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Abstract

Cross-device training is a crucial subfield of fed-
erated learning, where the number of clients can
reach the billions. Standard approaches and local
methods are prone to client drift and insensitivity
to data similarities. We propose a novel algorithm
(SPAM) for cross-device federated learning with
non-convex and non-smooth losses. We provide a
sharp analysis under second-order (Hessian) sim-
ilarity, a condition satisfied by various machine
learning problems in practice. Additionally, we
extend our results to the partial participation set-
ting, where a cohort of selected clients communi-
cate with the server at each communication round.
We then conduct a complexity analysis of our con-
vergence results, showing the improvement of our
methods upon prior work. Finally, we back up
our results with experiments.

1. Introduction

Federated learning (FL) is a general learning mechanism
where multiple entities, known as clients, work together to
solve a machine learning problem under the guidance of a
central server (Kairouz et al., 2021; Konec¢ny et al., 2016;
McMabhan et al., 2017). Each client’s raw data stays on their
local devices and is not shared or transferred; local updates
are aggregated on the central server (Kairouz et al., 2021).

This paper focuses on cross-device training, where the
clients are mobile or IoT devices (Karimireddy et al., 2021).
To model such a large number of clients, we study the fol-
lowing stochastic optimization problem:

min f(z), f(@) = Eevp [fe(2)], (D)

rcRd
where f: may be non-convex. Here, we do not have access
to the full function f, nor its gradient. This framework
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reflects the cross-device setting, where the number of clients
is huge (e.g., billions of mobile phones), so each client
participates in the training process only a few times or only
even once. Therefore, we cannot expect full participation to
obtain the exact gradient.

Instead, we can sample from the distribution D and compute
fe(z) and V fe(z) at each point x. We assume that the
gradient and the expectation are interchangeable, meaning
E¢p [Vfe(z)] = Vf(z). In the context of cross-device
training, f¢ represents the loss of client £ on its local data
(Karimireddy et al., 2021).

The formulation (1) is more appropriate than the finite-sum
(cross-silo) formulation (Wang et al., 2021):

min f(x),

1 n
h == i .
min where  f(x) := Z: fi(w)
The latter setting is applicable for collaborative training by
organizations when n is moderately large (e.g., medical
(Ogier du Terrail et al., 2022)).

Communication bottleneck. In federated learning, it is
essential to broadcast or communicate information between
computing nodes, such as the current gradient vector or
model state. This communication often becomes the main
challenge, particularly in the cross-device setting where the
nodes are less powerful devices with slow network connec-
tions (Konec¢ny et al., 2016; Caldas et al., 2018; Kairouz
et al., 2021). Two main approaches to reducing communica-
tion overhead are compression and local training. Communi-
cation compression uses inexact but relevant approximations
of the transferred messages at each round. These approx-
imations often rely on (stochastic) compression operators,
which can be applied to both the gradient and the model. For
a more detailed discussion on compression mechanisms and
algorithms, see (Xu et al., 2020; Beznosikov et al., 2020;
Shulgin & Richtarik, 2022).

Local training. The second technique for reducing com-
munication overhead is to get better client updates by per-
forming local training. Local SGD steps have been a cru-
cial component of practical federated training algorithms
since the inception of the field, demonstrating strong empir-
ical performance by improving communication efficiency



(Mangasarian & Solodov, 1993; McDonald et al., 2010;
McMabhan et al., 2017). However, rigorous theoretical ex-
planations for this phenomenon were lacking until the recent
introduction of the ProxSkip method by (Mishchenko et al.,
2022). ScaffNew (ProxSkip specialized for the distributed
setting) has been shown to provide accelerated communi-
cation complexity in the convex setting. While ScaffNew
works for any level of heterogeneity, it does not benefit
from the similarity between clients. In addition, methods
like ScaffNew, designed to fix the client drift issue (Acar
et al., 2020; Karimireddy et al., 2020), require each client to
maintain state (control variate), which is incompatible with
cross-device FL (Reddi et al., 2020).

Partial participation. In cross-silo federated learning, peri-
odically, all clients may be active in a single communication
round. However, an important property of cross-device
learning is the impracticality of accessing all clients simul-
taneously. Most clients might be available only once during
the entire training process. Therefore, it is crucial to design
federated learning methods where only a small cohort of
devices participates in each round. Modeling the problem
according to (1) naturally avoids the possibility of engaging
all clients at once. We refer the reader to (Reddi et al., 2020;
Karimireddy et al., 2021) and (Khaled & Jin, 2022) for more
details on partial participation.

Data heterogeneity. Despite recent progress in federated
learning, handling data heterogeneity across clients remains
a significant challenge (Kairouz et al., 2021). Empirical
observations show that clients’ labels for similar inputs can
vary significantly (Arivazhagan et al., 2019; Silva et al.,
2022). This variation arises from clients having different
preferences. When local steps are used in this context,
clients tend to overfit their data, a phenomenon known as
client drift.

An alternative to local gradient steps is a local proximal
point operator oracle, which involves solving a regularized
local optimization problem on the selected client(s). This ap-
proach underlies FedProx (Li et al., 2020), which relies on a
restrictive heterogeneity assumption. The algorithm was an-
alyzed from the perspective of the Stochastic Proximal Point
Method (SPPM) in (Yuan & Li, 2022). Independently, the
theory of SPPM is compatible with the second-order similar-
ity condition (Assumption 2) from an analytical perspective
(Mishchenko et al., 2023). Based on these connections, var-
ious studies have explored SPPM-based federated learning
algorithms, and we refer the reader to (Khaled & Jin, 2022)
and (Lin et al., 2024) for more details.

1.1. Prior work

Momentum. Momentum Variance Reduction (MVR) was in-
troduced in the context of server-only stochastic non-convex
optimization (Cutkosky & Orabona, 2019). The primary

motivation behind this method was to avoid computing full
gradients (which is impractical in the stochastic setting) or
requiring "giant batch sizes" of order O(1/£2). Such large
batches are necessary for other methods like PAGE (Li et al.,
2021) to find an e-stationary point.

The authors assume bounded variance for stochastic gra-
dients V f¢ with a noise variance 0. Their convergence
result for non-convex objectives includes o2 in the upper
bound. To eliminate the dependence on this parameter, they
propose an adaptive stepsize schedule under the additional
assumption that f¢ is Lipschitz continuous.

MIME. MIME is a flexible framework that makes existing
optimization algorithms applicable in the distributed setting
by combining them with local SGD updates (Karimireddy
et al., 2021). The authors then study particular instances
of the framework, such as MIME + ADAM (Kingma & Ba,
2014) and MIME + MVR (Cutkosky & Orabona, 2019).

However, their analysis with local steps is limited for the
non-convex cross-device setting. First, they assume smooth-
ness also in the case of one sampled client. More impor-
tantly, MIME suffers from a common issue of local methods.
In Theorem 4 of (Karimireddy et al., 2021), the stepsize is
taken to be of order O(1/Lm), where L is the smoothness
parameter of the client loss and m is the number of local
steps. Thus, the stepsize is so tiny that multiple steps be-
come equivalent to a single, smoother stochastic gradient
descent step, negating the potential benefits of local SGD.
Finally, their analysis requires an additional weak convex-
ity assumption for the objective in the partial participation
setting.

CE-LSGD. The Communication Efficient Local Stochastic
Gradient Descent (CE-LSGD) was introduced by (Patel et al.,
2022). They propose and analyze two algorithms, with the
second one tailored for the cross-device setting (1). This al-
gorithm comprises two components: the MVR update on the
server and SARAH local steps on the selected client. The lat-
ter, known as the Stochastic Recursive Gradient Algorithm,
is a variance-reduced version of SGD that periodically re-
quires the full gradient of the objective function (Nguyen
etal., 2017).

The analysis by (Patel et al., 2022) explicitly describes how
to choose the number of local updates and the local stepsize.
They also provide lower bounds for two-point first-order
oracle-based federated learning algorithms. The drawback
of their setting is that to have meaningful local updates; they
need the smoothness of each client function f¢. In addition,
similar to MIME, the stepsize depends on the number of
local steps, which limits the benefit of doing many local
steps.

