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Abstract

We present a novel framework for learning on CW-complex structured data points. Recent
advances have discussed CW-complexes as ideal learning representations for problems in
cheminformatics. However, there is a lack of available machine learning methods suitable for
learning on CW-complexes. In this paper we develop notions of convolution and attention
that are well defined for CW-complexes. These notions enable us to create the first Hodge-
Laplacian informed neural network that can receive a CW-complex as input. We illustrate
and interpret this framework in the context of supervised prediction.

1 Introduction

1.1 Complexes

Succinctly, a cell complex is an object in a category obtained by successively gluing together cells using
pushouts. More formally, Whitehead (1949) defined them in the following way.
Definition 1.1. A cell complex K, or alternatively a complex, is a Hausdorff space which is the union of
disjoint open cells e, en, en

i subject to the condition that the closure ēn of each n-cell, en ∈ K is the image of
a fixed n-simplex in a map f : σn → ēn such that

(1) f |σn − ∂σn is a homeomorphism onto en

(2) ∂en ⊂ Kn−1, where ∂en = f∂σn = ēn − en and Kn−1 is the (n − 1)-section of K consisting of all
the cells whose dimensionalities do not exceed n − 1.

A CW-complex is a cell complex that has the weak topology and is closure finite. A complex K is said
to be closure finite if and only if K(e) is a finite subcomplex, for every cell e ∈ K. We say K has the
weak-topology if and only if a subset X ⊂ K is closed provided X ∩ ē is closed for each cell e ∈ K. To
construct a CW-complex, we inductively glue cells together. More formally, Hatcher (2002) describes how we
construct a finite CW-complex X as follows. Initially, we start with a collection of zero cells X0 = {e0

i }N
i=0.

X0 is called the 0-skeleton. Then, for all j ∈ {1, . . . , n} we take a collection of j-cells {ej
i }N

i=0 and glue their
boundaries to points in the j − 1 skeleton using continuous attaching maps ϕj

i : ∂ej
i → Xj−1. Each j-cell is a

topological space. Essentially, a CW-complex is constructed by taking a union of a sequence of topological
spaces ø = X−1 ⊂ X0 ⊂ X1 ⊂ · · · such that each Xj is obtained by attaching j-cells to Xj−1. In the
language of category theory, we often think of the topology on finite CW-complex X as the direct limit of the
diagram X−1 ↪→ X0 ↪→ X1 ↪→ · · · ↪→ Xk for some k ∈ N. CW-complexes generalize the notion of a graph. A
1-dimensional CW-complex is a regular graph without loops. Moreover, every topological space is weakly
homotopy equivalent to a CW-complex.

1.2 Learning on CW-complexes

Consider the following learning problem. Suppose we are presented with a dataset D = {(xi, yi)}n
i=1 where xi

is a CW-complex, yi ∈ Rd, and n, d ∈ N. Then, the task of learning a function F such that yi = F(xi) + ϵ,
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where ϵ is some error, naturally arises. We tackle this problem by developing a convolutional layer and
attention mechanism for a CW-complex xi. Essentially, we extend the work of Kipf & Welling (2017) to
define a notion of convolution for CW-complexes. Additionally, we extend the work of Veličković et al. (2018)
to develop a notion of attention for CW-complexes.

2 Related Work

2.1 Graph Neural Networks

Kipf & Welling (2017) develop a semi-supervised learning framework for graphs. The authors consider a
graph-based semi-supervised learning approach, where label information is smoothed over the graph by
applying a form of explicit graph-based regularization.
Definition 2.1. Let G = (V, E) be a graph. Let f be a neural network. Let λ be a weighting factor. Let
X be a matrix of node feature vectors. Let A be the adjacency matrix for a graph G. Let D be the degree
matrix for G. Finally, let ∆ = D − A be the unnormalized graph Laplacian. Then, L = L0 + λLreg where
Lreg =

∑
i,j Aij∥f(Xi) − f(Xj)∥2 = f(X)⊤∆f(X). Note that L0 is the supervised loss with respect to the

labeled part of the graph (Kipf & Welling, 2017).

