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SPAM: Stochastic Proximal Point Method with Momentum Variance Reduction
for Non-convex Cross-Device Federated Learning

Anonymous Authors1

Abstract
Cross-device training is a crucial subfield of fed-
erated learning, where the number of clients can
reach the billions. Standard approaches and local
methods are prone to client drift and insensitivity
to data similarities. We propose a novel algorithm
(SPAM) for cross-device federated learning with
non-convex and non-smooth losses. We provide a
sharp analysis under second-order (Hessian) sim-
ilarity, a condition satisfied by various machine
learning problems in practice. Additionally, we
extend our results to the partial participation set-
ting, where a cohort of selected clients communi-
cate with the server at each communication round.
We then conduct a complexity analysis of our con-
vergence results, showing the improvement of our
methods upon prior work. Finally, we back up
our results with experiments.

1. Introduction
Federated learning (FL) is a general learning mechanism
where multiple entities, known as clients, work together to
solve a machine learning problem under the guidance of a
central server (Kairouz et al., 2021; Konečný et al., 2016;
McMahan et al., 2017). Each client’s raw data stays on their
local devices and is not shared or transferred; local updates
are aggregated on the central server (Kairouz et al., 2021).

This paper focuses on cross-device training, where the
clients are mobile or IoT devices (Karimireddy et al., 2021).
To model such a large number of clients, we study the fol-
lowing stochastic optimization problem:

min
x∈Rd

f(x), where f(x) := Eξ∼D [fξ(x)] , (1)

where fξ may be non-convex. Here, we do not have access
to the full function f , nor its gradient. This framework
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<anon.email@domain.com>.
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on Machine Learning (ICML). Do not distribute.

reflects the cross-device setting, where the number of clients
is huge (e.g., billions of mobile phones), so each client
participates in the training process only a few times or only
even once. Therefore, we cannot expect full participation to
obtain the exact gradient.

Instead, we can sample from the distribution D and compute
fξ(x) and ∇fξ(x) at each point x. We assume that the
gradient and the expectation are interchangeable, meaning
Eξ∼D [∇fξ(x)] = ∇f(x). In the context of cross-device
training, fξ represents the loss of client ξ on its local data
(Karimireddy et al., 2021).

The formulation (1) is more appropriate than the finite-sum
(cross-silo) formulation (Wang et al., 2021):

min
x∈Rd

f(x), where f(x) :=
1

n

n∑
i=1

fi(x).

The latter setting is applicable for collaborative training by
organizations when n is moderately large (e.g., medical
(Ogier du Terrail et al., 2022)).

Communication bottleneck. In federated learning, it is
essential to broadcast or communicate information between
computing nodes, such as the current gradient vector or
model state. This communication often becomes the main
challenge, particularly in the cross-device setting where the
nodes are less powerful devices with slow network connec-
tions (Konečný et al., 2016; Caldas et al., 2018; Kairouz
et al., 2021). Two main approaches to reducing communica-
tion overhead are compression and local training. Communi-
cation compression uses inexact but relevant approximations
of the transferred messages at each round. These approx-
imations often rely on (stochastic) compression operators,
which can be applied to both the gradient and the model. For
a more detailed discussion on compression mechanisms and
algorithms, see (Xu et al., 2020; Beznosikov et al., 2020;
Shulgin & Richtárik, 2022).

Local training. The second technique for reducing com-
munication overhead is to get better client updates by per-
forming local training. Local SGD steps have been a cru-
cial component of practical federated training algorithms
since the inception of the field, demonstrating strong empir-
ical performance by improving communication efficiency

1
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(Mangasarian & Solodov, 1993; McDonald et al., 2010;
McMahan et al., 2017). However, rigorous theoretical ex-
planations for this phenomenon were lacking until the recent
introduction of the ProxSkip method by (Mishchenko et al.,
2022). ScaffNew (ProxSkip specialized for the distributed
setting) has been shown to provide accelerated communi-
cation complexity in the convex setting. While ScaffNew
works for any level of heterogeneity, it does not benefit
from the similarity between clients. In addition, methods
like ScaffNew, designed to fix the client drift issue (Acar
et al., 2020; Karimireddy et al., 2020), require each client to
maintain state (control variate), which is incompatible with
cross-device FL (Reddi et al., 2020).

Partial participation. In cross-silo federated learning, peri-
odically, all clients may be active in a single communication
round. However, an important property of cross-device
learning is the impracticality of accessing all clients simul-
taneously. Most clients might be available only once during
the entire training process. Therefore, it is crucial to design
federated learning methods where only a small cohort of
devices participates in each round. Modeling the problem
according to (1) naturally avoids the possibility of engaging
all clients at once. We refer the reader to (Reddi et al., 2020;
Karimireddy et al., 2021) and (Khaled & Jin, 2022) for more
details on partial participation.

Data heterogeneity. Despite recent progress in federated
learning, handling data heterogeneity across clients remains
a significant challenge (Kairouz et al., 2021). Empirical
observations show that clients’ labels for similar inputs can
vary significantly (Arivazhagan et al., 2019; Silva et al.,
2022). This variation arises from clients having different
preferences. When local steps are used in this context,
clients tend to overfit their data, a phenomenon known as
client drift.

An alternative to local gradient steps is a local proximal
point operator oracle, which involves solving a regularized
local optimization problem on the selected client(s). This ap-
proach underlies FedProx (Li et al., 2020), which relies on a
restrictive heterogeneity assumption. The algorithm was an-
alyzed from the perspective of the Stochastic Proximal Point
Method (SPPM) in (Yuan & Li, 2022). Independently, the
theory of SPPM is compatible with the second-order similar-
ity condition (Assumption 2) from an analytical perspective
(Mishchenko et al., 2023). Based on these connections, var-
ious studies have explored SPPM-based federated learning
algorithms, and we refer the reader to (Khaled & Jin, 2022)
and (Lin et al., 2024) for more details.

1.1. Prior work

Momentum. Momentum Variance Reduction (MVR) was in-
troduced in the context of server-only stochastic non-convex
optimization (Cutkosky & Orabona, 2019). The primary

motivation behind this method was to avoid computing full
gradients (which is impractical in the stochastic setting) or
requiring "giant batch sizes" of order O(1/ε2). Such large
batches are necessary for other methods like PAGE (Li et al.,
2021) to find an ε-stationary point.

The authors assume bounded variance for stochastic gra-
dients ∇fξ with a noise variance σ2. Their convergence
result for non-convex objectives includes σ2 in the upper
bound. To eliminate the dependence on this parameter, they
propose an adaptive stepsize schedule under the additional
assumption that fξ is Lipschitz continuous.

MIME. MIME is a flexible framework that makes existing
optimization algorithms applicable in the distributed setting
by combining them with local SGD updates (Karimireddy
et al., 2021). The authors then study particular instances
of the framework, such as MIME + ADAM (Kingma & Ba,
2014) and MIME + MVR (Cutkosky & Orabona, 2019).

However, their analysis with local steps is limited for the
non-convex cross-device setting. First, they assume smooth-
ness also in the case of one sampled client. More impor-
tantly, MIME suffers from a common issue of local methods.
In Theorem 4 of (Karimireddy et al., 2021), the stepsize is
taken to be of order O(1/Lm), where L is the smoothness
parameter of the client loss and m is the number of local
steps. Thus, the stepsize is so tiny that multiple steps be-
come equivalent to a single, smoother stochastic gradient
descent step, negating the potential benefits of local SGD.
Finally, their analysis requires an additional weak convex-
ity assumption for the objective in the partial participation
setting.

CE-LSGD. The Communication Efficient Local Stochastic
Gradient Descent (CE-LSGD) was introduced by (Patel et al.,
2022). They propose and analyze two algorithms, with the
second one tailored for the cross-device setting (1). This al-
gorithm comprises two components: the MVR update on the
server and SARAH local steps on the selected client. The lat-
ter, known as the Stochastic Recursive Gradient Algorithm,
is a variance-reduced version of SGD that periodically re-
quires the full gradient of the objective function (Nguyen
et al., 2017).

The analysis by (Patel et al., 2022) explicitly describes how
to choose the number of local updates and the local stepsize.
They also provide lower bounds for two-point first-order
oracle-based federated learning algorithms. The drawback
of their setting is that to have meaningful local updates; they
need the smoothness of each client function fξ. In addition,
similar to MIME, the stepsize depends on the number of
local steps, which limits the benefit of doing many local
steps.

SABER. The SABER algorithm by (Mishchenko et al.,
2023) combines SPPM updates on the clients with PAGE
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updates on the server. Their paper utilizes Hessian simi-
larity (Assumption 2) and leverages it for the finite-sum
optimization objective. However, their analysis for the
partial participation setting relies on an assumption that
is difficult to verify in the general non-convex regime. If
the function is not weakly convex, as in the case of MIME,
this assumption may not hold. Specifically, it requires that
f
(

1
B

∑B
i=1 wi

)
≤ 1

B

∑B
i=1 f(wi), where wi are arbitrary

vectors in Rd obtained using proximal point operators.

1.2. Contributions

This paper introduces a novel method called Stochastic Prox-
imal Point And Momentum (SPAM). Our method combines
Momentum Variance Reduction (MVR) on the server side
to leverage its efficiency in stochastic optimization while
employing Stochastic Proximal Point Method (SPPM) up-
dates on the clients’ side. We analyze four versions of the
proposed algorithm:

• SPAM - exact PPM with constant parameters,
• SPAM - exact PPM with varying parameters,
• SPAM-inexact - inexact PPM with varying parameters,
• SPAM-PP - inexact PPM with varying parameters and

partial participation.

We then carry out an in-depth theoretical analysis of the pro-
posed methods, showcasing their advantages compared to
relevant competitors and addressing the limitations present
in those works. Specifically, we demonstrate convergence
upper bounds on the average expected gradient norm for all
variants of SPAM.

We also conduct a communication complexity analysis
based on our convergence results. Namely, we show that
SPAM can provably benefit from similarity. In addition,
we designed a varying stepsize schedule that removed the
neighborhood from the stationarity boundaries. Our algo-
rithm achieves the optimal convergence rate of O(1/K1/3),
where K denotes the number of iterations leveraging this
scheme.