SABER. The SABER algorithm by (Mishchenko et al.,
2023) combines SPPM updates on the clients with PAGE



updates on the server. Their paper utilizes Hessian simi-
larity (Assumption 2) and leverages it for the finite-sum
optimization objective. However, their analysis for the
partial participation setting relies on an assumption that
is difficult to verify in the general non-convex regime. If
the function is not weakly convex, as in the case of MIME,
this assumption may not hold. Specifically, it requires that

f (% Zzil wi)

vectors in R? obtained using proximal point operators.

< % 2?:1 f(w;), where w; are arbitrary

1.2. Contributions

This paper introduces a novel method called Stochastic Prox-
imal Point And Momentum (SPAM). Our method combines
Momentum Variance Reduction (MVR) on the server side
to leverage its efficiency in stochastic optimization while
employing Stochastic Proximal Point Method (SPPM) up-
dates on the clients’ side. We analyze four versions of the
proposed algorithm:

* SPAM - exact PPM with constant parameters,
¢ SPAM - exact PPM with varying parameters,
* SPAM-inexact - inexact PPM with varying parameters,

¢ SPAM-PP - inexact PPM with varying parameters and
partial participation.

We then carry out an in-depth theoretical analysis of the pro-
posed methods, showcasing their advantages compared to
relevant competitors and addressing the limitations present
in those works. Specifically, we demonstrate convergence
upper bounds on the average expected gradient norm for all
variants of SPAM.

We also conduct a communication complexity analysis
based on our convergence results. Namely, we show that
SPAM can provably benefit from similarity. In addition,
we designed a varying stepsize schedule that removed the
neighborhood from the stationarity boundaries. Our algo-
rithm achieves the optimal convergence rate of O(1/K'/3),
where K denotes the number of iterations leveraging this
scheme.

Our algorithms, in particular SPAM-PP, shine in the cross-
device setting compared to the competitors. First, in con-
trast to non-SPPM-based algorithms, such as MIME and
CE-LSGD, we allow greater flexibility for the local solvers.
Thus, unlike MIME and CE-LSGD, we do not require either
convexity or smoothness of the local objectives. Our algo-
rithm is compatible with any local solver when the latter
satisfies certain conditions outlined in Definition 4.1. Fur-
thermore, compared to SABER, our partial participation
setting does not require (weak) convexity of the objective.
Moreover, we offer substantially simpler analysis than prior
works and can be of independent interest outside of the FL
context. We compare the relevant methods in Table 1.

Table 1: Comparison of the proposed algorithm with other
relevant methods. The columns are: HS - Hessian Sim-
ilarity, PP - Partial Participation, NSA - No Smoothness
Assumption, CD - Cross Device, SU - Server Update, CO -
Client Oracle.

Algorithm | HS PP NSA CD SU Cco
FedProx | X v v Vv - PPM
SABER |v X ¢ X PAGE PPM

MIME vV X X v MVR SGD
CE-LSGD | v Vv X v MVR SARAH
SPAM v v Vv v MVR PPM

As opposed to many standard federated learning techniques
(Karimireddy et al., 2020; Acar et al., 2020; Mishchenko
et al., 2022), our algorithms do not need local states/control
variates to be stored on each client. Not using local states is
crucial for cross-device learning as each client may partici-
pate in training only once.

Finally, we validate our theoretical findings through metic-
ulously designed experiments. Specifically, we tackle a
federated ridge regression problem, where we can precisely
control the second-order heterogeneity parameter 6, as well
as the computation of the local proximal operator.

Paper Organization. The rest of the paper is organized as
follows. Section 2 presents the mathematical notation and
the theoretical assumptions we use in the analysis. The main
algorithm with the exact proximal point oracle and its theo-
retical analysis are presented in Section 3. Sections 4 and
A contain, respectively, the version of the algorithm with
an inexact proximal operator and our most general method,
which uses random cohorts of clients. We present experi-
ments in Appendix B and conclude the paper in Section 5.

2. Notation and assumptions

We use V f for the gradient, ||-|| for the Euclidean norm, and
E [-] for the expectation. Unif(.S) denotes uniform distribu-
tion over the discrete set .S. The proximal point operator of
a real-valued function g : R — R is defined as the solution
of the following optimization

. 1 2
) = —||lzr — . 2
pros, (o) = arg i {00 + e =i} @)

We refer the reader to (Beck, 2017) for the properties of the
proximal point operator. We assume there exists a lower
bound for function f, and it is denoted as fi,s > —oc.

We use index ¢ for a non-random client, while ¢ is used for
a randomly selected client. One of the main assumptions



of our analysis is that we have access to stochastic samples
& ~ D and in particular, we can evaluate the gradient V f
at any point z € R%.

Assumption 1 (Bounded variance). We assume there exists
o > 0 such that for any x € R?¢

B[IVfel@) - V@] <o 3)

We say that the function f is L-smooth, if its gradient is
Lipschitz continuous Yz, y € R%:

IVf(y) = Vi@ < Lijz -yl 4)

In many machine learning scenarios, the non-convex objec-
tive functions do not satisfy (4). Moreover, several prior
works (Zhang et al., 2019; Crawshaw et al., 2022) showed
that such smoothness condition does not capture the prop-
erties of popular models like LSTM, Recurrent Neural Net-
works, and Transformers.

Our second assumption is the second-order heterogeneity.
Further in the analysis, this assumption will take the role of
smoothness.

Assumption 2 (Hessian similarity). Assume there exists
§ > 0 such that for any i and z,y € R?

IV fi(z) = Vf(z) = Vfily) + Vi)l < 6]z — y||-(5)

When all functions f; are twice-differentiable the above
condition can also be formulated as

V2 fi(z) = V2 f(2)]| <6, (6)

motivating the name second-order heterogeneity used inter-
changeably with Hessian similarity (Khaled & Jin, 2022).

This assumption holds for a large class of machine learning
problems (Mairal, 2013; Shamir et al., 2014; Mairal, 2015).
Typical examples include least squares regression, classifi-
cation with logistic loss (Woodworth et al., 2023), statistical
learning for quadratics (Shamir et al., 2014), generalized
linear models (Hendrikx et al., 2020) etc. Furthermore, a
similar assumption was used to improve convergence re-
sults in centralized (Tyurin et al., 2023) and communication-
constrained distributed settings (Szlendak et al., 2022). In
the distributed setting, (5) is especially relevant as the param-
eter § remains small, even if different clients have similar
input distributions but widely varying outputs for the same
input. See more details on the assumption in (Khaled & Jin,
2022, Section 9) and (Woodworth et al., 2023, Section 3)
for discussion on synthetic data, private learning, etc.

In the following sections, we present our main algorithms as
well as the corresponding convergence theorems. We focus
on the non-convex optimization problem (1), where the goal
is to find an e-approximate stationary point z € R? such

that E [||Vf(x)||2} <e.

3. SPAM

In this section, we describe our main algorithm in its sim-
pler form, that is, SPAM with one sampled client and exact
proximal point computations. We then provide theoretical
convergence guarantees and a complexity analysis of the
proposed methods.