The authors introduce a well behaved layer-wise propagation rule, and demonstrate semi-supervised classifica-
tion of graphs.
Definition 2.2. Let G be a graph. Let X be a matrix of node feature vectors. Let A be the adjacency matrix
for a graph G. Let D be the degree matrix for G. Let ∆ = D − A be the unnormalized graph Laplacian.
Additionally, define Ã = A + IN to be the adjacency matrix of G with self-connections, D̃ii =

∑
j Ãjj , W (ℓ)

be a weight matrix, and σ a nonlinearity. Then, we can consider a neural network f(X, A) which follows
the layer-wise propagation rule: H(ℓ+1) = σ

(
D̃− 1

2 ÃD̃− 1
2 H(ℓ)W (ℓ)

)
. Note that H(ℓ) ∈ RN×M is a matrix of

activations in the ℓ-th layer and H(0) = X. Neural networks of the form f(X, A) which are composed by
stacking hidden layers of the form Hℓ are called graph convolutional networks (GCN) (Kipf & Welling, 2017).

2.2 Graph Attention Networks

Veličković et al. (2018) develop a notion of attention for Graphs. Let G = (V, E) contains nodes V = {1, . . . , n}
and edges E ⊆ V × V, where (j, i) ∈ E denotes an edge from a node j to a node i. We assume that every
node i ∈ V has an initial representation h0

i ∈ Rd0 .
Definition 2.3. A Graph Neural Network take in a set of node representations {hi ∈ Rd | i ∈ V} and
the set of edges E as input. The layer outputs a new set of node representations {h

′

i ∈ Rd′ | i ∈ V},
where the same parametric function is applied to every node given its neighbors Ni = {j ∈ V | (j, i) ∈ E}:
h

′

i = fθ(hi, AGGREGATE({hj | j ∈ Ni})). The design of f and AGGREGATE is what distinguishes Graph
Neural Networks (Brody et al., 2022).
Definition 2.4. A Graph Attention Network computes a learned weighted average of the representations of Ni.
A scoring function e : Rd×Rd → R computes a score for every edge (j, i), which indicates the importance of the
features of the neighbor j to node i. e(hi, hj) = LeakyReLU(a⊤ · [Whi ∥Whj ]) where a ∈ R2d′ , W ∈ Rd′×d are
learned and ∥ denotes vector concatenation. These attention scores are normalized across all neighbors j ∈ Ni

using softmax and the attention function is defined as: αij = softmaxj(e(hi, hj)) = exp(e(hi,hj))∑
j′∈Ni

exp(e(hi,hj′ ))
.

Then the Graph Attention Network computes a new node representation using nonlinearity σ as h′
i =

σ
(∑

j∈Ni
αij · Whj

)
(Veličković et al., 2018; Brody et al., 2022).

2.3 Gaussian Processes on Cellular Complexes

Alain et al. (2023) define the first Gaussian process on cell complexes. In doing so, the authors define the
Hodge Laplacian and introduce important notation. We provide their definitions and re-use some of their
notation. In order to define a path and function over a finite cellular complex or CW-complex X, one has to
define a notion of chains and cochains.
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Definition 2.5. Suppose X is an n-dimensional complex. Then, a k-chain ck for 0 ≤ k ≤ n is simply a sum
over the cells: ck =

∑Nk

i=1 ηie
k
i , ηi ∈ Z. The authors show this generalizes the notion of directed paths on a

graph. The set of all k-chains on X is denoted by Ck(X), which has the algebraic structure of a free Abelian
group with basis {ek

i }Nk
i=1.

Definition 2.6. Given definition 2.5, the boundary operator naturally follows as ∂k : Ck(X) → Ck−1(X).
The operator ∂k maps the boundary of a k-chain to a k − 1-chain. This map is linear, thereby leading to the
equation: ∂k

(∑Nk

i=1 ηie
k
i

)
=

∑Nk

i=1 ηi∂(ek
i ).

