arises. We tackle this problem by developing a convolutional layer and
attention mechanism for a CW-complex xi. Essentially, we extend the work of Kipf & Welling (2017) to
define a notion of convolution for CW-complexes. Additionally, we extend the work of Veličković et al. (2018)
to develop a notion of attention for CW-complexes.

2 Related Work

2.1 Graph Neural Networks

Kipf & Welling (2017) develop a semi-supervised learning framework for graphs. The authors consider a
graph-based semi-supervised learning approach, where label information is smoothed over the graph by
applying a form of explicit graph-based regularization. The authors introduce a well behaved layer-wise
propagation rule, and demonstrate semi-supervised classification of graphs.

2.2 Graph Attention Networks

Veličković et al. (2018) develop a notion of attention for Graphs. Let G = (V, E) contains nodes V = {1, . . . , n}
and edges E ⊆ V × V , where (j, i) ∈ E denotes an edge from a node j to a node i. We assume that every node
i ∈ V has an initial representation h0

i ∈ Rd0 . A Graph Neural Network takes in a set of node representations
{hi ∈ Rd | i ∈ V} and the set of edges E as input. The layer outputs a new set of node representations, where
the same parametric function is applied to every node given its neighbors Ni = {j ∈ V | (j, i) ∈ E}. A Graph
Attention Network computes a learned weighted average of the representations of Ni. A scoring function
e : Rd × Rd → R computes a score for every edge (j, i), which indicates the importance of the features of
the neighbor j to node i. Then the Graph Attention Network computes a new node representation using a
chosen nonlinearity (Veličković et al., 2018; Brody et al., 2022).

2.3 Gaussian Processes on Cellular Complexes

Alain et al. (2023) define the first Gaussian process on cell complexes. In doing so, the authors define the
Hodge Laplacian and introduce important notation. We reproduce these definitions in the appendix A.1. We
reference these concepts throughout the paper.

2.4 A Comparison of CW-Complex Networks

Recent advances have proposed neural networks for CW-complexes. In particular, Giusti et al. (2023)
developed cell attention networks. Additionally, both Hajij et al. (2021) and Bodnar et al. (2021) develop
message passing schemes for CW-complexes. In this section we provide a theoretical and intuitive comparison
of CW-complex networks.

2.4.1 Theoretical Comparisons

In the following subsection we break down theoretical factors distinguishing each model. We focus on time
complexity, number of network parameters, invariances, and hodge-awareness. Through this theoretical
comparison we can get a sense of the scalability and properties of the various networks.

Time Complexity As described by Blakely et al. (2021), in the context of graph neural networks the
traditional message passing algorithm, for dense graphs, has forward pass and backward pass time complexity
of O(LN2F + LNF 2) where L is the number of layers, N × N is the size of the graph adjacency matrix,
and F × F is the size of the weight matrix. Other authors leverage the k-WL hierarchy to state that 3-WL
equivalent graph neural networks have time complexity O(n3) with O(n2) space complexity (Balcilar et al.,
2021). We follow the first convention. In particular, Let M be the number of neural networks one wishes
to train. Let L be the number of layers per network. Let O(K2) be the size of representing a particular
dense/well-connected k-chain. Let the size of the n-th weight matrix be O(F 2). Let S be the time-complexity
of applying a lifting map. Instead of reporting both backward and forward pass time complexities, we simply
report the worst case time-complexity as one has to run both to train a network.
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Network Parameters The parameters in a network are undoubtedly crucial. However the trainable
parameters are not necessarily limited to only weight matrices. For a weight matrix of size F × F , we say
there are O(F 2) many entries which are trainable. We say a trainable function, for example the ϕ(k)

j in Hajij’s
scheme which is in practice an MLP, has O(P ) many parameters Hajij et al. (2021). For reference, note that
usually P >> F 2 where F 2 is as defined above.

Mechanism There are numerous mechanisms utilized. We report two values in this column. One for the
kind of network, either attention or convolutional, and the other for the core method by which one propagates
information or passes messages through the network.

Invariances/Equivariances We follow the usual definition of both and report any kinds of invariance or
equivariance present in the networks. One can review Maron et al. (2018) for a detailed account.

