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ABSTRACT

It is well accepted that the choice of token vocabulary largely affects the per-
formance of machine translation. One dominant approach to construct a good
vocabulary is the Byte Pair Encoding method (BPE). However, due to expensive
trial costs, most previous studies only conduct simple trials with commonly used
vocabulary sizes. This paper finds an exciting relation between an information-
theoretic feature and BLEU scores with a given vocabulary. With this observation,
we formulate the quest of vocabularization – finding the best token dictionary with
a proper size – as an optimal transport problem. We then propose Info-VOT, a
simple and efficient solution without the full and costly trial training. We evaluate
our approach on multiple machine translation tasks, including WMT-14 English-
German translation, TED bilingual translation, and TED multilingual translation.
Empirical results show that Info-VOT can generate well-performing vocabularies
on diverse scenarios. Also, one advantage of the proposed approach lies in its
low consumption of computation resources. On TED bilingual translation, Info-
VOT only spends a few CPU hours generating vocabularies, while the traditional
BPE-Search solution takes hundreds of GPU hours.

1 INTRODUCTION

Due to the discreteness of text, it has been a standard practice for natural language processing (NLP)
tasks (Mikolov et al., 2013; Vaswani et al., 2017; Gehrmann et al., 2018; Zhang et al., 2018; De-
vlin et al., 2019) to embed the sequence of input tokens using a vocabulary-based lookup table,
with each row representing a token as a dense vector. As a necessary prerequisite, vocabulary
construction bridges the gap between discrete symbols and continuous representations. Currently,
the widely-used vocabularies (e.g., subword vocabularies) are mainly constructed by heuristic ap-
proaches (Sennrich et al., 2016; Costa-jussà & Fonollosa, 2016; Lee et al., 2017; Kudo & Richard-
son, 2018; Al-Rfou et al., 2019; Wang et al., 2020). In this work, we focus on machine translation
to explore better vocabularization solutions.

Despite the promising performance, most of the current approaches inevitably require a large num-
ber of human efforts to adjust the granularity of segmentation units. While many previous stud-
ies (Sennrich & Zhang, 2019; Ding et al., 2019; Provilkov et al., 2020; Salesky et al., 2020) show
that vocabulary size greatly impacts BLEU scores, especially on low-resource scenarios, very few
existing studies carefully tune this hyper-parameter due to expensive computation resource costs. To
address this problem, researchers recently pay increasing attention to automatic vocabulary search.
However, to the best of our knowledge, there is still no literature that provides a unified theory to ex-
plore what quantitative features impact vocabularies’ quality and how to formulate vocabularization
as a learning problem such that the optimal vocabulary can be automatically learned by leveraging
current machine learning techniques instead of heuristically defined.

We take the first step to a unified theory for automatic vocabulary learning (AVL). To be specific, we
present a new perspective of information theory to quantitatively describe vocabularies and then for-
mulate vocabularization into a discrete optimization problem, followed by a mathematically derived
solution (Info-VOT). We start from the entropy of the token distribution. From the view of informa-
tion theory, entropy represents the average level of information inherent in the tokens, or how many
bits we need to define these tokens, also called Bits Per Character (BPC). We have an experimental
finding that an information-theoretical feature BPC-AMD, short for AMD, correlates with BLEU
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scores. Formally, AMD, first introduced in this work, is defined as the amortized marginal differ-
ence over BPC (See Eq.2 for more explanations). Although it is hard to explain this connection
based on our current knowledge, this feature can still be empirically used to search for the optimal
vocabulary or guide vocabulary learning. Here we focus more on the learning setting to explore
whether there is an efficient and promising AVL solution.

Motivated by our findings, we propose a novel two-step discrete optimization objective and an opti-
mal transport solution that can efficiently find well-performing vocabularies. Our target is to find the
optimal vocabulary with the highest AMD. To model AMD, a contrastive feature, here we define an
incremental integer sequence S where each timestep t corresponds to a set of vocabularies VS[t] with
each vocabulary containing up to S[t] items. Given S, the optimization contains two steps. First,
for each timestep t, we search for the optimal vocabulary v(t) ∈ VS[t] with the highest AMD based
on the marginal difference between BPC values of v(t) ∈ VS[t] and v(t − 1) ∈ VS[t−1]. Second,
we enumerate the optimal vocabularies from all timesteps and select the vocabulary with the highest
AMD as the final vocabulary.

For simplification, we propose to optimize the lower bound of the objective in the first step. In the
new objective function, AMD is based on the marginal difference between the maximum BPC of
VS[t] and the maximum BPC of VS[t−1]. Thus, the first objective is simplified into a problem finding
a token set with the highest BPC scores in each timestep. Due to the exponential search space, we
re-formulate this part into an optimal transport (OT) problem, which, therefore, can be solved in
polynomial time by linear programming. To be specific, we can imagine vocabulary construction
as a transport process that transports chars into token candidates. The number of chars is fixed, and
different transport choices result in vocabularies with different costs. The target of OT is to find a
transport matrix to minimize the transfer cost, i.e., negative BPC in our setting. We implement an
entropy-based Sinkhorn algorithm to solve the OT problem.

We evaluate our approaches on multiple machine translation tasks, including WMT-14 English-
German translation, TED bilingual translation, and TED multilingual translation. Empirical results
show that Info-VOT can find well-performing vocabularies on diverse scenarios. Furthermore, Info-
VOT is a lightweight solution and does not require expensive computation resources. On TED
bilingual translation, Info-VOT only takes a few CPU hours to find vocabularies while the traditional
BPE-Search solution takes hundreds of GPU hours.

2 RELATED WORK

With the development of deep learning, neural networks have achieved state-of-the-art results on
natural language processing tasks. Initially, most neural models are built upon word-level vocab-
ularies (Costa-jussà & Fonollosa, 2016; Vaswani et al., 2017; Zhao et al., 2019). While achieving
state-of-the-art results, it is a common constraint that these word-level vocabularies fail on handling
rare words under limited vocabulary size.

