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Abstract

Autonomous exploration in complex multi-agent reinforcement learning (MARL)
with sparse rewards critically depends on providing agents with effective intrinsic
motivation. While artificial curiosity offers a powerful self-supervised signal, it
often confuses environmental stochasticity with meaningful novelty. Moreover,
existing curiosity mechanisms exhibit a uniform novelty bias, treating all unex-
pected observations equally. However, peer behavior novelty, which encode latent
task dynamics, are often overlooked, resulting in suboptimal exploration in de-
centralized, communication-free MARL settings. To this end, inspired by how
human children adaptively calibrate their own exploratory behaviors via observ-
ing peers, we propose a novel approach to enhance multi-agent exploration. We
introduce CERMIC, a principled framework that empowers agents to robustly fil-
ter noisy surprise signals and guide exploration by dynamically calibrating their
intrinsic curiosity with inferred multi-agent context. Additionally, CERMIC gener-
ates theoretically-grounded intrinsic rewards, encouraging agents to explore state
transitions with high information gain. We evaluate CERMIC on benchmark suites
including VMAS, Meltingpot, and SMACv2. Empirical results demonstrate that
exploration with CERMIC significantly outperforms SoTA algorithms in sparse-
reward environments.
Code: https://github.com/PyyWill/CERMIC

1 Introduction

Achieving effective exploration in complex Multi-Agent Reinforcement Learning (MARL) settings,
particularly those characterized by sparse rewards and partial observability, remains a formidable
scientific challenge [7, 43]. Intrinsic motivation, instantiated as artificial curiosity, has emerged as a
key ingredient for unlocking autonomous learning by providing self-supervised signals in the absence
of immediate extrinsic feedback [29, 38]. This internal drive enables agents to acquire skills and
knowledge that support robust, adaptive intelligence.

However, such novelty-seeking algorithms is susceptible to the stochastic environment dynamics
or other unlearnable noises (the “Noisy-TV” problem) [23]. Existing algorithms mitigate this chal-
lenge through uncertainty quantification or by exploiting global information in multi-agent systems.
However, these strategies prove insufficient for intelligent agents, particularly heterogeneous ones or
those in large-scale systems: Firstly, such agents frequently encounter severe partial observability,
rendering inaccurate uncertainty estimates due to insufficient replay experiences [20]; Secondly, in
decentralized execution without effective communication, agents struggle to form accurate beliefs
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about others’ latent states, undermining methods that presuppose shared inter-agent information. [13].
Altogether, these limitations highlight a critical need for exploration mechanisms that are robust to
partial observable and communication-less environments.

Insights from human cognitive development suggest a pathway forward: children rapidly adapt
to new social games not only through solo trial-and-error, but also by observing peers, inferring
intentions, and selectively imitating successful strategies [42, 16]. Such form of social learning, often
driven by an innate curiosity about ‘why’ others act as they do, allows for swift coordination and an
understanding of task dynamics, even without complete information or explicit instruction [21, 30].
Naturally, the success of this human-centric learning process motivates translating its core principles
to Multi-Agent Systems (MAS). Therefore, this paper seeks to answer:

How can robust, context-aware calibration of intrinsic curiosity unlock truly autonomous
and effective exploration for MARL agents in challenging real-world settings?

To this end, we propose Curiosity Enhancement via Robust Multi-Agent Intention Calibration
(CERMIC), a modular, plug-and-play component designed to augment existing MARL exploration
algorithms. Based on the Information Bottleneck (IB) principle [41, 40], CERMIC learns a multi-agent
contextualized exploratory representation that steers exploration toward semantically meaningful
novelty, and filters unpredictable and spurious novelty. Specifically, it incorporates a graph-based
module to model the inferred intentions of surrounding agents and use the context to calibrate raw
individual curiosity signal at a given coverage level. At each episode, CERMIC yields a loss for
self-training and a theoretically-grounded intrinsic reward for exploration. We empirically validate
CERMIC by integrating it with various MARL algorithms and evaluating its performance across
challenging benchmark suites. In summary, our contributions are threefold:

• We introduce CERMIC, a novel framework that empowers MARL agents with socially con-
textualized curiosity. Inspired by developmental psychology, this offers a novel perspective
on the crucial challenges of effective exploration in sparse-reward settings.

• We propose a robust and controllable multi-agent calibration mechanism in challenging
partially observable and communication-limited environments. CERMIC allows for adap-
tive tuning based on the learned reliability of the intention graph, effectively dampening
exploration instability often plaguing vanilla novelty-seeking agents.

• We deliver CERMIC as a lightweight, readily integrable module and demonstrate consistent
gains over strong baselines across standard benchmarks under sparse rewards.

2 Related Work

Naïve Exploration in RL. Early exploration strategies in reinforcement learning (RL), such as
ϵ-greedy or Boltzmann exploration, gained popularity due to their simplicity and ease of integration
into various algorithms [25, 35, 10]. However, these “naive” exploration methods often perform
suboptimally, particularly in challenging scenarios characterized by sparse rewards or deceptive
local optima. Effectively, the agent explores by taking largely random sequences of actions, which,
especially in continuous state and action spaces, makes comprehensive coverage exceptionally
difficult. Even in the foundational setting of multi-armed bandits (MAB) in continuous spaces [6],
more theoretically sound yet still model-free exploration strategies like Thompson Sampling (TS),
Upper-Confidence Bound methods, and Information-Directed Sampling (IDS) have been developed
[37, 33, 11]. However, while these methods offer improvements over purely random approaches,
their efficacy remains limited when progress requires discovering semantically meaningful novelty
far from the agent’s initial experience distribution. This motivates the development of intrinsic reward
that can provide more targeted and adaptive exploration signals.

Curiosity-Driven Exploration Intrinsic rewards are a powerful tool for driving exploration in
RL, especially in sparse-reward single-agent tasks [29, 4]. Early methods often quantified novelty
via visitation metrics like pseudo-counts or hashing. Subsequent approaches broadened this by
measuring surprise through prediction errors (of transitions or features), state marginal matching,
uncertainty estimates, or even TD errors from random reward predictors [18, 32]. Then, multi-agent
exploration, however, presents unique inter-agent dynamics requiring tailored intrinsic rewards. Some
works have explored inter-agent observational novelty or influence over others’ transitions/values
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[44]. Others have investigated shared intrinsic signals (e.g., summed local Q-errors) or information-
theoretic objectives like maximizing trajectory-latent mutual information for behavioral diversity[27].
Techniques such as goal-based methods with dimension or observation-space goal selection also aim to
manage state space complexity [12, 22]. However, many multi-agent intrinsic rewards implicitly rely
on centralized training signals, privileged communication, or access to global state—assumptions that
break down under decentralized execution. In addition, severe partial observability and heterogeneous
policies can mis-calibrate uncertainty-based novelty estimates, while curiosity mechanisms that treat
all unexpected events uniformly tend to amplify spurious novelty and overlook socially informative
cues encoded in peers’ behaviors. To address these shortcomings, we propose CERMIC, a novel
framework for robustly calibrating intrinsic curiosity via learned models of inferred inter-agent
intentions.

3 Background

Problem Setup. We consider a MAS operating within a communication-less, partially observ-
able Markov Decision Process (POMDP) [5]. Formally, the environment is described by a tuple
(O,A,P,R, N, γ). At each timestep t, each agent i ∈ N receives a local observation oit ∈ O and
select an action ait ∈ A via decentralized policies, which induces a state transition. All the agents
receive a shared extrinsic rewards ret ∈ R after executing the joint action. In this paper, we focus
on the individual agent and omit index i throughout; We use uppercase letters to denote random
variables and lowercase letters to denote their realizations.

Preliminary. The Information Bottleneck (IB) principle [2, 17] guides the learning of a compressed
representation Z of an input X that maximally preserves information about a target Y . This is
achieved by optimizing the trade-off:

max I(Z;Y )− αI(X;Z)

where I(·; ·) denotes mutual information. The first term, I(Z;Y ), measures how much information
the representation Z contains about the target variable Y , ensuring that Z preserves the relevant
predictive information for Y ; The second term, I(X;Z), quantifies the amount of information that Z
retains about the original input X , compelling Z to be a succinct summary of X . In our work, the IB
principle serves as a foundational concept.