Our algorithms, in particular SPAM-PP, shine in the cross-
device setting compared to the competitors. First, in con-
trast to non-SPPM-based algorithms, such as MIME and
CE-LSGD, we allow greater flexibility for the local solvers.
Thus, unlike MIME and CE-LSGD, we do not require either
convexity or smoothness of the local objectives. Our algo-
rithm is compatible with any local solver when the latter
satisfies certain conditions outlined in Definition 4.1. Fur-
thermore, compared to SABER, our partial participation
setting does not require (weak) convexity of the objective.
Moreover, we offer substantially simpler analysis than prior
works and can be of independent interest outside of the FL
context. We compare the relevant methods in Table 1.

Table 1: Comparison of the proposed algorithm with other
relevant methods. The columns are: HS - Hessian Sim-
ilarity, PP - Partial Participation, NSA - No Smoothness
Assumption, CD - Cross Device, SU - Server Update, CO -
Client Oracle.

Algorithm HS PP NSA CD SU CO

FedProx ✗ ✔ ✔ ✔ – PPM

SABER ✔ ✗ ✔ ✗ PAGE PPM

MIME ✔ ✗ ✗ ✔ MVR SGD

CE-LSGD ✔ ✔ ✗ ✔ MVR SARAH

SPAM ✔ ✔ ✔ ✔ MVR PPM

As opposed to many standard federated learning techniques
(Karimireddy et al., 2020; Acar et al., 2020; Mishchenko
et al., 2022), our algorithms do not need local states/control
variates to be stored on each client. Not using local states is
crucial for cross-device learning as each client may partici-
pate in training only once.

Finally, we validate our theoretical findings through metic-
ulously designed experiments. Specifically, we tackle a
federated ridge regression problem, where we can precisely
control the second-order heterogeneity parameter δ, as well
as the computation of the local proximal operator.

Paper Organization. The rest of the paper is organized as
follows. Section 2 presents the mathematical notation and
the theoretical assumptions we use in the analysis. The main
algorithm with the exact proximal point oracle and its theo-
retical analysis are presented in Section 3. Sections 4 and
A contain, respectively, the version of the algorithm with
an inexact proximal operator and our most general method,
which uses random cohorts of clients. We present experi-
ments in Appendix B and conclude the paper in Section 5.

2. Notation and assumptions
We use ∇f for the gradient, ∥·∥ for the Euclidean norm, and
E [·] for the expectation. Unif(S) denotes uniform distribu-
tion over the discrete set S. The proximal point operator of
a real-valued function g : Rd → R is defined as the solution
of the following optimization

proxg (x) := arg min
y∈Rd

{
g(y) +

1

2
∥x− y∥2

}
. (2)

We refer the reader to (Beck, 2017) for the properties of the
proximal point operator. We assume there exists a lower
bound for function f , and it is denoted as finf > −∞.

We use index i for a non-random client, while ξ is used for
a randomly selected client. One of the main assumptions

3
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of our analysis is that we have access to stochastic samples
ξ ∼ D and in particular, we can evaluate the gradient ∇fξ
at any point x ∈ Rd.
Assumption 1 (Bounded variance). We assume there exists
σ ≥ 0 such that for any x ∈ Rd

E
[
∥∇fξ(x)−∇f(x)∥2

]
≤ σ2. (3)

We say that the function f is L-smooth, if its gradient is
Lipschitz continuous ∀x, y ∈ Rd:

∥∇f(y)−∇f(x)∥ ≤ L∥x− y∥. (4)

In many machine learning scenarios, the non-convex objec-
tive functions do not satisfy (4). Moreover, several prior
works (Zhang et al., 2019; Crawshaw et al., 2022) showed
that such smoothness condition does not capture the prop-
erties of popular models like LSTM, Recurrent Neural Net-
works, and Transformers.

Our second assumption is the second-order heterogeneity.
Further in the analysis, this assumption will take the role of
smoothness.
Assumption 2 (Hessian similarity). Assume there exists
δ ≥ 0 such that for any i and x, y ∈ Rd

∥∇fi(x)−∇f(x)−∇fi(y) +∇f(y)∥ ≤ δ∥x− y∥.
(5)

When all functions fi are twice-differentiable the above
condition can also be formulated as∥∥∇2fi(x)−∇2f(x)

∥∥ ≤ δ, (6)

motivating the name second-order heterogeneity used inter-
changeably with Hessian similarity (Khaled & Jin, 2022).

This assumption holds for a large class of machine learning
problems (Mairal, 2013; Shamir et al., 2014; Mairal, 2015).
Typical examples include least squares regression, classifi-
cation with logistic loss (Woodworth et al., 2023), statistical
learning for quadratics (Shamir et al., 2014), generalized
linear models (Hendrikx et al., 2020) etc. Furthermore, a
similar assumption was used to improve convergence re-
sults in centralized (Tyurin et al., 2023) and communication-
constrained distributed settings (Szlendak et al., 2022). In
the distributed setting, (5) is especially relevant as the param-
eter δ remains small, even if different clients have similar
input distributions but widely varying outputs for the same
input. See more details on the assumption in (Khaled & Jin,
2022, Section 9) and (Woodworth et al., 2023, Section 3)
for discussion on synthetic data, private learning, etc.

In the following sections, we present our main algorithms as
well as the corresponding convergence theorems. We focus
on the non-convex optimization problem (1), where the goal
is to find an ε-approximate stationary point x ∈ Rd such
that E

[
∥∇f(x)∥2

]
≤ ε.

3. SPAM
In this section, we describe our main algorithm in its sim-
pler form, that is, SPAM with one sampled client and exact
proximal point computations. We then provide theoretical
convergence guarantees and a complexity analysis of the
proposed methods.

The algorithm proceeds as follows. We first choose a step-
size sequence γk and a momentum sequence pk. The server
samples a client. The selected client then computes the
new gradient estimator gk and assigns the new iterate as the
proximal point operator with a shifted gradient term:

xk+1 = proxγkfξk
(xk + γk(∇fξk(xk)− gk)) .

Then xk+1 = argminy ϕk(y) with

ϕk(y) := fξk(y)+⟨gk −∇fξk(xk), y − xk⟩+
∥y − xk∥2

2γk
.

(7)
The new iterate is then sent to the server, and the process
repeats itself. For the algorithm’s pseudocode, please refer
to Algorithm 1.

Algorithm 1 SPAM, SPAM-inexact

1: Input: Starting point x0 = x−1 ∈ Rd, initialize g0 =
g−1, choose γk > 0 and pk > 0;

2: for k = 0, 1, 2, . . . do
3: The server: samples ξk ∼ D;
4: The selected client: sets

gk = ∇fξk(xk) + (1− pk) (gk−1 −∇fξk(xk−1));
5: The selected client: sets xk+1 as{

proxγkfξk
(xk + γk(∇fξk(xk)− gk)) ; (SPAM)

a-proxϵ (xk, gk, γk, ξk) ; (SPAM-inexact)
6: The selected client: sends xk+1, gk to the server.
7: end for

The following proposition is the cornerstone of our analysis.
It provides a recurrent bound for a certain sequence Vk,
which serves as a Lyapunov function:

Vk = f(xk)−finf +
15γk

16(2pk − p2k)
∥gk −∇f(xk)∥2. (8)

Proposition 3.1. Let xk be the iterates of SPAM for an
objective function f , which satisfies Assumptions 1 and 2.
If γ2

k ≤ min
{

1
16δ2 ,

pk

96δ2(1−pk)

}
, then for every k ≥ 1

E [Vk+1] ≤ E [Vk]−
γk
32

E
[
∥∇f(xk+1)∥2

]
+ 2γkpkσ

2,

where Vk is defined in (8).

The proof can be found in Appendix C.1. This leads us to a
convergence result for SPAM with fixed parameters.
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Theorem 3.2 (SPAM with constant parameters). Suppose
Assumptions 1, 2 are satisfied. Then,

1

K

K∑
k=1

E
[
∥∇f(xk)∥2

]
≤ 32(f(x0)− finf)

γK
(9)

+
32∥g0 −∇f(x0)∥2

(2p− p2)K
+ 64pσ2,

where γ2 ≤ min
{

1
16δ2 ,

p
96δ2(1−p)

}
.

The proof of the theorem can be found in Appendix C.2.

Corollary 3.3. The result can also be written as

E
[
∥∇f(x̃K+1)∥2

]
≤ 32(f(x0)− finf)

γK

+
32∥g0 −∇f(x0)∥2

(2p− p2)K
+ 64pσ2,

where x̃K+1 is taken uniformly randomly from the iterates
of the algorithm {x1, x2, . . . , xK+1}.

Our primary focus is communication complexity, which
is typically the main bottleneck in cross-device federated
settings (Kairouz et al., 2021). Below, we present the com-
munication complexity of SPAM with fixed parameters.

Corollary 3.4. Define F := f(x0) − finf . Let γk = γ =

min
(

1
δ ,
(

F
2δ2σ2K

)1/3)
, and pk = p = max(γ2δ2, 1/K).

Then, the communication complexity of SPAM, to obtain ε

error is of order O
(

δF+σ2

ε + δσF
ε3/2

)
.

The proof is deferred to Appendix E.1. Our result indicates
that higher similarity (smaller δ) leads to fewer communica-
tion rounds to solve (1).

Suppose now that we can initialize g0 = ∇f(x0). Then, the
second term in the convergence upper bound (9) vanishes.
Repeating the exact steps as in the proof of Corollary 3.4, we
obtain the convergence rate: O

(
δF
K +

(
δσF
K

)2/3)
, which

leads to a communication complexity of O
(
δF
ε + δσF

ε3/2

)
.

Thus, our result shows that in the homogeneous case (i.e.,
δ = 0), communication is not needed at all, as each client
can solve the problem locally.

It is important to highlight that the stepsize γ in SPAM dif-
fers from the stepsize used in local methods such as MIME
and CE-LSGD. In these methods, the stepsize is intended
to run the algorithms locally on a selected client. How-
ever, SPAM only requires an oracle for proximal points,
allowing the oracle to use any optimization method suit-
able for the problem at hand. Additionally, the stepsize
for local SGD-based methods depends on the smoothness
parameter, which is not required in our theorem. Thus, our
approach allows much more flexibility for choosing local

solvers that are adaptive to the curvature of the loss (Malit-
sky & Mishchenko, 2020; Mishkin et al., 2024). See Table 1
for a detailed comparison of the methods.