Researchers have proposed several advanced vocabularization approaches, like byte-level ap-
proaches (Wang et al., 2020), character-level approaches (Costa-jussà & Fonollosa, 2016; Lee et al.,
2017; Al-Rfou et al., 2019), and subword-level approaches (Sennrich et al., 2016; Kudo & Richard-
son, 2018), to address this problem. Costa-jussà & Fonollosa (2016) propose a character-level vo-
cabulary that adopts single characters as the minimum semantic unit. The surprisingly good per-
formance brings new insights into token granularity. Byte-Pair Encoding (BPE) (Sennrich et al.,
2016) is proposed to get subword-level vocabularies. The general idea is to merge pairs of fre-
quent character sequences to create subword units. Subword-level vocabularies can be regarded as
a trade-off between character-level vocabularies and word-level vocabularies. Compared to word-
level vocabularies, it can decrease the sparsity of tokens and increase the shared features between
similar words, which probably have similar semantic meanings, like “happy” and “happier”. Com-
pared to character-level vocabularies, it has shorter sentence lengths without rare words. Following
BPE, some variants recently have been proposed, like BPE-dropout (Provilkov et al., 2020), Senten-
cePiece (Kudo & Richardson, 2018), and so on.

Despite promising results, these subword-level approaches still require expensive computation costs
to tune vocabulary size. More recently, some best-practice studies notice this problem and propose
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some practical solutions (Kreutzer & Sokolov, 2018; Cherry et al., 2018; Chen et al., 2019; Salesky
et al., 2020).

Unlike these approaches, this work takes the first step to a unified theory for automatic vocabulary
learning. We propose a discrete optimization objective function and a principled solution based on
optimal transport for AVL.

3 INFORMATION-THEORETIC PERSPECTIVE OF VOCABULARY

More and more researchers have recently accepted that information theory and machine learning are
the two sides of the same coin, first mentioned by MacKay (2003). Information theory studies the
shortest code-length and uncertainty, while machine learning studies how to compress data with a
low-dimension vector. Also, learning can be regarded as a process of reducing uncertainty. Follow-
ing this view, many studies are proposed to understand current machine learning systems from the
perspective of information theory (Saxe et al., 2018; Gabrié et al., 2018; Goldfeld et al., 2019).

In this section, we describe vocabularization from the perspective of information theory. Considering
that BPE is the dominant solution, this section mainly focuses on BPE to explore whether there are
essential features strongly correlated to BLEU scores.

From Frequency to BPC Almost all existing vocabularies are built upon an information-theoretic
concept: frequency. In information theory, frequency is a token-level feature, which describes the
information of a single token. To get a full understanding of vocabulary, here we explore several
vocabulary-level features, such as entropy, BPC. Entropy is a common feature evaluating the average
level of “information”, or “uncertainty” inherent in the distribution. It represents the shortest code
length to represent all tokens, short for Bits Per Token (BPT). One of the variants of BPT is Bits-
Per-Char (BPC), which normalizes BPT with the averaged length of tokens. We argue that BPC is a
more fair evaluation feature than BPT, which avoids the effects of token lengths. Given a vocabulary
v(T ) with size T , BPC is computed as:

Bv(T ) = −
1

lv(T )

∑
t∈v(T )

P (t) logP (t), (1)

where P (t) is the probability of token t and lv(T ) is the average length of tokens in vocabulary vT .
Here we study the relation between BPC and its variants with downstream results.

From BPC to AMD Empirical results demonstrate that BPC-AMD, short for AMD, which is
first introduced in this work, is strongly related to BLEU scores. Formally, AMD is defined as the
amortized marginal difference over BPC, which is normalized by the size of vocabulary:

D(v(k +m)) = −B(v(k +m))−B(v(k))

m
, (2)

where D(v(k+m)) represents the AMD score for vocabulary v(k+m). m represents the increased
vocabulary size and vk, vk+m are vocabularies generated by k, k+mmerge operations, respectively.
Imagine a vocabulary search policy that incrementally increases the number of merge operations.
AMD is a dynamic feature that describes how information changes.

New Finding: AMD Correlates with BLEU scores. To evaluate the relationship between AMD
and BLEU scores, we conduct experiments on 45 language pairs from TED and calculate their
Spearman correlation scores. The full results are shown in Appendix A. The median correlation
score is 0.49. In general, [0.8, 1] means very strong correlations, [0.6, 0.8] means strong correlations,
[0.4, 0.6] means moderate correlations, [0.2, 0.4] means weak correlations. Almost two-thirds of
pairs show obvious positive correlations (greater than 0.4)1. Considering that other factors (e.g.
model size, corpus size) also affect BLEU scores, we believe that it is good evidence to support
the finding. Experiment settings can be found in Section 5. Please refer to Appendix A for more
implementation details.

1https://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf
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Figure 1: An illustration of vocabulary construction from a transport view. Given a corpus, we can
calculate a char distribution and a token candidate distribution. A vocabulary can be built upon a
transport matrix deciding how much chars are transported to different tokens.

Based on this finding, we have two natural choices to get the final vocabulary: search and learning.
In the search-based direction, the optimal vocabularies can be obtained by enumerating all candidate
vocabularies. While being simple, the main limitation lies in the vast search space. Assuming we
have N token candidates, the target of search-based approaches is to find the optimal vocabulary
from 2N subsets of tokens. In a real-world scenario with limited resources, we need a more efficient
examination solution. In this work, we take the first step to the learning-based direction to explore
“how far an information-theoretic learning approach can reach”.