Hodge Informed The traditional definition of Hodge awareness strictly requires several conditions and
was originally defined for simplical complex networks (Yang & Isufi, 2023). In our definition for CW-complex
networks, we relax exactly one condition namely that learning in the gradient and curl spaces do not necessarily
have to be independent. A CW-complex network is defined to be Hodge-aware if:

(1) The filter/matrix Hk is a Hodge-invariant learning operator. Specifically, three Hodge subspaces are
invariant under Hk.

(2) The lower filter Hk,d and upper filter Hk,u are, respectively, gradient and curl-invariant learning
operators. This notation is analogous to lower and upper triangles of a matrix Hk.

(3) The learning in the gradient and curl spaces are expressive.

Under this definition our proposed networks are Hodge aware. However, message passing networks which rely
on an MLP to aggregate and update are not Hodge aware (Anonymous, 2024). Bodnar et al. (2021), Hajij
et al. (2021), and Giusti et al. (2023) all rely on an MLP for their aggregation or update steps in practice.
Consequently, none of their networks are Hodge aware.

Table 1: Theoretical comparisons
Model Time Complexity Parameters Mechanism Invariances Hodge Informed

CWN Bodnar et al. (2021) O(LK2P ) O(LP ) convolution, lifting maps+MLP permutation ✗
CXN (Hajij et al., 2021) O(MLK2P 2) O(MLP 2) convolution, MLP permutation ✗
CAN Giusti et al. (2023) O(LK2P 2S) O(LP 2) attention, lifting maps+MLP permutation ✗
CW-AT O(LK2F 2) O(LF 2) attention, boundary operators+summation hodge ✓
CW-CNN O(LK2F 2) O(LF 2) convolution, boundary operators hodge ✓

2.4.2 Intuitive Comparisons

CW Networks (CWN) Bodnar et al. (2021) extend a message-passing algorithm to cell complexes.
Bodnar et al. (2021) essentially define lifting transformations, f : G → X, augmenting a graph with higher-
dimensional constructs. This results in a multi-dimensional and hierarchical message passing procedure over
the input graph (Bodnar et al., 2021). The authors specify this procedure over the space of chemical graphs
in section 4, defining message passing from atoms to bonds, and bonds to rings.

CWN Message Passing Bodnar et al. (2021) allow their CWN to receive two kinds of messages

mt+1
B (σ) = AGGτ∈B(σ)

(
MB

(
ht

σ, h
t
τ

))
mt+1

↑ (σ) = AGGτ∈N↑(σ),δ∈C(σ,τ)
(
M↑(ht

σ, h
t
t, h

t
δ)

)
(1)

The first kind of specifies messages from atoms to bonds and from bonds to rings. The second kind specifies
messages between atoms that are connected by a bond and messages between bonds part of the same ring.
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The update operation takes into account these two types of messages and updates features of the cells by
applying the rule:

ht+1
σ = U

(
ht

σ,m
t
B(σ),mt+1

↑ (σ)
)

(2)

One can obtain a global embedding of a cell complex X, using a model with L layers via a readout function
which takes as input the separate multi-sets of features

hX = READOUT
(
{{hL

σ }}dim(σ)=0, {{hL
σ }}dim(σ)=1, {{hL

σ }}dim(σ)=2
)

(3)

As described by in Appendix E.3 by Bodnar et al. (2021) throughout all experiments, the cellular message
passing layers update the representation of p-cell σ as follows:

ht+1
σ = MLPt

U,p

MLPt
B,p((1 + ϵB)ht

σ +
∑

τ∈B(σ)

ht
τ )∥MLPt

↑,p((1 + ϵ↑)ht
σ +

∑
τ,δ

MLPt
M,p(ht

τ ∥ht
δ))

 (4)

CWN Comparison In this manuscript we propose a network that receives as input a CW-complex of
dimension n ≥ 1, which need not be a graph. Additionally we do not rely on lifting transformations or any
MLP’s for aggregation. This results in lower time complexity, and fewer parameters. Moreover due to use of
boundary operators, we develop a more computationally efficient way to propagate information through the
network. Our method has the additional theoretical benefits of being Hodge aware.