In (9), we notice that the last term, which is due to the
stochastic nature of our problem, does not vanish when K
is large. To remove the stationarity neighborhood, let us
now consider varying stepsizes for SPAM, with decaying
momentum parameters pk.

Theorem 3.5 (SPAM). Consider SPAM for an objective
function f that satisfies Assumptions 1 and 2. Let γk be
a sequence of varying stepsizes satisfying γ2

k ≤ 1
16δ2 and

choose pk =
96δ2γ2

k

96δ2γ2
k+1

. Denote ΓK =
∑K

k=1 γk, then

1

ΓK

K∑
k=1

γkE
[
∥∇f(xk)∥2

]
≤ 2

ΓK

K∑
k=1

96δ2γ3
k

96δ2γ2
k + 1

σ2

+
32V0

ΓK
, (10)

The proof of Theorem 3.5 can be found in Appendix C.3.

Remark 3.1. Similar to Theorem 3.2, we can repre-
sent the left-hand side of (10) with a single expectation:
E
[
∥∇f(x̃K)∥2

]
, where x̃K = xi, for i = 1, . . . ,K with

probability γi/ΓK .

To ensure that the right-hand side converges to zero as
K → ∞, we need to choose a sequence γK → 0 such
that ΓK → +∞. This suggests using a stepsize schedule
of order γk = O(kβ−1), implying ΓK = O(Kβ) for some
β ∈ (0, 1). Consequently, the right-hand side of (10) is of
order O(K−β +K2β−2). By optimizing over β, we deduce
that γk = O(k−1/3) results in a stationarity bound of order
O(K−2/3).

Corollary 3.6 (Optimal stepsize schedule). If γk = 1
4δk1/3

and pk =
96δ2γ2

k

96δ2γ2
k+1

, then to obtain ε-stationarity for SPAM

we need K = O(ε−3/2) iterations under assumptions 1, 2.

4. Inexact proximal operator
In the previous theorems, we assume that each sampled
client ξk can exactly compute the proximal operator to ob-
tain the new iterate xk+1. The latter means that this client
can exactly solve a (potentially) non-convex minimization
problem, which might be problematic in practice. However,
in the proofs of these theorems, we do not use that the new
iterate xk+1 is the exact solution of the proximal operator
(see Appendix G.1). Instead, we use two properties of the
proximal point operator:

• decrease in function value: ϕk(xk+1) ≤ ϕk(xk);

• stationarity: ∇ϕk(xk+1) = 0.

5
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Figure 1: Convergence of SPAM-inexact on problem (27) with different p and γ.

Thus, we can replace the computation of the exact proximal
point in Algorithm 1 with finding a point that satisfies the
above two conditions. Furthermore, we will relax the second
condition by taking an approximate stationary point. These
arguments are summarized in the below assumption.

Definition 4.1 (a-prox). For a given client k, a gra-
dient estimator gk, a current state xk, a stepsize γk
and a precision level ϵ, the approximate proximal point
a-proxϵ (xk, gk, γk, k) is the set of vectors yap, which sat-
isfy

• decrease in function value: E [ϕk(yap)] ≤ ϕk(x
k),

• approximate stationarity: E
[
∥∇ϕk(yap)∥2

]
≤ ϵ2,

where ϕk is defined in (7). The following theorem describes
the convergence result of SPAM-inexact, whose pseudocode
is described in Algorithm 1.

Theorem 4.1 (SPAM-inexact). Consider SPAM-inexact for
an objective function f that satisfies Assumptions 1 and 2.
Let γk be a sequence of varying stepsizes satisfying γ2

k ≤
1

16δ2 and choose pk =
96δ2γ2

k

96δ2γ2
k+1

. Denote ΓK =
∑K

k=1 γk,
then

K∑
k=1

γkE
[
∥∇f(xk+1)∥2

]
ΓK

≤ 40V0

ΓK
+

ϵ2

8
+

K∑
k=1

2pkγ
2
kσ

2

ΓK
.

The proof is postponed to Appendix C.4. We observe that
the level of inexactness ϵ2 appears explicitly in the theorem.
In case when ϵ = 0, we recover the result in Theorem 3.5
up to constants. SPAM-inexact allows to avoid solving the
local minimization problem required for finding the inexact
proximal point operator. This is a significant improvement
over SPAM, as the latter requires minimizing (potentially)
non-convex objectives at each iteration.

To compute a-prox, we can use gradient descent-type meth-
ods. This is feasible because ϕk is differentiable and convex

when fξ is L-smooth and γk ≤ 1/L. These properties allow
us to apply efficient optimization techniques that achieve
better convergence rates than the standard O(1/T), where
T represents the number of iterations for the inner method.
Instead we can achieve O(1/T 4) using more elaborate tech-
niques (Nesterov et al., 2021; Sadiev et al., 2022). In this
paper, however, we are more concerned with communica-
tion complexity rather than oracle complexity, and thus, we
will not discuss this further in the paper.

5. Conclusion
We introduced SPAM, an algorithm tailored for cross-device
federated learning, which combines momentum variance
reduction with the stochastic proximal point method. Oper-
ating under second-order heterogeneity and bounded vari-
ance conditions, SPAM does not necessitate smoothness
of the objective function. In its most general form, SPAM
achieves faster communication complexity than its com-
petitors. Furthermore, it does not prescribe a specific local
method for analysis, providing practitioners with flexibility
and responsibility in selecting suitable local solver.

Limitations and future work. The paper is of theoreti-
cal nature and focuses on improving the understanding of
stochastic non-convex optimization under Hessian similarity
in the context of cross-device federated learning. We believe
that separate experiments should be conducted to evaluate
the experimental performance in a setting close to real life.

In standard optimization, the stepsize usually depends on
the smoothness parameter. Adaptive methods allow iterative
adjustment of the stepsize without additional information.
In our case, the smoothness parameter is replaced by the
second-order heterogeneity parameter δ, on which the step-
size and momentum sequences of SPAM depend. Removing
this dependence using adaptive techniques under general as-
sumptions remains an open problem even for the server-only
MVR, which serves as the basis for our algorithm.
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A novel method for machine learning problems using
stochastic recursive gradient. In International conference
on machine learning, pp. 2613–2621. PMLR, 2017. (Cited
on page 2)

Ogier du Terrail, J., Ayed, S.-S., Cyffers, E., Grimberg, F.,
He, C., Loeb, R., Mangold, P., Marchand, T., Marfoq, O.,
Mushtaq, E., et al. Flamby: Datasets and benchmarks
for cross-silo federated learning in realistic healthcare
settings. Advances in Neural Information Processing
Systems, 35:5315–5334, 2022. (Cited on page 1)

Patel, K. K., Wang, L., Woodworth, B. E., Bullins, B., and
Srebro, N. Towards optimal communication complexity
in distributed non-convex optimization. Advances in Neu-
ral Information Processing Systems, 35:13316–13328,
2022. (Cited on pages 2, 11, 12, 13, and 27)

Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
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A. Partial participation

Algorithm 2 SPAM-PP

1: Input: learning rate γ > 0, cohort size B, starting point x0 ∈ Rd; proximal precision level ϵ; initialize g0 = g−1;
2: for k = 0, 1, 2, . . . do
3: The server: samples a subset of clients Sk, with size |Sk| = B;
4: The server: broadcasts xk to the clients from Sk.
5: for i ∈ Sk in parallel do
6: The selected clients: set gik = ∇fi(xk) + (1− pk) (gk−1 −∇fi(xk−1));
7: The selected clients: send gik to the server;
8: end for
9: The server: aggregates gk = 1

B

∑
i∈Sk

gik ;
10: The server: samples ξk+1 ∼ D;
11: The selected client: computes xk+1 ∈ a-proxϵ

(
xk, gk, γk, ξ

k+1
)
;

12: end for

In this section, we present the most general form of our algorithm, which works with the approximate proximal operator and
samples multiple clients (cohort) at each round. Specifically, it uses the random cohort Sk to construct a better gradient
estimator gk. This gradient estimator is then broadcasted to a single random client ξk ∼ D, who locally computes the
approximate proximal point. The pseudocode can be found in Algorithm 2.

Theorem A.1 (SPAM-PP). Suppose Assumptions 1 and 2 are satisfied. If ξk ∼ Unif(Sk) at every iteration, then the iterates
of SPAM-PP with γk ≤ 1

4δ and pk =
96δ2γ2

k

96δ2γ2
k+B2 satisfy

1

ΓK

K−1∑
k=0

γkE
[
∥∇f(xk+1)∥2

]
≤ 40

ΓK
(V0 − E [VK ])

+
240

ΓK

K−1∑
k=0

pkγk
σ2

B
+ 7.5ϵ2.

The proof of the theorem is postponed to Appendix D. When the client cohort size B increases, the neighborhood shrinks.
This is intuitive as when B → ∞, we can access the exact objective f , and the neighborhood will vanish.

Corollary A.2. For a properly chosen constant γk = γ and a momentum parameter pk = p, the convergence rate of exact
SPAM-PP is

O
(
δF

K
+

σ2

BK
+

1

B

(
δFσ

K

)2/3
)
, (11)

corresponding to communication complexity of order O
(

δF
ε + σ2

Bε + δFσ
(Bε)3/2

)
.

Our result improves upon the prior best rate

O
(
(δ + L)F

K
+

σ2

BK
+

1

B2/3

(
δFσ

K

)2/3
)

for cross-device FL with partial participation obtained by Patel et al. (2022) for the CE-LGD method. Firstly, our rate does
not have the term LF/K, where L is the smoothness parameter, which is not a requirement for SPAM-PP. Secondly, the
third term in bound (11) has a better dependence on the cohort size B. Nevertheless, (11) requires exact proximal point
computation.