4 OUR PROPOSED APPROACH: Info-VOT

This section describes the details of the proposed approach. We first show the general idea of Info-
VOT in Section 4.1, then describe the optimal transport solution in Section 4.2, followed by the
implementation details in Section 4.3.

4.1 OVERVIEW

We formulate vocabulary construction as an optimization problem whose target is to find the vo-
cabulary with the highest AMD based on Eq. 2. Since AMD is a dynamic feature depending on a
marginal difference, we also formulate a dynamic process here. Given an incremental integer se-
quence S = {k, k + i, k + 2 · i, ..., k + (t − 1) · i, · · · } where k + (t − 1) · i is the upper bound
of vocabulary size at t-th timestep and k represents the number of characters. With sequence S, the
target to find the optimal vocabulary v(t) with the highest AMD can be formulated as:

argmax
v(t−1)∈VS[t−1],v(t)∈VS[t]

D(v(t)) = argmax
v(t−1)∈VS[t−1],v(t)∈VS[t]

−1

i

[
B(v(t))−B(v(t− 1))

]
(3)

where VS[t−1] and VS[t] are two sets containing all vocabularies with upper bound of size S[t− 1]
and S[t]. For simplification, we propose to optimize the surrogated loss which is the lower bound
of Eq. 3:

argmax
t

−1

i

[
max

v(t)∈VS[t]

B(v(t)) − max
v(t−1)∈VS[t−1]

B(v(t− 1))
]

(4)

Based on this equation, the whole solution is split into two steps: 1) search for the optimal vocabu-
lary with the highest BPC at each timestep t; 2) enumerate all timesteps and output the vocabulary
corresponding to the time step satisfying Eq. 4. Section 4.2 shows the details of the optimal transport
solution in the first step. and Section 4.3 shows the implementation details of Info-VOT.

4.2 MAXIMIZATION OF BPC VIA OPTIMAL TRANSPORT

The first step of our approach is to search for the vocabulary with the highest BPC from VS[t].
Formally, the goal is to find a vocabulary v(t) such that BPC is maximized,

argmax
v(t)∈VS[t]

− 1

lv(t)

∑
x∈v(t)

P (x) logP (x), (5)

where lv is the average length for tokens in v(t), P (x) is the probability of token x. However,
notice that this problem is in general intractable due to the extensive vocabulary size. Therefore,
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we instead propose a relaxation in the formulation of discrete Optimal Transport, which can then be
solved efficiently via the well-known Sinkhorn algorithm.

To be specific, vocabulary construction can be viewed as a transport process that transfers char
distributions into token distributions. Given two sets of chars and tokens, we can define a transport
matrix with each item (i, j) deciding how many chars are transported from char i to token j. Since
the number of chars is limited, and not all token candidates can get enough chars, different transport
metrics result in vocabularies with different costs. Figure 1 illustrates an example to understand this
process. The objective function is to find the transport matrix with the lowest costs.

4.2.1 BACKGROUND: OPTIMAL TRANSPORT

More precisely, given a cost matrix C ∈ R|C|×|T | and two discrete distributions: char distribution
C and token distribution T , {ai}|C|i=1, {bj}

|T |
j=1 are the corresponding probability mass. The discrete

OT considers the following optimization problem

min
A∈Rm×n

〈A,C〉 , s.t. A · 1n = ~a, AT · 1m = ~b, (6)

where A is the transport matrix. Intuitively, optimal transport is about finding the best plan of
transporting mass from the source distribution C to the target distribution T with the minimum
work defined by 〈A,C〉. Since the original OT problem is a linear programming which requires
O(N3 logN) time complexity to solve, Cuturi (2013) proposed to add an entropy regularization
term to accelerate the convergence (P163). The objective function for entropy regularized OT is

min
A∈Rm×n

〈A,C〉 − γH(A), s.t. A · 1n = ~a, AT · 1m = ~b, (7)

whereH(A) = −
∑
Aij logAij is the entropy term. The entropy regularization makes the problem

convex. Moreover, there is an efficient algorithm, the Sinkhorn algorithm, that allows us to solve the
problem in nearly linear time.

4.2.2 SOLUTION

A tractable lower bound of BPC Given a set of vocabularies VS[t], we want to find a vocabulary
with the highest BPC. Consequently, the objective function in Eq. 5 becomes

min
v∈VS[t]

1

lv

∑
i∈v

P (i) logP (i),

s.t. P (i) =
Token(i)∑
i∈v Token(i)

, lv =

∑
i∈v len(i)

|v|

where Token(i) is the frequency of token i in the vocabulary v. Notice that both the distribution
P (i) and the average length lv depend on the choice of v ∈ VS .

To obtain a tractable lower bound of BPC, it suffices to give a tractable upper bound of the above
objective function. To this end, let T ∈ VS[t] be the vocabulary containing top S[t] most frequent
tokens, C be the set of chars and |T|, |C| be their sizes respectively. Clearly, we have

min
v∈VS

1

lv

∑
i∈v

P (i) logP (i) ≤ 1

lT

∑
i∈T

P (i) logP (i). (8)

Here we start from the upper bound of the above objective function, that is 1
lT

∑
i∈T P (i) logP (i)

and then search for a refined token set from T with larger BPC. In this way, we reduce the search
space into the subsets of T. Let P (i, j) be the joint probability distribution of the tokens and chars
that we want to learn. Then we have∑

i∈T
P (i) logP (i) =

∑
i∈T

∑
j∈C

P (i, j) logP (i)

=
∑
i∈T

∑
j∈C

P (i, j) logP (i, j)︸ ︷︷ ︸
L1

+
∑
i∈T

∑
j∈C

P (i, j)(− logP (j|i))︸ ︷︷ ︸
L2

. (9)
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Algorithm 1: Info-VOT
Input: Token candidate sequence L ranked by frequencies, incremental integer sequence
S = {k, k + i, k + 2 · i, · · · , k + (t− 1) · i} where the last item of S is less than |L|, character
sequence C, training corpus Dc