Method Overview. CERMIC processes transition experiences (st, at, st+1, r
e
t−1) to generate intrin-

sic rewards and guide exploration, where state embeddings st and st+1 are obtained from observations
ot and ot+1 using encoders with the same structures. To ensure stable representation learning, the
parameters of ot+1’s encoder (θm) is updated via a momentum moving of ot’s ones (θ). The core of
CERMIC is to learn a latent representation xt, parameterized as a Gaussian distribution conditioned
on the current state-action pair: xt ∼ gϕ(st, at). Following the IB principle, CERMIC seeks to maxi-
mize mutual information I(Xt;St+1) to retain predictive information of novel states and encourage
exploration, while minimizing I(Xt; [St, At]) to exploit information about the current context and
gain a compressed representation. The compression process min I(Xt; [St, At]) incorporates robust
calibration mechanisms leveraging multi-agent context. The overall objective is formulated as Eq. (1):

max I(Xt;St+1)− αI(Xt; [St, At]) (1)

where α is a Lagrange multiplier. In what follows, this work tries to address two key questions: (i)
How is CERMIC trained (Section 4.3)? (ii) How does CERMIC generate intrinsic rewards to drive
exploration (Section 4.4)?

4 Method

4.1 Novelty-Driven Exploration

To drive exploration, we aim to maximize the mutual information I(St+1;Xt). However, direct
optimization is intractable. Instead, we resort to maximizing a tractable variational lower bound.

I(Xt;St+1) = Ep(xt,st+1)

[
log

pϕ(st+1|xt)

p(st+1)

]
+DKL[p(st+1|xt)∥pϕ(st+1|xt)]

≥ Ep(xt,st+1)[log pϕ(st+1|xt)] +H(St+1)

(2)
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Figure 1: Workflow of CERMIC. (Left) Illustrates CERMIC’s per-timestep objective. (Right) Depicts
the network architecture. By projecting the raw observation ot into a lower-dimensional embedding
st, subsequent computations within CERMIC operate on compact representations, contributing to its
overall computational efficiency.

where pϕ(st+1|xt) is a variational encoder parameterized by ϕ to approximate the unknown true
conditional distribution p(st+1|xt). Then, by the non-negativity of the KL-divergence, we obtain the
second line expression. Since the entropy of the true next state distributionH(St+1) is independent of
the model parameters ϕ, it’s equivalent to discard this term. Thus, the exploration objective simplifies
to maximizing a log-likelihood loss under the variational approximation.

Lexplore ≜ Ep(xt,st+1)[log pϕ(st+1|xt)] (3)

4.2 Multi-Agent Contextualized Exploitation

Similarly, to minimize the intractable mutual information I(Xt; [St, At]), we optimize its variational
upper bound. Following prior work [2], we introduce a Gaussian variational approximation q(xt) ∼
N(0, I) for the intractable marginal distribution p(xt) =

∫
p(xt|st, at)p(st, at)dstdat:

I([St, At];xt) = Ep(st,at,xt) log
p(xt|st, at)

q(xt)
−DKL[p(xt)∥q(xt)] ≤ Ep(st,at,xt)Ψt. (4)

where the inequality holds due to the non-negativity of KL-divergence. For conciseness, let Ψt =
log p(xt|st, at)/q(xt). The mean µΨ and variance ΣΨ of Ψt ∼ PΨ(µΨ,ΣΨ) can be numerically
computed through p(xt|st, at) and q(xt). However, directly computing the expectation in Eq. (4)
remains challenging due to the distribution shift caused by replacing p(xt) and the high-dimensional
Monte-Carlo (MC) sampling required [36]. To address this, we enforce an upper bound c̄ on Ψt to
relax the minimization term using a chance constraint:

Pr(Ψt ≤ c̄) ≥ 1− ϵ, P ∈ PΨ. (5)

Crucially, to imbue this compression process with awareness of other agents in our communication-
less MAS setting, we condition the chance constraint on an inferred multi-agent contextual feature,
fo
n. This feature fo

n is encoded from an underlying intention modeling of other agents and the specific
architecture of this intention modeling can be varied. In our primary exposition, we exemplify the
intention model as a dynamic graph, Gn (additional analyses on the effects of pre-trained intention
models and other forms of intention modeling can be found in Section 5.3 and Appendix G). The
nodes in Gn encapsulate predictive state representations for each agent, while the edges represent
their relative spatial relationships. We maintain a memory queue of the intention modeling over time,
and the graph Gn will be advanced to Gn+1 only when other agents are detected by a simple MLP
module, ensuring efficient computation under partial observability (the trained MLP can identify
and match different agents). The generation of Gn at each step utilizes an attention mechanism
over historical intention modeling and current observations. Subsequently, a Graph Neural Network
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(GNN) [34] processes Gn to yield the contextual feature fo
n, as detailed in Appendix A. Ultimately,

regardless of its precise origin, this inferred context fo
n is integrated into the chance constraint via

distributional robustness:
infPr∈PΨ

cal
Pr(Ψt ≤ c̄) ≥ 1− ϵ (6)

where

PΨ
cal =

 (EPr [Ψt]− µΨ(f
o
n))

2
Σ−1

Ψ ≤ γ1
Pr ∈ P(R) :

EPr
[(Ψt − µΨ)

2] ≤ γ2ΣΨ

 .

Here, γ1 > 0 and γ2 > max{γ1, 1} are constants, and the mean value now is dependent on the
feature fo

n. The first inequality of PΨ
cal represents the true mean value is within an ellipsoid centered

at µΨ(f
o
n) with a bound γ1, while the second one constrains the true variance with a bound γ2. The

robustness of the set has been proved using McDiarmid’s inequality [8], and the optimal γ1, γ2 can
be correspondingly derived. Next, this robust chance-constraint formulation can then be tractably
converted into the following second-order cone loss in Eq. (7) via Cantelli’s inequality [26] (see
Appendix B for proof), resulting in a loss function where β is a constant regarding γ1, γ2, ϵ. In
essence, minimizing this loss promotes exploitation within the defined robust calibration set.

LUB
exploit ≜ ReLU(µΨ(f

o
n) + β

√
ΣΨ − c̄). (7)

To ensure the robustness and stability of the curiosity system in the worst case, a lower bound loss
is also applied as follows, transformed from Pr(Ψt ≥ c) ≥ 1− ϵ. We can set task-agnostic c̄ and c
after normalizing Ψt.

LLB
exploit ≜ ReLU(−µΨ(f

o
n) + β

√
ΣΨ − c). (8)

Task-Adaptive Calibration. This paragraph details the implementation of the calibration mechanism
for the mean parameter µΨ(f

o
n). We formulate the calibrated mean as a network-parameterized

function h, regarding the inferred multi-agent context fo
n, a task-adaptive factor γ, and the original

mean µΨ. γ is the mutual information between the inferred intention fo
n and the preceding context

composed of the previous intention fo
n−1 and the received extrinsic reward ret−1.

µΨ(f
o
n|γ = I([ret−1, f

o
n−1]; f

o
n)) = h(γfo

n, µΨ) (9)

γ quantifies the consistency of the inferred intention fo
n within the task context provided by the

reward signal. It enables adaptation during different stages of learning and task execution: (i)
Learning Progress Adaptation. Early in training, when the intention model fo

n is inaccurate due to
partial observability and limited experience, the resulting low mutual information γ automatically
down-weights the influence of these unreliable inferences on the calibration of µΨ; (ii) Task Progress
Adaptation. The factor γ also captures the alignment between inferred intentions and the underlying
task dynamics (cooperative/adversarial); even if the intention modeling (e.g., predict state) is accurate,
failing to comprehend the task context can lead to actions yielding unexpected rewards ret−1 and
result in a low γ as well.