The algorithm proceeds as follows. We first choose a step-
size sequence 7y, and a momentum sequence py. The server
samples a client. The selected client then computes the
new gradient estimator g, and assigns the new iterate as the
proximal point operator with a shifted gradient term:

Tpa1 = prOX'kaEk (:Ck + %(Vfgk (l’k) — gk)) .
Then zj41 = arg min, ¢y (y) with

ly — al?
e
29
@)
The new iterate is then sent to the server, and the process

repeats itself. For the algorithm’s pseudocode, please refer
to Algorithm 1.

oY) = feo. W)+ {9k — Ve, (xr),y — k)

Algorithm 1 SPAM, SPAM-inexact
1: Input: Starting point zo = 2_; € RY, initialize gg =
g—1, choose v > 0 and py, > 0;
2: for k=0,1,2,...do
3:  The server: samples & ~ D;
4:  The selected client: sets
9 = Ve (@) + (1 = pr) (go—1 — Ve, (zr-1));
5.  The selected client: sets x4 as

prOX’kask (xk + /Yk(vfék (xk) - gk)) ; (SPAM)
a-prox, (Tg, gk, Vs k) 5 (SPAM-inexact)

6:  The selected client: sends x4 1, gx to the server.
7: end for

The following proposition is the cornerstone of our analysis.
It provides a recurrent bound for a certain sequence Vi,
which serves as a Lyapunov function:

= Flag) — fa b 2
Vie = f(xk) fmf+16(2pk_pi)”gk Vel ®)

Proposition 3.1. Let ;. be the iterates of SPAM for an
objective function f, which satisfies Assumptions 1 and 2.

Ifvi < min{ﬁ, m}, then for every k > 1

EViri] < E[Vil = 25E [IVF(@esn)l*] +20pe0®,

where Vi, is defined in (8).

The proof can be found in Appendix C.1. This leads us to a
convergence result for SPAM with fixed parameters.



Theorem 3.2 (SPAM with constant parameters). Suppose
Assumptions 1, 2 are satisfied. Then,

S 32(/(20) — fius)
L BIfel] s =R o
32|90 ~ VF)I* | o) o
+ 20— K + 64po”,

2 : 1 p
where v* < min { 1667 > 5607 (1=p) }

The proof of the theorem can be found in Appendix C.2.

Corollary 3.3. The result can also be written as

E {va(jKJrl)Hz] < W

N 32)lg0 — V£ (0)|?
(2p—p?)K

where T 1 is taken uniformly randomly from the iterates
of the algorithm {x1, 22, ... ,Tx i1}

+ 64po?,

Our primary focus is communication complexity, which
is typically the main bottleneck in cross-device federated
settings (Kairouz et al., 2021). Below, we present the com-
munication complexity of SPAM with fixed parameters.

Corollary 3.4. Define F := f(xg) — fint- Let vy =7 =
. 1/3

min (%, (W) / ), and p, = p = max(~26%,1/K).

Then, the communication complexity of SPAM, to obtain €

error is of order O (75F'€"02 + jg’f;).

The proof is deferred to Appendix E.1. Our result indicates
that higher similarity (smaller 0) leads to fewer communica-
tion rounds to solve (1).

Suppose now that we can initialize go = V f(x¢). Then, the
second term in the convergence upper bound (9) vanishes.
Repeating the exact steps as in the proof of Corollary 3.4, we
obtain the convergence rate: O (‘%F + (%)2/ 3), which

leads to a communication complexity of O (S?F + ﬁgf; )

Thus, our result shows that in the homogeneous case (i.e.,
6 = 0), communication is not needed at all, as each client
can solve the problem locally.

It is important to highlight that the stepsize v in SPAM dif-
fers from the stepsize used in local methods such as MIME
and CE-LSGD. In these methods, the stepsize is intended
to run the algorithms locally on a selected client. How-
ever, SPAM only requires an oracle for proximal points,
allowing the oracle to use any optimization method suit-
able for the problem at hand. Additionally, the stepsize
for local SGD-based methods depends on the smoothness
parameter, which is not required in our theorem. Thus, our
approach allows much more flexibility for choosing local

solvers that are adaptive to the curvature of the loss (Malit-
sky & Mishchenko, 2020; Mishkin et al., 2024). See Table 1
for a detailed comparison of the methods.

In (9), we notice that the last term, which is due to the
stochastic nature of our problem, does not vanish when K
is large. To remove the stationarity neighborhood, let us
now consider varying stepsizes for SPAM, with decaying
momentum parameters py.

Theorem 3.5 (SPAM). Consider SPAM for an objective
function f that satisfies Assumptions 1 and 2. Let vy be
a sequence of varying stepsizes satisfying v < @ and
96627

K
W’Yﬁ-‘rl' Denote FK = Zk:l Yk then

choose pi, =

K K 965243
; B[V ()] < 729652%11 2
32V,

Ik’

(10)

The proof of Theorem 3.5 can be found in Appendix C.3.

Remark 3.1. Similar to Theorem 3.2, we can repre-
sent the left-hand side of (10) with a single expectation:

B[V K with
probability v; /T k.

], where T = x;, fori =1,.. .,

To ensure that the right-hand side converges to zero as
K — oo, we need to choose a sequence v — 0 such
that ',y — +o00. This suggests using a stepsize schedule
of order v, = O(kP~1), implying I'x = O(K#) for some
B € (0,1). Consequently, the right-hand side of (10) is of
order O(K ~# 4+ K28-2). By optimizing over 3, we deduce
that v, = O(k~"/*) results in a stationarity bound of order
O(K /).

Corollary 3.6 (Optimal stepsize schedule). If v, =
96527
T65272 41"
we need K = O(e°/?) iterations under assumptions I, 2.

1
46k1/3

and pi, = then to obtain e-stationarity for SPAM

4. Inexact proximal operator

In the previous theorems, we assume that each sampled
client &, can exactly compute the proximal operator to ob-
tain the new iterate x4 ;. The latter means that this client
can exactly solve a (potentially) non-convex minimization
problem, which might be problematic in practice. However,
in the proofs of these theorems, we do not use that the new
iterate x is the exact solution of the proximal operator
(see Appendix G.1). Instead, we use two properties of the
proximal point operator:

* decrease in function value: ¢ (zp11) < dr(k);

* stationarity: Vo (zg+1) = 0.
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Figure 1: Convergence of SPAM-inexact on problem (27) with different p and ~.

Thus, we can replace the computation of the exact proximal
point in Algorithm 1 with finding a point that satisfies the
above two conditions. Furthermore, we will relax the second
condition by taking an approximate stationary point. These
arguments are summarized in the below assumption.

Definition 4.1 (a-prox). For a given client k, a gra-
dient estimator gp, a current state xjp, a stepsize i
and a precision level e, the approximate proximal point
a-prox, (T, gk, Yk, k) is the set of vectors ya,p,, which sat-
isfy

* decrease in function value: E [¢ (yap)] < ér(2*),

« approximate stationarity: E |||V (yap)[|*| < €2,

where ¢, is defined in (7). The following theorem describes
the convergence result of SPAM-inexact, whose pseudocode
is described in Algorithm 1.

Theorem 4.1 (SPAM-inexact). Consider SPAM-inexact for
an objective function f that satisfies Assumptions 1 and 2.
Let vy, be a sequence of varying stepsizes satisfying vi <

2_2
ﬁ and choose pj, = #ﬂygﬁ_l- Denote ' = Zf:l Tk
then
2
K "YkE |:||Vf(xk+1)|| < 40V, €2 S 2pk’Y}%U2

The proof is postponed to Appendix C.4. We observe that
the level of inexactness €2 appears explicitly in the theorem.
In case when € = 0, we recover the result in Theorem 3.5
up to constants. SPAM-inexact allows to avoid solving the
local minimization problem required for finding the inexact
proximal point operator. This is a significant improvement
over SPAM, as the latter requires minimizing (potentially)
non-convex objectives at each iteration.

To compute a-prox, we can use gradient descent-type meth-
ods. This is feasible because ¢y is differentiable and convex

when f¢ is L-smooth and «y;, < 1/r. These properties allow
us to apply efficient optimization techniques that achieve
better convergence rates than the standard O(1/T), where
T represents the number of iterations for the inner method.
Instead we can achieve O(1/7*) using more elaborate tech-
niques (Nesterov et al., 2021; Sadiev et al., 2022). In this
paper, however, we are more concerned with communica-
tion complexity rather than oracle complexity, and thus, we
will not discuss this further in the paper.