Parameters: u ∈ R|C|+ , v ∈ R|T|+

vocabularies = []
for item in S do

// Begin of Sinkhorn algorithm
Initialize u = ones() and v = ones()
T = L[: item]
Calculate all token frequencies P (T) based on Dc

Calculate all char frequencies P (C) based on Dc

Calculate K based on Eq. 10
while not converge do

u = P (T)/Kv
v = P (C)/KT u

optimal matrix = u.reshape(-1, 1) * K * v.reshape(1, -1)
// End of Sinkhorn algorithm
BPC, vocab = get vocab(optimal matrix)
// Generate a vocabulary based on the transport matrix
vocabularies.append(BPC,vocab)

Select the optimal vocabulary v∗ satisfying Eq. 4 from vocabularies
Output:v∗

The details of proof can be found at Appendix C. Since L1 is nothing but the negative entropy of the
joint probability distribution P (i, j), we shall denote it as −H(P ). Let K be the |C| × |T| matrix
whose (i, j)-th entry is given by − logP (j|i), then we can write

L2 = 〈P ,K〉 (10)

where Kij = − logP (j|i) = +∞ if j /∈ i and − log #c∈ t
len(t) otherwise.

Note that we have the hard constraints
∑

j P (i, j) = P (i) and
∑

i P (i, j) = P (j) where P (i), P (j)
are the char distribution and candidate token distribution of T, respectively. However, in order to
obtain a refined token set from T with larger BPC, we need to relax the hard constraint on the token
distribution matching to a soft constraint. This formulation then allows us to drop out tokens with
low joint probability distribution. See the discussion at the end of this section for more implementa-
tion details. In summary, our final objective function is

argmin
P∈R|C|×|T|

−H(P ) + 〈P ,K〉 ,

s.t.
∑
i

P (i, j) = P (j), |
∑
j

P (i, j)− P (i)| ≤ ε, ∀i, j.

with small ε > 0. This objective function has the same form as the entropy regularized OT Eq. 7
with γ = 1 except for the soft constraint on the token distribution matching. Strictly speaking, this
is an unbalanced entropy regularized Optimal Transport problem. Nonetheless, we can still use the
generalized Sinkhorn algorithm to efficiently find the target vocabulary as detailed in Section 4.6 of
Peyré & Cuturi (2020). The algorithm details are shown in Algorithm 1. At each timestep t, we
can generate a new vocabulary associated with BPC scores based on the transport matrix P . Here
we filter several tokens which do not get enough characters in the transport matrix. Please refer to
Section 4.3 for more details. Then, we collect these vocabularies associated with BPC scores, and
output the vocabulary satisfying Eq. 4.

4.3 IMPLEMENTATION

Algorithm 1 lists the whole process of Info-VOT. First, we rank all token candidates according to
their frequencies. Due to the large space of token candidates, we adopt BPE generated tokens (e.g.
BPE-100K) as the target token candidates. It is important to note that any segmentation algorithms
can be used to initialize token candidates. Each merge action represents a new token. We range all
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tokens based on the generation rank. In this way, we can get a sequence of tokens associated with
their probabilities Pbpe that is then used to initialize L in Algorithm 1. The size of the incremental
integer sequence S is a hyper-parameter.

At each timestep, we can get the vocabulary with the maximum BPC score based on the transport
matrix. It is inevitable to handle illegal transport case in the transport matrix. We remove tokens
with distributed chars less than one-tenth of token frequencies. Then, we enumerate all timesteps
and select the vocabulary satisfying Eq. 4 as the final vocabulary.

5 EXPERIMENTS

To evaluate the performance of Info-VOT, we conduct experiments on three datasets, including
WMT-14 English-German translation, TED bilingual translation, and TED multilingual translation.

5.1 SETTINGS

We run experiments on the following machine translation datasets. See Appendix B for more model
and training details.

1. WMT-14 English-German (En-De) dataset: This dataset has 4.5M sentence pairs. The
dataset is processed following Ott et al. (2018). We choose newstest14 as the test set.

2. TED bilingual dataset: We include two settings: many-to-English multilingual translation
and English-to-many multilingual translation. We choose 12 language-pairs for evaluation.
We use the language code according to ISO-639-1 standard2. TED data is provided by Ye
et al. (2018).

3. TED multilingual dataset: We conduct experiments with 45 language pairs on a many-to-
English setting. The network is trained on all language pairs. We adopt the same pre-
processing pipeline in the WMT-14 En-De dataset.

6 RESULTS AND ANALYSIS

Vocabularies Searched by Info-VOT are Better than Widely-used BPE Vocabularies. Ding
et al. (2019) gather 42 papers that have been accepted by the research track of Conference of
Machine Translation (WMT) through 2017 and 2018. Among these papers, the authors find that
30K–40K is the most popular range for the number of BPE merge actions. Following this work, we
first compare our methods with dominant BPE-30K. The results are listed in Table 1. As we can see,
the vocabularies searched by Info-VOT achieve competitive BLEU scores with smaller sizes. The
promising results demonstrate that Info-VOT is a practical approach that can find a well-performing
vocabulary with higher BLEU and smaller size.

Info-VOT Works Well on Multilingual Settings. We conduct a multilingual experiment covering
45 language pairs. These languages come from multiple language families and have diverse charac-
ters. Table 7 in Appendix B lists the full results. We compare Info-VOT with BPE-60K, the most
popular setting in multilingual translation tasks. As we can see, Info-VOT achieves better BLEU
scores on 30 out of 45 datasets.