Yet, the mutual information I([rt−1, f
o
n−1]; f

o
n) remains intractable. To address this issue, we draw

inspiration from contrastive learning, which effectively utilizes negative sampling and acts as a
regularizer, preventing collapsed solutions and enhancing the stability of the calibration process.
Specifically, we employ the InfoNCE loss [39] to establish tractable bounds for the mutual information:

Icnce ≤ I([rt−1, f
o
n−1]; f

o
n) ≤ I1−c

nce . (10a)

Icnce ≜ Ep(xt,st+1)ES − log
exp(c([rt−1, f

o
n−1], f

o
n))∑

fo
i ∈F−∪fo

n
exp(c([rt−1, fo

n−1], f
o
i ))

. (10b)

where c is a score function (implemented as bilinear+softmax in our work) assigning high scores to
positive pairs (fo

n−1, r
e
t−1, f

o
n) and F− denotes the set of negative examples {(fo

n−1, r
e
t−1, f

o
j )}

|F|
j=1.

During learning, the positive samples are generated from the memory module, while the negative
ones fo

j are computed by adding additional noise to fo
n. The derivation of these bounds is detailed in

Appendix C. For consistency with the inequality directions in the chance constraints, we substitute
the left-hand side of Eq. (10a) into Eq. (7), while substituting the right-hand side into Eq. (8).
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Algorithm 1 CERMIC
1: Initialize: CERMIC and the actor-critic network
2: for episode j = 1 to M do
3: for timestep t = 0 to T − 1 do
4: for each agent n = 0 to N do
5: Obtain action from the actor at ∼ π(st), then obtain the state st+1;
6: Add (st, at, st+1) into the on-policy experiences;
7: Obtain the intrinsic reward rit by Eq. (12) and update ret with rt = rit + ret ;
8: end for
9: end for

10: Update the actor and critic with the collected on-policy experiences as the input;
11: Update CERMIC by gradient descent based on Eq. (11) with the collected on-policy experi-

ences;
12: end for

4.3 Loss Module

The final loss for training CERMIC is a combination of the upper and lower bounds established in
previous sections. CERMIC’s parameters Θ encompass the components illustrated in Fig. 1. Owing to
its operation in a low-dimensional space and reliance on inputs that are readily available in standard
MARL pipelines, CERMIC serves as an efficient, plug-and-play module.

minΘ LC = LUB
exploit + LLB

exploit − αLexplore . (11)

4.4 Intrinsic Reward Module

In this section, we detail how CERMIC generates intrinsic rewards to foster exploration. Our aim is to
not only encourage novelty seeking but also to be theoretically compatible with extrinsic rewards. To
this end, drawing inspiration from Bayesian Surprise [24], we formulate the intrinsic reward rit:

rit ≜ DKL(p(Θ|(st, at, st+1) ∪ Dm)∥p(Θ|Dm))1/2. (12)

where Θ represents the parameters of the CERMIC module and the dataset Dm comprises transition
tuples (st, at, st+1) collected over the past m episodes. Intuitively, this intrinsic reward encourages
agents to prioritize the exploration that are maximally informative for optimizing the CERMIC module
itself. In summarize, we show the overall MARL algorithm with CERMIC in Algorithm 1.

Theoretical Analysis in Linear MDPs Analyzing dynamics of intrinsic rewards in high-dimensional,
non-linear environments presents significant theoretical challenges. However, we provide a theoretical
analysis within the framework of linear Markov Decision Processes (MDPs), where the transition
kernel and reward model are assumed to be linear (i.e., xt = ωtη(st, at), where ωt is the CERMIC
parameters in linear MDP settings and η is a feature embedding function). Within this well-studied
setting, algorithms like LSVI-UCB [14] are known to achieve near-optimal worst-case regret bounds,
largely due to their principled exploration strategy.

The exploration bonus in LSVI-UCB, denoted rUCB−DB
t , quantifies the uncertainty in the value

estimate for the state-action pair (st, at) and encourages optimistic exploration. We proved that, Our
proposed intrinsic reward rit is closely related to this UCB-DB bonus, as formalized in Theorem 1.

Theorem 1 Consider a linear MDP setting where the estimation noises of optimal parameters and
transition dynamics are assumed to follow standard Gaussian distributions N (0, I). Then, for any
tuning parameter ρ > 0, it holds that

ρ · rUCB-DB
t ≤ rit ≤

√
2ρ · rUCB-DB

t . (13)

By tracking the UCB-DB bonus, which naturally decays as uncertainty about state-action values
diminishes, rit also attenuates over time. This prevents persistent, potentially destabilizing intrinsic
motivation when exploration is no longer paramount, facilitating convergence towards policies
optimized for extrinsic rewards.

While the intrinsic reward may be challenging due to the non-Bayesian parameterization of the CER-
MIC model, We empirically approximate it with an IB-trained representation and a Gaussian marginal,
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yielding a tractable lower-bound bonus that supports robust exploration in noisy environments as
follows:

While directly computing ri is challenging, we address this by deriving a computable lower bound
using the Data Processing Inequality (DPI), which states that post-processing cannot increase infor-
mation. Applying a learned representation function R(st, at) (a part of CERMIC) to the transition
(st, at, St+1), the DPI yields:

ri(st, at) =
[
H
(
(st, at, st+1)|Dm

)
−H

(
(st, at, st+1)|Θ,Dm

)]1/2
≥
[
H
(
R(st, at, st+1)|Dm

)
−H

(
R(st, at, st+1)|Θ,Dm

)]1/2
≜ riapprox.

(14)

The approximated reward riapprox thus becomes the KL divergence between the conditional represen-
tationR(xt|st, at) and its marginal pmargin(xt|Dm):

riapprox(st, at) = EΘ [DKL (Rϕ(xt|st, at)∥pmargin(xt|Dm))]
1/2

. (15)

The marginal pmargin(xt|Dm) over model parameters is intractable. Following common practice in
information-theoretic exploration with non-Bayesian models, we approximate pmargin(xt|Dm) with a
fixed standard Gaussian distribution N (0, I). This renders Eq. (15) empirically computable.

5 Experiments

5.1 Task Setup

Benchmarks and Evaluation Metrics. We evaluate our approach on a diverse set of MARL bench-
marks: VMAS (9 tasks) [3], MeltingPot (4 tasks)[1], and SMACv2 (2 tasks) [9]. All environments
were adapted to sparse-reward configurations to rigorously test exploration capabilities; specific
modifications and implementation details are provided in Appendix E. Different metrics for each
benchmark: (i) mean episodic reward for VMAS, (ii) mean episodic return for MeltingPot, and (iii)
mean test win-rate for SMACv2.

Baselines. We integrate CERMIC with two widely-used MARL algorithms, MAPPO[15] and QMIX
[31]. Our approach is compared against three categories of algorithms: (i) Standard MARL baselines:
MAPPO, QMIX. (we also include a naive exploration method MAPPO-ϵ GREEDY) (ii) State-of-the-
art MARL methods: CPM [19] from VMAS and QMIX-SPECTRA [28] from SMACv2. (iii) Other
curiosity-driven exploration algorithms: MAPPO-DB [2], MACE [13], and ICES [20]. Crucially, all
compared algorithms are required to operate under communication-limited, decentralized execution
settings to ensure fair and relevant comparisons.

5.2 Comparison with State-of-the-Art

Table 2: Per-agent contributions in Balance*.

# Agents 2 4 6 8
MAPPO-DB 12.3 13.7 13.6 12.1
MAPPO-CERMIC 14.4 16.7 16.4 17.3

We present a comparative performance analysis
of CERMIC-augmented algorithms against various
baselines in Table 1. A general observation from
these results is that curiosity-driven approaches,
on average, tend to outperform traditional MARL
methods. Building upon this, CERMIC consis-
tently enhances its base algorithms, achieving new SoTA performance on 12 out of the 16 evaluated
scenarios. Furthermore, CERMIC shows its strongest gains on MeltingPot, where rewards depend
on emergent, dynamic inter-agent interactions rather than fixed rules. In such settings, intention-aware
exploration and curiosity calibration give a clear advantage over simple novelty seeking.