Cell Complexes Neural Networks (CXN) Hajij et al. (2021) propose an inter-cellular message-passing
scheme on cell complexes. Under the proposed scheme, the propagation algorithm then performs a sequence
of message passing executed between cells in X. For all k ∈ (0, L], and j ∈ [0, n) where n,L ∈ N, the forward
propagation scheme is defined as

h
(k)
cj := α

(k)
j

(
h

(k−1)
cj , Eaj∈Nadj(cj)

(
ϕ

(k)
j (h(k−1)

cj , h
(k−1)
aj , Fen∈CO[aj ,cj ](h

(0)
ej+1))

))
(5)

where h(k)
em , h(k)

am , h(k)
cm ∈ Rℓk

m , E, and F are permutation invariant differentiable functions and α
(k)
j , ϕ(k)

j are
trainable differentiable functions, in essence MLP’s.

CXN Message Passing Equation (5) described by Hajij et al. (2021) defines the CXN message passing
scheme. One chooses a desired network depth L and n corresponds to the dimension of the cell complex
X. In practice and in the experiments, the α(k)

j , ϕ(k)
j are MLP’s or convolutional layers (Hajij et al., 2021).

However, the above scheme does not necessarily need to be parameterized to MLP’s or convolutional layers.
The scheme presented provides an effective generalization of the notions of message passing schemes in graphs.
The mathematical definition allows for general selection of the α(k)

j and ϕ(k)
j provided they are differentiable

and trainable functions.

CXN Comparison As stated by Hajij et al. (2021), one may wish to train a CCXN for every k-cells
adjacency matrix individually. Consequently, one has to train M = n− 1 many networks. In contrast to CXN,
our models do not rely on MLP’s for aggregation. We do not need to train M = n− 1 many networks. In fact,
we propose training only one network. This results in significantly lower time complexity, and significantly
fewer parameters. Moreover due to use of boundary operators, we develop a more computationally efficient
way to propagate information through the network. This results in overall much better scaling potential. Our
method has the additional theoretical benefits of being Hodge aware.

Cell Attention Network (CAN) Giusti et al. (2023) introduce a neural architecture operating on data
defined over the vertices of a graph. The approach described leverages a lifting algorithm that learns edge
features from node features, then applies a cellular attention mechanism, and finally applies pooling. In
particular, Giusti et al. (2023) define a cellular lifting map as a skeleton-preserving function s : G → CG

incorporating graph G into regular cell complex CG. Using the cellular lifting map the authors define
attentional lift, giving way to their attention mechanism. The procedure computes F 0 many attention heads
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such that when given input graph G = (V, E), for vertices i, j ∈ V connected by edge e ∈ E , edge features
xe ∈ RF 0 are computed by concatenating attention scores. Mathematically written as

xe = g(xi, xj) = ∥F 0

k=1a
k
n(xi, xj), ∀ e ∈ E (6)

Giusti et al. (2023) utilize equation (2) above to define their layer propagation scheme by combining the
attentional lift with message passing and performing the aggregation using learnable functions, ψl

u, ψ
l
d, and

an MLP (Giusti et al., 2023).

CAN Message Passing Giusti et al. (2023) describe a Cellular Attentional Message-passing scheme. For
each layer l ∈ {1, . . . , L} the model performs an edge pooling operation after each round of message passing
thereby producing a sequence of cell complexes {Cl}l such that Cl+1 ⊆ Cl. The message passing scheme
happens at the edges level in each layer l, thereby exploiting upper and lower edge adjacencies N l

d(e) and
N l

u(e) respectively. At each layer al
u is a learnable upper attention function and al

d is a lower attentional
function. Each kind of function evaluates the reciprocal importance of two edges part of the same polygon.
The message passing equation then follows as

h̃l
e = ϕl

hℓ
e,

⊕
k∈N l

d
(e)

al
d(hl

e, h
l
k)ψl

d(hl
k),

⊕
k∈N l

u(e)

al
u(hl

e, h
l
k)ψl

u(hl
k)

 (7)

Where
⊕

is any aggregation operator (sum, mean, max, etc.) and ϕl is a possibly learnable function, and ψl
u,