Vocabularies Searched by Info-VOT are on Par with BPE-1K Recommended by Ding et al.
(2019) on Low-resource Datasets. Ding et al. (2019) study how the size of BPE affects the model
performance. They conduct experiments on 4 language pairs and find that smaller vocabularies are
more suitable for low-resource datasets. For Transformer architectures, the optimal vocabulary size
lays between 0–4K, around 0-2K merge actions. We compare Info-VOT and BPE-1K on a many-to-
English bilingual setting. The results are shown in Table 2. We can see that Info-VOT can find a good
vocabulary that is on par with heuristically searched vocabularies in terms of BLEU scores. Note that
the advantage of Info-VOT lies in its high-efficiency on searching for well-performing vocabularies
on diverse translation settings, including high-resource bilingual translation, low-resource bilingual

2http://www.lingoes.net/en/translator/langcode.htm
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Table 1: Comparison between vocabularies search by Info-VOT and widely-used BPE vocabularies.
BPE-30K is the most popular setting in 42 papers accepted by the research track of Conference of
Machine Translation (WMT) through 2017 and 2018. * means WMT translation results, and the rest
columns are TED results. Info-VOT achieves higher BLEU scores with massive size reduction.
En-X De* Es PTbr Fr Ru He Ar Ko It Nl Ro Tr De

BPE-30K 29.51 39.97 40.32 43.98 20.11 28.76 18.25 10.40 36.88 33.42 28.50 19.12 30.28
Info-VOT 30.00 40.75 41.65 45.02 20.38 29.82 18.65 10.41 37.24 33.83 29.56 20.06 31.52
X-En De* Es PTbr Fr Ru He Ar Ko It Nl Ro Tr De

BPE-30K - 44.37 47.08 42.70 28.21 39.93 33.83 22.20 41.44 39.43 37.65 28.89 38.91
Info-VOT - 45.47 47.72 43.49 28.78 41.31 35.01 22.78 41.67 39.80 39.15 30.20 39.95
Vocab Size (K) De* Es PTbr Fr Ru He Ar Ko It Nl Ro Tr De

BPE-30K 33.6 29.9 29.8 29.8 30.1 30.0 30.3 33.5 29.8 29.8 29.9 30.0 29.9
Info-VOT 8.5 1.9 1.7 1.5 1.7 1.5 1.7 5.2 1.9 2.0 1.9 1.8 1.7

Table 2: Comparison between vocabularies search by Info-VOT and BPE-1K, recommended
by Ding et al. (2019) for low-resource datasets. Here we take TED En-X bilingual translation as
an example. This table demonstrate that vocabularies searched by Info-VOT are on par with heuris-
tically searched vocabularies in terms of BLEU scores.
X-En Es PTbr Fr Ru He Ar Ko It Nl Ro Tr De avg

BPE-1K 44.99 47.85 43.13 28.37 41.31 35.04 22.67 41.47 40.19 38.83 30.10 39.24 37.76
Info-VOT 45.47 47.72 43.49 28.78 41.31 35.01 22.78 41.67 39.80 39.15 30.20 39.95 37.94
Vocab Size (K) Es PTbr Fr Ru He Ar Ko It Nl Ro Tr De avg

BPE-1K 1.4 1.3 1.3 1.4 1.3 1.5 4.7 1.2 1.2 1.2 1.2 1.2 1.6
Info-VOT 1.9 1.7 1.5 1.7 1.5 1.7 5.2 1.9 2.0 1.9 1.8 1.7 2.0

translation, and multilingual translation. In contrast, BPE-1K is selected based on plenty of training
trials towards low-resource settings.

Info-VOT is a Green Vocabularization Solution. One advantage of Info-VOT lies in its low
consumption of computation resources. For traditional BPE-Search solution, full training is neces-
sary to select the best-performing vocabularies. We compare Info-VOT with BPE-Search in Table 3.
In BPE-Search, we first define a vocabulary set including BPE-1K, BPE-2K, BPE-3K, BPE-4K,
BPE-5K, BPE-6K, BPE-7K, BPE-8K, BPE-9K, BPE-10K, BPE-20K, BPE-30K. Then, we run full
experiments to select the best vocabulary. Table 3 demonstrates that Info-VOT is a green solution
that can find a competitive vocabulary within a few hours on a single CPU, compared to BPE-Search
that takes hundreds of GPU hours. The cost of BPE-Search is the sum of the training time on all
vocabularies.

A Simple Baseline with Info-VOT-generated Vocabularies Beats Existing Strong Approaches.
We implement Info-VOT on a widely-used baseline, Transformer-big. We are curious about how
much a baseline can reach only with the change of vocabularyies. We compare Info-VOT and
several strong approaches on WMT-14 En-De dataset. Table 4 shows surprisingly good results of
our method. Compared to existing approaches in the top block, Info-VOT achieves almost the best
performance with a much smaller vocabulary. These results demonstrate that a simple baseline can
achieve good results with a well-defined vocabulary.

Info-VOT Beats SentencePiece and WordPiece. SentencePiece and WordPiece are two variants
of subword vocabularies. We also compare our approach with them on WMT-14 En-De dataset to
evaluate the effectiveness of Info-VOT. The middle block of Table 4 lists the results of SentenPiece
and WordPiece. We implement these two approaches with the default setting. We can observe that
Info-VOT outperforms SentencePiece and WordPiece by a large margin, with over 1 BLEU score
improvements.

8
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Table 3: Comparison between Info-VOT and BPE-Search on bilingual settings. In BPE-Search
solution, the best-performing vocabulary BPE-5K is selected based on its average performance from
BPE-1K, BPE-2K, BPE-3K, BPE-4K, BPE-5K, BPE-6K, BPE-7K, BPE-8K, BPE-9K, BPE-10K,
BPE-20K, and BPE-30K. BPE-Search requires full training and takes 288 GPU hours to search for
the optimal vocabulary while Info-VOT only takes 0.5 CPU hours.