Additionally, Agents driven by single-agent curiosity formulations (e.g., MAPPO-DB), which ignore
peers’ intentions, are persistently distracted by others’ behaviors even in later training (see Table 2).
Our contextual calibration explicitly addresses this issue by transforming socially induced randomness
into a learnable signal. To further validate this, we evaluate how per-agent contributions change with
the number of agents in the Balance* task. Results show that MAPPO-DB’s per-agent contribution
decreases as agent count increases, while CERMIC mitigates this degradation:
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Table 1: Performance comparison: against baselines, SoTA, and other curiosity-driven methods.
An * indicates environments adapted to sparse-reward configurations; others are originally sparse.
Task names omitted (see appendix for details)

VMAS MeltingPot SMACv2
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Baseline Methods
QMIX [32] 0.69 0.65 25.4 154 0.42 48.5 3.40 -2.83 0.55 5.11 71.2 6.83 4.57 0.60 0.39
MAPPO[15] 1.44 1.08 21.8 159 0.23 60.3 3.71 -3.70 -0.37 5.02 74.2 8.44 4.93 0.61 0.44
MAPPO-ϵ GREEDY 1.51 1.22 22.8 161 0.27 63.3 3.74 -3.53 -0.12 5.33 74.5 8.62 5.17 0.61 0.43
Current SoTA
CPM [19] 1.46 1.25 25.7 162 0.44 61.0 3.73 -2.51 0.20 5.11 74.4 8.35 5.21 0.64 0.44
QMIX-SPECTRA [28] 1.52 1.14 24.2 154 0.47 52.9 3.82 -2.84 0.02 5.75 70.4 8.51 5.17 0.65 0.45
Curiosity Methods
MAPPO-DB [2] 1.34 0.88 23.0 155 0.51 55.2 3.82 -2.05 -0.04 5.08 71.2 8.47 4.99 0.63 0.43
MACE [13] 1.48 1.22 28.1 166 0.60 60.0 3.62 -1.62 0.24 6.18 75.2 8.94 5.52 0.67 0.44
QPLEX-ICES [20] 1.56 1.36 25.5 164 0.61 63.2 3.96 -1.44 0.63 7.20 76.7 9.07 5.42 0.74 0.48
QMIX-CERMIC (ours) 1.02 0.92 27.2 163 0.84 62.7 3.77 -1.31 0.78 8.43 76.2 8.47 5.02 0.73 0.44
MAPPO-CERMIC (ours) 1.57 1.44 25.4 172 0.64 67.3 3.94 -1.47 1.06 7.11 78.3 10.03 6.74 0.70 0.48

Figure 2: Visualization of agent observation embeddings st and latent states xt. (Left) Compara-
tive st distributions for agents under CERMIC-augmented vs. baseline algorithms. (Right) Influence
of curiosity-driven latent states xt on task exploration.

5.3 Qualitative and Quantitative Analysis

Qualitative Analysis. To provide intuitive insights of the operational dynamics, we visualize the
temporal evolution of agent states st and their corresponding curiosity latent variables xt (Fig. 2).
We define a state trajectory as a temporally contiguous sequence of st embeddings.

(i) Curiosity to Peers: The left panel of Fig. 2, which displays these state trajectories, reveals
that CERMIC-augmented agents exhibit more frequent close proximities and intersections in their
pathways compared to those under vanilla MAPPO. These convergences, without full trajectory overlap,
suggest that agents actively approach others for informed observation to refine their distinct plans,
rather than engaging in mere imitation.

(ii) Curiosity to Environment: In the right panel, the visualization of latent states offers further
compelling evidence. Firstly, xt often displays a more dispersed distribution around the current
st embedding, reflecting an intrinsic drive towards novel or uncertain aspects of the current state.
Secondly, these latent states tend to concentrate at the endpoints of the state trajectories, indicat-
ing CERMIC’s heightened activity prior to significant behavioral shifts, aligning with the original
motivation behind designing an intrinsic reward that prioritizes critical transitions. Furthermore,
inter-agent encounters typically trigger a surge in the intrinsic reward, indicating that CERMIC effec-
tively captures and values the increased novelty and learning opportunities presented by these crucial
multi-agent contextual shifts.
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Figure 3: The impact of pretrained intention memory module on CERMIC’s performances

Quantitative Analysis. Fig. 3 illustrates the mean episodic return curves on the VMAS task, with
comprehensive results across additional tasks deferred to Appendix F. While CERMIC-augmented
algorithms ultimately achieve superior final performance, their learning curves can exhibit a slower
initial ramp-up compared to some baselines. We attribute this initial lower sample efficiency to the
inherent challenge of learning effective multi-agent intention modeling from scratch, a difficulty
induced by severe partial observability.

5.4 Ablation Study

We conduct three ablations on CERMIC, summarized in Table 3: (i) Loss module: Ablating the
exploration loss Lexplore markedly impedes adaptation in sparse-reward settings, yielding slower
learning; removing the exploitation losses LUB

exploit + LLB
exploit prevents effective noise filtering, leading

to instability and pronounced fluctuations. (ii) α: increasing the curiosity scale α (for our cali-
brated intrinsic curiosity) typically lowers immediate returns via greater exploration, yet improves
learning stability and reduces performance variance, reflecting an exploration–exploitation trade-off.
(iii) Intention model: More expressive intention models that better extract contextual features fo

n
consistently improve task performance.

Table 3: Ablation studies and hyperparameter analysis of CERMIC.

Flocki* Naviga Passag* CleanUp ChiGam
Loss Ablations (α = 0.2)
w/o Lexplore 0.82 (±0.15) 1.41 (±0.04) 166 (±3.66) 75.4 (±1.05) 9.22 (±0.80)
w/o Lexploit 0.72 (±0.48) 1.36 (±0.10) 164 (±4.41) 71.5 (±1.59) 8.47 (±1.18)
MAPPO-CERMIC 1.06 (±0.12) 1.43 (±0.06) 171 (±3.72) 78.1 (±0.82) 10.02 (±0.65)
Coverage Level α
1.0 0.80 (±0.07) 1.40 (±0.02) 163 (±1.56) 71.2 (±0.77) 9.04 (±0.46)
0.5 0.88 (±0.10) 1.42 (±0.06) 169 (±3.78) 74.6 (±0.68) 9.50 (±0.67)
0.2 1.06 (±0.12) 1.43 (±0.06) 171 (±3.72) 78.1 (±0.82) 10.02 (±0.65)
Memory Type (α = 0.2)
GRU 0.78 (±0.27) 1.39 (±0.04) 161 (±3.15) 75.2 (±1.03) 9.19 (±0.97)
Graph 1.06 (±0.12) 1.43 (±0.06) 171 (±3.72) 78.1 (±0.82) 10.02 (±0.65)

5.5 Generalization Across Reward Densities

To validate this and demonstrate CERMIC’s potential with proficient intention modeling, we conducted
an auxiliary experiment: We use pre-trained agent detection and intention modeling modules to
provide more accurate initial estimates of other agents’ states, leading to a CERMIC variant that
exhibited significantly faster convergence. Given advancements in related areas like motion prediction,
this result underscores CERMIC’s strong applicability.

We further investigated the generalization capabilities of agents by evaluating their performance when
trained under one reward density (dense or sparse) and tested under a sparse-reward setting. The
results are presented in Table 4. A consistent trend observed across all algorithms is a performance
degradation when agents trained on dense rewards are deployed in sparse-reward scenarios. However,
CERMIC demonstrates a notable ability to mitigate this performance drop. We attribute this to
CERMIC’s capability to enable agents to understand the task by observing other agents, rather than
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solely relying on trial-and-error learning. These findings underscore the importance of research in
sparse-reward reinforcement learning and highlight the potential for CERMIC’s broad applicability.