ψl
d are learnable functions sharing the attention weights with al

u and al
d respectively. Then, after each message

passing step, the edge pooling operation occurs. Given that h̃l
e is the hidden feature vector associated to edge

e, the attention pooling operation consists of computing a self-attention score γl
e for each edge of the complex

via a pooling learnable attention function al
p. In essence γl

e = al
p(h̃l

e). Let k be the pooling ratio, in essence
the fraction of edges retained after being put through the edge pooling layer. The top-k highest self-attention
scoring edges are kept after the pooling stage. In essence E l+1 = {e | e ∈ E l∧γl

e ∈ top−k({γl
e}e∈El , ⌈k|E l⌉) ⊆ E l

The feature vectors that are kept after pooling are scaled as hl+1
e = γl

eh̃
l
e. A consequence of this pooling

operation is one needs to adjust the structure of the cell complex Cl in order to obtain a consistent updated
complex Cl+1. The hierarchical version of this can be summarized as a by-layer readout operation on the
{hl+1

e }e∈El+1 to obtain an aggregate embedding of the whole complex Cl+1 as

hCl+1 =
⊕

e∈El+1

hl+1
e (8)

Then after the last hidden layer, a global readout operation is performed aggregating the previously computed
complexes:

hC =
⊕

l

hCl (9)

Finally, this aggregation hC , is fed to a multi-layer perceptron (MLP) for the learning task.

CAN Comparison Our models do not rely on MLP’s/learnable functions for aggregation. We do not
incorporate an input graph G into a regular cell complex CG or attentional lift. We do not leverage edge-
pooling or modify the structure of the CW complex as information propagates through the network. Moreover
due to use of boundary operators, we develop a more computationally efficient way to propagate information
through the network. Additionally by propagating over cells via the boundary operator, our method can
account for the topology of the individual cell and its open neighborhoods. This results in significantly lower
time complexity, and significantly fewer parameters. Consequently, overall our models have much better
scaling potential. Our method has the additional theoretical benefits of being Hodge aware. Finally, our
method is leveraged to develop multi-head attention.
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3 Hodge-Laplacian informed CW-Complex Networks

3.1 Convolutional CW-complex Layer

Definition 3.1. Let X be a finite n-dimensional CW-complex. Then for k ∈ [0, n] let Ak ∈ RNk×Nk be a
matrix of cell feature vectors and let ∆k be the Hodge Laplacian. Then we can define a Convolutional
CW-complex Network (CW-CNN) f(X) as being composed by stacking hidden layers H(k) according
to the following layer-wise propagation rule:

H(k+1) = σ
(
B⊤

k+1

(
∆kAkH

(k)
)
Bk+1

)
(1)

Initially, we set H(0) = X0 ∈ RN0×N0 , which is the matrix representation of the zero-skeleton of CW-complex
X. Recall the definitions of the boundary operator (definition A.2), coboundary operator (definition A.4),
and Hodge-Laplacian (definition A.6). By definition A.6, ∆k = B⊤

k W
−1
k−1BkWk + W−1

k Bk+1Wk+1B
⊤
k+1.

Additionally, by definitions A.2 and A.4, Bk ∈ ZNk−1×Nk , B⊤
k+1 ∈ ZNk+1×Nk , and the weight matrix

Wk = diag(wk
1 , . . . , w

k
Nk

) ∈ RNk×Nk .
Checking the dimensions we can see that ∆k ∈ RNk×Nk :

dim(B⊤
k W

−1
k−1BkWk) = (Nk ×Nk−1)(Nk−1 ×Nk−1)(Nk−1 ×Nk)(Nk ×Nk) = Nk ×Nk (2)

dim(W−1
k Bk+1Wk+1B

⊤
k+1) = (Nk ×Nk)(Nk ×Nk+1)(Nk+1 ×Nk+1)(Nk+1 ×Nk) = Nk ×Nk (3)

Therefore ∆k ∈ RNk×Nk =⇒ dim(∆kAk) = Nk × Nk. Additionally, we know from above dim(Bk+1) =
Nk × Nk+1 and dim(B⊤

k+1) = Nk+1 × Nk. Therefore, by induction, we can show dim(H(k)) = Nk × Nk

(Lemma 3.2). Formally, we call Bk the order k incidence matrix, and let σ be any nonlinearity. Thus, using
the layer-wise propagation rule from equation (1), we can define a neural network f(X) by stacking the
hidden layers H(k). We call such a network a Convolutional CW-complex Network, or CW-CNN for short.
Lemma 3.2. The dimension of hidden layer k in a CW-CNN is dim(H(k)) = Nk ×Nk.