X-En Es PTbr Fr Ru He Ar Ko It Nl Ro Tr De avg

BPE-Search 45.26 47.98 43.25 29.18 41.47 35.59 23.14 41.64 40.16 38.77 30.78 39.26 38.03
Info-VOT 45.47 47.72 43.49 28.78 41.31 35.01 22.78 41.67 39.80 39.15 30.20 39.95 37.94

Vocab Size (K) Es PTbr Fr Ru He Ar Ko It Nl Ro Tr De Cost

BPE-Search 5.3 5.3 5.3 5.4 5.3 5.5 8.8 9.9 5.2 5.2 5.2 5.2 288 GPU hours
Info-VOT 1.9 1.7 1.5 1.7 1.5 1.7 5.2 1.9 2.0 1.9 1.8 1.7 0.5 CPU hours

Table 4: Comparison between Info-VOT and strong baselines. Info-VOT achieves almost the best
performance with a much smaller vocabulary.

WMT-14 En-De BLEU Merge Actions Vocabulary Size Parameters

Vaswani et al. (2017) 28.4 32K 33.6K 210M
Shaw et al. (2018) 29.2 32K 33.6K 213M
Ott et al. (2018) 29.3 32K 33.6K 210M
So et al. (2019) 29.8 32K 33.6K 218M
Liu et al. (2020) 30.1 32K 33.6K 256M

SentencePiece 28.7 32K 33.6K 210M
WordPiece 29.0 32K 33.6K 210M

Info-VOT 30.0 8.5K 8.7K 188M

Info-VOT Works Well on Normal-size Architectures. This work mainly focus on Transformer-
big model in experiments. We are still curious about whether Info-VOT also works on other archi-
tectures. We take WMT-14 En-De translation as an example and implement a Transformer network
and a Convolutional Seq2Seq model. All networks use the default settings from Fairseq3. We set the
maximum epochs to 100 and average the last five models as the final network for evaluation. Please
refer to Appendix B for more results. Table 6 in Appendix B demonstrates that vocabularies search
by Info-VOT work well on different architectures. It is important to note that model size also affects
BLEU scores. In this work, we verify the effectiveness of Info-VOT on normal-size architectures.
For those small architectures, we recommend larger vocabularies associated with more embedding
parameters.

7 CONCLUSION

In this work, we propose a unified information-theoretic vocabulary learning framework. The whole
framework starts from an exciting finding that AMD, an information-theoretic feature, correlates
with BLEU scores. Based on this finding, we design a two-step discrete optimization objective and
a principled optimal transport solution: Info-VOT. Experiments show that Info-VOT is an effective
approach. It can quickly find a well-performing vocabulary on diverse settings, inlcuding high-
resource bilingual translation, low-resource bilingual translation, and multilingual translation.

Despite promising results, Info-VOT still has several limitations that need to be improved in future
work. First, Info-VOT relies on the initialized token distribution. For simplification, we directly
adopt BPE-100K generated tokens associated with their probabilities as initialization. Second, the
transport matrix in Info-VOT still needs an additional post-processing pipeline to get the final vo-
cabulary. Although a recommended post-processing setting is given, we believe that an advanced
algorithm in the future can reduce the dependency on post-processing.

3https://github.com/pytorch/fairseq/tree/master/examples/translation
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APPENDIX A: AMD IS CORRELATED TO BLEU SCORES

To evaluate the relationship between AMD and BLEU scores, we conduct experiments on 45 lan-
guage pairs from TED and calculate their Spearman correlation scores. To avoid the effects of
unsteady BLEU scores, we use a multilingual network to initialize bilingual networks. Specifi-
cally, the BLEU scores come from bilingual models pre-trained on multilingual datasets segmented
by BPE-30K, BPE-60K, BPE-80K, BPE-100K, BPE-120K, BPE-140K. Here BPE size refers to
the number of BPE merge actions from all languages. Formally, we define a vocabulary sequence
I = {v(BPE-20K), v(BPE-30K), v(BPE-60K), v(BPE-80K), v(BPE-100K), v(BPE-120K), v(BPE-
140K)}. We set the maximum training epoch to 50 and average the last five models as the final
network for evaluation. For each translation pair p with the t-th vocabulary in I, the AMD score is
calculated as follows:

D(p, It) =
B(It)−B(It−1)

S(It)− S(It−1)

where B(I(t)) represents the BPC value of training data segmented by vocabulary It. S(It) repre-
sents the number of unique tokens of training data segmented by vocabulary It.

The full results are shown in Table 5. The median correlation score is 0.49. In general, [0.8, 1]
means very strong correlations, [0.6, 0.8] means strong correlations, [0.4, 0.6] means moderate
correlations, [0.2, 0.4] means weak correlations. Almost two-thirds of pairs show obvious positive
correlations (greater than 0.4). Considering that other factors (e.g. model size, corpus size) also
affect BLEU scores, we believe that it is good evidence to support the claim.
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Table 5: The correlation coefficient between AMD and BLEU scores. Among 45 tasks, almost
two-thirds of tasks show obvious correlations (greater than 0.4) between AMD and BLEU scores.
Here we list tasks with top-30 correlation scores. In general, [0.8, 1] means very strong correlations,
[0.6, 0.8] means strong correlations, [0.4, 0.6] means moderate correlations, [0.2, 0.4] means weak
correlations, [0.0, 0.2] means extremely weak correlations.