Table 4: Agent generalization performance on VMAS tasks. ∆ denotes the performance drop from
dense-trained to sparse-trained.

Method Balance∗ Give Way∗ Passage∗
Sparse↑ Dense↑ ∆ ↓ Sparse↑ Dense↑ ∆ Sparse↑ Dense↑ ∆ ↓

CPM 61.0 58.2 -2.8 3.73 3.58 -0.15 162 153 -9

QPLEX-ICES 63.2 60.7 -2.5 3.96 3.85 -0.11 164 159 -5

MAPPO-CERMIC 67.3 65.6 -1.7 3.94 3.82 -0.12 172 168 -4

6 Conclusion

This paper introduced CERMIC, a novel plug-and-play module significantly enhancing exploration in
communication-limited, partially observable MARL under sparse rewards. CERMIC’s core innovation
is a multi-agent contextualized calibration of intrinsic curiosity. Grounded in Bayesian Surprise and
supported by theoretical guarantees, we also propose a novel intrinsic reward guides this calibrated
exploration. Extensive experiments show CERMIC-augmented algorithms achieve state-of-the-art
performance, underscoring the efficacy of context-aware intrinsic motivation. In essence,CERMIC
offers a crucial step towards enabling more autonomous and socially intelligent agent teams for
real-world deployment. No negative societal impact.

Limitations and Future Work. Despite its promising results, CERMIC has limitations that open
avenues for future research. First, learning to accurately model other agents’ intentions solely
from local observations in communication-less, partially observable settings remains a challenging
endeavor. Future work could explore integrating pre-trained components, such as LLMs, to potentially
bootstrap or replace aspects of this ad-hoc intention modeling process. Second, our current graph
construction and one-step latent transition model may require extensions (e.g., hierarchical latent
models) to effectively scale to higher-dimensional or multi-modal MAS tasks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract and Introduction Section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: see Conclusion Section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14



Justification: see Method Section.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: see Method Section, Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: see Supplementary Material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: see Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: see Experiments Section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: see Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: see Conclusion Section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: CC-BY 4.0.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: we include our code/model in the Supplementary Material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Memory Update Module

The agent memory update module primarily consists of an agent detection mechanism and a memory
encoding structure. In our main approach, this involves an MLP-based agent detector and a graph-
based memory module. This section elaborates on the graph structure and the pre-training of the
detector.

A.1 Graph-based Memory Representation

The graph-based memory module offers a structured approach to model inter-agent states and their
relationships. For each observing agent, a local graph Gt = (Vt, Et) is dynamically constructed or
updated at each timestep t.

• Nodes (Vt): Each node vi ∈ Vt corresponds to an inferred latent state representation of
a specific agent i (either the self-agent or a detected peer). These node features, denoted
zi ∈ RDnode , are generated by encoding the raw observation associated with agent i.

• Edges (Et): Edges eij ∈ Et link pairs of nodes (vi, vj), representing the inferred relationship
between agent i and agent j. In our work, these are spatial relationships, with edge features
fij ∈ RDedge derived from their relative positions.

This dynamic graph serves as input to a Graph Neural Network (GNN), which processes the relational
information to produce a contextualized memory representation for the observing agent, thereby
informing its subsequent actions.

A.2 Pre-training Process

Key components of the agent memory module are pre-trained to establish meaningful initial represen-
tations, facilitating more effective subsequent MARL training.

MLP Agent Detector. This module processes an agent’s observation to output probabilities
p = [p1, . . . , pN ]⊤, where pk denotes the likelihood of observing an agent of type-k. These
probabilities are later used to gate memory updates during MARL training via a threshold τdet. Pre-
training is supervised using ground-truth presence labels yk ∈ {0, 1}, which are set to 1 if agent-k
appears within the field of view or one body length of the observer, and 0 otherwise. To facilitate
reliable detection, agents in our environment are either designed with or inherently exhibit distinct
visual appearances, and each agent type is represented by a dedicated channel in the observation
tensor, enabling effective training of an MLP-based detector.

Ldet = −
∑N

k=1
[yk log(pk) + (1− yk) log(1− pk)] . (16)

Graph Memory Encoders. The node and edge encoders within the graph memory are pre-trained as
follows: (i) Node Encoder: for an observing agent k, its encoder produces a feature zk→j representing
its understanding of another agent j’s state. This is trained to predict agent j’s true latent state sj . The
MSE loss is weighted by a detection mask, which is derived from the predicted transition probabilities
pk→j produced by a pre-trained detector, using a fixed threshold to determine valid entries; (ii) Edge
Encoder: this encoder generates 2D edge features fij from inter-agent cues, trained to directly predict
the true relative position vector (∆xij ,∆yij) between agents i and j using an MSE loss.{

L(k)
node =

∑
j ̸=k pk→j · E

[
||zk→j − sj ||2

]
.

Ledge = E
[
||fij − (∆xij ,∆yij)||2

]
.

(17)

These pre-training steps provide the memory module with an initial capacity for relevant information
extraction, potentially accelerating overall learning.

B Derivation with Cantelli Inequality

In this section, we detail the transformation of the distributionally robust chance constraint, Eq.(6)
of the main paper. This transformation leverages Cantelli’s inequality to arrive at a tractable loss
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under second-order cone program (SOCP) constraint. In this section, we set c̄ = 1 for illustration.
We begin by defining auxiliary variables based on the quantities in the chance constraint:

s̃ = Ψt − µΨ(f
o
n) (18a)

b = 1− µΨ(f
o
n) (18b)

We also define the set S describing the ambiguity in the first and second moments of s̃, and the set
Ds̃ of distributions consistent with these moments:

S =
{
(µ1, σ1) : |µ1| ≤

√
γ1ΣΨ, µ

2
1 + σ2

1 ≤ γ2ΣΨ

}
(19a)

Ds̃ =

{
Pr ∈ P(R) :

|EPr
[s̃]| ≤

√
γ1ΣΨ

EPr
[s̃2] ≤ γ2ΣΨ

}
(19b)

where P(R) is the set of all probability distributions on R. Then, the original chance constraint
infPr∈Pcal

Pr(Ψt ≤ 1) ≥ 1− ϵ can be rewritten using s̃ and b. The infimum term is:

inf
Pr∈Pcal

Pr(Ψt ≤ 1) = inf
Pr∈Ds̃

Pr(s̃ ≤ b)

= inf
(µ1,σ1)∈S

inf
Pr∈P(µ1,σ2

1)
Pr(s̃ ≤ b).

(20)

where Pcal refers to the set of distributions under multi-agent contextual intention uncertainty in the
main paper. To this end, Eq. (20) formulates the problem as a bi-level optimization. The outer layer
finds the worst-case mean µ1 and variance σ2

1 within the ambiguity set S. The inner layer finds the
worst-case probability Pr(s̃ ≤ b) for a given mean and variance.

To solve the inner optimization problem, we employ the one-sided Cantelli’s inequality. For a random
variable X with mean E[X] and variance Var[X] = σ2, Cantelli’s inequality provides bounds on tail
probabilities. Specifically, for the lower tail, the bound is defined as:

Pr(X − E(X) ≥ −λ) ≤ σ2

σ2 + λ2

Applying this to our inner problem infPr∈P(µ1,σ2
1)
Pr(s̃ ≤ b), we get:

inf
Pr∈P(µ1,σ2

1)
Pr(s̃ ≤ b) =

{
(b−µ1)

2

σ2
1+(b−µ1)2

, if b ≥ µ1

0, otherwise.
(21)

In practical multi-agent reinforcement learning scenarios, the desired confidence level 1 − ϵ is
positive. For the chance constraint inf Pr(s̃ ≤ b) ≥ 1 − ϵ to hold with 1 − ϵ > 0, we must be in
the regime where b ≥ µ1. If b < µ1, the infimum probability would be 0, violating the constraint.
Therefore, for any relevant (µ1, σ1) ∈ S, the condition b ≥ µ1 must be satisfied. This implies
b ≥ sup(µ1,σ1)∈S µ1 =

√
γ1Σh (assuming Σh > 0). Consequently, Eq. (20) simplifies to:

inf
Pr∈Pcal

Pr(Ψt ≤ 1) = inf
(µ1,σ1)∈S

(b− µ1)
2

σ2
1 + (b− µ1)2

(22)

Solving the optimization problem in Eq. (22) over the set S (defined by moment bounds |µ1| ≤√
γ1Σh and µ2

1 + σ2
1 ≤ γ2Σh) yields the following worst-case probability:

inf
Pr∈Pcal

Pr(Ψt ≤ 1) =


1( √

γ2−γ1

b/
√

Σh−√
γ1

)2

+1

, if
√
γ1 ≤ b√

ΣΨ
≤ γ2√

γ1

(b/
√
Σh)

2−γ2

(b/
√
Σh)2

, if b√
ΣΨ

> γ2√
γ1

infeasible, if b√
ΣΨ

<
√
γ1.