The authors then define the k-cochain (the dual notion of the k-chain) and the coboundary operator (the
dual notion of the boundary operator).
Definition 2.7. Suppose X is an n-dimensional complex. Then, a k-cochain on X is a linear map
f : Ck(X) → R where 0 ≤ k ≤ n. f

(∑Nk

i=1 ηie
k
i

)
=

∑Nk

i=1 ηif(ek
i ) where f(ek

i ) ∈ R is the value of f at cell ek
i .

The space of k-cochains is defined as Ck(X), which forms a real vector space with the dual basis {(ek
i )∗}Nk

i=1
such that (ek

i )∗(ek
j ) = δij .

Definition 2.8. Given definition 2.7, the coboundary operator naturally follows as dk : Ck(X) → Ck+1(X)
which, for 0 ≤ k ≤ n, is defined as dk = f(∂k+1(c)) for all f ∈ Ck(X) and c ∈ Ck+1(X). Note that for
k ∈ {−1, n} dkf ≡ 0.

Using these definitions, Alain et al. (2023) formally introduce a generalization of the Laplacian for graphs.
They further prove that for k = 0 and identity weights, the Hodge Laplacian is the graph Laplacian. In
essence, the authors prove W0 = I =⇒ ∆0 = B1W1B⊤

1 and W1 = I =⇒ ∆0 = B1B⊤
1 , which is the

standard graph Laplacian.
Definition 2.9. Let X be a finite complex. Then, we define a set of weights for every k. Namely, let
{wk

i }Nk
i=1 be a set of real valued weights. Then, ∀f, g ∈ Ck(X), one can write the weighted L2 inner product

as:⟨f, g⟩L2(wk) :=
∑Nk

i=1 wk
i f(ek

i )g(ek
i ). This inner product induces an adjoint of the coboundary operator

d∗
k : Ck+1(X) → Ck(X). Namely, ⟨d∗

kf, g⟩ = ⟨f, dkg⟩ for all f ∈ Ck+1(X) and g ∈ Ck(X).
Definition 2.10. Using the previous definitions, the Hodge Laplacian ∆k : Ck(X) → Ck(X) on the space of
k-cochains is then ∆k := dk−1 ◦ d∗

k−1 + d∗
k ◦ dk. The matrix representation is then ∆k := B⊤

k W −1
k−1BkWk +

W −1
k Bk+1Wk+1B⊤

k+1. Here, Wk = diag(wk
1 , . . . , wk

Nk
) is the diagonal matrix of cell weights and Bk is the

order k incidence matrix, whose j-th column corresponds to a vector representation of the cell boundary ∂ek
j

viewed as a k − 1 chain.

2.4 CW-Complex Networks

Recent advances have proposed neural networks for CW-complexes. We discuss these methods and describe
key distinctions between our method. Hajij et al. (2021) propose an inter-cellular message-passing scheme on
cell complexes. Under the proposed scheme, the propagation algorithm then performs a sequence of message
passing executed between cells in X defined as

h
(k)
cn−1 := α

(k)
n−1

(
h

(k−1)
cn−1 , Ean−1∈Nadj(cn−1)

(
ϕ

(k)
n−1(h(k−1)

cn−1 , h
(k−1)
an−1 , Fen∈CO[an−1,cn−1](h

(0)
en ))