X-En Correlation BPE-30K BPE-60K BPE-80K BPE-100K BPE-120K BPE-140K
Sr 0.90 36.52 36.91 36.67 36.24 36.24 36.07

8.93e-06 1.12e-05 9.79e-06 9.15e-06 8.45e-06 7.45e-06

Zh-cn 0.89 22.31 22.73 22.96 22.43 22.59 22.41
1.10e-06 1.14e-05 7.68e-06 6.29e-06 7.21e-06 6.71e-06

Hu 0.89 27.79 28.41 28.25 28.2 27.96 28.17
1.18e-05 1.67e-05 1.50e-05 1.51e-05 1.47e-05 1.46e-05

Ro 0.77 36.23 36.8 36.91 36.83 36.77 36.09
9.28e-06 1.44e-05 1.41e-05 1.38e-05 1.18e-05 1.17e-05

Sl 0.75 26.11 26.53 26.9 26.63 26.37 25.6
1.58e-05 2.12e-05 2.36e-05 2.12e-05 2.25e-05 1.95e-05

Uk 0.75 28.74 29.58 29.48 29.12 29.18 29.31
6.85e-06 1.80e-05 1.92e-05 1.70e-05 1.70e-05 1.56e-05

Hy 0.74 23.18 23.63 23.56 23.71 23.56 23.23
2.49e-05 4.47e-05 5.78e-05 4.47e-05 4.14e-05 3.70e-05

Vi 0.66 28.39 28.63 28.65 28.8 28.62 28.35
9.36e-06 2.16e-05 1.93e-05 1.97e-05 1.73e-05 1.75e-05

Nl 0.66 37.27 37.17 37.67 37.45 37.05 36.89
1.53e-05 1.84e-05 1.69e-05 1.63e-05 1.48e-05 1.44e-05

Et 0.64 22.4 22.35 21.65 22.75 22.71 21.89
2.23e-05 3.48e-05 3.14e-05 3.60e-05 3.60e-05 3.41e-05

Sv 0.61 39.66 40.16 40.12 40.2 40.02 40.02
1.76e-05 2.24e-05 2.07e-05 1.92e-05 1.83e-05 1.93e-05

Sq 0.60 37.68 38.47 38.07 38.25 37.68 38.29
1.62e-05 1.83e-05 1.78e-05 1.88e-05 1.59e-05 1.62e-05

My 0.60 18.38 19.5 18.98 18.87 18.74 18.83
1.35e-05 3.30e-05 2.98e-05 3.05e-05 3.13e-05 2.47e-05

Tr 0.60 27.82 28.44 28.68 28.19 28.46 28.31
1.31e-05 1.68e-05 1.63e-05 1.51e-05 1.40e-05 1.37e-05

Ja 0.60 16.94 17.02 17.23 17.07 17.09 16.85
-6.71e-06 1.65e-05 1.34e-05 1.17e-05 1.24e-05 1.08e-05

Sk 0.59 31.49 32.74 32.12 32.52 32.35 32.74
1.04e-05 1.61e-05 1.57e-05 1.57e-05 1.44e-05 1.51e-05

Ka 0.58 22.24 22.32 22.91 21.75 21.86 21.36
2.10e-06 5.52e-05 5.52e-05 4.90e-05 4.27e-05 4.18e-05

Mk 0.54 33.68 34.44 34.52 34.58 33.38 33.52
1.24e-05 2.92e-05 2.73e-05 2.62e-05 2.47e-05 2.22e-05

Da 0.54 43.43 44.57 44.97 44.16 44.55 44.27
2.22e-05 2.50e-05 2.41e-05 2.40e-05 2.07e-05 2.25e-05

Lt 0.54 26.09 26.4 26.3 26.58 26.61 25.78
1.27e-05 2.18e-05 2.04e-05 2.13e-05 2.02e-05 2.01e-05

Nb 0.54 41.84 43.44 43.87 44.13 44.14 44.06
2.54e-05 3.09e-05 3.10e-05 2.98e-05 3.15e-05 2.85e-05

Pl 0.49 25.69 25.94 26.17 26.16 26.07 26.13
8.24e-06 1.48e-05 1.43e-05 1.57e-05 1.37e-05 1.30e-05

Zh-tw 0.49 21.17 21.86 21.41 21.57 21.47 21.55
-3.59e-06 8.30e-06 8.15e-06 4.74e-06 5.17e-06 5.51e-06

Ru 0.46 26.25 26.56 26.74 26.79 26.69 26.63
7.36e-06 1.68e-05 1.68e-05 1.60e-05 1.59e-05 1.44e-05

Bg 0.46 40.47 40.53 40.23 40.52 40.25 40.25
9.00e-06 1.56e-05 1.45e-05 1.47e-05 1.34e-05 1.35e-05

Cs 0.44 30.13 30.85 30.24 30.53 30.85 30.45
1.15e-05 1.85e-05 1.76e-05 1.76e-05 1.60e-05 1.66e-05

Ku 0.43 19.2 19.79 19.85 18.9 19.27 18.2
9.83e-06 3.34e-05 3.28e-05 2.76e-05 2.60e-05 2.89e-05

It 0.31 39.33 38.5 38.94 38.65 38.73 38.46
1.63e-05 1.98e-05 1.77e-05 1.55e-05 1.45e-05 1.36e-05

Es 0.26 42.56 43.02 43.06 43.05 42.44 42.67
1.79e-05 1.91e-05 1.76e-05 1.55e-05 1.36e-05 1.35e-05

Fr 0.20 40.87 40.79 40.94 40.72 40.95 40.69
2.12e-05 2.14e-05 1.81e-05 1.74e-05 1.46e-05 1.37e-05
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Table 6: Info-VOT can find better vocabularies than widely-used vocabularies on normal-size ar-
chitectures. Here “better” means competitive results but smaller sizes.

WMT-14 En-De BLEU Vocabulary Size

Transformer-big 29.30 33.6K
30.00 8.5K

Transformer 27.71 33.6K
27.60 8.5K

Convolutional Seq2Seq 26.35 33.6K
26.35 8.5K

APPENDIX B: EXPERIMENTS

Models. We use Fairseq to train a Transformer-big model with the same setting in the original
paper (Ott et al., 2018). The input embedding and output embeddings are shared. We use the Adam
optimizer (Kingma & Ba, 2015) with a learning rate 5e-4 and an inverse sqrt decay schedule. The
warm-up step is 4, 000, the dropout rate is 0.3, the update frequency is 8, the number of tokens is
9, 600, or 4, 800 in a single batch.