The chance constraint requires this infimum probability to be at least 1− ϵ: infPr∈Pcal
Pr(Ψt ≤ 1) ≥

1− ϵ. By substituting the expressions above and performing algebraic manipulations, we arrive at the
tractable second-order cone constraint. Substituting b = 1−Ψt(f

o
n), the condition becomes:

µΨ(f
o
n) + β

√
ΣΨ ≤ 1 (23a)

ln =

{√
γ1 +

√
1−ϵ
ϵ (γ2 − γ1), if γ1/γ2 ≤ ϵ ≤ 1√

γ2

ϵ , if 0 < ϵ < γ1/γ2.
(23b)
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This provides the final tractable form for the first inequality in Eq. (6) of the main paper. For
this second-order cone constraint, we wrap it with a ReLU function to construct the following loss
LUB
exploit, which forms an upper bound of the exploit loss. We substitute c̄ to recover the Eq. (7)

presented in the main text.

To ensure stability and prevent variables Ψt from shrinking indefinitely, we also impose a lower-bound
constraint Pr(Ψt ≥ c) ≥ 1− ϵ, which can be converted into loss LLB

exploit in a similar manner.

C InfoNCE Bounds on Mutual Information

This appendix details how the InfoNCE objective provides lower and upper bounds for the mutual
information I([ret−1, f

o
n−1]; f

o
n). We begin our derivation by establishing the lower bound relationship

Ince(c) ≤ I([ret−1, f
o
n−1]; f

o
n). For notational simplicity, we denote the context [ret−1, f

o
n−1] as zn.

In our work, the InfoNCE objective is defined using a critic function c([ret−1, f
o
n−1], f

o
n), which

measures the compatibility between the context [ret−1, f
o
n−1] and the current inferred intention fo

n.
In practice, c(·, ·) is implemented as a bilinear layer followed by a softmax, yielding scores in the
range [0, 1]. Given a positive pair (fo

n, zn) drawn from the joint distribution p(zn, f
o
n), and a set of

N negative samples F− = {f−o,j
n }Nj=1 drawn from the complement of fo

n in its state space F , the
InfoNCE objective is defined as:

Icnce ≜ Ep(zn,fo
n)EF−

[
log

exp(c(zn, f
o
n))∑N

j=1 exp(c(zn, f
−o,j
n ))

]
. (24)

where the positive pairs (zn, fo
n) are obtained from the current prediction pair. Negative samples

are generated by independently sampling N times from the state space of fo
n. Let I be an indicator

variable, with I = 1 indicating a positive sample randomly drawn from the state space, and I = 0
indicating a negative one (i.e., fo

n is replaced by f−o
n ). The corresponding conditional probabilities

have the following properties: {
p(zn, f

o
n|I = 1) = p(zn, f

o
n).

p(zn, f
−o
n |I = 0) = p(zn)p(f

o
n).

(25)

We aim to maximize the InfoNCE objective Icnce. We assume that the optimal critic c∗ can identify
the log-posterior probability of a randomly sampled pair being the positive one. Thus, we have:

Icnce ≤ Ic∗nce
≤ Ep(zn,fo

n)
EF− [c∗(zn, f

o
n)]

= Ep(zn,fo
n)
EF−

[
log p(I = 1|zn, fo

n,F−)
]
.

(26)

Next, we expand log p(I = 1|zn, fo
n,F−) using Bayes’ theorem. Considering one positive sample

and N negative samples, the prior probabilities are p(I = 1) = 1/(N+1) and p(I = 0) = N/(N+1)
for the collection of negative samples.

log p(I = 1|zn, fo
n,F−) = log

p(zn, f
o
n|I = 1)p(I = 1)

p(zn, fo
n|I = 1)p(I = 1) + p(zn, f

−o
n |I = 0)p(I = 0)

= log
p(zn, f

o
n)

p(zn, fo
n) +Np(zn)p(fo

n)
.

(27)

This expression for log p(I = 1|zn, fo
n,F−) represents the log-probability of the given fo

n being the
true positive, relative to N distractors drawn from p(zn)p(f

o
n). Continuing from this expression:

log
p(zn, f

o
n)

p(zn, fo
n) +Np(zn)p(fo

n)
= log

(
p(zn, f

o
n)

p(zn)p(fo
n)
· p(zn)p(f

o
n)

p(zn, fo
n) +Np(zn)p(fo

n)

)
≤ log

p(zn, f
o
n)

p(zn)p(fo
n)
− logN.

(28)

Taking the expectation Ep(zn,fo
n)
EF− on both sides of the result from Eq. (26) combined with the

inequality above:

Ep(zn,fo
n)
EF−

[
log p(I = 1|zn, fo

n,F−)
]
≤ Ep(zn,fo

n)

[
log

p(zn, f
o
n)

p(zn)p(fo
n)

]
− logN. (29)
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The term Ep(zn,fo
n)

[
log

p(zn,f
o
n)

p(zn)p(fo
n)

]
is the definition of mutual information I(zn; f

o
n). Therefore, by

substituting zn = [ret−1, f
o
n−1] back into Eq. (26) and rewriting I(zn; f

o
n) with the original notation,

we have:
I([ret−1, f

o
n−1]; f

o
n) ≥ Icnce + logN. (30)

This demonstrates that the mutual information is lower-bounded by the InfoNCE objective Icnce plus
a term logN . This justifies using Icnce as a tractable surrogate to maximize a lower bound on the
mutual information.

Similarly, the upper bound inequality can be derived using the same method. I([ret−1, f
o
n−1]; f

o
n) ≤ I1−c

nce .

I1−c
nce ≜ logN − Ep(zn,fo

n)
EF−

[
log

exp(1−c(zn,f
o
n))∑N

j=1 exp(1−c(zn,f
−o,j
n ))

]
.

(31)

D Intrinsic Reward in Linear MDPs

This appendix provides a theoretical justification for our proposed intrinsic reward by connecting it to
the exploration bonus in LSVI-UCB within the context of linear MDPs.

D.1 Preliminary

Least-Squares Value Iteration with Upper Confidence Bounds (LSVI-UCB) is an algorithm designed
for efficient exploration and learning in linear MDPs. In a linear MDP, the transition kernel and
reward function are assumed to be linear with respect to a d-dimensional feature map η(s, a) of state-
action pairs. Consequently, for any policy π, the action-value function Qπ(s, a) can be expressed as
χ⊤η(s, a) for some parameter vector χ ∈ Rd.

LSVI-UCB iteratively collects data and updates the Q-function parameters. In each episode, the
agent acts according to the current optimistic Q-function. The parameter χt is then updated via
regularized least-squares:

χt ← arg min
χ∈Rd

m∑
i=0

[
rt(s

i
t, a

i
t) + γmax

a′
Qtarget

t (sit+1, a
′)− χ⊤η(sit, a

i
t)
]2

+ λ∥χ∥22,

where m is the number of collected transitions (indexed by i), λ > 0 is a regularization parameter, and
Qtarget

t is typically a previous estimate or a slowly updating target. The closed-form solution involves
the Gram matrix Λt =

∑m
i=0 η(s

i
t, a

i
t)η(s

i
t, a

i
t)

⊤ + λI . Crucially, LSVI-UCB employs a UCB-style
exploration bonus to construct an optimistic Q-function: Qt(s, a) = χ⊤

t η(s, a) + rucb(s, a), where

the bonus is rucb(s, a) = ζ
[
η(s, a)⊤Λ−1

t η(s, a)
]1/2

. This bonus quantifies the epistemic uncertainty
associated with the value estimate of (s, a).