In Appendix F, we present another version of SPAM-PP, called SPAM-PPA, which uses the sampled cohort of clients to
compute local proximal points. These points are then communicated to the server, and the new iterate is their average.
Hence, the name SPAM-PP with Averaging.
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B. Experiments
To empirically validate our theoretical framework and its implications, we focus on a carefully controlled experimental
setting similar to (Khaled & Jin, 2022). Specifically, we consider a distributed ridge regression problem formulated in (27),
which allows us to calculate and control the Hessian similarity δ. An essential advantage of this optimization problem
is that the proximal operator has an explicit (closed-form) representation and can be computed precisely (up to machine
accuracy). This allows us to isolate the effect of varying parameters on the method’s performance. Appendix H provides a
larger discussion on experiments.
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Figure 2: Comparison of SPAM-inexact (γ = 5/δ) and CE-LGD on problem (27) with different p and number of local steps.

SPAM-inexact study. In Figure 1, we display convergence of Algorithm 1 with constant parameters p and γ. The
legend is shared, and labels refer to proximal operator computations: “exact” means using closed-form solution, “1” and
“10” correspond to the number of local gradient descent steps. We evaluate the logarithm of a relative gradient norm
log(∥∇f(xk)∥/∥∇f(x0)∥) in the vertical axis.

All the plots indicate convergence of the method to the neighborhood of the stationary point, followed by subsequent
oscillations around the error floor. The first (left) plot shows that for small momentum p = 0.1 and γ exceeding the
theoretical bound 1/δ, the algorithm can be very unstable with exact proximal point computations. Interestingly, approximate
computation (1 or 10 local steps) results in more robust convergence. The second (middle) plot demonstrates that a greater
p = 0.9 results in steady convergence even for misspecified (too large) γ. In addition, one can observe that in this case,
more accurate proximal point evaluation results in significantly faster convergence but to a larger neighborhood than for
one local step. This agrees well with observations for local gradient descent methods (Khaled et al., 2020). The last (right)
figure shows that a properly chosen, smaller γ = 0.5/δ slows down convergence (twice as many communication rounds are
shown). However, the method reaches a significantly lower error floor (as the vertical axis is shared across plots), which
does not depend much on the accuracy of proximal point operator calculation. Moreover, 10 local steps are enough for
basically the same fast convergence as with exact proximal point computation.

SPAM and CE-LGD comparison. As a reminder, CE-LGD (Patel et al., 2022) leverages MVR on the server (similarly to
SPAM) but applies SARAH locally on the selected client. Note that the theory by Patel et al. (2022) requires decreasing the
step size as the number of local steps (denoted by τ ) increases. In contrast, our Algorithm 1 computes approximate proximal
point operator by running a simple gradient descent method for the same number of τ local steps.

Figure 3 illustrates the convergence behavior of the methods towards a neighborhood of the stationary point. The vertical
and horizontal axes are shared across all plots. We vary the momentum parameter p ∈ {0.1, 0.9} (within each subplot), the
number of local steps: {1, 2, 10} (across columns). Appendix I also presents a study of the algorithm for varied parameter γ.

The convergence speed of CE-LGD is more sensitive to the choice of momentum parameter p: a small p = 0.1 significantly
slows convergence, while p = 0.9 accelerates it. In contrast, SPAM’s speed shows minimal sensitivity to variations in p. The
size of the convergence neighborhood for both methods is primarily influenced by the value of p, which is especially evident
in the final plot for SPAM, where a larger p results in larger gradient norm oscillations.
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Varying the number of local steps has little impact on the performance of CE-LGD, as the theory of Patel et al. (2022)
mandates that the local step size be inversely proportional to τ . Meanwhile, SPAM benefits from more precise local
subproblem solutions: increasing the number of local steps leads to faster convergence, which aligns with standard practices
in federated learning.

We want to note that momentum-based variance reduction has already shown empirical success (Karimireddy et al., 2021;
Horváth et al., 2022) in practical federated learning scenarios. That is why our experiments focus on simpler but insightful
settings to study the properties of the proposed algorithm carefully.
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C. Convergence analysis for SPAM
C.1. Proof of Proposition 3.1

Recall that
Vk = f(xk)− finf +

3γk
2pk − p2k

∥gk −∇f(xk)∥2.

We bound each term separately. We formulate three technical lemmas that are inspired by (Mishchenko et al., 2023). Their
proofs can be found in Appendix G. We start by bounding the first term of the Lyapunov function, which is the function
values.

Lemma C.1. Under the conditions of Proposition 3.1, the following recurrent inequality takes place

f(xk+1)− finf ≤ f(xk)− finf −
1

4γk
∥xk+1 − xk∥2 + 2γk∥∇f(xk)− gk∥2 (12)

Then, we bound the second term of Vk.

Lemma C.2. Under the conditions of Proposition 3.1, the following recurrent inequality takes place

E
[
∥gk+1 −∇f(xk+1)∥2

∣∣∣Fk

]
≤ (1− pk)

2∥gk −∇f(xk)∥2 + 2(1− pk)
2δ2∥xk+1 − xk∥2 + 2p2kσ

2. (13)

We observe that the term ∥xk+1 − xk∥2 is in both upper bounds. The following lemma provides a lower bound for this
expression.

Lemma C.3. Under the conditions of Proposition 3.1, the following recurrent inequality is true

E
[
∥xk+1 − xk∥2

]
≥ γ2

k

4
E
[
∥∇f(xk+1)∥2

]
− γ2

kE
[
∥gk −∇f(xk)∥2

]
. (14)

We now combine the results of the lemmas to bound VK+1:

E [Vk+1]
(12)+(13)

≤ α(1− pk)
2∥gk −∇f(xk)∥2 + 2αδ2(1− pk)

2∥xk+1 − xk∥2 + 2αp2kσ
2

+E [f(xk)− finf ]−
1

4γk
E
[
∥xk+1 − xk∥2

]
+ 2γkE

[
∥∇f(xk)− gk∥2

]
= E [Vk] +

(
2αδ2(1− pk)

2 − 1

4γk

)
E
[
∥xk+1 − xk∥2

]
+ 2αp2kσ

2

+(2γk − α(2pk − p2k))E
[
∥∇f(xk)− gk∥2

]
.

The last inequality is true for every positive value of α. Let us now choose α = 3γk

2pk−p2
k

. Then,

2αδ2(1− pk)
2 − 1

4γk
=

6γkδ
2(1− pk)

2

2pk − p2k
− 1

4γk
≤ − 1

8γk
,

where the latter is due to 4δγk ≤
√

pk/6(1−pk). Therefore, we deduce

E [Vk+1] ≤ E [Vk]−
1

8γk
E
[
∥xk+1 − xk∥2

]
− γkE

[
∥∇f(xk)− gk∥2

]
+ 2αp2kσ

2

(14)
≤ E [Vk]−

γk
32

E
[
∥∇f(xk+1)∥2

]
+

γk
8
E
[
∥∇f(xk)− gk∥2

]
−γkE

[
∥∇f(xk)− gk∥2

]
+

6γkpk
2− pk

σ2

≤ E [Vk]−
γk
32

E
[
∥∇f(xk+1)∥2

]
+ 6γkpkσ

2.

This concludes the proof of the proposition.
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C.2. Proof of Theorem 3.2

Let us apply Proposition 3.1 for the fixed stepsize γk = γ and a fixed momentum coefficient pk = p.

E [Vk+1] ≤ E [Vk]−
γ

32
E
[
∥∇f(xk+1)∥2

]
+ 6γpσ2.

Summing up these inequalities for k = 0, . . . ,K − 1 leads to

1

K

K∑
k=1

E
[
∥∇f(xk)∥2

]
≤ 32

γK
(V0 − E [VK ]) + 192pσ2

≤ 32(f(x0)− finf)

γK
+

30∥g0 −∇f(x0)∥2
(2p− p2)K

+ 192pσ2.

where γ2 ≤ min
{

1
16δ2 ,

4p
3δ2(1−p)

}
. This concludes the proof of the theorem.

C.3. Proof of Theorem 3.5

From Proposition 3.1 we have

−γk
32

E
[
∥∇f(xk+1)∥2

]
≤ E [Vk]− E [Vk+1] + 6γkpkσ

2.

Let us sum up these inequalities for k = 0, 1, . . . ,K − 1. We have a telescoping sum on the right-hand side. Then, dividing
both sides on ΓK =

∑K
i=1 γi, we deduce the following bound:

1

ΓK

K∑
k=1

γkE
[
∥∇f(xk)∥2

]
≤ 32V0

ΓK
+

2

ΓK

K∑
k=1

15δ2γ3
k

15δ2γ2
k + 4

σ2.

This concludes the proof.

C.4. Proof of Theorem 4.1

We start by repeating the steps of the proof for Proposition 3.1. Notice that the proposition statement assumes that the iterate
is exactly equal to the proximal point operator. However, as stated in Section 4, in the proofs of lemmas C.1 and C.2 we
only use the property that ϕk(xk+1) ≤ ϕk(xk) (see (23)). Thus, both (12) and (13) are true for SPAM-inexact. Therefore,

E [Vk+1] ≤ E [Vk] − 1

8γk
E
[
∥xk+1 − xk∥2

]
− (2γk − α(2pk − p2k))E

[
∥∇f(xk)− gk∥2

]
+2αp2kσ

2.

Below, reformulate the adaptation of Lemma C.3 for the inexact case to lower bound the second term on the right-hand side.
Lemma C.4. Under the conditions of Proposition 3.1, we have the following bound

E
[
∥xk+1 − xk∥2

]
≥ γ2

k

5
E
[
∥∇f(xk+1)∥2

]
− γ2

kE
[
∥gk −∇f(xk)∥2

]
− γ2

kϵ
2. (15)

The proof can be found in Appendix G.4. Thus,

E [Vk+1]
(15)
≤ E [Vk]−

γk
40

E
[
∥∇f(xk+1)∥2

]
+

15γkpk
8(2− pk)

σ2 +
γkϵ

2

8

+
γk
8
E
[
∥∇f(xk)− gk∥2

]
− (2γk − α(2pk − p2k))E

[
∥∇f(xk)− gk∥2

]
≤ E [Vk]−

γk
40

E
[
∥∇f(xk+1)∥2

]
+ 2γkpkσ

2 +
γkϵ

2

8
.