5. Conclusion

We introduced SPAM, an algorithm tailored for cross-device
federated learning, which combines momentum variance
reduction with the stochastic proximal point method. Oper-
ating under second-order heterogeneity and bounded vari-
ance conditions, SPAM does not necessitate smoothness
of the objective function. In its most general form, SPAM
achieves faster communication complexity than its com-
petitors. Furthermore, it does not prescribe a specific local
method for analysis, providing practitioners with flexibility
and responsibility in selecting suitable local solver.

Limitations and future work. The paper is of theoreti-
cal nature and focuses on improving the understanding of
stochastic non-convex optimization under Hessian similarity
in the context of cross-device federated learning. We believe
that separate experiments should be conducted to evaluate
the experimental performance in a setting close to real life.

In standard optimization, the stepsize usually depends on
the smoothness parameter. Adaptive methods allow iterative
adjustment of the stepsize without additional information.
In our case, the smoothness parameter is replaced by the
second-order heterogeneity parameter d, on which the step-
size and momentum sequences of SPAM depend. Removing
this dependence using adaptive techniques under general as-
sumptions remains an open problem even for the server-only
MVR, which serves as the basis for our algorithm.



Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Partial participation

Algorithm 2 SPAM-PP

1: Input: learning rate v > 0, cohort size B, starting point o € R¢; proximal precision level ¢; initialize go = g_1;
2: for k=0,1,2,...do

3:  The server: samples a subset of clients Sk, with size |S;| = B

4:  The server: broadcasts xy, to the clients from .Sj,.

5. fori € Sy in parallel do

6: The selected clients: set g = V f;(z) + (1 — pi) (gr—1 — Vfi(xr-1));
7: The selected clients: send g,i to the server;

8: end for

9:  The server: aggregates g = % ZiGSk Ik 5

10:  The server: samples 5’““ ~ D;

11:  The selected client: computes 41 € a-prox, (Tx, g, Ve, E¥1);

12: end for

In this section, we present the most general form of our algorithm, which works with the approximate proximal operator and
samples multiple clients (cohort) at each round. Specifically, it uses the random cohort Sy, to construct a better gradient
estimator gi. This gradient estimator is then broadcasted to a single random client {; ~ D, who locally computes the
approximate proximal point. The pseudocode can be found in Algorithm 2.

Theorem A.1 (SPAM-PP). Suppose Assumptions I and 2 are satisfied. If & ~ Unif(Sk) at every iteration, then the iterates

622

of SPAM-PP with ~;, < 7 and p, = m satisfy

1« 40
P—Z B [IVFei)|?] < 5 (Vo ~EIVi)
k=

240

K-1
ka Pk%*-i-756

0

The proof of the theorem is postponed to Appendix D. When the client cohort size B increases, the neighborhood shrinks.
This is intuitive as when B — oo, we can access the exact objective f, and the neighborhood will vanish.

Corollary A.2. For a properly chosen constant vy, = v and a momentum parameter py, = p, the convergence rate of exact

SPAM-PP is
SF  o? 1 (6Fo\**
o= - 11
< K + BK + B ( K ) ’ (n
corresponding to communication complexity of order O (‘%F + %25 + (;fﬁ) .

Our result improves upon the prior best rate

L)F 2 1 Fo\?/?
(’) M_FL_Fi‘ 670-
K BK B3\ K

for cross-device FL with partial participation obtained by Patel et al. (2022) for the CE-LGD method. Firstly, our rate does
not have the term LF'/K, where L is the smoothness parameter, which is not a requirement for SPAM-PP. Secondly, the
third term in bound (11) has a better dependence on the cohort size B. Nevertheless, (11) requires exact proximal point
computation.

In Appendix F, we present another version of SPAM-PP, called SPAM-PPA, which uses the sampled cohort of clients to
compute local proximal points. These points are then communicated to the server, and the new iterate is their average.
Hence, the name SPAM-PP with Averaging.
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B. Experiments

To empirically validate our theoretical framework and its implications, we focus on a carefully controlled experimental
setting similar to (Khaled & Jin, 2022). Specifically, we consider a distributed ridge regression problem formulated in (27),
which allows us to calculate and control the Hessian similarity §. An essential advantage of this optimization problem
is that the proximal operator has an explicit (closed-form) representation and can be computed precisely (up to machine
accuracy). This allows us to isolate the effect of varying parameters on the method’s performance. Appendix H provides a
larger discussion on experiments.

o # local steps: 1 # local steps: 2 # local steps: 10
10 SPAM CE-LGD
t - p=01 ‘® p=01 \
p=0.9 p=0.9
g 10 \ ‘a. -
o
< ‘e, ®. |
§10° e o
K e ‘e,
[0) s \ O | ...'.
10 2, Nile \ ; oY
AU W W vf"‘vw\nm.
0 200 400 600 O 200 400 600 O 200 400 600
Communication round, & Communication round, & Communication round, &

Figure 2: Comparison of SPAM-inexact (y = 5/¢) and CE-LGD on problem (27) with different p and number of local steps.

SPAM-inexact study. In Figure 1, we display convergence of Algorithm 1 with constant parameters p and . The
legend is shared, and labels refer to proximal operator computations: “exact” means using closed-form solution, “1” and
“10” correspond to the number of local gradient descent steps. We evaluate the logarithm of a relative gradient norm
log(||\V f(xk)||/I|V f(z0)]]) in the vertical axis.

All the plots indicate convergence of the method to the neighborhood of the stationary point, followed by subsequent
oscillations around the error floor. The first (left) plot shows that for small momentum p = 0.1 and ~y exceeding the
theoretical bound 1/4, the algorithm can be very unstable with exact proximal point computations. Interestingly, approximate
computation (1 or 10 local steps) results in more robust convergence. The second (middle) plot demonstrates that a greater
p = 0.9 results in steady convergence even for misspecified (too large) v. In addition, one can observe that in this case,
more accurate proximal point evaluation results in significantly faster convergence but to a larger neighborhood than for
one local step. This agrees well with observations for local gradient descent methods (Khaled et al., 2020). The last (right)
figure shows that a properly chosen, smaller v = 0.5/§ slows down convergence (twice as many communication rounds are
shown). However, the method reaches a significantly lower error floor (as the vertical axis is shared across plots), which
does not depend much on the accuracy of proximal point operator calculation. Moreover, 10 local steps are enough for
basically the same fast convergence as with exact proximal point computation.

SPAM and CE-LGD comparison. As a reminder, CE-LGD (Patel et al., 2022) leverages MVR on the server (similarly to
SPAM) but applies SARAH locally on the selected client. Note that the theory by Patel et al. (2022) requires decreasing the
step size as the number of local steps (denoted by 7) increases. In contrast, our Algorithm 1 computes approximate proximal
point operator by running a simple gradient descent method for the same number of 7 local steps.

Figure 3 illustrates the convergence behavior of the methods towards a neighborhood of the stationary point. The vertical
and horizontal axes are shared across all plots. We vary the momentum parameter p € {0.1,0.9} (within each subplot), the
number of local steps: {1,2, 10} (across columns). Appendix I also presents a study of the algorithm for varied parameter +.

The convergence speed of CE-LGD is more sensitive to the choice of momentum parameter p: a small p = 0.1 significantly
slows convergence, while p = 0.9 accelerates it. In contrast, SPAM’s speed shows minimal sensitivity to variations in p. The
size of the convergence neighborhood for both methods is primarily influenced by the value of p, which is especially evident
in the final plot for SPAM, where a larger p results in larger gradient norm oscillations.
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Varying the number of local steps has little impact on the performance of CE-LGD, as the theory of Patel et al. (2022)
mandates that the local step size be inversely proportional to 7. Meanwhile, SPAM benefits from more precise local
subproblem solutions: increasing the number of local steps leads to faster convergence, which aligns with standard practices
in federated learning.

We want to note that momentum-based variance reduction has already shown empirical success (Karimireddy et al., 2021;
Horvith et al., 2022) in practical federated learning scenarios. That is why our experiments focus on simpler but insightful
settings to study the properties of the proposed algorithm carefully.
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C. Convergence analysis for SPAM
C.1. Proof of Proposition 3.1

Recall that

Vi = f(@x) — fiut + %Hgk ~ Vi)l
k

2pk

We bound each term separately. We formulate three technical lemmas that are inspired by (Mishchenko et al., 2023). Their
proofs can be found in Appendix G. We start by bounding the first term of the Lyapunov function, which is the function
values.