))
(1)

where h
(k)
em , h

(k)
am , h

(k)
cm ∈ Rℓk

m , E, and F are permutation invariant differentiable functions and α
(k)
j , ϕ

(k)
j are

trainable differentiable functions. Hajij et al. (2021) then utilize this message passing framework to define a
convolutional message passing scheme H(k) := ReLU(ÂadjH(k−1)W k−1). We improve upon this framework
in numerous ways. First we leverage the Hodge-Laplacian thereby making our network Hodge-aware. This
Hodge-awareness allows for effective learning on CW-complexes when compared to message-passing networks
(Bodnar et al., 2021b). Additionally, we rely on boundary operators B⊤

k+1 and Bk+1 as opposed to using
message passing or permutation invariant differentiable functions. This enables a more time and space efficient
way in which to process the CW-complex. We show in Lemma 3.2 that dim(H(k)) = Nk × Nk. Moreover, our
form of convolution is defined for any non-linearity not just ReLU. Finally, as stated by Hajij et al. (2021),
one may wish to train a CCXN for every k-cells adjacency matrix individually. Consequently, one has to
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train n − 1 many networks Contrastingly, our architecture requires training only one network for every k-cells
adjacency matrix.
Similarly Bodnar et al. (2021a) extend a message-passing algorithm to cell complexes. Bodnar et al. (2021a)
essentially define lifting transformations, f : G → X, augmenting a graph with higher-dimensional constructs.
This results in a multi-dimensional and hierarchical message passing procedure over the input graph (Bodnar
et al., 2021a). The authors specify this procedure over the space of chemical graphs in section 4, defining
message passing from atoms to bonds, and bonds to rings. In this manuscript we propose a network that
receives as input a CW-complex of dimension n ≥ 1, which need not be a graph. Additionally we do not
rely on lifting transformations or an explicit message passing scheme. In Appendix D, Bodnar et al. (2021a)
discuss how one can define a convolutional operator on cochains. However, the authors leave development of
an actual convolutional network as future work and do not mention attention (Bodnar et al., 2021a). We
proceed in this direction by developing a Hodge-Laplacian informed convolutional network that receives a
CW-complex as input.
Giusti et al. (2023) introduce a neural architecture operating on data defined over the vertices of a graph. The
approach described leverages a lifting algorithm that learns edge features from node features, then applies a
cellular attention mechanism, and finally applies pooling. In particular, Giusti et al. (2023) define a cellular
lifting map as a skeleton-preserving function s : G → CG incorporating graph G into regular cell complex CG.
Using the cellular lifting map the authors define attentional lift, giving way to their attention mechanism.
The procedure computes F 0 many attention heads such that when given input graph G = (V, E), for vertices
i, j ∈ V connected by edge e ∈ E , edge features xe ∈ RF 0 are computed by concatenating attention scores.
Mathematically written as

xe = g(xi, xj) = ∥F 0

k=1ak
n(xi, xj), ∀ e ∈ E (2)

Giusti et al. (2023) utilize equation (2) above to define their layer propagation scheme by combining the
attentional lift with message passing and aggregating using any permutation invariant operator, see equation
6 in (Giusti et al., 2023). We improve on this approach in numerous ways. First we leverage the Hodge-
Laplacian thereby making our network Hodge-aware. This Hodge-awareness allows for effective learning
on CW-complexes when compared to message-passing networks (Bodnar et al., 2021b). In contrast to the
work of Giusti et al. (2023), our network does not rely on incorporating an input graph G into a regular
cell complex CG or attentional lift. Consequently, our method saves computations. By propagating over
cells via the boundary operator, our method can account for the topology of the individual cell and its open
neighborhoods. Finally, our method is leveraged to develop multi-head attention and a transformer-like
architecture.

3 Hodge-Laplacian informed CW-Complex Networks

We extend the work of Kipf & Welling (2017) and Veličković et al. (2018) by developing a notion of convolution
and attention for CW-complexes that is informed by the Hodge-Laplacian.

