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Abstract—During adolescence, the dynamic change of brain
structure and function underlies the rapid maturation of cog-
nition and behavior. However, it remains underexplored how
distinct regional brain growth patterns are related to the devel-
opment curves of cognition and behavior in large, longitudinal
samples. To investigate that, we employed data of 2553 children
from Adolescent Brain Cognitive Developmental study, including
brain morphological features, cognitive and behavioral measures
from ages 9-10 to 13-14 years old. Linear mixed effects model
and latent growth curve analysis were first used to estimate the
development trajectories of 302 brain features, 5 cognitive and
20 behavior measures. We then applied a regularized canonical
correlation analysis on the resultant trajectory characteristics of
brain features and those of cognition and behavior. Two pairs
of significant and robust intriguing associations were identified
between brain and behavior. The first pair of components
highlighted the association of the increasing rate of bilateral
cerebellar volume as well as cerebral white matter volume with
the decreasing rate of internalizing behavior problems. Whereas,
the second pair of components emphasized the relationship be-
tween crystallized intelligence and cerebral white matter volume
as well as left and right ventral diencephalon volume at baseline.
These findings provide us a precise understanding of how brain
maturation is associated with cognition and emotional regulation.

Index Terms—Brain Maturation, Adolescence, Regularized
Canonical Correlation Analysis, Cognition, Behavior

I. INTRODUCTION

Adolescence is a crucial developmental phase in which the
brain undergoes extensive functional and structural reorgani-
zation [1], [2]. It is also considered pivotal for cognitive and
mental health development since the basis of behavioral traits
are established during this period [3], [4]. In recent years,
several studies have used the Adolescent Brain Cognitive
Development Consortium (ABCD) study to investigate the re-
lationship among multiple brain features (brain morphometry,
functional connectivity, and white matter integrity, etc.), cog-
nition, and mental health, as well as environmental exposure
[5]–[9]. For instance, mental health problems in adolescents
were reported to be associated with smaller cortical surface
area of the orbitofrontal cortex, middle temporal gyrus, and

anterior cingulate cortex as well as increased family conflict
[5] whereas smaller cortical volume and surface area in regions
that support reading, language, spatial skills and executive
functions as well as lower family income were found to be
related to lower cognitive performance [6], [7]. Additionally,
morphometric features as well as connectivity networks in
amygdala, hippocampus and prefrontal regions were reported
to be closely linked to mental illnesses [11]. However, research
in this area is predominantly limited in cross-sectional settings
[5]–[8], due to the challenges involved with the longitudinal
data collection. Despite the fact that the dynamics of individual
brain growth is closely linked to behavioral maturation [10],
[11], how the developmental trajectories of cognitive and
behavioral measures relate to brain maturation remains largely
unexplored.

Furthermore, previous studies have focused primarily on
specific brain measures or a single aspect of cognitive or
behavioral problems, providing only a partial representation
of the general human brain and behavioral characteristics.
For instance, the coupling of two specialized brain networks
(lateral frontoparietal network and default mode network)
was related to the total cognitive performance [12], and dis-
tinct brain connectivities have been found to support specific
cognitive functions, such as language, [13], attention [14]
and episodic memory [15], etc. Separately, numerous studies
have investigated the role of specialized brain networks in
mental health problems [16], [17]. A comprehensive view of
brain morphological development with behavior, cognition,
and mental health is yet to be established, which may pro-
vide valuable insights into the regional roles of the brain in
adolescent dynamic behavior and cognition, and specific risk
to mental health problems.

To address this knowledge gap, we have leveraged data
collected by the ABCD study [18], which has collected a
wide range of longitudinal behavioral and cognitive measures
and mental health assessments, as well as brain magnetic
resonance imaging. We explored a comprehensive set of brain



morphological features (cortical thickness, cortical volume,
surface area, sulcal depth, and subcortical volumes) derived
from structural MRI. Using latent growth curve analyses of
longitudinal data from 2553 adolescents, we calculated the
adolescents’ developmental trajectories for these brain, cogni-
tion, and behavioral variables. The resultant intercepts, slopes
and/or quadratic curves (if existing) from these trajectories
were included in a regularized canonical correlation analysis
(rCCA) to assess their multivariate patterns of interrelations.