Training and Evaluation. We run WMT-14 En-De experiments with 4 GPUs, TED bilingual
translation with 2 GPUs, TED multilingual translation with 8 GPUs. We set a beamwidth to 4 for
En-De and 5 for the other. We average the last five models on all datasets and use the averaged
model to generate translation results. We calculate case-sensitive tokenized BLEU for evaluation.

Info-VOT Works on Normal-size Architectures. We take WMT’14 En-De as an example and
implement a Transformer network and a Convolutional Seq2Seq network. All networks use the
default settings from Fairseq4. We set the maximum epochs to 100 and average the last five models
as the final network for evaluation. Table 6 shows that Info-VOT can find better vocabularies than
widely-used vocabularies on diverse architectures.

Info-VOT can Find Better Vocabularies on Multilingual Translation. Table 7 lists the com-
parison on multilingual translation. These languages come from multiple language families and
have diverse characters. BPE-60K is the most popular setting in multilingual translation tasks. As
we can see, Info-VOT achieves better BLEU scores on 30 out of 45 language pairs.

APPENDIX C: PROOFS FOR EQ. 9∑
i∈T

P (i) logP (i) =
∑
i∈T

∑
j∈C

P (i, j) logP (i)

=
∑
i∈T

∑
j∈C

P (i, j) logP (i, j) · P (i)

P (i, j)

=
∑
i∈T

∑
j∈C

P (i, j) logP (i, j) +
∑
i∈T

∑
j∈C

P (i, j) log
P (i)

P (i, j)

=
∑
i∈T

∑
j∈C

P (i, j) logP (i, j)︸ ︷︷ ︸
L1

+
∑
i∈T

∑
j∈C

P (i, j)(− logP (j|i))︸ ︷︷ ︸
L2

.

4https://github.com/pytorch/fairseq/tree/master/examples/translation
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Table 7: Comparison between Info-VOT and widely-used BPE vocabularies on multilingual trans-
lation. Here we show the results on 45 language pairs. BPE-60K is the most popular setting in
multilingual translation tasks. Info-VOT achieves better BLEU scores on 30 out of 45 datasets. The
size of vocabulary generated by Info-VOT is around 90K.

X-En Es PT-br Fr Ru He Ar Ko Zh-cn It Ja Zh-tw Nl Ro

BPE-60K 35.00 37.73 33.53 24.22 30.58 26.32 19.41 20.98 32.63 16.21 20.00 30.77 30.58
Info-VOT 35.49 38.36 34.00 24.20 30.96 26.52 19.36 21.15 32.67 16.30 19.99 31.22 30.92
X-En Tr De Vi Pl Pt Bg El Fa Sr Hu Hr Uk Cs

BPE-60K 23.64 29.96 25.20 23.82 35.88 32.87 32.52 24.53 30.26 24.07 32.04 26.40 27.18
Info-VOT 23.74 30.56 25.47 23.78 36.16 33.36 33.39 25.03 30.24 24.07 32.13 26.44 27.07

X-En Id Th Sv Sk Sq Lt Da My Sl Mk Fr-ca Fi Hy

BPE-60K 27.51 22.34 33.21 29.31 31.78 23.73 37.72 17.82 24.99 29.92 30.42 21.13 21.70
Info-VOT 28.05 22.24 33.94 29.36 31.78 22.91 37.72 17.43 24.83 31.49 31.04 21.30 21.40

X-En Hi Nb Ka Et Ku Gl

BPE-60K 23.87 38.36 21.51 22.05 18.45 31.39
Info-VOT 22.69 39.72 20.91 21.27 17.85 31.39
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APPENDIX D: SUPPLEMENTAL EXPERIMENTS

We conduct bilingual experiments on 14 language pairs with the most training data from TED. The
below table shows that BPE-2K is not a universal solution. Different datasets have varying optimal
sizes.

Table 8: BPE-2K is not a universal solution. Different datasets have varying optimal sizes.
X-En BPE-1K BPE-2K BPE-3K BPE-5K BPE-6K BPE-7K BPE-8k BPE-9K BPE-10K BPE-20K

Es 44.99 45.29 45.28 45.26 45.31 44.86 44.99 45.04 45.11 44.44
PT-br 47.85 47.88 48.00 47.98 47.5 47.61 47.66 47.39 47.21 47.05
Fr 43.13 43.58 43.45 43.25 43.58 43.61 43.54 43.71 43.12 43.05
Ru 28.37 28.68 29.19 29.18 29.10 29.07 29.24 29.28 29.10 29.32
He 41.31 41.28 41.54 41.47 40.89 40.99 41.1 41.13 41.31 40.38
Ar 35.04 35.63 35.61 35.59 35.59 35.43 34.54 35.17 35.26 34.12
Ko 22.67 22.53 22.97 23.14 22.92 22.01 23.18 22.84 22.66 22.35
Zh-cn 24.49 24.42 24.11 23.99 23.96 24.33 24.09 24.32 24.00 23.47
It 41.47 41.72 41.82 41.64 41.59 41.65 41.83 41.60 41.96 41.22
Ja 16.55 17.24 17.47 17.68 17.08 17.58 17.65 17.59 17.59 16.8
Zh-tw 22.65 22.95 23.04 23.38 23.12 22.39 22.79 22.80 22.71 22.74
Nl 40.19 40.80 40.27 40.16 40.24 40.18 39.76 39.8 40.33 39.57
Ro 38.83 39.18 39.09 38.77 38.88 38.94 38.9 38.33 38.44 38.29
Tr 30.10 30.35 30.22 30.78 29.22 30.37 29.99 29.61 29.97 29.73
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