Repeating this step for k = 0, . . . ,K − 1, we deduce

1

ΓK

K−1∑
k=0

γkE
[
∥∇f(xk+1)∥2

]
≤ 40V0

ΓK
+

2

ΓK

K−1∑
k=0

15σ2γ3
k

15σ2γ2
k + 4

σ2 +
ϵ2

8
.
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D. Proof of Theorem A.1
The proof follows the logic of Proposition 3.1. Recall that

Vk = f(xk)− finf +
3γk

2pk − p2k
∥gk −∇f(xk)∥2.

Recall that Lemma C.1 is true for any gradient estimator gk. Thus, (12) is also valid for SPAM-PP. Next, we estimate the
second term of the Lyapunov function. Recall that

gk+1 =
1

Sk

∑
i∈Sk

{∇fi(xk+1) + (1− pk) (gk −∇fi(xk))}

= ∇f̃k(xk+1) + (1− pk)
(
gk −∇f̃k(xk)

)
,

where f̃k(x) :=
1
Sk

∑
i∈Sk

∇fi(x). Notice also that E
[
f̃k(x)

]
= f(x), for every fixed x ∈ Rd. Furthermore, combining

the convexity of the Euclidean norm and Hessian similarity (5) we deduce that the estimator f̃k satisfies the Hessian
similarity condition

∥∥∥∇f̃k(x)−∇f(x)−∇f̃k(y) +∇f(y)
∥∥∥ ≤ 1

B

∑
i∈Sk

∥∇fi(x)−∇f(x)−∇fi(y) +∇f(y)∥

≤ δ

B
∥x− y∥.

Finally, Jensen’s inequality implies that f̃k satisfies the bounded variance condition as well:

E
[∥∥∥∇f̃k(x)−∇f(x)

∥∥∥] ≤ σ2/B.

Repeating the analysis exactly as in the proof of Lemma C.2, we obtain

E
[
∥gk+1 −∇f(xk+1)∥2

]
≤ (1− pk)

2E
[
∥gk −∇f(xk)∥2

]
+2(1− pk)

2 δ2

B2
E
[
∥xk+1 − xk∥2

]
+

2p2kσ
2

B
. (16)

Let us now bound the Lyapunov function using (12) and (16):

E [Vk+1] ≤ E [f(xk)− finf ] + 2γkE
[
∥∇f(xk)− gk∥2

]
− 1

4γk
E
[
∥xk+1 − xk∥2

]
+α(1− pk)

2E
[
∥gk −∇f(xk)∥2

]
+ 2α(1− pk)

2 δ2

B2
E
[
∥xk+1 − xk∥2

]
+

2αp2kσ
2

B

= E [Vk] +

(
2α

δ2

B2
(1− pk)

2 − 1

4γk

)
E
[
∥xk+1 − xk∥2

]
+

2αp2kσ
2

B

+(2γk − α(2pk − p2k))E
[
∥∇f(xk)− gk∥2

]
.

The latter is true for every positive α. Let us now plug in the value of α = 3γk

2pk−p2
k

. Then, using γ ≤
√

B2pk

96δ2(1−pk)
, we

obtain

2α
δ2

B2
(1− pk)

2 − 1

4γk
≤ 6γkδ

2

B2(2pk − p2k)
(1− pk)

2 − 1

4γk
≤ − 1

8γk
. (17)
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Hence, we have the following bound

E [Vk+1] ≤ E [Vk]−
1

8γk
E
[
∥xk+1 − xk∥2

]
− γkE

[
∥∇f(xk)− gk∥2

]
+

6pkγkσ
2

B(2− pk)

(15)
≤ E [Vk]−

1

8γk

(
γ2
k

5
E
[
∥∇f(xk+1)∥2

]
− γ2

kE
[
∥gk −∇f(xk)∥2

]
− γ2

kϵ
2

)
−γkE

[
∥∇f(xk)− gk∥2

]
+

6pkγkσ
2

B

≤ E [Vk]−
γk
40

E
[
∥∇f(xk+1)∥2

]
− 7γk

8
E
[
∥∇f(xk)− gk∥2

]
+

6pkγkσ
2

B
+

γkϵ
2

8

≤ E [Vk]−
γk
40

E
[
∥∇f(xk+1)∥2

]
+

6pkγkσ
2

B
+

γkϵ
2

8
.

Thus, we have

1

ΓK

K−1∑
k=0

γkE
[
∥∇f(xk+1)∥2

]
≤ 40

ΓK
(V0 − E [VK ]) +

240

ΓK

K−1∑
k=0

pkγk
σ2

B
+ 7.5ϵ2.

This concludes the proof of the theorem.

E. Complexity analysis of the methods
We use ≲ to ignore numerical constants in the subsequent analysis.

E.1. Proof of Corollary 3.4

We have stepsize condition γ ≲ min{1/δ,
√
p/(δ2(1− p))}, which implies that γ ≲

√
p/δ or p ≳ (γδ)2. Denote

F := f(x0)− finf , then convergence rate of SPAM can be expressed as

RK :=
1

K

K∑
k=1

E
[
∥∇f(xk)∥2

]
≲

f(x0)− finf
γK

+
∥g0 −∇f(x0)∥2
(2p− p2)K

+ pσ2

≲
F

γK
+

∥g0 −∇f(x0)∥2
pK

+ pσ2,

where in the last inequality, we used the condition for the stepsize and the fact that p(2−p) ≥ p. Next, by using an argument
similar to that in (Karimireddy et al., 2021), we suppose (without loss of generality) that the method is run for K iterations.
For the first K/2 iterations, we simply sample ∇fξ at x0 to set g0 = 1

K/2

∑K/2
i=1 ∇fξi(x0). Then, according to (3), we have

E
[
∥g0 −∇f(x0)∥2

]
≤ σ2

K/2 . Now, choose p = max(γ2δ2, 1/K)

RK ≲
F

γK
+

σ2

pK2
+ pσ2 ≲

F

γK
+

σ2

K
+ γ2δ2σ2 +

σ2

K
.

Next set γ = min
(

1
δ ,
(

F
2δ2σ2K

)1/3)
and the rate results in

RK ≲
δF

K
+

F

K

(
2δ2σ2K

F

)1/3

+

(
F

2δ2σ2K

)2/3

δ2σ2 +
σ2

K

≲
δF + σ2

K
+

(
δσF

K

)2/3

,

which leads to the communication complexity of O
(

δF+σ2

ε + δσF
ε3/2

)
. This concludes the proof.
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E.2. Proof of Corollary A.2

In this part, we analyze communication complexity similar to Appendix E.1. The focus is on constant stepsize case
γk ≡ γ ≲ min{1/δ,√pB/δ} and exact proximal computation ϵ = 0.

Proof of Corollary A.2. Denote F := f(x0)− finf , then convergence rate of SPAM-PP can be expressed as

RK :=
1

K

K∑
k=1

E
[
∥∇f(xk)∥2

]
≲

F

γK
+

∥g0 −∇f(x0)∥2
pK

+
pσ2

B
.

Here, we used the fact that p(2− p) > 1, for p < 1. Take g0 as the following averaged gradient estimator

g0 =
1

BK/2

K/2∑
j=1

∑
i∈Sj

∇fi(x0). (18)

From the law of large numbers, we deduce E
[
∥g0 −∇f(x0)∥2

]
≤ σ2/(BK/2). Then

RK ≲
F

γK
+

σ2

pBK2
+

pσ2

B
.

The choice of γ ∼ min{1/δ,√pB/δ} results in

RK ≲
δF

K
+

δF√
pBK

+
σ2

pBK2
+

pσ2

B
. (19)

In order to optimize the right hand side with respect to parameter p, let us divide the expression into σ2

pBK2 + pσ2

B and
δF√
pBK + pσ2

B . Minimizing these sums separately, we obtain the optimum values p1 = 1
K and p2 =

(
δF
Kσ2

)2/3
, respectively.

We then choose p0 = max{p1, p2}. Therefore,

RK ≲
δF

K
+

δF√
p0BK

+
σ2

p0BK2
+

p0σ
2

B

≲
δF

K
+

δF√
p2BK

+
σ2

p1BK2
+

(p1 + p2)σ
2

B

≲
δF

K
+

σ2

BK
+

1

B

(
δσF

K

)2/3

.

Namely, for p = max

{
1
K ,
(

δ2F 2B
K2σ4

)1/3}
we have

RK ≲
δF

K
+

δF

BK

(
Kσ2

δF
√
B

)1/3

+
σ2

BK
+

(
δ2F 2B

K2σ4

)1/3
σ2

B
+

σ2

BK

≲
δF

K
+

σ2

BK
+

(
δσF

BK

)2/3

,

leading to communication complexity O
(

δF
ε + σ2

Bε + δσF
Bε3/2

)
.
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F. Partial participation with averaging

Algorithm 3 SPAM-PPA

1: Input: learning rate γ > 0, starting point x0 ∈ Rd;
proximal precision level ϵ; initialize g0 = g−1;

2: for k = 0, 1, 2, . . . do
3: Sample a subset of clients Sk, with size |Sk| = B;
4: Selected clients do local SPAM updates;
5: for i ∈ Sk do
6: Set gik = ∇fi(xk) + (1− pk) (gk−1 −∇fi(xk−1));
7: Broadcast gik to the server;
8: end for
9: gk = 1

B

∑
i∈Sk

gik ;
10: for i ∈ Sk do
11: Set xi

k+1 = a-proxϵ (xk, gk, γk, i);
12: Broadcast xi

k+1 to the server;
13: end for
14: The server aggregates the local iterates: xk+1 = 1

B

∑
i∈Sk

xi
k+1;

15: end for

Theorem F.1 (SPAM-PPA). Suppose Assumptions 1, 2 are satisfied and the objective function f is L-smooth. If ξk ∼
Unif(Sk) at every iteration, then the iterates of SPAM-PPA with γk ≤ 1

4(δ+L) and pk =
96δ2γ2

k

96δ2γ2
k+B2 satisfy

1

ΓK

K−1∑
k=0

γkE

[∥∥∥∇f(xξ
k+1)

∥∥∥2] ≤ 40

ΓK
(V0 − E [VK ]) +

240

ΓK

K−1∑
k=0

pkγk
σ2

B
+ 7.5ϵ2.