Proof. We want to show that dim(H(k)) = Nk ×Nk. For the base case (k = 0) we define H(0) = X0 ∈ RN0×N0 .
Let the inductive hypothesis P (j) be that ∀j ∈ {0, 1, . . . , k − 1} dim(H(j)) = Nj × Nj . Then, we can
show P (j) =⇒ P (j + 1) using equation (1). We know dim(H(j+1)) = dim(σ(B⊤

j+1(∆jAjH
(j))Bj+1)) =

(Nj+1 ×Nj)(Nj ×Nj)(Nj ×Nj)(Nj ×Nj)(Nj ×Nj+1) = Nj+1 ×Nj+1. Thus we see dim(H(k)) = Nk ×Nk.

The weight matrices Wk can be randomly initialized by choosing wk
i randomly or by adopting a similar strategy

to He Initialization (He et al., 2015). In order to train this network, one would update the weight matrices
Wk with gradient descent and define a loss function L. One can replace W−1

k by W †
k , the Moore-Penrose

pseudoinverse of Wk, in the expression for ∆k. Then, let D = {(xi,yi)}M
i=1 be a dataset where xi is a

CW-complex and yi ∈ Rd where d ∈ N. Our learning paradigm then becomes yi = f(xi) + ε, where f is a
CW-CNN. If we let X = [x1, . . . ,xM ] and y = [y1, . . . ,yM ] we want to choose the weight matrices Wk for
each CW-complex xi such that we solve minW ∥f(X) − y∥2

2.

3.2 CW-complex Attention

In order to define, a CW-complex Attention Network (CW-AN) we must first develop a notion of connectedness
or adjacency for CW-complexes. The analogue of adjacency for CW-complexes is termed incidence. We
collect these incidence values, which are integers, in a matrix. This matrix is defined below as Bk in equation
(4).

3.2.1 Incidence Matrices

Let the relation ≺ denote incidence. If two cells ek−1
j and ek

i are incident, we write ek−1
j ≺ ek

i . Similarly, if
two cells ek−1

j and ek
i are not incident, we write ek−1

j ⊀ ek
i . Additionally, let the relation ∼ denote orientation.

We write ek−1
j ∼ ek

i if the cells have the same orientation. If two cells have the opposite orientation we
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write ek−1
j ≁ ek

i . This enables us to define the classical incidence matrix (Sardellitti & Barbarossa, 2024).
Traditionally we define for indices i and j the value of (Bk)j,i as:

(Bk)j,i =


0 if ek−1

j ⊀ ek
i

1 if ek−1
j ≺ ek

i and ek−1
j ∼ ek

i

−1 if ek−1
j ≺ ek

i and ek−1
j ≁ ek

i

(4)

The matrix Bk establishes which k-cells are incident to which k − 1-cells. We know from above that
Bk ∈ ZNk−1×Nk . Let Colj(Bk) denote the j-th column of Bk. We know that Colj(Bk) = ZNk−1×1 which
corresponds to a vector representation of the cell boundary ∂ek

j viewed as a k − 1 chain (Alain et al., 2023).

Using the definition of an incidence matrix and the relation ≺ we can now define a CW-AN.
Definition 3.3. Let X be a finite n-dimensional CW-complex. Then for k ∈ [0, n] we can define a
CW-complex Attention Network (CW-AN). A CW-AN computes a learned weighted average of the
representations of each skeleton. We start by initializing for all i the starting hidden state
h

(0)
e0

i
=

[
e0

1, . . . , e
0
N0

]⊤ (
Coli(B⊤

0 )
)⊤ ∈ RN0×N0 . We then define a scoring function S

S(h(k)
ek

i

, h
(k−1)
ek−1

j

) = LeakyReLU
([
Wkh

(k)
ek

i

∥B⊤
k Wk−1h

(k−1)
ek−1

j

Bk

]
a⊤

)
(5)

where Wk ∈ RNk×Nk , Wk−1 ∈ RNk−1×Nk−1 , Bk ∈ RNk−1×Nk , a⊤ ∈ R2Nk×Nk , and ∥ denotes vector concate-
nation. Checking dimensions, we see that:

dim(Wkh
(k)
ek

i

) = (Nk ×Nk)(Nk ×Nk) = Nk ×Nk (6)