Lemma C.1. Under the conditions of Proposition 3.1, the following recurrent inequality takes place

1
f(@rt1) — fint < f(ar) — fint — m”$k+1 — 2 |” + 2%V f (2x) — gr (12)

Then, we bound the second term of V.

Lemma C.2. Under the conditions of Proposition 3.1, the following recurrent inequality takes place

E ||lgr+1 — Vf($k+1)||2‘ }'k} < (1= pi)?llgr — VI@)l” +2(1 — pr)?0% | zpss — zxl® + 20302 (13)

We observe that the term ||zg4+1 — Zk H2 is in both upper bounds. The following lemma provides a lower bound for this
expression.

Lemma C.3. Under the conditions of Proposition 3.1, the following recurrent inequality is true
2 7;% 2 2 2
B loxes =2l = 2B [I9f@rsn)IF] =22 [lge = T @0l] - (14)

We now combine the results of the lemmas to bound Vi 1:

(12)4(13) 5 9 9 5 2 2 2
EVit] < a(l=pe)llge — VI (@)ll” + 2207 (1 — pr)°|lzk+1 — zxll” + 20p)0

+E [f (@) = fint] - ﬁE (ks = 24ll?] + 2 [IV £ (1) — gul?

1
- E[Vi] + (20«52(1 —pr)? — 4%> E [||xk+1 — kaQ} + 2apio?

+ @ — aCp — B [IV f(@r) - gell’]

The last inequality is true for every positive value of a.. Let us now choose o = QPi“ﬁ“ﬁ . Then,
k
1 6wd*(l—pp)? 1 1

4y 2p, — P dyp = 8y

where the latter is due to 40y, < /Px/6(1—py). Therefore, we deduce

1
EWin] < BVl = B [l =2l - B [IV () = gul| + 200}0”
(4 Tk 2 Yk 2
< _F 5 _
< BV - 3B IV @) ] + TE[IVF@0) - gl
6YkDr o
—E |V f (1) — g’ | + o
WB[I1V£(ee) = gell*] + 570

< E[Vi - 2B [IVf(eer) ] + 6vpio®

This concludes the proof of the proposition.
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C.2. Proof of Theorem 3.2

Let us apply Proposition 3.1 for the fixed stepsize v; = 7 and a fixed momentum coefficient p;, = p.
E[Viu] < E[W]- *E IV f (1) 1?| + 67po™.
Summing up these inequalities for K = 0, ..., K — 1 leads to

B[] < 2% 05~ BV + 1920

32(f(x0) — fint) +30||go—Vf<oco)||2

<
- vK (2p—p?)K

+192po?.

where 42 < min {ﬁ, % } This concludes the proof of the theorem.

C.3. Proof of Theorem 3.5

From Proposition 3.1 we have
V& 2 2
~ B IV @))€ EVil = EVis] + 63epo™

Let us sum up these 1ne(}(uahtles fork=0,1,..., K — 1. We have a telescoping sum on the right-hand side. Then, dividing
both sideson I'y = Zz 1 Yi» we deduce the followmg bound:

K
32V, 2 150%90 o

fz%E[meM Tr T 2 o 4 1

This concludes the proof.

C.4. Proof of Theorem 4.1

We start by repeating the steps of the proof for Proposition 3.1. Notice that the proposition statement assumes that the iterate
is exactly equal to the proximal point operator. However, as stated in Section 4, in the proofs of lemmas C.1 and C.2 we
only use the property that ¢ (zx+1) < ¢ (xk) (see (23)). Thus, both (12) and (13) are true for SPAM-inexact. Therefore,

BVin] < BMVI —gF [l = anl?] = (2o - a2 — 5B 1950 - gl

+2apio’.
Below, reformulate the adaptation of Lemma C.3 for the inexact case to lower bound the second term on the right-hand side.
Lemma C.4. Under the conditions of Proposition 3.1, we have the following bound

B llzkss — o] > ”’“E[nwmmn | = 2B [lgn = VF@IP] - e (15)

The proof can be found in Appendix G.4. Thus,

5vipe o | ke
v 2]
40 [|| Pl + g 57" + T

LB [HVf(xk) — ul?] = @ — oo — BR)E [V (x) - gul]

as)
EVin] < E[W]-

< E[Vi -

B[I9f(ran) 2] + 2nprc? +

40
Repeating this step for k = 0,..., K — 1, we deduce
K- K—1
1 40V, 2 15023 2 €
— E < - E — Tk —.
Ty & ['W zr1)| } = T Tk < 5077 +47 M
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D. Proof of Theorem A.1

The proof follows the logic of Proposition 3.1. Recall that

Vi = f(2k) — fint + %Hgk — V()
k

2pk

Recall that Lemma C.1 is true for any gradient estimator g;. Thus, (12) is also valid for SPAM-PP. Next, we estimate the
second term of the Lyapunov function. Recall that

gt = 5= 3 (Vo) + (1= ) (90~ Vhilaw))}

1€Sk

= V(o) + (1= i) (96 = Vhalan))

where fi,(z) == é > ics, Vfi(x). Notice also that E {fk(x)} = f(x), for every fixed € R%. Furthermore, combining

the convexity of the Euclidean norm and Hessian similarity (5) we deduce that the estimator fk satisfies the Hessian
similarity condition

[97i@) = V1)~ Vi) + V)| < 5 3 IV5ila) Vi) - Vi) + V1))

1E€Sk

X .
Finally, Jensen’s inequality 1mplles that fk satisfies the bounded variance condition as well:

E [vak(m) - Vf(ac)m < o?/B.

Repeating the analysis exactly as in the proof of Lemma C.2, we obtain

B{lgess = VA@al?] < (1= )% [llge — Vin)|?]

52 2pio?
+2(1 = pr)* 25 [lowsa — anl*] + 2o (16)

Let us now bound the Lyapunov function using (12) and (16):

1

EWVir] < B ~ fiel + 2B [IVF(x) 0] =

B [loker — al?]

52 2ap2o?
+a(l = pi)E [lgx = VI @) || + 201 = pi)? B [ — anl*] + =5
52 9 1 o] 2apic?
= B+ (205500 -5 - 2= ) B [lown - o] + 25T

+2 — a2y — pD)E [IV flan) - gell’]

The latter is true for every positive a. Let us now plug in the value of a = 3% Then, using v < 4/ %, we

2pr—p}
obtain
52 1 662 1 1
20— (1—pp)t—— < ——0 (1 _p)?2 - — < ——. (17)
BQ( Pi) dye — B?(2pr — P%)( i) 47y, 8k
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Hence, we have the following bound

Bln] < BV - B [lowes — aul] B [I9) — ul] + S 2T
BRI\ i (é’fE 1V 7 @) IP] = 22E [low = VF@e)l?] - 7,362)
o [\\Vf(m) — ) + BT
< B - 2B (195 @en)?] - TEE (194 @) - gul?] + BT 4 6
< EN)- B[V )] + 6’”% T

Thus, we have

K-1

= 40 240 o2
I‘i Z [va Tpt1) || } < Tw (Vo —E[Vk]) + Tr Z PR + 7.5¢2.
k= K K k=0
This concludes the proof of the theorem.
E. Complexity analysis of the methods
We use < to ignore numerical constants in the subsequent analysis.

E.1. Proof of Corollary 3.4

We have stepsize condition v < min{1/d,\/p/(62(1 — p))}, which implies that v < /p/d or p 2 (v6)?. Denote
F := f(x0) — fint, then convergence rate of SPAM can be expressed as

K 2
1 2 f(xo) = fine | llgo — VS (o) 2
— E: <
F o llgo = V(o) 2
< R s < =70

where in the last inequality, we used the condition for the stepsize and the fact that p(2 — p) > p. Next, by using an argument
similar to that in (Karimireddy et al., 2021), we suppose (without loss of generality) that the method is run for K iterations.