II. MATERIALS AND METHODS

A. Participants and Data

1) Subjects: This study analyzed data from the Adolescent
Brain Cognitive Development (ABCD) cohort, a longitudi-
nal dataset collected across 21 sites in the United States,
consisting of 11,875 children aged 9–10 years recruited at
baseline [18], [19]. The minimally processed dataset was
utilized from Release 5.0 (https://nda.nih.gov/) of the ABCD
cohort, encompassing multiple domains, including neuroimag-
ing, demographic information, as well as cognitive and mental
health assessments. The participants were filtered based on the
availability and high quality of neuroimaging data across all
time points available in Release 5.0., resulting in the selection
of 2,553 (1411 males and 1142 females) participants.

2) Neuroimaging data and features: Imaging data (struc-
tural magnetic images, or sMRI) were collected biannually,
giving us three time points for analysis; at baseline (ages 9–10)
and Follow-up year 2 (ages 11-12) and Follow-up year 4 (ages
13-14) [19].. The ABCD study provides FreeSurfer (version
5.3) derived brain morphological measures, obtained from the
T1-weighted sMRI images [20]. A total of 302 measures
from 30 subcortical regions and 68 cortical regions from the
Desikan-Killiany atlas were used, including cortical thickness,
cortical volume, surface area, sulcal depth, and subcortical
volumes.

3) Cognitive and Behavioral Measures: Adolescent cog-
nitive performance was measured using a cognitive battery
provided by the NIH Toolbox® [21]. Five tests from the
NIH Toolbox were used in this study: Picture Vocabulary
and Reading Recognition for assessing crystalized Intelli-
gence (acquired knowledge/learnings), Flanker test for atten-
tion/inhibition; Pattern Comparison test for processing speed;
and Picture Sequence Memory test for episodic memory,
with individual scores recorded for each task. Similar to the
neuroimaging measures, cognition was assessed at three time
points: at baseline and at two subsequent biannual follow-ups.

Behavioral assessments were conducted annually using the
Child Behavior Checklist (CBCL), which is a parent reported
questionnaire for assessing a wide spectrum of behavioral and
emotional problems in adolescents [22]. Empirically derived
syndrome scales from eight domains were reported, includ-
ing anxiety/depression, withdrawal, somatic complaints, social
problems, thought problems, attention problems, rule-breaking
behavior, and aggressive behavior. These scales are grouped
into two higher order factors—internalizing problems (sum of
anxiety, depression, withdrawing, and somatic complaints) and

externalizing problems (rule-breaking behaviour, and aggres-
sive behaviour). Apart from the standard CBCL scales, this
study also includes the DSM-5 oriented subscales (e.g., depres-
sion, ADHD, anxiety, somatic problems, oppositional defiant
problems, and conduct problems) to identify the clinically
relevant symptom dimensions [23]. A total of 20 behavioral
problems and mental health symptom measures across five
time points were included.

B. Methods

1) Modeling Trajectories: In order to achieve the regional
trajectories (intercept and slope) of the brain, the Linear Mixed
Model (LMM) from the python package statsmodels (version
0.14.4) [24] was applied. Gender and time were included as
fixed effects, morphometry measures were the dependent vari-
ables. The LMM modeled the longitudinal changes across the
three time points. Distinct individual trajectories were captured
using random intercepts and random slopes at the subject level
to address the differences in individual brain development
during adolescence. For the cognitive and behavioral features,
a Latent Growth Curve Analysis (LGCA) from the lavaan
package in R (version 4.4.2) [25] was used to derive the
trajectories.

2) PCA For Component Estimation: To determine the ap-
propriate number of latent components to use in the regular-
ized Canonical Correlation Analysis, a principal component
analysis (PCA) was applied to each modality (1: trajectories
of regional brain morphometry, and 2: trajectories of cognitive-
behavioral-mental health measures) separately to obtain an
approximation of the true intrinsic dimensionality for each
dataset. Fifteen components (explaining 85% of the cumulative
variance) were retained from the cognitive and behavioral
trajectories as well as 160 components (explaining 80% of
the cumulative variance) from the brain, based on the elbow
method.