Additionally, for ek−1
j we see:

dim(B⊤
k Wk−1h

(k−1)
ek−1

j

Bk) = (Nk ×Nk−1)(Nk−1 ×Nk−1)(Nk−1 ×Nk−1)(Nk−1 ×Nk) = Nk ×Nk (7)

By equations (6) and (7) we know:

dim
([
Wkh

(k)
ek

i

∥B⊤
k Wk−1h

(k−1)
ek−1

j

Bk

])
= Nk × 2Nk (8)

Equations (5) and (8) imply:

dim
(

S(h(k)
ek

i

, h
(k−1)
ek−1

j

)
)

= dim
(

LeakyReLU
([
Wkh

(k)
ek

i

∥B⊤
k Wk−1h

(k−1)
ek−1

j

Bk

]
a⊤

))
= Nk ×Nk (9)

Therefore, we can compute attention scores αek
i

,ek
j
, which are normalized over all incident cells. Let the set

Nek
i

:=
{
ek−1

j′ | ek−1
j′ ≺ ek

i ∧ (ek−1
j′ ∼ ek

i ∨ ek−1
j′ ≁ ek

i )
}

contain all cells incident to ek
i . We define a variation

of the standard Softmax function called Cell-Softmax, which converts cells to a probability distribution.

αek
i

,ek−1
j

= Cell-Softmax
(

S(h(k)
ek

i

, h
(k−1)
ek−1

j

)
)

=
exp

(
S(h(k)

ek
i

, h
(k−1)
ek−1

j

)
)

∑
ek−1

j′ ∈N
ek

i

exp
(

S(h(k)
ek

i

, h
(k−1)
ek−1

j′
)
) ∈ RNk×Nk (10)

This enables us to define our update rule for computing later hidden states:

h
(k)
ek

i

= σ

 ∑
ek−1

j′ ∈N
ek

i

αek
i

,ek−1
j′

B⊤
k Wk−1h

(k−1)
ek−1

j′
Bk

 (11)
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We know from equation (7) that

dim(h(k)
ek

i

) = dim
(
αek

i
,ek−1

j′
B⊤

k Wk−1h
(k−1)
ek−1

j′
Bk

)
= (Nk ×Nk)(Nk ×Nk) = Nk ×Nk (12)

Thus, we have defined a notion of self-attention. A CW-AN is then composed by stacking numerous h(k)
ek

i

for
all k ∈ [0, n] and all cells.

We note that all Wi and a⊤ are learned. To stabilize the learning process of this self-attention mechanism,
we can extend definition 3.3 to develop multi-head attention. Just as in Veličković et al. (2018), we can
concatenate K independent self-attention mechanisms to execute equation (11). This results in the following
representation

h
′

i =
K

∥
ℓ=1

σ

 ∑
ek−1

j′ ∈N
ek

i

α
(ℓ)
ek

i
,ek−1

j′
B⊤

k W
(ℓ)
k−1h

(k−1)
ek−1

j′
Bk

 (13)

where α(ℓ)
ek

i
,ek−1

j′
are normalized attention coefficients computed by the ℓ-th attention mechanism and W (ℓ)

k−1 is
the corresponding weight matrix. In practice, the operation of the self-attention layer described in definition
3.3 can be parallelized. One can develop a transformer based architecture by combining the multi-head
attention layer described in equation (13) with modified Add&Layer Norm as well as Feed Forward networks,
equivalent to those developed by Vaswani et al. (2017). The weight matrices Wk can be randomly initialized
or one may adopt a different strategy.

4 Model Architecture

We develop two distinct networks for one synthetic task.

4.1 CW-CNN architecture

Graph convolutional networks are thought of as models which efficiently propagate information on graphs
(Kipf & Welling, 2017). Convolutional networks traditionally stack multiple convolutional, pooling, and
fully-connected layers to encode image-specific features for image-focused tasks (O’Shea & Nash, 2015). The
CW-CNN is motivated by similar principles. In particular, a CW-CNN efficiently propagates information on
CW-complexes and encodes topological features for tasks in which geometry plays a pivotal role.