For the first /2 iterations, we simply sample V f¢ at x to set go = /2 ZK/ Y fe,(x0). Then, according to (3), we have
[”90 — V(x| } < K/2 Now, choose p = max(y262,1/K)

F o2 F o2 o?
Rk S —+—= — 4+ = 25202 + —.
K S ’7K+ K2+p K+K+’y 0+K
N o . 1 F 1/3 .
ext set y = min | 5, (m) and the rate results in
SF F (280K Fo\? o>
< I 5202 4+
e = % ( F > * <26202K) TTE
2 2/3
< 0F+o n 0o F 7
~ K K

. . . . 2
which leads to the communication complexity of O (‘SF% + g;‘g

) . This concludes the proof.
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E.2. Proof of Corollary A.2

In this part, we analyze communication complexity similar to Appendix E.1. The focus is on constant stepsize case
Y =7 S min{l1/d,/pB/J} and exact proximal computation € = 0.

Proof of Corollary A.2. Denote F' := f(x¢) — fint, then convergence rate of SPAM-PP can be expressed as

K 2
1 2 F o llgo—Vf(@o)l”  po?
==Y E||V < ,
i K &~ [” f(x’f)”} ~ 9K pK B

Here, we used the fact that p(2 — p) > 1, for p < 1. Take gy as the following averaged gradient estimator

K/2

9o = ﬁ > Vi) (18)

j=14€S;
From the law of large numbers, we deduce E {Hgo - Vf(xo)HZ} < 0?%/(BK/2). Then

F o? po?
Ry < — =
KS Kk B2 T B

The choice of v ~ min{1/4, ,/pB/J} results in

oF OF o? po?
Rx < — = 19
KNK+\/]SBK+pBK2+B (19)

. . . . . . . . . 2 2
In order to optimize the right hand side with respect to parameter p, let us divide the expression into pgT + BZ- and

\/ggK + %. Minimizing these sums separately, we obtain the optimum values p; = % and ps = ( IgaF 3 )2/ 3, respectively.
We then choose pg = max{p1, p2}. Therefore,
2 2
Ri < 5£ n OF n o Poo
~ K /poBK pyBK? B
< 5£+ OF n o2 (m erz)(fz
~ K /p2BK pBK? B
< oF n o? . 1 [(6oF\*?
~ K B B\ K '
O

1 (8%F%B /3
Namely, for p = max § 7, ( rers ) we have

R < 57F + 6i KU2 Ve i + 62F23 e 0-72 + i
K~ 'K " BK \SrvB BK K204 B " BK
< 5£ + i + oo F 2
~ K "BK "\BK)

. . . . SF 2 SoF
leading to communication complexity O (? + &+ ﬁ) .
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F. Partial participation with averaging

Algorithm 3 SPAM-PPA
1: Input: learning rate > 0, starting point xo € RY;
proximal precision level ¢; initialize gy = g—1;
2: for k=0,1,2,...do

3:  Sample a subset of clients Sy, with size |Si| =
4 Selected clients do local SPAM updates;
5. forie S; do
6: Set g, = Vfi(zk) + (1 — p) (9r—1 — Vfi(zk-1));
7: Broadcast g;, to the server;
8 end for
9 k=T Dics, Ik
10: fori e Sy do
11: Set x| = a-prox, (Tk, gk, Yk, 1);
12: Broadcast xj, 4 to the server;
13:  end for
14:  The server aggregates the local iterates: xy41 = % D ic S Tl 115
15: end for

Theorem F.1 (SPAM-PPA). Suppose Assumptions 1, 2 are satisfied and the objective function f is L-smooth. If { ~

. . . . . 1 _968%47 .
Unif (Sk) at every iteration, then the iterates of SPAM-PPA with ), < W40 and p, = W satisfy
40 0«
Z Vi {va Thiy H } (Vo - Z pk%* + 7.5¢%.
k=0

The result of the theorem is similar to the one in Theorem A.1. In fact, following the proof scheme of Corollary A.2, one
can derive the complexity analysis for SPAM-PPA. However, unlike previous results, we require the objective function f to
be smooth.

F.1. Proof of Theorem F.1

The proof follows the logic of Proposition 3.1. Recall that

b gk — V()|

3.
Vi = fzk) = fint + 5— 5
( ) 2pk_pk

We start with proving a descent lemma. Recall that &, ~ Unif(S},), for the fixed Sk.

Lemma F.2. For an L-smooth objective f satisfying assumptions 1,2 and parameters v; < min { T (L1+6) s, 15524(1111 o }
the iterates of the SPAM-PPA algorithm satisfy

2
Bl o) = furl < BU (@) ~ fudd + 208 19560 = ul?] = 78 [[afs -] 0

The proof of the lemma is deferred to Appendix G.5. Next, we estimate the second term of the Lyapunov function. Recall
that

Jht1 = Z {Vfi(wrgr) + (1 —pr) (g — VSilar))}
S

1€ Sk

= Vilena) + (L= pe) (on = V()

where fy,(z) = Sk > ics, Vfi(x). Notice that E { fr (:c)} = f(x), for every fixed x € R?. Furthermore, combining the

convexity of the Euclidean norm and Hessian similarity (5) we deduce that the estimator fk satisfies the Hessian similarity
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condition

A

|97u) = V1 @) = Vi) + V5| < 5 3 IVA@) - V@) - Vi) + V)

1€Sk

A

eyl
=B Yll-
Furthermore, Jensen’s inequality implies that fr satisfies the bounded variance condition as well:
E [Hka(a:) - Vf(;v)m < o?/B.
Repeating the analysis exactly as in the proof of Lemma C.2, we obtain
Ellgesr = VF@)l?] < (0= p)?E [llge = V5 @)l

52 2 20.2
+2(1 = pi)® 55 B {kaﬂ - xklﬂ + pg

Assume now that & ~ Unif(Sy), for a fixed S. The latter means x4 = E [xi’;l‘ Qk} , and subsequently, Jensen’s

inequality yields

Ellgess = VF@esn)I] <0 = p)E [lgx — V)]

52 T 2 2p202

21 - [ o 0] - ] + 257
<(1 = p)’E |llgx — V£ (i)l

2T 2 2p3o?

+20-p g [B [ - o 0] + 225

—(1— p)?E [llgs — V()|
2 T 2 912 52

2 13 P00
+20 =) B | o - } g

2
Now, we need to bound E {Hxiil — Tk H ] from below.

Lemma F.3. Under assumptions 1 and 2, we have the following lower bound for the iterates of SPAM-PPA algorithm
E sk 2 > f}/]% E v gk 2 2E v 2 2 21
T T k|| | 25 P )| | = %E (g = V@)™ — e 21
The proof of the lemma can be found in Appendix G.6. Let us now bound the Lyapunov function using (20) and (21):

1 2
BlVi] < Blfen) — ful + 208 19500 - ulF] - 18 [ o8 - ]
bl pe?E [lgx V7)) + 2001 - pi)? S [Hxi’;l - ka + 2o

5?2 9 1 ¢ 2 2apio?
= E[Vi]+ <2a32(1 —p)? — 4%) E [kagl _ ka } + T

(2 — al2pe — pR)E [V (@e) = gell’]

. .. . 3 . B2py,
The latter is true for every positive a. Let us now plug in the value of @ = zp,ﬁp? . Then, using v < 4/ ijpk), we

k

obtain 52 52
1 67k 1
2055 (1= p)® = 1 < o s (L= = o <~ 22)

4y = B2(2pk — p?
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Hence, we have the following bound

E[Visd] < E[Vi [kaH xk‘ﬂ —%E [va(xk) - 91c||2} + m

< Bl % (Ze[|vset|] - 28 [lo - vsl] -2t

6pryLo?
—WE [IVf (i) = gull*] + L

B
7 6piEYEo>2 €2
< Bl- 2| [Vrat] ] - TR (19w - al?] + P 4
6 2
< BWl- e [|vrei)| ]+ ZEC 4 e

Thus, we have
ag
PrVe— + 7.5€%.