3.1 Convolutional CW-complex Layer

Definition 3.1. Let X be a finite n-dimensional CW-complex. Then for k ∈ [0, n] let Ak ∈ RNk×Nk be a
matrix of cell feature vectors and let ∆k be the Hodge Laplacian. Then we can define a Convolutional
CW-complex Network (CW-CNN) f(X) as being composed by stacking hidden layers H(k) according
to the following layer-wise propagation rule:

H(k+1) = σ
(

B⊤
k+1

(
∆kAkH(k)

)
Bk+1

)
(1)

Initially, we set H(0) = X0 ∈ RN0×N0 , which is the matrix representation of the zero-skeleton of CW-complex
X. Recall the definitions of the boundary operator (definition 2.6), coboundary operator (definition 2.8),
and Hodge-Laplacian (definition 2.10). By definition 2.10, ∆k = B⊤

k W −1
k−1BkWk + W −1

k Bk+1Wk+1B⊤
k+1.

Additionally, by definitions 2.6 and 2.8, Bk ∈ ZNk−1×Nk , B⊤
k+1 ∈ ZNk+1×Nk , and the weight matrix Wk =

diag(wk
1 , . . . , wk

Nk
) ∈ RNk×Nk .
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Checking the dimensions we can see that ∆k ∈ RNk×Nk :

dim(B⊤
k W −1

k−1BkWk) = (Nk × Nk−1)(Nk−1 × Nk−1)(Nk−1 × Nk)(Nk × Nk) = Nk × Nk (2)

dim(W −1
k Bk+1Wk+1B⊤

k+1) = (Nk × Nk)(Nk × Nk+1)(Nk+1 × Nk+1)(Nk+1 × Nk) = Nk × Nk (3)

Therefore ∆k ∈ RNk×Nk =⇒ dim(∆kAk) = Nk × Nk. Additionally, we know from above dim(Bk+1) =
Nk × Nk+1 and dim(B⊤

k+1) = Nk+1 × Nk. Therefore, by induction, we can show dim(H(k)) = Nk × Nk

(Lemma 3.2). Formally, we call Bk the order k incidence matrix, and let σ be any nonlinearity. Thus, using
the layer-wise propagation rule from equation (1), we can define a neural network f(X) by stacking the
hidden layers H(k). We call such a network a Convolutional CW-complex Network, or CW-CNN for short.
Lemma 3.2. The dimension of hidden layer k in a CW-CNN is dim(H(k)) = Nk × Nk.

Proof. We want to show that dim(H(k)) = Nk ×Nk. For the base case (k = 0) we define H(0) = X0 ∈ RN0×N0 .
Let the inductive hypothesis P (j) be that ∀j ∈ {0, 1, . . . , k − 1} dim(H(j)) = Nj × Nj . Then, we can
show P (j) =⇒ P (j + 1) using equation (1). We know dim(H(j+1)) = dim(σ(B⊤

j+1(∆jAjH(j))Bj+1)) =
(Nj+1 ×Nj)(Nj ×Nj)(Nj ×Nj)(Nj ×Nj)(Nj ×Nj+1) = Nj+1 ×Nj+1. Thus we see dim(H(k)) = Nk ×Nk.

The weight matrices Wk can be randomly initialized by choosing wk
i randomly or by adopting a similar strategy

to He Initialization (He et al., 2015). In order to train this network, one would update the weight matrices
Wk with gradient descent and define a loss function L. One can replace W −1

k by W †
k , the Moore-Penrose

pseudoinverse of Wk, in the expression for ∆k. Then, let D = {(xi, yi)}M
i=1 be a dataset where xi is a

CW-complex and yi ∈ Rd where d ∈ N. Our learning paradigm then becomes yi = f(xi) + ε, where f is a
CW-CNN. If we let X = [x1, . . . , xM ] and y = [y1, . . . , yM ] we want to choose the weight matrices Wk for
each CW-complex xi such that we solve minW ∥f(X) − y∥2

2.

3.2 CW-complex Attention

In order to define, a CW-complex Attention Network (CW-AN) we must first develop a notion of connectedness
or adjacency for CW-complexes. The analogue of adjacency for CW-complexes is termed incidence. We
collect these incidence values, which are integers, in a matrix. This matrix is defined below as Bk in equation
(4).