D.2 Connection to LSVI-UCB Bonus

We establish a connection between our intrinsic reward and the LSVI-UCB exploration bonus. In
linear MDPs, CERMIC’s parameters Θ is rewritten as ωt and our curiosity representation xt can
be represented as xt = ωtη(st, at) ∈ Rc. Here, η(st, at) ∈ Rd is the state-action encoding, and
ωt ∈ Rc×d is a parameter matrix. This representation is learned by predicting the next state st+1 via
the regularized least-squares problem:

ωt ← argmin
W

m∑
i=0

∥∥sit+1 − ωη(sit, a
i
t)
∥∥2
F
+ λ∥ω∥2F , (32)

The proof proceeds by vectorizing the matrix ωt and defining an expanded feature matrix η̃. Specif-
ically, vec(ωt) ∈ Rcd is the column-wise vectorization of ωt, and η̃(st, at) ∈ Rcd×c is a block-
diagonal matrix with η(st, at) repeated c times along its diagonal. This construction satisfies
vec(ωt)

⊤η̃(st, at) = (ωtη(st, at))
⊤. For clarity, the definitions are:{

vec(ωt) = [w11, . . . , w1d, w21, . . . , wcd]
⊤ ∈ Rcd.

η̃(st, at) = Ic ⊗ η(st, at) ∈ Rcd×c.
(33)

where I(Ic) denotes the identity matrix (with c dimensions), and ⊗ is the Kronecker product.
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Assumption 1 (Gaussian Prior) We consider a linear model for predicting the c-dimensional next
state st+1 from d-dimensional state-action features η(st, at), formulated as st+1 = Wη(st, at) + ξt.
The parameter matrix W ∈ Rc×d is assumed to follow a zero-mean Gaussian prior distribution
W ∼ N (0, λ−1I), and the model noise ξt ∈ Rc is assumed to follow a standard multivariate
Gaussian distribution ξt ∼ N (0, Ic), independent of W and η(st, at).

To analyze the intrinsic reward, we adopt a Bayesian linear regression perspective for Eq. (32). Our
goal of the analysis is to obtain the posterior distribution p(ωt|Dm) to compute the Bayesian Surprise
in the intrinsic reward. Firstly, under Assumption 1, we have:

st+1|(st, at), ωt ∼ N (ωtη(st, at), I) ≡ N
(
η̃(st, at)

⊤vec(ωt), I
)
. (34)

Given the Gaussian prior vec(W ) ∼ N (0, λ−1I), Bayes’ rule states:

log p(vec(ωt)|Dm) = log p(vec(ωt)) +

m∑
i=0

log p(sit+1|sit, ait, vec(ωt)) + C. (35)

where C is a constant. Then, substituting the Gaussian PDF for Eq. (34) into Eq. (35) yields the
log-posterior:

log p(vec(ωt)|Dm) = −λ

2
∥vec(ωt)∥22 −

1

2

m∑
i=0

∥η̃(sit, ait)⊤vec(ωt)− sit+1∥22 + C

= −1

2
(vec(ωt)− µ̃t)

⊤Λ̃t(vec(ωt)− µ̃t) + C′,

(36)

where C′ is a constant and µ̃t = Λ̃−1
t

∑m
i=0 η̃(s

i
t, a

i
t)s

i
t+1, Λ̃t =

∑m
i=0 η̃(s

i
t, a

i
t)η̃(s

i
t, a

i
t)

⊤ + λI.
Thus, the posterior distribution is vec(ωt)|Dm ∼ N (µ̃t, Λ̃

−1
t ). The covariance matrix of vec(ωt) is

Λ̃−1
t . The structure of Λ̃t is:

Λ̃t = In ⊗

(
m∑
i=0

η(sit, a
i
t)η(s

i
t, a

i
t)

⊤ + λI

)
= In ⊗ Λt, (37)

Notably, Λt =
∑m

i=0 η(s
i
t, a

i
t)η(s

i
t, a

i
t)

⊤ + λI is the Gram matrix from LSVI-UCB. To this end, the
intrinsic reward, related to Bayesian Surprise, can be simplified to a change in differential entropy,
where Cov(·) denotes the covariance:

DKL(p(ωt|(st, at, st+1) ∪ Dm)∥p(ωt|Dm))

= DKL(p(vec(ωt)|(st, at, st+1) ∪ Dm)∥p(p(vec(ωt)|Dm))

= H(vec(ωt)|Dm)−H(vec(ωt)|(st, at, St+1) ∪ Dm)

= [log det (Cov(vec(ωt)|Dm))− log det (Cov(vec(ωt)|(st, at, St+1) ∪ Dm))] /2.

(38)

Substituting the covariance Λ̃−1
t and the updated covariance after observing (st, at, st+1):

DKL(p(ωt|(st, at, st+1) ∪ Dm)∥p(ωt|Dm))

=
[
log det

(
Λ̃t + η̃(st, at)η̃(st, at)

⊤)− log det
(
Λ̃t

)]
/2

=
[
log det

(
I+ η̃(st, at)

⊤Λ̃−1
t η̃(st, at)

)]
/2,

(39)

where the last equality follows from the Matrix Determinant Lemma. Given the block-diagonal
structure of η̃(st, at) and Λ̃−1

t , the term η̃(st, at)
⊤Λ̃−1

t η̃(st, at) is a diagonal matrix with c identical
scalar entries η(st, at)⊤Λ−1

t η(st, at). Thus, Eq. (39) simplifies to:

DKL(p(ωt|(st, at, st+1) ∪ Dm)∥p(ωt|Dm))

=
[
log det

(
Ic ⊗ η(st, at)

⊤Λ−1
t η(st, at) + Ic

)]
/2

= (c/2) · log
(
1 + η(st, at)

⊤Λ−1
t η(st, at)

)
.

(40)

By leveraging the inequality x
2 ≤ log(1 + x) ≤ x, we obtain:

η(st, at)
⊤Λ−1

t η(st, at)

2
≤ log

(
1 + η(st, at)

⊤Λ−1
t η(st, at)

)
≤ η(st, at)

⊤Λ−1
t η(st, at). (41)
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Combining these results, we obtain the bounds for the square root of the mutual information:√
c

4

[
η(st, at)

⊤Λ−1
t η(st, at)

]1/2 ≤ rit ≤
√

c

2

[
η(st, at)

⊤Λ−1
t η(st, at)

]1/2
. (42)

Recalling that the LSVI-UCB bonus is rucb = ζ
[
η(st, at)

⊤Λ−1
t η(st, at)

]1/2
, we can express the

relationship as:
1

ζ

√
c

4
· rucb ≤ rit ≤

1

ζ

√
c

2
· rucb. (43)

Defining ρ = 1
ζ

√
c
4 , this can be written as ρ·rucb≤ rit≤

√
2ρ·rucb. This proof establishes a connection

between our proposed intrinsic reward and the UCB bonus, providing theoretical grounding for the
stability of our reward mechanism.

E Benchmark Adaptation to Sparse-Reward Settings

Our CERMIC model and all compared algorithms were trained in environments with sparse reward
signals to specifically assess exploration capabilities. However, for a comprehensive evaluation against
baselines, particularly those not designed for extreme sparsity, final performance was measured
using the original dense extrinsic rewards provided by the benchmarks. To facilitate the sparse-
reward training, we adapted standard MARL benchmarks, VMAS and SMACv2, into sparse-reward
configurations as detailed below. This transformation creates challenging scenarios where intrinsic
motivation is paramount for effective learning.