There are numerous potential use cases for such an architecture. In the areas of drug design, molecular
modeling, and protein informatics the three dimensional structure of molecules plays a pivotal role and
numerous approaches in these areas have attempted to meaningfully extract or utilize geometric information
(Kuang et al., 2024; Gebauer et al., 2022; Zhung et al., 2024; Isert et al., 2023).

A CW-CNN is composed of a stack of Convolutional CW-complex layers as described above in definition
3.1. One may additionally add pooling, linear, or dropout layers. In our experiment we stack Convolutional
CW-complex layers, and follow up with a Linear layer and GELU activation. The architecture is pictured
below.

4.2 CW-AT architecture

Initially, Graph Attention Networks were developed as a method to perform node classification on graph-
structured data (Veličković et al., 2018). Transformers are neural sequence transduction models that maintain
an encoder decoder structure, wherein an input sequence (x1, . . . , xn) is mapped to a sequence of continuous
representations (z1, . . . , zn). Then (z1, . . . , zn) are passed to the decoder for generating an output sequence
(y1, . . . , ym) in an auto-regressive fashion (Vaswani et al., 2017). The CW-AT is motivated by similar principles.
In particular, a CW-AT leverages a different kind of attention mechanism, which can perform classification
or regression on CW-complex structured data. While one can theoretically setup a sequence-to-sequence

8
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Figure 1: CW-CNN architecture.

learning problem utilizing CW-complexes, we do not venture into such problems. However, we develop an
architecture that vaguely resembles the classic Transformer with far fewer parameters.

There are numerous potential use cases for such an architecture. One can attempt language translation,
image captioning and sequence transformation tasks (Sutskever et al., 2014). Doing so would require viewing
a word or entity as a CW-complex. This is somewhat reasonable since the 1-skeleton of a CW-complex
is a graph without loops (Whitehead, 1949). Graphs have appeared in numerous contexts within Natural
language processing. Classically vertices can encode text units of various sizes and characteristics such as
words, collocations, word senses, sentences and documents (Nastase et al., 2015). Edges may represent
relationships such as co-occurrence (Nastase et al., 2015). One can replace the notion of vertex with cell and
edge with a kind of gluing map and extend these ideas to CW-complexes. One can represent co-occurence for
instance by scaling the matrix Bk.

A CW-AT is composed of a single network, receiving as input a CW-complex. The input is processed by a
Multi-Cellular Attention mechanism as described by equation (13). Afterwards one may apply dropout, and
layer norm. Finally, a linear layer followed by Add and SELU are used to get the desired output shape. One
may apply a Softmax if the output is to be viewed as probabilities.

Figure 2: CW-AT architecture.

9
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5 Experiments

In this section we conduct experiments solving real-world graph classification problems. We focus on the
frequently-used benchmarks from TUDataset (Morris et al., 2020). We include the following datasets: Proteins,
MUTAG, PTC, NCI1, and NCI109. The Proteins dataset is from biology. The MUTAG, PTC, NCI1 are
from chemistry. The datasets store all molecules as graphs. Datasets in which the input is represented as a
CW-complex are not widely available. In order to run these experiments we must pre-process the graphs to
be compatible with our architecture, however doing so is not ideal. This is due to the fact that there is no
natural way to represent 3-dimensional structures of molecules and many other chemical properties essential
to the molecule’s functionality simply through molecular graphs (Liu et al., 2022).

Table 2: Experimental Results
Dataset: MUTAG PTC Proteins NCI1 NCI109

CWN (Bodnar et al., 2021) ? ? ? ? ?
CXN (Hajij et al., 2021) ? ? ? ? ?
CAN (Giusti et al., 2023) ? ? ? ? ?
CW-AT ? ? ? ? ?
CW-CNN ? ? ? ? ?

From the above table we can see.