3.2.1 Incidence Matrices

Let the relation ≺ denote incidence. If two cells ek−1
j and ek

i are incident, we write ek−1
j ≺ ek

i . Similarly, if
two cells ek−1

j and ek
i are not incident, we write ek−1

j ⊀ ek
i . Additionally, let the relation ∼ denote orientation.

We write ek−1
j ∼ ek

i if the cells have the same orientation. If two cells have the opposite orientation we
write ek−1

j ≁ ek
i . This enables us to define the classical incidence matrix (Sardellitti & Barbarossa, 2024).

Traditionally we define for indices i and j the value of (Bk)j,i as:

(Bk)j,i =


0 if ek−1

j ⊀ ek
i

1 if ek−1
j ≺ ek

i and ek−1
j ∼ ek

i

−1 if ek−1
j ≺ ek

i and ek−1
j ≁ ek

i

(4)

The matrix Bk establishes which k-cells are incident to which k − 1-cells. We know from above that
Bk ∈ ZNk−1×Nk . Let Colj(Bk) denote the j-th column of Bk. We know that Colj(Bk) = ZNk−1×1 which
corresponds to a vector representation of the cell boundary ∂ek

j viewed as a k − 1 chain (Alain et al., 2023).

Using the definition of an incidence matrix and the relation ≺ we can now define a CW-AN.
Definition 3.3. Let X be a finite n-dimensional CW-complex. Then for k ∈ [0, n] we can define a
CW-complex Attention Network (CW-AN). A CW-AN computes a learned weighted average of the
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representations of each skeleton. We start by initializing for all i the starting hidden state
h

(0)
e0

i
=

[
e0

1, . . . , e0
N0

]⊤ (
Coli(B⊤

0 )
)⊤ ∈ RN0×N0 . We then define a scoring function S

S(h(k)
ek

i

, h
(k−1)
ek−1

j

) = LeakyReLU
([

Wkh
(k)
ek

i

∥ B⊤
k Wk−1h

(k−1)
ek−1

j

Bk

]
a⊤

)
(5)

where Wk ∈ RNk×Nk , Wk−1 ∈ RNk−1×Nk−1 , Bk ∈ RNk−1×Nk , a⊤ ∈ R2Nk×Nk , and ∥ denotes vector concate-
nation. Checking dimensions, we see that:

dim(Wkh
(k)
ek

i

) = (Nk × Nk)(Nk × Nk) = Nk × Nk (6)

Additionally, for ek−1
j we see:

dim(B⊤
k Wk−1h

(k−1)
ek−1

j

Bk) = (Nk × Nk−1)(Nk−1 × Nk−1)(Nk−1 × Nk−1)(Nk−1 × Nk) = Nk × Nk (7)

By equations (6) and (7) we know:

dim
([

Wkh
(k)
ek

i

∥ B⊤
k Wk−1h

(k−1)
ek−1

j

Bk

])
= Nk × 2Nk (8)

Equations (5) and (8) imply:

dim
(

S(h(k)
ek

i

, h
(k−1)
ek−1

j

)
)

= dim
(

LeakyReLU
([

Wkh
(k)
ek

i

∥ B⊤
k Wk−1h

(k−1)
ek−1

j

Bk

]
a⊤

))
= Nk × Nk (9)

Therefore, we can compute attention scores αek
i

,ek
j
, which are normalized over all incident cells. Let the set

Nek
i

:=
{

ek−1
j′ | ek−1

j′ ≺ ek
i ∧ (ek−1

j′ ∼ ek
i ∨ ek−1

j′ ≁ ek
i )

}
contain all cells incident to ek

i . We define a variation
of the standard Softmax function called Cell-Softmax, which converts cells to a probability distribution.