3) rCCA Feature Extraction and Optimization: We used
a rCCA to investigate the multivariate associations between
the two modalities. CCA projects high-dimensional data into
a linear space such that the correlation between the projected
variables from the two datasets is maximized [26]. Given two
datasets X ∈ Rn×p and Y ∈ Rn×q , where n represents the
number of subjects, p and q represents the number of variables
in dataset X and Y respectively. The goal of CCA is to identify
the projection vectors u and v that solve [27]:

max
u,v

u⊤ΣXY v = min
u,v

∥Xu− Y v∥22

subject to ∥Xu∥22 = ∥Y v∥22 = 1 (1)

Here, ΣXY denotes the covariance matrix of XY . L2
(Ridge) regularized CCA was employed using the python
package cca zoo [28] to reduce overfitting issues associated
with CCA. The rCCA model was optimized for 15 pairs of
components (lower value of component numbers embedded
the two data sets) through grid search with 5-fold cross-
validation over an array of regularization parameters (λ1, λ2).



TABLE I
CANONICAL CORRELATION RESULTS FOR TRAINING, TESTING AND 100 RANDOM RESAMPLING

1st comp
(r, p)

2nd comp
(r, p)

3rd comp
(r, p)

5th comp
(r, p)

Training r = 0.57, p < 10−16 r = 0.46, p < 10−16 r = 0.38, p < 10−16 r = 0.36, p < 10−16

Testing
r = 0.51, p < 10−16

Empirical p-value < 0.001

r = 0.41, p < 10−16

Empirical p-value < 0.001

r = 0.15, p = 3× 10−4

Empirical p-value = 0.001

r = 0.14, p = 1× 10−3

Empirical p-value = 0.008

Freq. of
significance 100% 100% 86% 20%

This optimized model allowed the identification of robust
multivariate patterns of interrelations between the trajectories
of regional brain morphometry and cognitive-behavioral func-
tioning. The optimal values identified for λ1 and λ2 were 0.9
and 0.05 respectively. The objective function for the optimized
rCCA model is as follows [29]:

min
u,v

∥Xu− Y v∥22 + λ1∥u∥22 + λ2∥v∥22 (2)

4) Stability Test: To assess the generalizability of the
finalized rCCA model, it was run across 100 random train-
test split. Only components that were consistently significant
(P < 0.0033) after Bonferroni correction across these splits
were reported. This random sampling approach assured the
robustness of the observed associations between the trajecto-
ries of brain regions and cognitive and behavioral measures
across the train-test split.

III. RESULTS

As stated earlier, a comprehensive set of 302 morphological
measures from both cortical and subcortical regions were
incorporated, along with five cognitive and twenty mental
health measures. Trajectories for each measure were obtained
using LMMs for the brain across three time points, and latent
growth curve modeling for cognitive and mental health mea-
sures across three and five time points, respectively. For the
linear growth models (only intercept and slope were modeled),
LMM and LGCM were configured equivalently. Linear growth
patterns were exhibited by brain and cognitive measures, while
nonlinear growth patterns (models with intercept, slope, and
quadratic terms best fit the data) were shown by behavioral
measures over time.

From the derived trajectories, we have discerned that the
cortical measures (volume, thickness, and surface area) tend to
decrease in majority of the cortical regions except for a few (10
regions) that showed a stabilized growth pattern across time.
On the contrary, the subcortical regions demonstrated upward
trajectories for 15 regions (includes the cerebellar regions),
slightly downward trajectories for 5 regions and others showed
stable/flat trajectories. All cognitive measures showed steeply
increasing slopes for both males and females. For behavioral
measures, trajectories varied between males and females. For
instance, males showed decreasing slopes for anxiety and
somatic complaints, whereas the females exhibited U-shaped

(quadratic) trajectories for these measures. Also, externalizing
problems, ADHD symptoms, social problems, oppositional
defiant problems, and conduct problems were decreasing for
both males and females but at different rates, while depressive
and withdrawal symptoms appeared to be increasing with time.
Additionally, internalizing problems and stress appeared to in-
crease before getting stable for females, contrary to the males
showing a declining slope. These nonlinear behavioral patterns
may reflect underlying neural or environmental influences. For
example, the decrease in anxiety and somatic symptoms in
females from childhood to early adolescence [30], followed by
an increase after mid-adolescence [31] may align with steady
brain structural and functional maturation and then mixed with
hormonal fluctuations triggered by mid-adolescence pubertal
development, and/or middle school social peer pressure [32].
Similarly, the steady decline in anxiety and somatic complaints
among males [33] may reflect increasing cortical maturation
[34] and improved coping mechanisms shaped by socialization
[35].