The result of the theorem is similar to the one in Theorem A.1. In fact, following the proof scheme of Corollary A.2, one
can derive the complexity analysis for SPAM-PPA. However, unlike previous results, we require the objective function f to
be smooth.

F.1. Proof of Theorem F.1

The proof follows the logic of Proposition 3.1. Recall that

Vk = f(xk)− finf +
3γk

2pk − p2k
∥gk −∇f(xk)∥2.

We start with proving a descent lemma. Recall that ξk ∼ Unif(Sk), for the fixed Sk.

Lemma F.2. For an L-smooth objective f satisfying assumptions 1,2 and parameters γ2
k ≤ min

{
1

16(L+δ)2 ,
4pk

15δ2(1−pk)

}
,

the iterates of the SPAM-PPA algorithm satisfy

E [f(xk+1)− finf ] ≤ E [f(xk)− finf ] + 2γkE
[
∥∇f(xk)− gk∥2

]
− 1

4γk
E

[∥∥∥xξk
k+1 − xk

∥∥∥2] . (20)

The proof of the lemma is deferred to Appendix G.5. Next, we estimate the second term of the Lyapunov function. Recall
that

gk+1 =
1

Sk

∑
i∈Sk

{∇fi(xk+1) + (1− pk) (gk −∇fi(xk))}

= ∇f̃k(xk+1) + (1− pk)
(
gk −∇f̃k(xk)

)
,

where f̃k(x) :=
1
Sk

∑
i∈Sk

∇fi(x). Notice that E
[
f̃k(x)

]
= f(x), for every fixed x ∈ Rd. Furthermore, combining the

convexity of the Euclidean norm and Hessian similarity (5) we deduce that the estimator f̃k satisfies the Hessian similarity
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condition ∥∥∥∇f̃k(x)−∇f(x)−∇f̃k(y) +∇f(y)
∥∥∥ ≤ 1

B

∑
i∈Sk

∥∇fi(x)−∇f(x)−∇fi(y) +∇f(y)∥

≤ δ

B
∥x− y∥.

Furthermore, Jensen’s inequality implies that f̃k satisfies the bounded variance condition as well:

E
[∥∥∥∇f̃k(x)−∇f(x)

∥∥∥] ≤ σ2/B.

Repeating the analysis exactly as in the proof of Lemma C.2, we obtain

E
[
∥gk+1 −∇f(xk+1)∥2

]
≤ (1− pk)

2E
[
∥gk −∇f(xk)∥2

]
+2(1− pk)

2 δ2

B2
E
[
∥xk+1 − xk∥2

]
+

2p2kσ
2

B
.

Assume now that ξk ∼ Unif(Sk), for a fixed Sk. The latter means xk+1 = E
[
xξk
k+1

∣∣∣Gk

]
, and subsequently, Jensen’s

inequality yields

E
[
∥gk+1 −∇f(xk+1)∥2

]
≤(1− pk)

2E
[
∥gk −∇f(xk)∥2

]
+ 2(1− pk)

2 δ2

B2
E

[∥∥∥E [xξk
k+1

∣∣∣Gk

]
− xk

∥∥∥2]+ 2p2kσ
2

B

≤(1− pk)
2E
[
∥gk −∇f(xk)∥2

]
+ 2(1− pk)

2 δ2

B2
E

[
E

[∥∥∥xξk
k+1 − xk

∥∥∥2∣∣∣∣Gk

]]
+

2p2kσ
2

B

=(1− pk)
2E
[
∥gk −∇f(xk)∥2

]
+ 2(1− pk)

2 δ2

B2
E

[∥∥∥xξk
k+1 − xk

∥∥∥2]+ 2p2kσ
2

B
.

Now, we need to bound E

[∥∥∥xξk
k+1 − xk

∥∥∥2] from below.

Lemma F.3. Under assumptions 1 and 2, we have the following lower bound for the iterates of SPAM-PPA algorithm

E

[∥∥∥xξk
k+1 − xk

∥∥∥2] ≥ γ2
k

5
E

[∥∥∥∇f(xξk
k+1)

∥∥∥2]− γ2
kE
[
∥gk −∇f(xk)∥2

]
− γkϵ

2. (21)

The proof of the lemma can be found in Appendix G.6. Let us now bound the Lyapunov function using (20) and (21):

E [Vk+1] ≤ E [f(xk)− finf ] + 2γkE
[
∥∇f(xk)− gk∥2

]
− 1

4γk
E

[∥∥∥xξk
k+1 − xk

∥∥∥2]
+α(1− pk)

2E
[
∥gk −∇f(xk)∥2

]
+ 2α(1− pk)

2 δ2

B2
E

[∥∥∥xξk
k+1 − xk

∥∥∥2]+ 2αp2kσ
2

B

= E [Vk] +

(
2α

δ2

B2
(1− pk)

2 − 1

4γk

)
E

[∥∥∥xξk
k+1 − xk

∥∥∥2]+ 2αp2kσ
2

B

+(2γk − α(2pk − p2k))E
[
∥∇f(xk)− gk∥2

]
.

The latter is true for every positive α. Let us now plug in the value of α = 3γk

2pk−p2
k

. Then, using γ ≤
√

B2pk

96δ2(1−pk)
, we

obtain

2α
δ2

B2
(1− pk)

2 − 1

4γk
≤ 6γkδ

2

B2(2pk − p2k)
(1− pk)

2 − 1

4γk
≤ − 1

8γk
. (22)
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Hence, we have the following bound

E [Vk+1] ≤ E [Vk]−
1

8γk
E

[∥∥∥xξk
k+1 − xk

∥∥∥2]− γkE
[
∥∇f(xk)− gk∥2

]
+

6pkγkσ
2

B(2− pk)

(21)
≤ E [Vk]−

1

8γk

(
γ2
k

5
E

[∥∥∥∇f(xξk
k+1)

∥∥∥2]− γ2
kE
[
∥gk −∇f(xk)∥2

]
− γ2

kϵ
2

)
−γkE

[
∥∇f(xk)− gk∥2

]
+

6pkγkσ
2

B

≤ E [Vk]−
γk
40

E

[∥∥∥∇f(xξk
k+1)

∥∥∥2]− 7γk
8

E
[
∥∇f(xk)− gk∥2

]
+

6pkγkσ
2

B
+

γkϵ
2

8

≤ E [Vk]−
γk
40

E

[∥∥∥∇f(xξk
k+1)

∥∥∥2]+ 6pkγkσ
2

B
+

γkϵ
2

8
.

Thus, we have

1

ΓK

K−1∑
k=0

γkE

[∥∥∥∇f(xξk
k+1)

∥∥∥2] ≤ 40

ΓK
(V0 − E [VK ]) +

240

ΓK

K−1∑
k=0

pkγk
σ2

B
+ 7.5ϵ2.

This concludes the proof of the theorem.

G. Proofs of the technical lemmas
G.1. Proof of Lemma C.1

By the main theorem of Calculus, we have

f(xk+1)− f(xk) =

∫ 1

0

〈
∇f(xk + τ(xk+1 − xk)︸ ︷︷ ︸

:=x(τ)

), xk+1 − xk

〉
dτ,

fξk(xk+1)− fξk(xk) =

∫ 1

0

〈
∇fξk(xk + τ(xk+1 − xk)︸ ︷︷ ︸

:=x(τ)

), xk+1 − xk

〉
dτ

Therefore the difference in function value can be bounded as follows:

f(xk+1)− f(xk) = fξk(xk+1)− fξk(xk)

+

∫ 1

0

⟨∇f(x(τ))−∇fξk(x(τ)), xk+1 − xk⟩ dτ

= fξk(xk+1)− fξk(xk) + ⟨gk −∇fξk(xk), xk+1 − xk⟩

+

∫ 1

0

⟨∇f(x(τ))−∇fξk(x(τ))− gk +∇fξk(xk), xk+1 − xk⟩ dτ

≤ − 1

2γk
∥xk+1 − xk∥2 + ⟨∇f(xk)− gk, xk+1 − xk⟩

+

∫ 1

0

⟨∇f(x(τ))−∇fξk(x(τ))−∇f(xk) +∇fξk(xk), xk+1 − xk⟩ dτ.

The last inequality is due to

fξk(xk+1) + ⟨gk −∇fξk(xk), xk+1 − xk⟩+
1

2γk
∥xk+1 − xk∥2 ≤ fξk(xk), (23)

which is a direct consequence of xk+1 = argmin
x

{
fξk(x) + ⟨gk −∇fξk(xk), x− xk⟩+ 1

2γk
∥x− xk∥2

}
. Let us now
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apply Cauchy-Schwartz inequality to bound both scalar products:

f(xk+1)− f(xk) ≤ − 1

2γk
∥xk+1 − xk∥2 + 2γk∥∇f(xk)− gk∥2 +

1

8γk
∥xk+1 − xk∥2

+

∫ 1

0

∥∇f(x(τ))−∇fξk(x(τ))−∇f(xk) +∇fξk(xk)∥∥xk+1 − xk∥dτ
(5)
≤ − 1

2γk
∥xk+1 − xk∥2 + 2γk∥∇f(xk)− gk∥2 +

1

8γk
∥xk+1 − xk∥2

+δ

∫ 1

0

∥x(τ)− xk∥∥xk+1 − xk∥dτ

= − 1

2γk
∥xk+1 − xk∥2 + 2γk∥∇f(xk)− gk∥2 +

1

8γk
∥xk+1 − xk∥2

+
δ

2
∥xk+1 − xk∥2

γk≤ 1
4δ≤ − 1

4γk
∥xk+1 − xk∥2 + 2γk∥∇f(xk)− gk∥2.

Thus, we have

f(xk+1)− finf ≤ f(xk)− finf −
1

4γk
∥xk+1 − xk∥2 + 2γk∥∇f(xk)− gk∥2. (24)

This concludes the proof of the lemma.