αek
i

,ek−1
j

= Cell-Softmax
(

S(h(k)
ek

i

, h
(k−1)
ek−1

j

)
)

=
exp

(
S(h(k)

ek
i

, h
(k−1)
ek−1

j

)
)

∑
ek−1

j′ ∈N
ek

i

exp
(

S(h(k)
ek

i

, h
(k−1)
ek−1

j′
)
) ∈ RNk×Nk (10)

This enables us to define our update rule for computing later hidden states:

h
(k)
ek

i

= σ

 ∑
ek−1

j′ ∈N
ek

i

αek
i

,ek−1
j′

B⊤
k Wk−1h

(k−1)
ek−1

j′
Bk

 (11)

We know from equation (7) that

dim(h(k)
ek

i

) = dim
(

αek
i

,ek−1
j′

B⊤
k Wk−1h

(k−1)
ek−1

j′
Bk

)
= (Nk × Nk)(Nk × Nk) = Nk × Nk (12)

Thus, we have defined a notion of self-attention. A CW-AN is then composed by stacking numerous h
(k)
ek

i

for
all k ∈ [0, n] and all cells.

We note that all Wi and a⊤ are learned. To stabilize the learning process of this self-attention mechanism,
we can extend definition 3.3 to develop multi-head attention. Just as in Veličković et al. (2018), we can
concatenate K independent self-attention mechanisms to execute equation (11). This results in the following
representation

h
′

i =
K

∥
ℓ=1

σ

 ∑
ek−1

j′ ∈N
ek

i

α
(ℓ)
ek

i
,ek−1

j′
B⊤

k W
(ℓ)
k−1h

(k−1)
ek−1

j′
Bk

 (13)
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where α
(ℓ)
ek

i
,ek−1

j′
are normalized attention coefficients computed by the ℓ-th attention mechanism and W

(ℓ)
k−1 is

the corresponding weight matrix. In practice, the operation of the self-attention layer described in definition
3.3 can be parallelized. One can develop a transformer based architecture by combining the multi-head
attention layer described in equation (13) with modified Add&Layer Norm as well as Feed Forward networks,
equivalent to those developed by Vaswani et al. (2017). The weight matrices Wk can be randomly initialized
or one may adopt a different strategy.

4 Model Architecture

We develop two distinct networks for one synthetic task.

4.1 CW-CNN architecture

Graph convolutional networks are thought of as models which efficiently propagate information on graphs
(Kipf & Welling, 2017). Convolutional networks traditionally stack multiple convolutional, pooling, and
fully-connected layers to encode image-specific features for image-focused tasks (O’Shea & Nash, 2015). The
CW-CNN is motivated by similar principles. In particular, a CW-CNN efficiently propagates information on
CW-complexes and encodes topological features for tasks in which geometry plays a pivotal role.

There are numerous potential use cases for such an architecture. In the areas of drug design, molecular
modeling, and protein informatics the three dimensional structure of molecules plays a pivotal role and
numerous approaches in these areas have attempted to meaningfully extract or utilize geometric information
(Kuang et al., 2024; Gebauer et al., 2022; Zhung et al., 2024; Isert et al., 2023).

A CW-CNN is composed of a stack of Convolutional CW-complex layers as described above in definition
3.1. One may additionally add pooling, linear, or dropout layers. In our experiment we stack Convolutional
CW-complex layers, and follow up with a Linear layer and GELU activation. The architecture is pictured
below.

Figure 1: CW-CNN architecture.

4.2 CW-AT architecture

Initially, Graph Attention Networks were developed as a method to perform node classification on graph-
structured data (Veličković et al., 2018). Transformers are neural sequence transduction models that maintain
an encoder decoder structure, wherein an input sequence (x1, . . . , xn) is mapped to a sequence of continuous
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representations (z1, . . . , zn). Then (z1, . . . , zn) are passed to the decoder for generating an output sequence
(y1, . . . , ym) in an auto-regressive fashion (Vaswani et al., 2017). The CW-AT is motivated by similar principles.
In particular, a CW-AT leverages a different kind of attention mechanism, which can perform classification
or regression on CW-complex structured data. While one can theoretically setup a sequence-to-sequence
learning problem utilizing CW-complexes, we do not venture into such problems. However, we develop an
architecture that vaguely resembles the classic Transformer with far fewer parameters.