Three example trajectories are highlighted in Figure 1, one
for each domain (95% confidence intervals are represented by
the shaded regions) Figure 1(A) shows the growth trajectory of
cerebral white matter volume with similar slopes for each sex,
but with differences in intercepts, highlighting the expected
higher volume in males. In the case of cognition, seen in
Figure 1(B) as the results of the picture vocabulary test,
growth shows steadily increasing slopes with no discernible
variation between sexes. In Figure 1C, behavioral measure,
shown here with the trajectory of somatic symptoms across
time, displayed major differences in slopes between males and
females despite similar intercepts, indicating diverse growth
patterns with comparable initial levels for somatic symptoms.

Through the rCCA analysis, all fifteen canonical com-
ponents were found to be significant (P < 0.0033) after
Bonferroni correction in the training phase. However, when
the corresponding latent variables were projected onto the
test set, only four of these components (1st, 2nd, 3rd, 5th)
remained significant (P < 0.0033). To evaluate the stability
of these canonical components, rCCA was performed across
100 random train–test splits. Among the four, the first two
canonical components were consistently significant across the
splits, demonstrating robust associations between brain as well
as cognitive and behavioral features. Also a permutation-based



Fig. 1. Trajectories of (A) Brain regional morphological features, (B) Cognitive and (C) Behavioral measures

null distribution analysis was performed to compute empir-
ical p-values for each component using 1000 permutations.
The statistical significance of the first two components was
further supported by the empirical p-values (p < 0.001).
The canonical correlations observed in the test set for these
first two components were 0.51 and 0.41 respectively, as
shown in Table I. Since CCA is susceptible to overfitting even
with regularization, the canonical components that remained
significant in the test set across all the splits were the only
ones reported hereafter.

Table II presents a comprehensive report of the brain regions
and associated cognitive and behavioral measures for the first
two canonical components. Based on the magnitude of the
canonical loadings (a measure to determine how strongly the
original variables are related to their latent components), the
top three cognitive and behavioral measures and top five brain
regional features are reported for each of the canonical com-
ponents. The top contributing brain features are depicted in
Figure 2. The first canonical component revealed an intriguing
association between the dynamic brain growth of broad regions
and the developmental change of multi-aspects of internalizing
functioning in adolescents. Specifically, increasing slopes in
the volume of the right and left cerebellum, as well as in-
creasing slopes in the volume of bilateral cerebral white matter
(absolute loadings ranging from 0.59 to 0.56 with greater
stability and narrow confidence interval) were associated with
decreasing quadratic curves in internalizing behavior problems
that highlight somatic complaints, anxiety and depression, and
overall internalizing problems.

The second canonical pair exhibited a significant connection
between the baseline status (intercept) of bilateral volumes
of cerebral white matter (with higher canonical loadings of
0.73 and 100% frequency), bilateral volumes of ventral di-
encephalon, and left orbitofrontal volume, with the baseline
status of cognitive ability in the reading recognition, and
picture vocabulary, as well as the linear slope of picture
vocabulary. Larger volumes of associated brain regions are
associated with higher scores in picture vocabulary and reading

recognition tasks.
Finally, a post hoc regression analysis was conducted in-

cluding age, socioeconomic status (SES), site, sex and puberty
status as covariates. While age, site, and puberty status did
not show significant effects, SES and sex were significant.
Importantly, the first two canonical components remained
significant even after adjusting for these covariates.

IV. DISCUSSION AND CONCLUSION

The existing studies have reported that morphological fea-
tures of the orbitofrontal cortex, middle temporal gyrus, ante-
rior cingulate cortex, amygdala, hippocampus and prefrontal
regions [5]–[9] etc., are closely associated with behavioral
problems and neurocognitive abilities in adolescents, based on
the baseline data from the ABCD cohort. However, to the best
of our knowledge, it remains unclear how the developing cur-
vature of the behavior and cognition relates to brain maturation
processes in a large longitudinal dataset. Therefore, this study
explores how the trajectories of regional brain morphometry
relate to behavioral and cognitive development. It not only
provides insights into the regions that are sensitive to cognitive
or mental health development, but also highlights how the
growth in these regions might influence behavioral dynamics
known in adolescence. The trajectory analyzes confirmed our
hypotheses on the dramatic and consistent changes in the brain,
behavior and cognition during the ages from 10 to 15 years
old. While brain regions associated with gray matter volume
exhibit a volumetric decline, regions associated with white
matter volume show a continued increase in volume [36].
The lower cognitive regions (pericalcarine, cuneus and lingual
etc) of the brain demonstrated only minimal decline or no
changes in gray matter volume, indicating early maturation of
the occipital lobe. In contrast, gray matter volume showed a
moderate to high decline in parietal regions (e.g., superior pari-
etal, inferior parietal, and precuneus) and frontal regions (e.g.,
superior frontal, lateral orbitofrontal, and medial orbitofrontal),
particularly the frontal regions showing a more noticeable
reduction [37]. The white matter volume of posterior regions



Fig. 2. Top five brain regions of first and second canonical component.