Tx B

Z%E oset]] = mmo-EWd+
k=0

This concludes the proof of the theorem.

G. Proofs of the technical lemmas
G.1. Proof of Lemma C.1

By the main theorem of Calculus, we have

1
f(@r1) = flox) = /O<Vf($k+7($k+1$k))7xk+1ﬂfk>dT,

=xz(T1)

fo(@pgr) = fe (xr) = /01 <Vf5,c (e + 7(Ths1 — k), Thg1 — xk> dr
i=x(7)
Therefore the difference in function value can be bounded as follows:
f@egr) = flan) = fo(@esr) — feo (zn)
+/01 (VI(@(1) = Ve (2(1), 2pp1 — zp) dT
= Je(@ri1) = feo (k) + (9k — Ve, (1), Thir — i)

+ / (VF(@(r)) = Ve (2(r)) — g1 + V feu (@n), 20sr — a0 dr

1
< *TH%H — zp||* + (Vf (1) = gr, Trr1 — Tx)

Yk

1
4 [ (T H@(r) = Ve (0(r) = V(@) + Ve, (1), s = ) dr
0
The last inequality is due to
1
fer@rs1) + (gr — Ve, (@r), Trgr — z) + — |41 — 2l|* < feo (i), (23)

2k
which is a direct consequence of xxy; = arg min {fgk (@) + {9k — Ve, (z1), x — zp) + iﬂx — J;k||2}. Let us now
xr
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apply Cauchy-Schwartz inequality to bound both scalar products:

f@rgr) = flog) <

Thus, we have

1 9 2 1 2
L [V f (1) — — ks —
2%H%H vxl|” 4+ 29[V f(21) — gl +8%||xk+1 |

1
+/0 IVF(x(7)) = Vg (x(7)) = VI(zr) + Ve (@p) [[2pe1 — zilldr
1

3 lzrs1 — mk||2
Yk

1 2 2
“on lzer1 — 2ill” + 2|V f(2r) — grll” +

Vi

1
48 [ lotr) = ol - war

0

1 9 2 1 2
_ _ 27, [V _ _
2%kaﬂ oil|” 4+ 29[|V f(21) — gl +8%||$k+1 i |

6
51z — ]

1 2 2
1 2k — zill™ + 2% IV f(2k) — g&l”
Yk

1
f(@rs1) = fint < f(zk) — fint — MH%H — i |)* + 29|V £ (21) — gr]l

This concludes the proof of the lemma.

G.2. Proof of Lemma C.2

Recall that go 1 = V fe,,, (@r1) + (1 — i) (96 — V ey (w1)). We define Fy := {@k11, Tk, gi }. Then,

E[llgrs1 -

= E |:va5k+1(xk+l) + (1= pr) (96 — Ve, (2r)) — vf(karl)HQ’ fk]

Vf(ka)HQ‘]-'k}

= B[V (orn) = ) + (0= ) (V) = Ve, @) | 5]
+(1 = pi)?llgr — V()%

The last equality is due to the bias-variance formula and the fact that £, is independent of F, and that the stochastic
gradients are unbiased. Using the Cauchy-Schwartz inequality, we deduce the following bound for the first term on the
right-hand side, where o > 0 is an arbitrary constant:

E {vagm(xkﬂ) — V(@) + (1= pe) (VF(@r) = Ve (@) | }-k}

=E [px (Vferss (@ri1) — VS (241))
+ (1 —px) (Vf§k+1($k+1) = Vf(@ps1) + V(rg) - Vf§k+l(xk)) H2 | ]:k]

< (1+ )pEB [ ||V e (2s) = VF @sn)|[*] 7]
+ (1 a1 = P PE [ Voo (@rs1) = Vi @ren) + V@) = Ve (w)]°| 7]
We apply (3) and (5) to bound, respectively, the first term and the second term on the right-hand side of (25):
E [V S (@) = V5 (@in) + (1 pi) (@) — Ve ()| 7]
< (Lt a)pio® + (L+a )1 = p)0° ||z — o

Taking o = 1, we obtain the following

E |[lgk+1 — Vf($k+1)|l2‘ fk] < (1= pi)?llge — V@)l + 201 — pr) 262 Jersr — zal® + 2030

This concludes the proof of the lemma.
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G.3. Proof of Lemma C.3

By the definition of zj1, we have
ek —axll® = NV fer(@rir) + g5 — Ve (@)
= VIV (@h1) + g5 = VF(@r) + Ve, (@ri1) = VF(@r1) = Ve (@) + V)]
> B9 )|~ ARl — VSl
NV e (@rs1) = VI (@re1) = Ve (@) + YV f (z0)|*
> %’z“vf(xk+l)”2 —villge = VI @o)ll” = 120 |wrsr — ),

where we used a variant of Jensen’s inequality 3(a? + b* + ¢?) > (a + b+ ¢)?, for a, b, ¢ > 0. Therefore, we have

2 1 ol 2 2
[Tk —apll” > 15425 <3Vf($k+1)|| —Yellge = V f(zi) |l
16 (2
> 32 (B9l - Rl - Vi)

2
> Vs @)l = Rlge = V@0l
Thus, we have
2 7;3 2 2 2
B|lowes =2l = 2B [IVf@ean)|] =2 [lge = VA @0)l] -

This concludes the proof of the lemma.

G.4. Proof of Lemma C.4

Let z;4+1 = a-prox, (T, gk, vk, &k ). Then, from the definition of the function ¢y, (7), we have

IV (1)

vask (The1) + g1 — Ve, (xk)‘f'% (Tpy1 — k)

E2

v

2

2

HVf(ka) + Ve, (Trt1) = VI (@rt1) + V(@) — Ve (v6) + g8 — V(i) + ’TIk (Ths1 — Tk)
> iva(xk-i-l)”Q —llgr = Vf@)l* = 0% |24 — 2]|” — % |2 — i
k

Where in the last inequality we used |lay + as + as + aq]]® < 4 (||a1H2 + [laz]® + Jlas|® + Ha4||2) for any vectors

a; € R?. Thus, we deduce

2 1
v =l > (VA - o - Vi@~

1+ 7362
> (9P — s — V@ — e
= 144202 \ 4 k+1 Vel 9k k Tk
16 [~
> 1 (ZIVs el - Rlo - Trl - 22)

2
> EVi @) = Rlge — VH@n)l® -2

Taking expectations on both sides leads to

2
E[lleess = 2il?] = FE[IVF@esn)l’] = 12B | lge = V@] -2

This concludes the proof of the lemma.
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G.5. Proof of Lemma F.2

Recalling that xi’jrl = a-prox, (Tk, gk, Yk, k), we have
78 v e _ Aoa 2 <
feo (@350) + (ke = Ve (@r), 235y — k) + 2 255y — 2kl < feu ().
Similar to the proof of Proposition 3.1 we start with

f@rs1) — flon) = /O<Vf(1'k+7'(xk+1_xk))7xk+1_$k:>d7—7

=xz(T)

1
ffk (xiz-l) - fEk (xk) = A <Vf§k (wk + T(Iiljﬁ-l - xk))a xi:—l - xk> dr.

i=axfk (1)

Thus, we have

fﬁk (xiil) - ffk (xk)

+ / (VF(@(r)), i — i) dr

f(@r1) — for)

+ /01 <—Vf§k_ (2 (T)),xi’:_l — xk> dr
= e (o) = feulon) + (90 — Vfeu (o), oty — 1)
b [ s ) i
+ /01 <—Vf§k (@ (1)) = g + V fe, (x5), 255, — xk> dr.
Applying the descent property of a-prox (see Definition 4.1), we deduce the following:
f(@her) = flan)

1 2
< —RH@"?@ — ka + <Vf(33k) — g 25— xk>

+ / (VF(@(r)), us — 1) dr

1
+A <—Vf£k (:E'sk (’7‘)) — Vf(xk) + Vfgk (xk)71'2:_1 — ZL’k> dr.