There are numerous potential use cases for such an architecture. One can attempt language translation,
image captioning and sequence transformation tasks (Sutskever et al., 2014). Doing so would require viewing
a word or entity as a CW-complex. This is somewhat reasonable since the 1-skeleton of a CW-complex
is a graph without loops (Whitehead, 1949). Graphs have appeared in numerous contexts within Natural
language processing. Classically vertices can encode text units of various sizes and characteristics such as
words, collocations, word senses, sentences and documents (Nastase et al., 2015). Edges may represent
relationships such as co-occurrence (Nastase et al., 2015). One can replace the notion of vertex with cell and
edge with a kind of gluing map and extend these ideas to CW-complexes. One can represent co-occurence for
instance by scaling the matrix Bk.

A CW-AT is composed of two separate networks, with each receiving as input a CW-complex. In each network
the input is processed by a Multi-Cellular Attention mechanism as described by equation (13). Afterwards
one may apply dropout, feed forward, and layer norm. The outputs from the first network are combined with
output from the second network through addition and applying SELU activation. Finally, a linear layer is
used to get the desired output shape. One may apply a Softmax if the output is to be viewed as probabilities.

Figure 2: CW-AT architecture.

5 Experiment

This section describes our experimental setup and training regime.

8
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Table 1: CW-CNN and CW-AT attain low test-set RMSE.
Model RMSE Parameters

CW-AT 0.02533091887133196 310
CW-CNN 1.1487752999528311 × 10−5 30

5.1 Dataset

We construct a synthetic dataset consisting of CW-complexes and attempt to predict the number of cells in
each complex. This task is intended to be a proof of concept. Let D = {xi, yi}N

i=1 be our dataset. Here we
choose N = 500 and let xi be a CW-complex and let yi ∈ R be the number of cells found in complex xi.

5.2 Hardware and Wall clock time

We train both of our models on one AWS m7g.2xlarge instance. For both models, each training step took
approximately 0.1 seconds. We trained both models for only 400 steps. Therefore, total training took
approximately 40 seconds for each model.

5.3 Optimizer

We utilized SGD in order to train both models. For our CW-CNN we utilized learning rate η = 0.001 and
momentum α = 0.9. For our CW-AT we utilized learning rate η = 0.001, momentum α = 0.7 and weight
decay λ = 0.02.

5.4 Regularization

We utilized regularization during training the CW-AT. We apply dropout in the CW-AT with Pdrop = 0.1 for
every dropout layer shown in Figure 2.

6 Results

Using an 80/20 train/test split we report test set accuracy for both models. We summarize our results in
Table 1.

On our synthetic task, we demonstrate low test-set RMSE. At the time of experiment, there are no other
existing neural networks with which to draw comparison. We interpret our experiment as a proof of concept
demonstrating that such an architecture is feasible, compute-efficient, and well-defined. In the event that one
wishes to develop deeper architectures, stacking more layers or increasing model dimensions are well defined.

7 Conclusion

In this work, we presented the CW-CNN and CW-AT, the first types of neural network that can receive
CW-complexes as input. We demonstrate high accuracy with relatively few parameters on a synthetic
task. These results have implications for machine learning tasks in which geometric information or three
dimensional structure plays a pivotal role. These areas include, but are not limited to, molecular design,
cheminformatics and drug discovery. Additionally one may view tasks involving graphs in natural language
as good candidates for a CW-complex representation and correspondingly a CW-AT. CW-complexes capture
interactions between higher-order cells enabling the one to model polyadic relations effectively. Our neural
networks enable learning on CW-complexes thereby facilitating the learning of polyadic relations. We are
excited about the future of these models and plan to apply them to other tasks in cheminformatics and
natural language processing.
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