TABLE II
TOP CONTRIBUTING FEATURES AND THEIR CANONICAL LOADINGS ON THE TEST DATASET

Stability evaluation of features across 100 iterations

Canonical Pair Canonical Variates Features Canonical Loadings Mean Canonical Loadings
(95% CI)

Frequency in Top 5
and Top 3 list

1st

Brain Morphological
Measures (FreeSurfer)

Left Cerebellar Cortex Volume
(Slope)

-0.59 -0.59 (-0.61, -0.56) 99.0%

Right Cerebral White Matter Vol-
ume (Slope)

-0.58 -0.57 (-0.65, -0.49) 71.0%

Right Cerebellar Cortex Volume
(Slope)

-0.57 -0.56 (-0.58, -0.54) 90.0%

Left Cerebral White Matter Vol-
ume (Slope)

-0.56 -0.56 (-0.60, -0.51) 63.0%

Right Superior Temporal Volume
(Slope)

-0.56 -0.55 (-0.64, -0.48) 60.0%

Cognitive-Behavioral
Measures

Somatic (Quad) 0.48 0.47 (0.44, 0.51) 100.0%

Internalizing (Quad) 0.39 0.38 (0.35, 0.42) 77.0%

Anxiety/Depression (Quad) 0.38 0.38 (0.35, 0.40) 64.0%

2nd

Brain Morphological
Measures (FreeSurfer)

Left Cerebral White Matter Vol-
ume (Intercept)

0.73 0.73 (0.68, 0.77) 100.0%

Right Cerebral White Matter Vol-
ume (Intercept)

0.73 0.73 (0.67, 0.77) 100.0%

Left Lateral Orbitofrontal Volume
(Intercept)

0.68 0.68 (0.63, 0.71) 90.0%

Left Ventral Diencephalon Volume
(Intercept)

0.68 0.68 (0.64, 0.71) 100.0%

Right Ventral Diencephalon Vol-
ume (Intercept)

0.68 0.67 (0.64, 0.72) 100.0%

Cognitive-Behavioral
Measures

Picture Vocabulary (Intercept) 0.78 0.78 (0.72, 0.83) 100.0%

Reading Recognition (Intercept) 0.71 0.71 (0.67, 0.74) 100.0%

Picture Vocabulary (Slope) 0.58 0.57 (0.52, 0.63) 100.0%



showed moderately increasing slopes, while anterior regions
exhibited only a slight increase, suggesting late maturation
of anterior white matter as well as white matter in general
[38]. All cognitive measures appeared to be increasing with
time as described in the prior works [39], whereas mental
health measures have both increasing and decreasing trajecto-
ries, suggesting different course of development for different
measures [40].

In conclusion, the rCCA analysis successfully extracted two
distinct patterns of association between morphological brain
maturation and cognitive-behavioral development; with the
first pattern isolating the internalizing behavior and the second
reflecting the cognitive aspect. In both patterns, white matter
volumes were predominant, highlighting the vital role of white
matter volume in the development of both behavior and cog-
nition in adolescents [40], [41]. The first canonical pattern set
highlights the effect of volumetric changes in bilateral cerebral
white matter and bilateral cerebellar cortex in the emotional
development of adolescents. In contrast, the second canonical
set points to the sensitivity of the bilateral cerebral white mat-
ter and bilateral ventral diencephalon to crystalized cognition
at baseline. In other words, individuals with greater volume
in these brain regions showed better crystallized intelligence
at baseline. The features of the second canonical component
demonstrated higher mean absolute loadings for both brain
and behavior compared to the first canonical component,
indicating a greater shared variance percentage for the second
canonical component. These findings give us a more pinpoint
understanding of how emotional and cognitive regulation is
associated with brain maturation. In this study, children were
recruited at the ages of 9–10 years and followed up until the
ages of 13-14 years [18], [19]. However, according to the
World Health Organization, the adolescent period lasts from
10 to 19 years of age [42]. Therefore, future work should
include data spanning more time points to fully capture the
associations between the trajectories of brain and behavior
across the entire adolescent period.
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