G.2. Proof of Lemma C.2

Recall that gk+1 = ∇fξk+1
(xk+1) + (1− pk)

(
gk −∇fξk+1

(xk)
)
. We define Fk := {xk+1, xk, gk}. Then,

E
[
∥gk+1 −∇f(xk+1)∥2

∣∣∣Fk

]
= E

[∥∥∇fξk+1
(xk+1) + (1− pk)

(
gk −∇fξk+1

(xk)
)
−∇f(xk+1)

∥∥2∣∣∣Fk

]
= E

[∥∥∇fξk+1
(xk+1)−∇f(xk+1) + (1− pk)

(
∇f(xk)−∇fξk+1

(xk)
)∥∥2∣∣∣Fk

]
+(1− pk)

2∥gk −∇f(xk)∥2.
The last equality is due to the bias-variance formula and the fact that ξk+1 is independent of Fk and that the stochastic
gradients are unbiased. Using the Cauchy-Schwartz inequality, we deduce the following bound for the first term on the
right-hand side, where α > 0 is an arbitrary constant:

E
[∥∥∇fξk+1

(xk+1)−∇f(xk+1) + (1− pk)
(
∇f(xk)−∇fξk+1

(xk)
)∥∥2 | Fk

]
= E

[
∥pk

(
∇fξk+1

(xk+1)−∇f(xk+1)
)

(25)

+ (1− pk)
(
∇fξk+1

(xk+1)−∇f(xk+1) +∇f(xk)−∇fξk+1
(xk)

)
∥2 | Fk

]
≤ (1 + α)p2kE

[∥∥∇fξk+1
(xk+1)−∇f(xk+1)

∥∥2∣∣∣Fk

]
(26)

+ (1 + α−1)(1− pk)
2E
[∥∥∇fξk+1

(xk+1)−∇f(xk+1) +∇f(xk)−∇fξk+1
(xk)

∥∥2∣∣∣Fk

]
.

We apply (3) and (5) to bound, respectively, the first term and the second term on the right-hand side of (25):

E
[∥∥∇fξk+1

(xk+1)−∇f(xk+1) + (1− pk)
(
∇f(xk)−∇fξk+1

(xk)
)∥∥2∣∣∣Fk

]
≤ (1 + α)p2kσ

2 + (1 + α−1)(1− pk)
2δ2∥xk+1 − xk∥2.

Taking α = 1, we obtain the following

E
[
∥gk+1 −∇f(xk+1)∥2

∣∣∣Fk

]
≤ (1− pk)

2∥gk −∇f(xk)∥2 + 2(1− pk)
2δ2∥xk+1 − xk∥2 + 2p2kσ

2.

This concludes the proof of the lemma.
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G.3. Proof of Lemma C.3

By the definition of xk+1, we have

∥xk+1 − xk∥2 = γ2
k∥∇fξk(xk+1) + gk −∇fξk(xk)∥2

= γ2
k∥∇f(xk+1) + gk −∇f(xk) +∇fξk(xk+1)−∇f(xk+1)−∇fξk(xk) +∇f(xk)∥2

≥ γ2
k

3
∥∇f(xk+1)∥2 − γ2

k∥gk −∇f(xk)∥2

−γ2
k∥∇fξk(xk+1)−∇f(xk+1)−∇fξk(xk) +∇f(xk)∥2

≥ γ2
k

3
∥∇f(xk+1)∥2 − γ2

k∥gk −∇f(xk)∥2 − γ2
kδ

2∥xk+1 − xk∥2,

where we used a variant of Jensen’s inequality 3(a2 + b2 + c2) ≥ (a+ b+ c)2, for a, b, c > 0. Therefore, we have

∥xk+1 − xk∥2 ≥ 1

1 + γ2
kδ

2

(
γ2
k

3
∥∇f(xk+1)∥2 − γ2

k∥gk −∇f(xk)∥2
)

≥ 16

17

(
γ2
k

3
∥∇f(xk+1)∥2 − γ2

k∥gk −∇f(xk)∥2
)

≥ γ2
k

4
∥∇f(xk+1)∥2 − γ2

k∥gk −∇f(xk)∥2.

Thus, we have

E
[
∥xk+1 − xk∥2

]
≥ γ2

k

4
E
[
∥∇f(xk+1)∥2

]
− γ2

kE
[
∥gk −∇f(xk)∥2

]
.

This concludes the proof of the lemma.

G.4. Proof of Lemma C.4

Let xk+1 = a-proxϵ (xk, gk, γk, ξk). Then, from the definition of the function ϕk (7), we have

ϵ2 ≥ ∥∇ϕk(xk+1)∥2

=

∥∥∥∥∇fξk(xk+1) + gk −∇fξk(xk)+
1

γk
(xk+1 − xk)

∥∥∥∥2
=

∥∥∥∥∇f(xk+1) +∇fξk(xk+1)−∇f(xk+1) +∇f(xk)−∇fξk(xk) + gk −∇f(xk) +
1

γk
(xk+1 − xk)

∥∥∥∥2
≥ 1

4
∥∇f(xk+1)∥2 − ∥gk −∇f(xk)∥2 − δ2∥xk+1 − xk∥2 −

1

γ2
k

∥xk+1 − xk∥2.

Where in the last inequality we used ∥a1 + a2 + a3 + a4∥2 ≤ 4
(
∥a1∥2 + ∥a2∥2 + ∥a3∥2 + ∥a4∥2

)
for any vectors

ai ∈ Rd. Thus, we deduce

∥xk+1 − xk∥2 ≥ γ2
k

1 + γ2
kδ

2

(
1

4
∥∇f(xk+1)∥2 − ∥gk −∇f(xk)∥2−ϵ2

)
≥ 1

1 + γ2
kδ

2

(
γ2
k

4
∥∇f(xk+1)∥2 − γ2

k∥gk −∇f(xk)∥2 − γ2
kϵ

2

)
≥ 16

17

(
γ2
k

4
∥∇f(xk+1)∥2 − γ2

k∥gk −∇f(xk)∥2 − γ2
kϵ

2

)
≥ γ2

k

5
∥∇f(xk+1)∥2 − γ2

k∥gk −∇f(xk)∥2 − γ2
kϵ

2.

Taking expectations on both sides leads to

E
[
∥xk+1 − xk∥2

]
≥ γ2

k

5
E
[
∥∇f(xk+1)∥2

]
− γ2

kE
[
∥gk −∇f(xk)∥2

]
− γ2

kϵ
2.

This concludes the proof of the lemma.
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G.5. Proof of Lemma F.2

Recalling that xξk
k+1 = a-proxϵ (xk, gk, γk, ξk), we have

fξk(x
ξk
k+1) +

〈
gk −∇fξk(xk), x

ξk
k+1 − xk

〉
+

1

2γk
∥xξk

k+1 − xk∥2 ≤ fξk(xk).

Similar to the proof of Proposition 3.1 we start with

f(xk+1)− f(xk) =

∫ 1

0

〈
∇f(xk + τ(xk+1 − xk)︸ ︷︷ ︸

:=x(τ)

), xk+1 − xk

〉
dτ,

fξk(x
ξk
k+1)− fξk(xk) =

∫ 1

0

〈
∇fξk(xk + τ(xξk

k+1 − xk)︸ ︷︷ ︸
:=xξk (τ)

), xξk
k+1 − xk

〉
dτ.

Thus, we have

f(xk+1)− f(xk) = fξk(x
ξk
k+1)− fξk(xk)

+

∫ 1

0

⟨∇f(x(τ)), xk+1 − xk⟩ dτ

+

∫ 1

0

〈
−∇fξk(x

ξk(τ)), xξk
k+1 − xk

〉
dτ

= fξk(x
ξk
k+1)− fξk(xk) +

〈
gk −∇fξk(xk), x

ξk
k+1 − xk

〉
+

∫ 1

0

⟨∇f(x(τ)), xk+1 − xk⟩ dτ

+

∫ 1

0

〈
−∇fξk(x

ξk(τ))− gk +∇fξk(xk), x
ξk
k+1 − xk

〉
dτ.

Applying the descent property of a-prox (see Definition 4.1), we deduce the following:

f(xk+1)− f(xk) ≤ − 1

2γk

∥∥∥xξk
k+1 − xk

∥∥∥2 + 〈∇f(xk)− gk, x
ξk
k+1 − xk

〉
+

∫ 1

0

⟨∇f(x(τ)), xk+1 − xk⟩ dτ

+

∫ 1

0

〈
−∇fξk(x

ξk(τ))−∇f(xk) +∇fξk(xk), x
ξk
k+1 − xk

〉
dτ.

Let us take expectation from both sides conditioned to Gk = {xk, xk+1, Sk, gk}. In other words, we take expectation with
respect to the random index ξk chosen uniformly from the already chosen Sk:

f(xk+1)− f(xk) ≤ E

[
− 1

2γk

∥∥∥xξk
k+1 − xk

∥∥∥2 + 〈∇f(xk)− gk, x
ξk
k+1 − xk

〉
| Gk

]
+E

[∫ 1

0

⟨∇f(x(τ)), xk+1 − xk⟩ dτ | Gk

]
+E

[∫ 1

0

〈
−∇fξk(x

ξk(τ))−∇f(xk) +∇fξk(xk), x
ξk
k+1 − xk

〉
dτ

∣∣∣∣Gk

]
= E

[
− 1

2γk

∥∥∥xξk
k+1 − xk

∥∥∥2 | Gk

]
+ ⟨∇f(xk)− gk, xk+1 − xk⟩

+E

[∫ 1

0

〈
∇f(x(τ))−∇f(xk)−∇fξk(x

ξk(τ)) +∇fξk(xk), x
ξk
k+1 − xk

〉
dτ | Gk

]
.
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Here the last equality is due to the fact that ξk is independent of Gk and xk+1 = E
[
xξk
k+1 | Gk

]
. Therefore, applying the

Cauchy-Schwartz inequality

f(xk+1)− f(xk) ≤ E

[
− 1

2γk

∥∥∥xξk
k+1 − xk

∥∥∥2 | Gk

]
+ ⟨∇f(xk)− gk, xk+1 − xk⟩

+ E

[∫ 1

0

〈
∇f(x(τ))−∇f(xξk(τ)), xξk

k+1 − xk

〉
dτ | Gk

]
+ E

[∫ 1

0

〈
∇f(xξk(τ))−∇f(xk)−∇fξk(x

ξk(τ)) +∇fξk(xk), x
ξk
k+1 − xk

〉
dτ | Gk

]
≤ E

[
− 1

2γk

∥∥∥xξk
k+1 − xk

∥∥∥2 | Gk

]
+ ⟨∇f(xk)− gk, xk+1 − xk⟩

+ E

[∫ 1

0

∥∥∇f(x(τ))−∇f(xξk(τ))
∥∥∥∥∥xξk

k+1 − xk

∥∥∥dτ | Gk

]
+ E

[∫ 1

0

∥∥∇f(xξk(τ))−∇f(xk)−∇fξk(x
ξk(τ)) +∇fξk(xk)

∥∥∥∥∥xξk
k+1 − xk

∥∥∥dτ | Gk

]
.