VMAS Benchmarks. For VMAS tasks that originally featured dense rewards (e.g., based on distance-
to-target or control efforts), we induced sparsity by identifying a clear success condition for each
task and restructuring the reward mechanism accordingly. Specifically, original dense or intermediate
reward components were removed or nullified, except for a significant positive reward granted only
upon the achievement of the predefined success condition (e.g., reaching a target zone, achieving
a formation). Episode termination conditions remained largely unchanged, but rewards became
predominantly contingent on successful terminal states. For instance, in a Balance∗ task, agents
receive a large positive reward only upon moving the object to the goal region, with zero or minimal
rewards during transit. This approach ensures that learning signals are tied to meaningful task
completion rather than continuous incremental progress.

SMACv2 Benchmarks. Similarly, for SMACv2 scenarios, while many already possess somewhat
sparse rewards, we further amplified sparsity to stringently test exploration. The primary reward
signal was strictly tied to the ultimate battle outcome: a large positive reward for winning, a negative
or zero reward for losing, and a neutral or slightly negative reward for a draw. All intermediate
battlefield rewards, such as bonuses for damaging enemy units or penalties for sustaining damage,
were removed. This concentrates the learning signal at the conclusion of an engagement, compelling
agents to learn long-term coordination and strategy based purely on the sparse win/loss feedback,
especially in scenarios where incremental damage yields no immediate reward.

These modifications ensure that agents in both benchmarks must explore extensively to discover
successful action sequences, as intermediate feedback is largely absent, thus providing a robust
testbed for curiosity-driven mechanisms like CERMIC.

F Supplementary Experimental Results

Performance Curve Comparison. We present further comparative experiments showcasing the
performance of CERMIC against other methods in Fig. 4 below. The results demonstrate that CERMIC
consistently surpasses prior SoTA models and other curiosity-driven approaches, achieving superior
task performance. Furthermore, it is observable that our method exhibits more stable learning curves,
characterized by narrower error bands. We attribute this enhanced stability and performance to
CERMIC’s ability to effectively filter noisy signals while concurrently encouraging robust exploration.

Robustness to Noise. To further validate the noise-filtering capabilities of CERMIC, we conducted
comparative experiments in environments augmented with “random box” noise, as depicted in Fig. 5.
The results indicate that, in these noisy conditions, CERMIC maintains more stable learning curves
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Figure 4: Comparative performance on VMAS.

and narrower error bands compared to other algorithms. Notably, this advantage in stability is more
pronounced than in the noise-free task counterparts (Fig. 4). Furthermore, we observe that the error
bands in the Simple Adversary task are smaller than those in the Ball Trajectory task. This
difference can be attributed to the richer multi-agent contextual information available in the former,
which includes signals from both adversaries and teammates, whereas the latter primarily involves
information from a single partner. Consequently, the increased contextual feedback translates to
a stronger noise-filtering effect, as reflected in the learning curves. This underscores CERMIC’s
ability to leverage multi-agent information to enhance task understanding and mitigate the impact of
environmental stochasticity.
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Figure 5: Performance comparison under environmental noise on VMAS task.

Role Diversity and Task Adaptation. While CERMIC consistently improves performance, we
observe a more substantial performance gain over traditional baselines in tasks involving diverse
agent roles (e.g., both cooperation and competition, as in Simple Adversary∗) compared to purely
cooperative/competitive settings (e.g., Ball Trajectory∗); see Fig. 5. We attribute this to the
challenge faced by traditional methods in interpreting heterogeneous agent behaviors under partial
observability, where inferring intent and role from observations is inherently difficult. In contrast,
CERMIC’s task-adaptive weighting mechanism (γ) enables agents to better infer and adapt to others’
intentions and plans, thereby enhancing performance in complex social interactions.

Visualization of Intrinsic Reward. To illustrate the temporal behavior of CERMIC’s intrinsic reward,
we visualized its values throughout a complete episode of the Balance∗ task, as shown in Fig. 6. A
clear trend is the gradual decrease of this intrinsic reward over time, indicating a diminishing role of
curiosity-driven exploration as the agent gains familiarity with the task environment. Furthermore,
peaks in the intrinsic reward consistently coincide with an agent encountering novel situations, such
as initial environmental entry or first-time interactions with other agents. This observation aligns with
our design objective for the intrinsic reward, which is to incentivize exploration of unfamiliar states
and interactions.

27



Re
la
ti
ve

Re
wa

rd

EncounterStart

Steps

Figure 6: Visualization of CERMIC’s intrinsic reward during one episode of the Balance∗ task.

G Alternative Memory Architectures

While graph-based memory offers structured relational reasoning, alternative architectures provide
different trade-offs.Table 5 compares key architectural parameters with typical example values for
these memory types.

MLP-based Memory. An MLP processes the agent’s current (potentially encoded) observation to
output a fixed-size memory vector. This is a stateless, feed-

GRU-based Memory. A Gated Recurrent Unit (GRU) maintains a hidden state that is updated at
each timestep based on the current encoded observation and its previous state, capturing temporal
dependencies.

Table 5: Architectural parameters for different memory modules.

Parameter Type Graph-based MLP-based GRU-based

Core Encoding
Node Embedding Dim (Dnode) 256 - -
Edge Embedding Dim (Dedge) 16 - -
Obs. Encoder Output Dim (Dobs_enc) 64 (for detection/encoding) 64 64
Memory/State Output Dim 512 (DGNN_out) 256 (DM ) 256 (DH )

Network Structure
Obs. Encoder (CNN) Layers/Depth 3 conv layers 3 conv layers 3 conv layers
GNN Layers (LGNN ) 2 - -
GNN Hidden Dim (DGNN_hid) 256 - -
GNN Heads (Nheads) 4 - -
MLP Hidden Layers (LMLP ) (Node/Edge Encoders: 2) 2 (post obs-encoder) -
MLP Hidden Units/Layer (UMLP ) (Node/Edge Encoders: 128) 128 -
GRU Layers (LGRU ) - - 2

Est. Total Parameters High Low Medium

The Graph-based module is generally the most expressive due to its explicit relational structure
but also tends to be the most parameter-heavy. MLP-based memory is the simplest, while GRU-
based memory offers a balance for capturing temporal context. The choice depends on the specific
requirements of the MARL task, including the complexity of inter-agent interactions and available
computational resources.

H Implementation Details

For brevity, we previously use abbreviated task names in Table 1. Their full names are as follows:
Disper = Disperse, Naviga = Navigation, Sampli = Sampling, Passag = Passage, Transp
= Transport, Balanc = Balance, GiveWa = GiveWay, Wheel = WheelGathering, Flocki =
Flocking (*: sparse-reward version), StaHun = StagHuntRepeated, CleaUp = Cleanup, ChiGam
= ChickenGameRepeated, PriDil = PrisonersDilemmaRepeated, pro5v5 = Protoss5v5, and
zer5v5 = Zerg5v5.
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Table 6: Key training hyperparameters.

Parameter Category Value / Setting
General Optimization

Discount Factor (γ) 0.99
Learning Rate (Adam) 1e-4
Adam Optimizer ϵ 1e-6

Target Network Updates
Update Type Soft (Polyak averaging)
Polyak Tau (τ ) 0.005

Exploration Strategy
Initial Epsilon (ϵinit) 0.8
Final Epsilon (ϵend) 0.01

Training Duration
Max Frames 3000000

On-Policy Collection & Training
Collected Frames per Batch 36000
Environments per Worker 60
Minibatch Iterations 30
Minibatch Size 2400

Off-Policy Collection & Training
Optimizer Steps per Collection 1800
Train Batch Size 1024
Replay Buffer Size 1500000

This paragraph outlines the core hyperparameters used for training our models and baselines, unless
specified otherwise for particular tasks or algorithms. Specific parameters related to intrinsic rewards
(e.g., exploitation weight factor α) are detailed separately in the experimental setup as they vary
across tasks and model configurations. Training/evaluation was conducted via BenchMARL suite on
NVIDIA Quadro RTX 8000 GPUs.

29