6 Conclusion

In this work, we presented the CW-CNN and CW-AT, the first types of neural network that can receive
CW-complexes as input. We demonstrate reasonable accuracy with relatively few parameters on real-world
tasks. These results have implications for machine learning tasks in which geometric information or three
dimensional structure plays a pivotal role. These areas include, but are not limited to, molecular design,
cheminformatics and drug discovery. Additionally one may view tasks involving graphs in natural language
as good candidates for a CW-complex representation and correspondingly a CW-AT. CW-complexes capture
interactions between higher-order cells enabling the one to model polyadic relations effectively. Our neural
networks enable learning on CW-complexes thereby facilitating the learning of polyadic relations. We are
excited about the future of these models and plan to apply them to other tasks in cheminformatics and
natural language processing.
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A Appendix

A.1 Mathematical Definitions for CW-Complexes

We provide the definition given by Alain et al. (2023) and re-use some of their notation. In order to define a
path and function over a finite cellular complex or CW-complex X, one has to define a notion of chains and
cochains.
Definition A.1. Suppose X is an n-dimensional complex. Then, a k-chain ck for 0 ≤ k ≤ n is simply a sum
over the cells: ck =

∑Nk

i=1 ηie
k
i , ηi ∈ Z. The authors show this generalizes the notion of directed paths on a

graph. The set of all k-chains on X is denoted by Ck(X), which has the algebraic structure of a free Abelian
group with basis {ek

i }Nk
i=1.

Definition A.2. Given definition A.1, the boundary operator naturally follows as ∂k : Ck(X) → Ck−1(X).
The operator ∂k maps the boundary of a k-chain to a k − 1-chain. This map is linear, thereby leading to the
equation: ∂k

(∑Nk

i=1 ηie
k
i

)
=

∑Nk

i=1 ηi∂(ek
i ).

The authors then define the k-cochain (the dual notion of the k-chain) and the coboundary operator (the
dual notion of the boundary operator).
Definition A.3. Suppose X is an n-dimensional complex. Then, a k-cochain on X is a linear map
f : Ck(X) → R where 0 ≤ k ≤ n. f

(∑Nk

i=1 ηie
k
i

)
=

∑Nk

i=1 ηif(ek
i ) where f(ek

i ) ∈ R is the value of f at cell ek
i .

The space of k-cochains is defined as Ck(X), which forms a real vector space with the dual basis {(ek
i )∗}Nk

i=1
such that (ek

i )∗(ek
j ) = δij .
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Definition A.4. Given definition A.3, the coboundary operator naturally follows as dk : Ck(X) → Ck+1(X)
which, for 0 ≤ k ≤ n, is defined as dk = f(∂k+1(c)) for all f ∈ Ck(X) and c ∈ Ck+1(X). Note that for
k ∈ {−1, n} dkf ≡ 0.

Using these definitions, Alain et al. (2023) formally introduce a generalization of the Laplacian for graphs.
They further prove that for k = 0 and identity weights, the Hodge Laplacian is the graph Laplacian. In
essence, the authors prove W0 = I =⇒ ∆0 = B1W1B

⊤
1 and W1 = I =⇒ ∆0 = B1B

⊤
1 , which is the

standard graph Laplacian.
Definition A.5. Let X be a finite complex. Then, we define a set of weights for every k. Namely, let
{wk

i }Nk
i=1 be a set of real valued weights. Then, ∀f, g ∈ Ck(X), one can write the weighted L2 inner product

as:⟨f, g⟩L2(wk) :=
∑Nk

i=1 w
k
i f(ek

i )g(ek
i ). This inner product induces an adjoint of the coboundary operator

d∗
k : Ck+1(X) → Ck(X). Namely, ⟨d∗

kf, g⟩ = ⟨f, dkg⟩ for all f ∈ Ck+1(X) and g ∈ Ck(X).
Definition A.6. Using the previous definitions, the Hodge Laplacian ∆k : Ck(X) → Ck(X) on the space of
k-cochains is then ∆k := dk−1 ◦ d∗

k−1 + d∗
k ◦ dk. The matrix representation is then ∆k := B⊤

k W
−1
k−1BkWk +

W−1
k Bk+1Wk+1B

⊤
k+1. Here, Wk = diag(wk

1 , . . . , w
k
Nk

) is the diagonal matrix of cell weights and Bk is the
order k incidence matrix, whose j-th column corresponds to a vector representation of the cell boundary ∂ek

j

viewed as a k − 1 chain.
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