Applying Cauchy-Schwartz inequality once again, we deduce

f(xk+1)− f(xk) ≤ E

[
− 1

2γk

∥∥∥xξk
k+1 − xk

∥∥∥2 | Gk

]
+

C

2
∥∇f(xk)− gk∥2 +

1

2C
∥xk+1 − xk∥2

+E

[∫ 1

0

L
∥∥x(τ)− xξk(τ)

∥∥∥∥∥xξk
k+1 − xk

∥∥∥dτ | Gk

]
+E

[∫ 1

0

δ
∥∥xξk(τ)− xk

∥∥∥∥∥xξk
k+1 − xk

∥∥∥dτ | Gk

]
≤ E

[
− 1

2γk

∥∥∥xξk
k+1 − xk

∥∥∥2 | Gk

]
+

C

2
∥∇f(xk)− gk∥2 +

1

2C
∥xk+1 − xk∥2

+E

[∫ 1

0

Lτ
∥∥∥xk+1 − xξk

k+1

∥∥∥∥∥∥xξk
k+1 − xk

∥∥∥dτ | Gk

]
+E

[∫ 1

0

δτ
∥∥∥xξk

k+1 − xk

∥∥∥2dτ | Gk

]
.

Computing the integral with respect to τ , we obtain

f(xk+1)− f(xk) ≤ E

[
− 1

2γk

∥∥∥xξk
k+1 − xk

∥∥∥2 | Gk

]
+

C

2
∥∇f(xk)− gk∥2 +

1

2C
∥xk+1 − xk∥2

+
L

2
E
[∥∥∥xk+1 − xξk

k+1

∥∥∥∥∥∥xξk
k+1 − xk

∥∥∥ | Gk

]
+

δ

2
E

[∥∥∥xξk
k+1 − xk

∥∥∥2 | Gk

]
≤ E

[
− 1

2γk

∥∥∥xξk
k+1 − xk

∥∥∥2 | Gk

]
+

C

2
∥∇f(xk)− gk∥2 +

1

2C
∥xk+1 − xk∥2

+
L

4
E

[∥∥∥xk+1 − xξk
k+1

∥∥∥2 | Gk

]
+

2δ + L

4
E

[∥∥∥xξk
k+1 − xk

∥∥∥2 | Gk

]
.

Recall again that xk+1 = E
[
xξk
k+1 | Gk

]
, thus xk+1 = argmina∈Rd E

[∥∥∥xξk
k+1 − a

∥∥∥2 | Gk

]
. Therefore,

E

[∥∥∥xξk
k+1 − xk+1

∥∥∥2 | Gk

]
≤ E

[∥∥∥xξk
k+1 − xk

∥∥∥2 | Gk

]
.

Furthermore,

∥xk+1 − xk∥2 =
∥∥∥E [xξk

k+1 | Gk

]
− xk

∥∥∥2 ≤ E

[∥∥∥xξk
k+1 − xk

∥∥∥2 | Gk

]
.
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Combining these two bounds, we deduce

f(xk+1)− f(xk) ≤ C

2
∥∇f(xk)− gk∥2

+

(
1

2C
+

δ + L

2
− 1

2γk

)
E

[∥∥∥xξk
k+1 − xk

∥∥∥2 | Gk

]
.

The previous bound is true for every positive value of C. Thus, it is true also for C = 4γk. Taking into account that
γk < 1

4(L+δ) , we get
1

2C
+

δ + L

2
− 1

2γk
≤ 1

8γk
+

1

8γk
− 1

2γk
= − 1

4γk
.

Therefore,

f(xk+1)− f(xk) ≤ 2γk∥∇f(xk)− gk∥2 −
1

4γk
E

[∥∥∥xξk
k+1 − xk

∥∥∥2 | Gk

]
.

Thus, taking full expectation on both sides, we have

E [f(xk+1)− finf ] ≤ E [f(xk)− finf ] + 2γkE
[
∥∇f(xk)− gk∥2

]
− 1

4γk
E

[∥∥∥xξk
k+1 − xk

∥∥∥2] .
This concludes the proof.

G.6. Proof of Lemma F.3

By the definition of xξk
k+1, for every ξ ∈ Sk we have∥∥∥xξk

k+1 − xk

∥∥∥2 = γ2
k

∥∥∥∇fξk(x
ξk
k+1) + gk −∇fξk(xk)−∇ϕk(xk+1)

∥∥∥2
= γ2

k

∥∥∥∇f(xξk
k+1) + gk −∇f(xk) +∇fξk(x

ξk
k+1)

−∇f(xξk
k+1)−∇fξk(xk) +∇f(xk)−∇ϕk(xk+1)

∥∥∥2
≥ γ2

k

4

∥∥∥∇f(xξk
k+1)

∥∥∥2 − γ2
k∥gk −∇f(xk)∥2

−γ2
k

∥∥∥∇fξk(x
ξk
k+1)−∇f(xξk

k+1)−∇fξk(xk) +∇f(xk)
∥∥∥2 − γ2

kϵ
2

≥ γ2
k

4

∥∥∥∇f(xξk
k+1)

∥∥∥2 − γ2
k∥gk −∇f(xk)∥2 − γ2

kδ
2
∥∥∥xξk

k+1 − xk

∥∥∥2 − γ2
kϵ

2.

The third inequality is due to Cauchy-Schwartz and the second property of the approximate proximal operator (See
Definition 4.1). Therefore, we have∥∥∥xξk

k+1 − xk

∥∥∥2 ≥ 1

1 + γ2
kδ

2

(
γ2
k

4

∥∥∥∇f(xξk
k+1)

∥∥∥2 − γ2
k∥gk −∇f(xk)∥2 − γ2

kϵ
2

)
≥ 16

17

(
γ2
k

4

∥∥∥∇f(xξk
k+1)

∥∥∥2 − γ2
k∥gk −∇f(xk)∥2 − γ2

kϵ
2

)
≥ γ2

k

5

∥∥∥∇f(xξk
k+1)

∥∥∥2 − γ2
k∥gk −∇f(xk)∥2 − γ2

kϵ
2.

We deduce

E

[∥∥∥xξk
k+1 − xk

∥∥∥2] ≥ γ2
k

5
E

[∥∥∥∇f(xξk
k+1)

∥∥∥2]− γ2
kE
[
∥gk −∇f(xk)∥2

]
− γ2

kϵ
2.

This concludes the proof of the lemma.
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H. Experimental details
We provide additional details on the experimental settings from Section B. Consider a distributed ridge regression problem
defined as

f(x) = Eξ

[
∥Aξx− yξ∥2

]
+

λ

2
∥x∥2, (27)

where ξ is uniform random variable over {1, . . . , n} for n = 10, λ = 0.1. At every iteration, one client is sampled uniformly
at random.

We follow a similar to (Lin et al., 2024) procedure for synthetic data generation, which allows us to calculate and control
Hessian similarity δ. Namely, a random matrix A0 ∈ Rd×d (d = 100) is generated with entries from a standard Gaussian
distribution N (0, 1). Then we obtain A = A0A

⊤
0 (to ensure symmetry) and set A′

ξ = A+Bξ by adding a random symmetric
matrix Bξ (generated similarly to A). Afterwards we modify Aξ = A′

ξ + Iλmin(A
′
ξ) by adding an identity matrix I times

minimum eigenvalue to guarantee Aξ ⪰ 0. Entries of vectors yξ ∈ Rd, and initialization x0 ∈ Rd are generated from a
standard Gaussian distribution N (0, 1).

In the case of inexact proximal point computation (1/10 local steps), local subproblems (7) are solved by gradient descent
with a fixed step size of 1/(2Ll), where Ll is the local smoothness constant. A more efficient method (e.g., (Nesterov,
2013), (Kim & Fessler, 2021)) could be used for local optimization instead.

Simulations were performed on a machine with 24 Intel(R)Xeon(R) Gold 6246 CPU @ 3.30 GHz.

I. Additional experiments
In this section, we present complementary experimental results to compare SPAM-inexact (with varying parameter γ) and
CE-LGD (Patel et al., 2022). The problem setup remains consistent with Section B and Appendix H.

Figure 3 illustrates the convergence behavior of the methods towards a neighborhood of the stationary point. The vertical
and horizontal axes are shared across all plots. We vary the momentum parameter p ∈ {0.1, 0.9} (within each subplot), the
number of local steps: {1, 2, 10} (across columns), and the parameter γ ∈ {1, 2, 5} (divided by δ) for SPAM (across rows).
The size of the convergence neighborhood for both methods is primarily influenced by the value of p, which is especially
evident in the final plot for SPAM, where a bigger p results in larger gradient norm oscillations.

Overall, we observe that CE-LGD may outperform SPAM when using a small number of local steps and a small parameter γ.
However, the fastest overall convergence is achieved by SPAM when γ is sufficiently large and the number of local steps
exceeds 1.

27



1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

10 4

10 3

10 2

10 1

100

Gr
ad

ie
nt

 n
or

m

# local steps: 1
SPAM
p= 0.1
p= 0.9

CE-LGD
p= 0.1
p= 0.9

# local steps: 2 # local steps: 10

10 4

10 3

10 2

10 1

100

Gr
ad

ie
nt

 n
or

m

0 200 400 600
Communication round, k

10 4

10 3

10 2

10 1

100

Gr
ad

ie
nt

 n
or

m

0 200 400 600
Communication round, k

0 200 400 600
Communication round, k

γ
=

1
.0
/
δ

γ
=

2
.0
/δ

γ
=

5
.0
/δ

Figure 3: Comparison of SPAM-inexact and CE-LGD on problem (27) with different p, γ and number of local steps.
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