Let us take expectation from both sides conditioned to Gy, = {x, Tx+1, Sk, gk }- In other words, we take expectation with

respect to the random index & chosen uniformly from the already chosen Sy:

IN
| —
[\
—
8
T
t
|
8
T
N
_|_
S
<
~
—~
8
bl
|
e
T
8
EAS
I=
-
|
8
o
~——
Q
o
—_

f(@rs1) — fok)

+E {/01 (=¥ fe, (@ (7)) = V f(a) + V fe (on) i, — a ) dr gk}

1 2
= Bl et -] 16 w0 s -

o Uol (V@) = V() = Ve (05 (7)) + V fe (n), 2y — 1) dr | gk} |
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Here the last equality is due to the fact that £, is independent of Gy, and z41 = E [xi’iﬂ | gk} . Therefore, applying the
Cauchy-Schwartz inequality

flanen) = o) < B | =5 |oft — o] 6] + (91@00) = grrnsa - )
+E { ' <Vf(ac(7’)) — V(@ (7)), a8, — xk> dr | gk]

/
+E {/01 <Vf(x5k (7)) = Vf(zk) = Ve, (2%(1)) + V fe, (xx), 255, — :ck> dr | Qk]

<E [—2;3”96%1 ﬂﬁkHQ | Qk] + (Vf(@k) = gk Tht1 — Tk)
+E [/01 ||vf(1;(7')) ||ka+1 - kadT | gk]

+E Uol [V f (@5 (1)) = V[ (1) = V fer (2% (7)) + V fe, () Hxi’ll _ kadT | Qk} '

Applying Cauchy-Schwartz inequality once again, we deduce
floe) — fa) < B |- ]faf \12|g + 19 ) — el + gl — 2l
— flx k- — — — —
Th+1 k) = o ) k k 5 k) = 9k 50 1Tk+1 k
+8] [ Llotr) - 280 [af — i tr 1 6o
LJo
rol
+E / 5”1'& (r) — kaHxiﬁrl — kadT | gk]
LJo
1 2 C 1
3 2 2
< Bl ol - ol 16] + S19760 -l + s hons -l

ropl
+E / LT“$k+1 — xi’;lHHxi’fH — kadT | gk}
L/o

N )
+E /0 57’”30%;1 — ka dr | gk} )
Computing the integral with respect to 7, we obtain

C
flonn) = £ = B =g foft -] 16| + S197@0 - il + gpllone - anl?

L 2
#58 Jens  afaJofs 164 G o ] 161

2 1 9
{ mekH ka |gk}+2|w<m> Gl + sz — il

e 20 + L 2
o e =10 + 2 [t - 1)

2
Recall again that 2,1 = E [zi’;l | Qk] ,thus x4 = argmin,cpa E {Hxiil — aH | gk} Therefore,

" 2 " 2
B [Jot ~men [ 166] <8 e =14
Furthermore,
2
[EE HE [ka | gk} :EkH =B [ka“ ka | gk} .
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Combining these two bounds, we deduce

Flewn) = f@) < SIVI) - ol?

1 o+ L 1 2
—+——— | E H Ee H .
+ (20 T 2%) [ T ~ 7| | G
The previous bound is true for every positive value of C. Thus, it is true also for C' = 4+;. Taking into account that

”yk<m,weget
1 0+ L 1 < 1 1 1 1

- <y - _
2C 2 2’)% 8’yk 8’Yk Q’Yk 4’}%

Therefore,

f@ren) = flae) < 2%l VI(r) — gll” -

xr — Tk k| -
4k h

Thus, taking full expectation on both sides, we have

E[f(zk+1) = fint] S E[f(2k) — fine] + 27:E [”Vf(xk) - gk\ﬂ Mxkﬂ H } :
This concludes the proof.
G.6. Proof of Lemma F.3

By the definition of zt i1, forevery £ € Si; we have

2
H%H H = 713‘ Vfe (@) + gk — Ve, (z1) — V¢k($k+1)H
= 7| VI + 90— V@) + Ve )

VI ah) — Ve, (o) + V)~ Voulonn)||

2
> B9 )| - lon - Vi
2
—kaVfgk (o) = VI (@) = Ve (an) + V)| -2
Vk 2 2 2 2 2 2 2
> ‘Vf $k+1 H —Yiellgw = V f (z1) ] _’Yk5 kau _ka — Vi€ -

4

The third inequality is due to Cauchy-Schwartz and the second property of the approximate proximal operator (See
Definition 4.1). Therefore, we have

2 1
Hziﬁ_lfzku > H"V}%(SQ( va ‘Tk:—ﬁ-l H 713||9kvf($k)27562>
16 2
> 17( Vi) —v,%||gk—w<xk>2—v262)
’Y
= 5kva TR H ~ellgr = VI (@r)|” = vie’.

We deduce
72 2
B{foft -] 2 2 |wrei| ] - 28 lo - vr@or] -z
This concludes the proof of the lemma.
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H. Experimental details

We provide additional details on the experimental settings from Section B. Consider a distributed ridge regression problem
defined as

A
f@) = Ee |4z — yell*] + Slall®, @

where ¢ is uniform random variable over {1, ...,n} forn = 10, A = 0.1. At every iteration, one client is sampled uniformly
at random.

We follow a similar to (Lin et al., 2024) procedure for synthetic data generation, which allows us to calculate and control
Hessian similarity 6. Namely, a random matrix Ay € R%*? (d = 100) is generated with entries from a standard Gaussian
distribution A/ (0, 1). Then we obtain A = AyA] (to ensure symmetry) and set A’5 = A+ B¢ by adding a random symmetric
matrix B (generated similarly to A). Afterwards we modify A¢ = A} + I A\min(A¢) by adding an identity matrix / times
minimum eigenvalue to guarantee A¢ >= 0. Entries of vectors y¢ € R?, and initialization zo € R? are generated from a
standard Gaussian distribution A/(0, 1).

In the case of inexact proximal point computation (1/10 local steps), local subproblems (7) are solved by gradient descent
with a fixed step size of 1/(2L;), where L; is the local smoothness constant. A more efficient method (e.g., (Nesterov,
2013), (Kim & Fessler, 2021)) could be used for local optimization instead.

Simulations were performed on a machine with 24 Intel(R) Xeon(R) Gold 6246 CPU @ 3.30 GHz.

I. Additional experiments

In this section, we present complementary experimental results to compare SPAM-inexact (with varying parameter -y) and
CE-LGD (Patel et al., 2022). The problem setup remains consistent with Section B and Appendix H.

Figure 3 illustrates the convergence behavior of the methods towards a neighborhood of the stationary point. The vertical
and horizontal axes are shared across all plots. We vary the momentum parameter p € {0.1,0.9} (within each subplot), the
number of local steps: {1, 2,10} (across columns), and the parameter v € {1, 2,5} (divided by §) for SPAM (across rows).
The size of the convergence neighborhood for both methods is primarily influenced by the value of p, which is especially
evident in the final plot for SPAM, where a bigger p results in larger gradient norm oscillations.

Overall, we observe that CE-LGD may outperform SPAM when using a small number of local steps and a small parameter +.
However, the fastest overall convergence is achieved by SPAM when 7 is sufficiently large and the number of local steps
exceeds 1.

27



1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Gradient norm

Gradient norm

Gradient norm

# local steps: 1 # local steps: 2 # local steps: 10
10° SPAM CE-LGD
—e— p=0.1 @ p=0.1
- p=09 B p=09

F
o
L

PJ
o
4

PJ
o
&

PJ
S}
&

10°

1071

1072

1073

107

10°

1071

1072

1073

1074
0 200 400 600 O 200 400 600 O 200 400 600
Communication round, k Communication round, & Communication round, &

Figure 3: Comparison of SPAM-inexact and CE-LGD on problem (27) with different p, v and number of local steps.
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